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Observations are reported on polypropylene/polyethylene blends with various concentrations of compo-
nents in uniaxial tensile tests with constant strain rates, relaxation tests, and creep tests at room temper-
ature. A model is developed for the viscoelastic and viscoplastic responses of polymer blends at arbitrary
three-dimensional deformation with small strains. Material constants in the constitutive equations are
determined by fitting the experimental data. It is found that all adjustable parameters evolve with blend
composition following an analog of the rule of mixture. Lifetime of blends under condition of creep rup-
ture is evaluated by numerical simulation.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

This paper focuses on the experimental investigation and con-
stitutive modeling of the viscoelastic and viscoplastic behavior of
polymer blends. A binary blend of polypropylene (PP) and polyeth-
ylene (PE) is chosen for the analysis for the following reasons:

1. PP/PE blends are widely used in industry for production of
ropes, nets, packaging materials, as well as for structural appli-
cations (Mathew et al., 2010; Zahran et al., 2010).

2. Analysis of the crystalline structure, thermal properties, and
mechanical response of PP/PE blends have been a focus of atten-
tion in the past decade (Jose et al., 2004; Na et al., 2005; Xie
et al., 2009).

A novelty of this study consists in the analysis of blends, where
polypropylene is produced by metallocene catalysis (which ensures
a narrow distribution of its molecular weight). Mechanical proper-
ties of PP/PE blends with metallocene catalysed PE were recently
investigated by Li et al. (2003) and Razavi-Nouri (2007). Only Ono
et al. (2009) studied the response of PP/PE blends with metallocene
catalysed PP, but within a rather limited experimental program.

The objective of this work is fourfold:

1. To report observations on blends of metallocene catalysed PP
and low density PE with various concentrations of components
in tensile tests with various strain rates, relaxation tests, and
creep tests.
ll rights reserved.
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2. To derive a constitutive model for the viscoelastic and visco-
plastic behavior of binary polymer blends and to find adjustable
parameters in the stress–strain relations by fitting the experi-
mental data in tensile tests and relaxation tests.

3. To validate the constitutive equations by comparison of obser-
vations in creep tests with results of numerical simulation.

4. To apply the model for lifetime prediction under conditions of
creep rupture.

To the best of our knowledge, no stress–strain relations have
previously been suggested for the description of the viscoelastic
and viscoplastic behavior of polymer blends with variable mass
fractions of components. Constitutive models for the analysis of
plastic deformations, damage and cavitation of polymers tough-
ened with rubber particles were proposed by Steenbrink and van
der Giessen (1997), Chen and Mai (1999), Liang and Li (2000),
Kuroda et al. (2004), and Mae et al. (2008). Thermo-viscoelasticity
of polymer blends was recently modeled by Machmud et al. (2006)
and Shaoqiu et al. (2007). The viscoelasto-plastic behavior of a
polymer blend reinforced with nanoclay was analyzed by Drozdov
and Christiansen (2007) for a fixed composition of the matrix. The
aim of this study is to derive constitutive equations for the time-
and rate-dependent response of polymer blends that involve a
small number of adjustable parameters which change consistently
with composition following an analog of the rule of mixture.

The exposition is organized as follows. Observations in mechan-
ical tests are presented in Section 2. A constitutive model is devel-
oped in Section 3 for arbitrary three-dimensional deformations
with small strains. Adjustable parameters in the stress–strain rela-
tions are determined in Section 4 by matching the experimental
data. Results of numerical simulation for long-term creep tests
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are reported in Section 5. Concluding remarks are formulated in
Section 6.
Fig. 1. Stress r versus strain �. Symbols: experimental data in tensile tests with
cross-head speed 1 mm/min on blends with various concentrations k of mPP. Solid
lines: results of numerical simulation.
2. Experimental results

2.1. Preparation of polymer blends

As components of a binary blend, low density polyethylene
(LDPE) and metallocene catalysed polypropylene (mPP) are chosen.
Low density polyethylene Riblene FL 20 (density 0.921 g/cm3, melt
flow rate 2.2 g/10 min [190 �C, 2.16 kg], melting temperature
109 �C) was supplied by Polimeri Europa (Italy). Metallocene cata-
lysed polypropylene homopolymer Metocene HM 562S (density
0.98 g/cm3, melt flow rate 30 g/10 min [230 �C, 2.16 kg], melting
temperature 145 �C) was purchased from Lyondell Basell Ind.
(Switzerland).

Pellets of LDPE and mPP were carefully mixed at required pro-
portions and dried. The blends were melt mixed by using thermo-
scientific twin screw extruder Prism Eurolab 16 and pelletized. The
extrusion process was conducted with the processing temperature
T = 200�C, screw speed 200 rpm, and throughput 1 kg/h. It was re-
peated twice to obtain homogeneous distribution of components.
Six blends were prepared with different proportions of LDPE and
mPP. These blends are characterized by mass fraction of mPP k
with k = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Dumbbell specimens for tensile tests (ASTM standard D–638)
with cross-sectional area 9.9 mm � 3.9 mm were molded by using
injection-molding machine Ferromatic K110/S60–2 K.
Fig. 2. Stress r versus strain �. Symbols: experimental data in tensile tests with
cross-head speed 10 mm/min on blends with various concentrations k of mPP. Solid
lines: results of numerical simulation.
2.2. Mechanical tests

Mechanical tests were performed at room temperature by
means of a universal testing machine Instron–5568 equipped with
two electro-mechanical sensors for measurements of longitudinal
(Instron Static 2630–113) and transverse (Epsilon 3574–250M)
strains. Tensile force was measured by a 50 kN load cell. The engi-
neering stress r was determined as the ratio of axial force to cross-
sectional area of specimens in the stress-free state. The experimen-
tal program involved three series of tests. Each test was conducted
on a virgin specimen and repeated by twice.
Fig. 3. Stress r versus strain �. Symbols: experimental data in tensile tests with
cross-head speed 100 mm/min on blends with various concentrations k of mPP.
Solid lines: results of numerical simulation.
2.2.1. Stretching with constant strain rates
The first series consisted on tensile tests with cross-head speeds

_d ¼ 1;10, and 100 mm/min (which corresponded to strain rates
_� ¼ 2:3 � 10�4; _� ¼ 2:3 � 10�3, and _� ¼ 2:3 � 10�2 s�1, respectively)
and maximum tensile strain �max = 0.25.

Experimental data in tensile tests are depicted in Figs. 1–3,
where engineering stress r is plotted versus strain �. These figures
reveal a strong nonlinearity of the stress–strain diagrams. At low
concentrations k of mPP, the stress–strain dependencies r(�) are
monotonic. When k exceeds 0.2, they become non-monotonic with
pronounced yield points.

Figs. 1–3 show that for any strain �, stress r monotonically
grows with mass fraction of mPP k and strain rate _�. To rationalize
the latter dependence, yield stress ry is determined for each
stress–strain curve with k P 0.4 as the point of maximum on an
appropriate diagram. This parameter is plotted versus strain rate
_� in Fig. 4. The data are approximated by the Eyring equation
(Bauwens-Crowet et al., 1972)

ry ¼ ry0 þ ry1 log _�; ð1Þ

with log = log10. The coefficients ry0 and ry1 in Eq. (1) are calculated
by the least-squares method. Fig. 4 demonstrates that Eq. (1) cor-
rectly approximates the observations.
To assess compressibility of PP/PE blends, transverse strain �t is
plotted versus tensile strain �, and the experimental data are
approximated by the linear equation



Fig. 4. Yield stress ry versus strain rate _�. Symbols: treatment of observations in
tensile tests on blends with various concentrations k of mPP. Solid lines:
approximation of the experimental data by Eq. (1).

Fig. 6. Stress r versus relaxation time t0 . Symbols: experimental data in relaxation
tests with � = 0.02 on blends with various concentrations k of mPP. Solid lines:
results of numerical simulation.
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where Poisson’s ratio m is calculated by the least-squares technique.
Some observations (for neat LDPE and mPP) are reported in Fig. 5.
This figure demonstrates that (i) Eq. (2) correctly fits the experi-
mental curves below appropriate yield points, and (ii) Poisson’s ra-
tios of blends are close to m = 0.5, the value characteristic for
incompressible media. Deviations of the experimental data from
their approximations by Eq. (2) in the post-yield region of deforma-
tions are attributed to an increase in volume strain induced by
nucleation, growth, and coalescence of micro-voids.

2.2.2. Relaxation tests
The other series involved tensile relaxation tests with strain

� = 0.02. In each test, a specimen was loaded with a constant
cross-head speed 100 mm/min up to the required strain. After-
wards, a decrease in tensile stress was monitored a function of
time while the strain was preserved constant. Following the proto-
col ASTM E–328 for short-term relaxation tests, the duration of
relaxation test trel = 20 min was chosen.

Experimental data in relaxation tests are reported in Fig. 6. Fol-
lowing common practice, semi-logarithmic plots are employed,
where stress r is depicted versus logarithm of relaxation time
Fig. 5. Transverse strain �t versus tensile strain �. Circles: experimental data in
tensile tests with cross-head speed 100 mm/min on LDPE (A) and mPP (B). Solid
lines: approximation of the experimental data by Eq. (2).
t
0
= t � t0 (t0 stands for the instant when relaxation starts). Fig. 6

demonstrates that the growth of mass fraction of mPP k results
in a strong increase in stress r and noticeable changes in the shape
of relaxation curves.

2.2.3. Creep tests
The third series consisted of two kinds of tensile creep tests. In

creep tests of the first kind, specimens were stretched with a con-
stant cross-head speed 100 mm/min up to stress r = 5 MPa. After-
wards, an increase in strain was monitored a function of time while
the stress was preserved constant. In creep tests of the second kind,
stretching was performed until the tensile strain reached a fixed
value � = 0.03. Then the stress was fixed, and tensile strain was
measured as a function of time. Following the protocol ASTM D–
2990 for short-term creep tests, the duration of creep tests
tcr = 20 min was chosen.

Experimental data tests are reported in Figs. 7–9, where strain �
is plotted versus time t. Fig. 7 presents observations in creep tests
with r = 5 MPa. Observations in tests where creep flow starts at
strain � = 0.03 are depicted in Figs. 8 and 9. Creep curves measured
at relatively small and large stresses r are reported in two figures
to avoid overlapping of data.
Fig. 7. Strain � versus time t. Symbols: experimental data in creep tests with stress
r = 5 MPa on blends with various concentrations k of mPP. Solid lines: predictions
of the model.



Fig. 8. Strain � versus time t. Symbols: experimental data in creep tests with the
initial strain �0 = 0.03 on blends with various concentrations k of mPP (� r = 4.4;
�r = 7.3; *r = 11.1; wr = 14.9 MPa). Solid lines: predictions of the model.

Fig. 9. Strain � versus time t. Symbols: experimental data in creep tests with the
initial strain �0 = 0.03 on blends with various concentrations k of mPP (} r = 18.7; N
r = 23.7 MPa). Solid lines: predictions of the model.

A.D. Drozdov et al. / International Journal of Solids and Structures 47 (2010) 2498–2507 2501
Figs. 7–9 reveal that the time-dependent response of blends is
rather sophisticated. Two characteristic features of the observa-
tions are mentioned: (i) intersection of creep curves at stresses r
exceeding 15 MPa, and (ii) transition from secondary to tertiary
creep observed in tests with relatively large stresses.
2.2.4. Accuracy of measurements
Experimental data demonstrate good reproducibility of mea-

surements. In tensile tests with constants strain rates, the maxi-
mum deviation between stresses measured on different
specimens with the same composition does not exceed 2%, and
that for transverse strains is less than 3%. In relaxation tests, devi-
ations between stresses measured on different samples are less
than 1.5%. In creep tests, deviations between strains measured on
different samples do not exceed 2% at relatively small stresses
(Figs. 7 and 8) and 6% at large stresses (Fig. 9).
3. Constitutive model

To rationalize the effect of composition of polymer blends on
their mechanical behavior, a constitutive model is developed for
the viscoelastic and viscoplastic responses at arbitrary three-
dimensional deformations with small strains. Constitutive equa-
tions for a binary blend are derived by using the Clausius–Duhem
inequality.

To develop stress–strain relations that involve a relatively small
number of material constants, a homogenization concept is applied
(Drozdov and Christiansen, 2008). A binary blend of semicrystal-
line polymers with a complicated micro-structure is modeled as
an equivalent one-phase continuum whose mechanical behavior
coincides with that of the blend. An incompressible, heteroge-
neous, transient, non-affine network of chains is chosen as the
equivalent medium. For the sake of simplicity, damage accumula-
tion in blends of semicrystalline polymers observed as growth of
micro-voids in the post-yield region of deformations (Fig. 5) is
not accounted for by the model.

Two types of chains are distinguished in an equivalent network:
permanent and temporary (Tanaka and Edwards, 1992). Denote by
N1 and N2 the numbers of permanent and active temporary chains
per unit volume, respectively. Permanent chains do not detach
from their junctions, whereas temporary chains are rearranged.
When an end of an active temporary chain separates from its junc-
tion at some instant s1, the chain is transformed into the dangling
state. When the free end of a dangling chain merges with the net-
work at instant s2 > s1, the chain returns into the active state.
Attachment and detachment of temporary chains occur at random
times being driven by thermal fluctuations.

An inhomogeneous equivalent network consists of meso-re-
gions with various activation energies for rearrangement of chains.
In the stress-free state, the rate of separation of active chains from
their junctions in a meso-domain with activation energy u is gov-
erned by the Eyring equation

C ¼ c exp � u
kBT

� �
;

where c stands for an attempt rate, T is the absolute temperature,
and kB denotes Boltzmann’s constant. Confining ourselves to iso-
thermal processes at a fixed temperature T and introducing the
dimensionless energy v = u/(kBT), we present this relation in the
form

CðvÞ ¼ c expð�vÞ; ð3Þ

where the pre-factor c is assumed to be independent of mechanical
factors.

Non-affinity of the equivalent network means that junctions be-
tween chains slide with respect to their reference positions under
deformation. Sliding (plastic flow) of junctions is described by the
strain tensor �̂p. The latter is presented as the sum of two
components

�̂p ¼ �̂p1 þ �̂p2; ð4Þ

that characterize inelastic deformations of the amorphous matrix
and crystallites. Irreversible deformations in the crystalline phase
reflect (i) inter-lamellar separation, (ii) rotation and twist of lamel-
lae, (iii) fine (homogeneous shear of layer-like crystalline struc-
tures) and coarse (heterogeneous inter-lamellar sliding) slip of
lamellar blocks (Machado et al., 2009). Inelastic deformations in
the amorphous phase describe (i) chain slip through the crystals,
(ii) sliding of tie chains along and their detachment from lamellar
blocks, and (iii) detachment of chain folds and loops from surfaces
of crystal blocks (Hiss et al., 1999). The difference between tensors
�̂p1 and �̂p2 is that their evolution is driven by different factors. The
rate-of-strain tensor d�̂p1=dt is proportional to the rate-of-strain
tensor for macro-deformation d�̂=dt, and the rate-of-strain tensor
d�̂p2=dt is proportional to the deviatoric component r̂0 of the stress
tensor r̂
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d�̂p1

dt
¼ /

d�̂
dt
;

d�̂p2

dt
¼ wr̂0; ð5Þ

where 0 6 /(t) 6 1 and w(t) P 0 are function to be defined in what
follows. To explain the physical meaning of Eq. (5), it is convenient
to consider sliding processes in amorphous and crystalline domains
separately. When �̂p2 ¼ 0 (no slip in crystalline lamellae), the first
equality in Eq. (5) presents a simple version of a model for kinetic
friction that describes a delay in sliding of junctions between chains
in a non-affine network due to stick–slip events with respect to
macro-deformation (/ = 0 for an affine network). When �̂p1 ¼ 0 (no
sliding in amorphous regions), the last equality in Eq. (5) expresses
the simplest law of plastic flow, which states that the rate of plastic
deformation is proportional to an appropriate stress.

3.1. Rearrangement of a transient network

Rearrangement of a transient network is described by the func-
tion n(t,s,v) that equals the number (per unit volume) of tempo-
rary chains at time t P 0 that has returned into the active state
before instant s 6 t and belong to a meso-domain with activation
energy v. In particular, the number of temporary chains in meso-
domains with activation energy v at time t reads n(t, t,v), and the
number of temporary chains that were active in the reference state
and have not separated from their junctions until time t is given by
n(t,0,v). The number of temporary chains that were active at the
initial instant and detach from their junctions within the interval
[t, t + dt] reads �@n/@t(t,0,v) dt, the number of dangling chains that
return into the active state within the interval [s,s + ds] is given by
P(s,v) ds with

Pðs; vÞ ¼ @n
@s
ðt; s; vÞ

����
t¼s
; ð6Þ

and the number of chains (per unit volume) that merged (for the
last time) with the network within the interval [s,s + ds] and de-
tach from their junctions within the interval [t, t + dt] equals
�@2n/@t@s(t,s,v) dt ds.

The number of active temporary chains (per unit volume) in
meso-domains with activation energy v at time t is presented in
the form

nðt; t; vÞ ¼ N2f ðvÞ; ð7Þ

where f(v) stands for the distribution function of meso-regions with
various activation energies.

Detachment of active chains from their junctions is described
by the kinetic equations

@n
@t
ðt;0;vÞ ¼ �CðvÞnðt;0; vÞ; @2n

@t@s
ðt; s;vÞ ¼ �CðvÞ @n

@s
ðt; s; vÞ;

ð8Þ
which state that the rate of transformation of active chains into the
dangling state is proportional to the number of active chains in an
appropriate meso-region. Integration of Eq. (8) with initial condi-
tions (6) and (7) implies that

nðt;0;vÞ ¼ N2f ðvÞ exp½�CðvÞt�;
@n
@s
ðt; s;vÞ ¼ N2CðvÞf ðvÞ exp½�CðvÞðt � sÞ�: ð9Þ
3.2. Stress–strain relations

At small strains, the strain tensor for elastic deformation �̂e is gi-
ven by

�̂e ¼ �̂� �̂p; ð10Þ
where �̂ stands for the strain tensor for macro-deformation. The
strain energy of a chain is determined by the formula
w ¼ 1
2

�l�̂e : �̂e, where �l stands for rigidity of a chain, and colon
denotes convolution. Under the assumption that the energy of
inter-chain interaction is accounted for by the incompressibility
condition, the strain energy density per unit volume of the network
is calculated as the sum of strain energies of active chains

WðtÞ ¼ 1
2

�l N1�̂eðtÞ : �̂eðtÞ þ
Z 1

0
nðt;0;vÞdv �̂eðtÞ : �̂eðtÞ

�

þ
Z 1

0
dv
Z t

0

@n
@s
ðt; s;vÞ �̂eðtÞ � �̂eðsÞ

� �
: �̂eðtÞ � �̂eðsÞ
� �

ds
�
:

ð11Þ

The first term in Eq. (11) equals the strain energy of permanent
chains, the other term equals the strain energy of temporary chains
that have not been rearranged within the interval [0, t], and the last
term expresses the strain energy of chains that have last merged
with the network at various instants s 2 [0, t]. It is presumed that
stresses totally relax in dangling chains before they merge with
the network, which implies that the strain energy (at time t) of a
chain transformed into the active state at time s depends on the rel-
ative elastic strain tensor �̂�eðt; sÞ ¼ �̂eðtÞ � �̂eðsÞ.

For isothermal deformation of an incompressible medium, the
Clausius–Duhem inequality reads

Q ¼ �dW
dt
þ r̂0 :

d�̂
dt

P 0; ð12Þ

where Q stands for internal dissipation per unit volume and unit
time. Inserting Eq. (11) into Eq. (12) and using Eqs. (4), (5), (8),
and (10), we find that the second law of thermodynamics is satisfied
for an arbitrary deformation process, provided that the stress tensor
reads

r̂ðtÞ ¼ �pðtÞbI þ lð1� /ðtÞÞ

� �̂eðtÞ � j
Z 1

0
CðvÞf ðvÞdv

Z t

0
expð�CðvÞðt � sÞÞ�̂eðsÞds

� �
;

ð13Þ

where p stands for an unknown pressure, bI denotes the unit tensor,
l ¼ �lðN1 þ N2Þ, and j = N2/(N1 + N2). The rate of internal dissipa-
tion reads

QðtÞ ¼ wðtÞ
1� /ðtÞ r̂

0ðtÞ : r̂0ðtÞ

þ 1
2

�l
Z 1

0
CðvÞnðt;0;vÞdv�̂eðtÞ : �̂eðtÞ

�

þ
Z 1

0
CðvÞdv

Z t

0

@n
@s
ðt; s;vÞ �̂eðtÞ � �̂eðsÞ

� �
: �̂eðtÞ � �̂eðsÞ
� �

ds
�

P 0:
3.3. Material functions and adjustable parameters

The stress–strain relation (13) together with kinematic Eqs. (4),
(5), (10), and formula (3) for the rate of rearrangement of active
chains involve three material functions f(v), /(t), and w(t).

With reference to the random energy model (Derrida, 1980), the
quasi-Gaussian formula is adopted for the distribution function f

f ðvÞ ¼ f0 exp � v2

2R2

� �
ðv P 0Þ; f ðvÞ ¼ 0 ðv < 0Þ: ð14Þ

An advantage of Eq. (14) is that it is characterized by the only
parameter R > 0. The pre-factor f0 is determined from the normali-
zation condition

R1
0 f ðvÞdv ¼ 1.

The coefficient of proportionality / between the rate of sliding
of junctions in the amorphous phase and the rate of macro-defor-
mation obeys the conditions: (i) / equals zero in the reference
state (which means that junctions do not slide at very small defor-
mations), (ii) it monotonically increases with strain (which reflects
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acceleration of plastic flow under loading), and (iii) it tends to the
ultimate value /(1) = 1 at relatively large deformations (which
implies that the rate of developed plastic flow coincides with that
of macro-deformation). To fulfil these requirements, evolution of /
with time is presumed to be governed by the differential equation

d/
dt
¼ að1� /Þ2 _�eq; ð15Þ

where a is a dimensionless positive coefficient, and

_�eq ¼
2
3

d�̂
dt

:
d�̂
dt

� �1
2

stands for the equivalent strain rate for macro-deformation. Eq. (15)
is a conventional kinetic equation of the second order. To justify this
order, one can speculate that sliding of junctions in the amorphous
phase accelerates slippage of crystalline lamellae, which, in turn, re-
sults in the growth of rate of plastic flow in amorphous regions.

The coefficient w in Eq. (5) is presented in the form

w ¼ b
l

_�eq: ð16Þ

The dimensionless rate of plastic flow in crystallites b obeys the
equation similar to Eq. (1)

b ¼ b0 þ b1 log _�eq; ð17Þ

where b0 and b1 are material parameters.
The viscoelastic and viscoplastic behavior of a polymer blend

with a given composition is described by the constitutive Eq.
(13) that involves seven material constants, l, a, b0, b1, c, j, and
R, with transparent physical meaning:

1. l stands for shear modulus of an equivalent network,
2. j characterizes concentration of temporary chains,
3. R is a measure of heterogeneity of the equivalent network,
4. c denotes rate of detachment of chains from their junctions,
5. a stands for rate of plastic flow in the amorphous phase,
6. b0 and b1 characterize rates of fine and coarse slip of lamellar

blocks.

To account for the effect of blend composition on adjustable
parameters in the stress–strain relations, we presume c and b1 to
be independent of k and introduce the following phenomenological
equations:

l ¼ l0 þ l1k; j ¼ j0 þ j1k; R ¼ R0 þ R1k;

a ¼ a1k; b0 ¼ B0 þ B1k: ð18Þ
4. Fitting of observations

To find adjustable parameters in the constitutive equations, the
experimental data depicted in Figs. 1–3 and 6 are fitted.

4.1. Uniaxial tension

We begin with simplification of the stress–strain relations for
uniaxial tension of an incompressible specimen. Under stretching
along the x1 axis of a Cartesian coordinate frame {x1,x2,x3}, the
strain tensors �̂ and �̂e read

�̂ ¼ � e1e1 �
1
2

e2e2 þ e3e3ð Þ
� �

; �̂e ¼ �e e1e1 �
1
2

e2e2 þ e3e3ð Þ
� �

;

ð19Þ

where � denotes tensile strain, �e is a function to be found, and
ei(i = 1,2,3) stand for unit vectors.
Inserting Eq. (19) into Eq. (13) and using the boundary condi-
tions at the lateral surface of a specimen, we find that r̂ ¼ re1e1

with

rðtÞ ¼ Eð1� /ðtÞÞ

� �eðtÞ � j
Z 1

0
CðvÞf ðvÞdv

Z t

0
expð�CðvÞðt � sÞÞ�eðsÞds

� �
;

ð20Þ

where E ¼ 3
2 l stands for the Young’s modulus. It follows from Eqs.

(4) and (10) that

�eðtÞ ¼ �ðtÞ � �p1ðtÞ � �p2ðtÞ; ð21Þ

where the functions �p1 and �p2 are governed by the differential Eqs.
(5), (15), and (16)

d�p1

dt
¼ /

d�
dt
;

d�p2

dt
¼ br

E
d�
dt
;

d/
dt
¼ að1� /Þ2 d�

dt
: ð22Þ
4.2. Relaxation tests

For tensile relaxation test with a fixed strain �, Eqs. (21) and
(22) imply that �e and / are constants. This assertion together with
Eq. (20) results in

rðtÞ ¼ s0 þ s1

Z 1

0
f ðvÞ expð�CðvÞtÞdv; ð23Þ

where C(v) is given by Eq. (3), and

s0 ¼ ð1� jÞr0; s1 ¼ jr0; r0 ¼ Eð1� /Þ�e: ð24Þ

Adjustable parameters c, j, and R are determined by matching
the observations reported in Fig. 6 with the help of the following
algorithm. First, the experimental data on mPP (k = 1) are approx-
imated. For this purpose, some intervals [0,c�] and [0,R�] are fixed,
where parameters c and R are located. These intervals are divided
into J = 10 sub-intervals by the points c(i) = iDc, R(j) = jDR with
Dc = c�/J, DR = R�/J (i, j = 0,1, . . ., J � 1). For each pair {c(i), R(j)}, the
stress r(t) is found from Eq. (23), where the integral is calculated
by the Simpson method with v = nDv, Dv = 0.2, and n = 0, 1, . . .,
200. The coefficients s0 and s1 are determined by the least-squares
technique from the condition of minimum of the function
F ¼

P
m½rexpðtmÞ � rnumðtmÞ�2, where summation is performed over

all instants tm at which observations are reported, rexp is the stress
measured in an appropriate test, and rnum is given by Eq. (23). The
quantities c and R are found from the condition of minimum of the
function F. Then the initial intervals are replaced with the new
intervals [c � Dc,c + Dc] and [R � DR,R + DR], and the calcula-
tions are repeated.

Afterwards, we fix the rate of rearrangement c = 0.89 s�1 and
approximate relaxation curves for blends with other concentra-
tions of mPP by the above algorithm with the only adjustable
parameter R. Each set of observations is fitted separately. Fig. 6
demonstrates good agreement between the experimental data
and the results of numerical simulation.

For each composition of blends k, the coefficient j is calculated
from Eq. (24). The dependencies R(k) and j(k) are depicted in
Figs. 10 and 11 together with their approximations by Eq. (18),
where the coefficients are determined by the least-squares tech-
nique. These figures show that Eq. (18) correctly fits the data.

4.3. Tensile tests with constant strain rates

To model tensile deformation with a constant strain rate _�, we
present Eq. (20) in the form



Fig. 10. Parameter R versus mass fraction of mPP k. Circles: treatment of
observations in relaxation tests. Solid line: approximation of the experimental data
by Eq. (18).

Fig. 11. Parameter j versus mass fraction of mPP k. Circles: treatment of
observations in relaxation tests. Solid line: approximation of the experimental data
by Eq. (18).

Fig. 12. Young’s modulus E versus mass fraction of mPP k. Circles: treatment of
observations. Solid line: approximation of the experimental data by Eq. (27).

Fig. 13. Parameter a versus mass fraction of mPP k. Circles: treatment of
observations. Solid line: approximation of the experimental data by Eq. (18).
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rðtÞ ¼ Eð1� /ðtÞÞ �eðtÞ � j
Z 1

0
f ðvÞZðt;vÞdv

� �
; ð25Þ

where the function

Zðt; vÞ ¼
Z t

0
CðvÞ exp½�CðvÞðt � sÞ��eðsÞds

obeys the differential equation

@Z
@t
ðt;vÞ ¼ CðvÞ �eðtÞ � Zðt; vÞ½ �; Zð0; vÞ ¼ 0: ð26Þ

Adjustable parameters E, a, and b in Eqs. (22), (25), and (26) are
found by matching the observations reported in Figs. 1–3. Each
set of experimental data is approximated separately by means of
the following algorithm.

We begin with matching observations on binary blends in ten-
sile tests with cross-head speed 100 mm/min. For each stress–
strain curve depicted in Fig. 3, some intervals [0,a�] and [0,b�]
are fixed, where parameters a and b are located. Each of these
intervals is divided into J = 10 sub-intervals by the points a(i) = iDa,
b(j) = jDb with Da = a�/J, Db = b�/J (i, j = 0,1, . . ., J � 1). For each pair
{a(i), b(j)}, Eqs. (22), (25), and (26) are integrated the Runge–Kutta
method from � = 0 to � = �max with the time step Dt = 5.0 � 10�3 s.
The integral in Eq. (25) is evaluated by the Simpson method with
v = nDv, Dv = 0.2, and n = 0, 1, . . ., 200. The Young’s modulus E is
calculated by the least-squares technique from the condition of
minimum of the function F ¼

P
m rexpð�mÞ � rnumð�mÞ½ �2, where

summation is performed over strains �m at which the observations
are reported, rexp is the engineering stress measured in the test,
and rnum is given by Eq. (25). After finding the best-fit parameters
a and b from the condition of minimum of F, the initial intervals are
replaced with the new intervals [a � Da,a + Da], [b � Db,b + Db],
and the calculations are repeated.

Young’s modulus E is presented as a function of mass fraction of
mPP k in Fig. 12. The data are approximated by Eq. (18)

E ¼ E0 þ E1k; ð27Þ

where the coefficients are determined by the least-squares method.
Fig. 12 demonstrates an acceptable agreement between the data
and their prediction by Eq. (27), which means that the rule of mix-
ture is fulfilled with high accuracy. Young’s modulus E increases
with k from 0.13 GPa (a typical value for LDPE) to 1.46 GPa (the
modulus of mPP provided by the supplier).

The dimensionless parameter a is plotted versus mass fraction
of mPP k in Fig. 13. The data are approximated by Eq. (18), where
the coefficient a1 is found by the least-squares method. Fig. 13



Fig. 14. Parameter b versus mass fraction of mPP k. Symbols: treatment of
observations in tensile tests with various strain rates _� s�1. Solid lines: approxi-
mation of the experimental data by Eq. (28).

Table 1
Adjustable parameters for PP/PE blends.

Parameter Dimension Value

E0 GPa 0.12
E1 GPa 1.34
a1 1.13
b1 �4.32
B0 13.29
B1 25.49
c s�1 0.89
j0 0.42
j1 0.57
R0 3.50
R1 9.19
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shows good agreement between the experimental dependence a(k)
and its fit by Eq. (18).

Afterwards, the functions E(k) and a(k) are fixed, and observa-
tions in tensile tests with cross-head speeds 1 and 10 mm/min
are matched by using the above algorithm with the only adjustable
parameter b.

The dimensionless parameter b is plotted versus k in Fig. 14. The
data are approximated by Eqs. (17) and (18)

b ¼ B1kþ B; ð28Þ

with

B ¼ B0 þ b1 log _�: ð29Þ

Each set of data (corresponding to a fixed strain rate) is matched by
Eq. (28) separately. The coefficients B1 and B are calculated by the
least-squares method. Although Fig. 14 reveals an acceptable agree-
ment between the data and their fits by Eq. (28), some scatter of the
data should be mentioned.

The coefficient B is plotted versus strain rate _� in Fig. 15. The
data are fitted by Eq. (29) with coefficients B0 and b1 determined
by the least-squares technique. Fig. 15 demonstrates that Eq. (29)
correctly approximates the experimental dependence Bð _�Þ.

The entire set of material constants in the stress–strain rela-
tions is reported in Table 1.
Fig. 15. Parameter B versus strain rate _�. Circles: treatment of observations. Solid
line: approximation of the experimental data by Eq. (29).
Figs. 1–3 show good agreement between the experimental data
and the results of numerical simulation. Some discrepancies are to
be mentioned for neat mPP at strains in the post-yield region of
deformations. These discrepancies disappear when engineering
stress r is recalculated with account for volume changes induced
by growth of voids (Fig. 5). We do not dwell on this issue, however,
as the viscoelasto-plastic behavior of polymer blends is modeled in
this study under the incompressibility hypothesis.

4.4. Creep test

To validate the constitutive equations, simulation is conducted
of the time-dependent response of polymer blends in creep tests,
and results of numerical analysis are compared with the observa-
tions reported in Figs. 7–9.

For a tensile creep test with a stress r, the loading path of a
creep curve is, first, modeled (uniaxial tension with strain rate
_� ¼ 2:3 � 10�2 s�1 until the instant when engineering stress equals
r). For this purpose, Eqs. (22), (25), and (26) are integrated numer-
ically with the step Dt = 5.0 � 10�3 s. Afterwards, evolution of ten-
sile strain with time is modeled by means of the following
algorithm. The elastic strain is found from Eq. (25)

�eðtÞ ¼
r

Eð1� /ðtÞÞ þ j
Z 1

0
f ðvÞZðt;vÞdv ; ð30Þ

where Z(t,v) is determined from Eq. (26). The macro-strain � is cal-
culated by integration of the differential equation

d�
dt
¼ 1� /� br

E

� ��1 d�e

dt
; ð31Þ

which follows from Eqs. (21) and (22). The function /(t) is found
from Eq. (22), and the coefficient b is given by Eqs. (28) and (29).

Results of numerical analysis are depicted in Figs. 7–9, which
show excellent agreement between the experimental data and
their predictions by the model. Small discrepancies are observed
at large stresses only (Fig. 9) when transition occurs from second-
ary to tertiary creep flow.

5. Numerical simulation

The aim of numerical simulation is twofold: (i) to demonstrate
that the model captures all stages of creep flow (including tertiary
creep), and (ii) to assess the time-dependent response in long-term
creep tests and to evaluate the stress–lifetime diagram under con-
ditions of creep rupture.

5.1. Short-term creep tests

To show that the stress–strain relations adequately describe all
stages of creep flow (Fig. 9 reveals some discrepancies between the
observations and predictions of the model after transition to ter-



Fig. 16. Strain � versus time t. Symbols: results of numerical simulation for short-
term creep tests on mPP with various stresses r MPa.

Fig. 18. Stress r versus time-to-failure tf. Symbols: results of numerical simulation
for creep tests on mPP with various maximum strains �c. Solid lines: their
approximation by Eq. (32).
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tiary creep), simulation is conducted of short-term tensile creep
tests with stresses r = 22, 23, 24, 25, and 26 MPa. Numerical anal-
ysis is performed for creep tests (with strain rate _� ¼ 2:3 � 10�2 s�1

along the loading path) on mPP (k = 1). Results of simulation are
presented in Fig. 16, where tensile strain � is plotted versus time
t. Fig. 16 demonstrates that strain � monotonically increase with
stress r and transition to tertiary creep flow occurs in short-term
tests with stresses exceeding 22 MPa.

5.2. Long-term creep tests

To evaluate lifetime of polymer blends under condition of creep
rupture, simulation is conducted of long-term creep tests. Given a
tensile stress r, time-to-failure tf is determined from the condition
that strain �(tf) reaches its critical value �c = 0.3 (this value is taken
from Fig. 16, which shows that the graphs �(t) become practically
vertical at � = �c). Dependencies of r on time-to-failure tf are re-
ported in Fig. 17 for blends with k = 0.2, 0.4, 0.6, 0.8, and 1.0. Each
set of data is approximated by the Eyring equation

r ¼ S0 � S1 log tf ; ð32Þ

where the coefficients S0 and S1 are found by the least-squares
method. Fig. 17 demonstrates that Eq. (32) provides an acceptable
approximation of the data.
Fig. 17. Stress r versus time-to-failure tf. Symbols: results of numerical simulation
for creep tests on blends with various concentrations k of mPP. Solid lines: their
approximation by Eq. (32).
As the constitutive model has been derived within the linear
theory with small deformations, a question arises regarding appli-
cability of this approach to the analysis of creep rupture with a rel-
atively large maximum strain �c = 0.3. To assess the effect of
maximum strain on stress-lifetime diagram, numerical analysis is
conducted of long-term creep tests with various maximum strains
�c. Results of simulation for mPP are reported in Fig. 18 together
with their approximation by Eq. (32). This figure shows that the
stress–lifetime diagrams with �c = 0.15 and 0.3 practically coincide,
which implies that the effect of geometrical nonlinearity on time-
to-failure is of secondary importance. The results of simulation
with �c = 0.1 (according to Fig. 16, this strain is below the critical
strain for transition to tertiary creep flow) differ noticeably from
those with �c = 0.15 and 0.3. The latter means that an accurate
assessment of critical strain for transition from secondary to ter-
tiary creep plays a key role is evaluation of lifetime.

Klompen et al. (2005), van Erp et al. (2009), and Engels et al.
(2010) have recently proposed an empirical relation between the
dependence of yield stress on strain rate ryð _�Þ and the dependence
of stress on time-to-failure r(tf). Under the assumption that both
functions are adequately described by Eqs. (1) and (32), it was pos-
tulated that the coefficients ry1 and S1 (that determine slopes of
appropriate curves in semi-logarithmic coordinates) coincided.
This statement was confirmed for PP in Drozdov and Christiansen
(2009) by comparison of experimental data in tensile tests with re-
sults of numerical analysis for long-term creep tests.

To examine this assertion for PP/PE blends, ry1 and S1 are plot-
ted versus mass fraction of mPP k in Fig. 19. The data are fitted by
the linear equations
ry1 ¼ c0 þ c1k; S1 ¼ C0 þ C1k; ð33Þ
where the coefficients are calculated by the least-squares tech-
nique. The following conclusions are drawn from Fig. 18: (i) the
parameters ry1 and S1 linearly grow with mass fraction of mPP,
(ii) for all compositions of blend, ry1 exceeds S1, which implies that
slope of the curve ryð _�Þ underestimates lifetime tf. The difference
between S1 and ry1 is negligible (about 19%) for mPP (k = 1.0), but
it becomes noticeable (by twice) for blends with low content of
mPP (k = 0.4). Based on observations reported in Figs. 1–3, one
can infer that ry1 and S1 coincide only when polymers reveal pro-
nounced yield points on their stress–strain diagrams.



Fig. 19. Coefficients ry1 and S1 versus mass fraction of mPP k. Unfilled circles:
treatment of observations in tensile tests. Filled circles: results of numerical
simulation for creep tests. Solid lines: their approximation by Eq. (33).
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6. Concluding remarks

Observations are reported in tensile tests with constant strain
rates, relaxation tests, and creep tests on blends of low density
polyethylene and metallocene catalysed polypropylene. The fol-
lowing features of the experimental investigation are to be men-
tioned: (i) a thorough analysis of the mechanical response is
conducted on six blends with various mass fractions of mPP rang-
ing from 0 to 100%, (ii) tests are performed with two extensome-
ters that allow engineering stress, tensile strain, and transverse
strain to measure simultaneously.

A constitutive model is developed for the viscoelastic and visco-
plastic responses of binary blends at arbitrary three-dimensional
deformations with small strains. The stress–strain relations are de-
rived by using the Clausius–Duhem inequality. Given a blend’s
composition, they involve seven material constants with transpar-
ent physical meaning.

Adjustable parameters in the constitutive equations are deter-
mined by fitting the observations in tensile tests with constant
strain rates and relaxation tests. These quantities change consis-
tently with blend’s composition following linear phenomenologi-
cal relations similar to the rule of mixture. The model is
validated by comparison of experimental data in creep tests with
results of numerical simulation.

The stress–strain relations are applied for assessment of life-
time of polymer blends under condition of creep rupture. It is
shown that (i) the Eyring equation correctly describes the effect
of tensile stress on time-to-failure, and (ii) the empirical method
grounded on the dependence of yield stress on strain rate underes-
timates time-to-failure.

In order to reduce the number of adjustable parameters in the
stress–strain relations, several simplifying assumptions have been
introduced. In particular, (i) analysis of the viscoelasto-plastic re-
sponse of polymer blends is conducted within the concept of small
deformations (whereas the maximum strain in tensile tests
�max = 0.25 is not very small), (ii) the blends are treated as isotropic
media (although some anisotropy of specimens is induced by the
injection-molding process), and (iii) damage accumulation driven
by nucleation and growth of micro-voids is disregarded (despite
the fact that an increase in volume strain is observed in the post-
yield region of deformations). A detailed analysis of these factors
on the viscoelastic and viscoplastic responses of polymer blends
will be the subject of a subsequent publication, where predictions
of the constitutive model are compared with observations in three-
points bending and indentation tests.
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