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Cluster headache (CH) is characterized by recurrent episodes of excruciatingly painful, unilateral headache at-
tacks typically accompanied by trigeminal autonomic symptoms. Due to its rhythm with alternating episodes
of pain and no-pain, it is an excellentmodel to investigatewhether structural brain changes detected bymagnetic
resonance based voxel-based-morphometry (VBM) reflect the cause of the disease, may be a consequence of the
underlying disease other than pain, or may simply be caused by the sensation of pain itself. We investigated 91
patients with CH in different stages of their disease using VBM and compared them to 78 age- and gender-
matched healthy controls. We detected distinct regional gray matter (GM) changes in different brain regions
including the temporal lobe, the hippocampus, the insular cortex and the cerebellum. The extent, location and
direction of observed GM alterations depended on the state of disease and appeared dynamic in relation to
pain state (i.e., pain vs. no-pain). No hypothalamic changes were detected in CH patients compared to healthy
controls. The GM changes observed in this study are highly dynamic and thereby reflect the cortical plasticity
of the brain in regard to pain. This observed dynamic may provide an explanation of the diverse results of previ-
ous VBM studies in pain. Regarding CH the results suggest that the disease is more likely to be caused by a net-
work dysfunction rather than by a single malfunctioning structure.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

In contrast to the former belief of a static adult brain without struc-
tural changes past full development, considerable plasticity of the adult
brain has been well described now. This not only specifically applies to
changes caused by training and learning, but also was shown for many
other external influences. In regard to pain and headache, numerous
studies showed structural brain changes in different conditions that
were reversible in parallel to the cessation of pain (Obermann et al.,
2009; Rodriguez-Raecke et al., 2009; Gwilym et al., 2010). In experi-
mentally induced pain, structural changesmost likely reflect alterations
caused by the noxious input, while in disorders like chronic headache
the question of cause or consequence of pain and disease is much
more difficult to answer.

Cluster headache (CH) as primary headache disorder with strict
circannual and circadian rhythm of headache attacks and symptom
free episodes is a promising model condition to differentiate structural
brain changes primarily related to the headache disorder itself from
changes caused by the sensation of pain in general. There are three
different stages of disease in CH: 1) episodic CH (eCH) in bout (i.b.)
with acute pain attacks up to eight times a day, 2) episodic CH out of
+49 201 723 5953.
).
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bout (o.b.) — an attack free phase that may last months to years, and
3) chronic CH (cCH) without attack free remission periods lasting
beyond 1 month. Approximately 10–20% of all CH patients suffer
from cCH (Headache Classification Committee of the International
Headache Society, 1988).

The clinical characteristics of CH with trigeminal autonomic symp-
toms (i.e., lacrimation, conjunctival injection, tearing, facial sweating,
nasal congestion, miosis and ptosis) as well as the circadian rhythm
suggest involvement of the hypothalamus. This involvement was
confirmed in several functional imaging studies (May et al., 1998;
Sprenger et al., 2004; Morelli et al., 2009). An early voxel-based mor-
phometry (VBM) study detected an isolated regional gray matter
increase in the posterior hypothalamus which was thought to be re-
sponsible for the development of CH (May, et al, 1999). However, this
pathognomonic pathophysiological connection became more and
more disputed recently as many other primary headache disorders
and different painful conditions showed hypothalamic involvement in
imaging studies and newer VBM studies were not able to reconfirm
structural hypothalamic alterations in CH (Denuelle et al., 2007; Holle
et al., 2011; Kupers et al., 2000; Rosen et al., 1994; Blankstein et al.,
2010; Matharu, 2006; Absinta et al., 2012; Yang et al., 2013). It was
suggested that the hypothalamus might be unspecific and simply a
part of the pain modulating network (Tracey and Mantyh, 2007; Holle
et al., 2011).
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Since not all studies on different painful disorders were able to show
changes in all structures that presumably take part in human pain pro-
cessing, it remains unclear which structural changes may be caused by
the disease itself, which are related to pain in general, and which are a
consequence of the underlying disease other than the sensation of
pain (Iannetti and Mouraux, 2010).

In this studywe usedmagnetic resonance imaging (MRI) based VBM
to 1.) identify different GM change patterns corresponding to different
stages of disease in order to differentiate GM changes associated with
CH in general from changes related to the sensation of pain itself and
2.) reconfirm the presence of structural GM changes in the hypothala-
mus and other brain regions known to be associated with trigeminal
pain processing.
2. Material and methods

2.1. Subjects

Ninety-seven patients (75 men, 22 women) with CH were investi-
gated. Clinical characteristics and demography of the ninety-one sub-
jects included into the final analysis are shown in Table 1. Patients
were recruited from a tertiary headache center (West-German Head-
ache Center) between April 2009 and August 2011. The study protocol
was approved by the local ethics committee and all participants gave
their written informed consent according to the Declaration of
Helsinki prior to study inclusion. The diagnosis was re-confirmed
in a face-to-face interview by headache experienced neurologists
(D.H., M.O.) according to the International Classification of Head-
ache Disorders (ICDH-II) (Headache Classification Committee of
the International Headache Society, 2004). Inclusion criteria were
age over 18 years and confirmed diagnosis of CH. Exclusion criteria
were other primary headaches, psychiatric co-morbidities, and
other serious somatic illnesses and pain conditions. Patients were
compared to 78 healthy age- and gender-matched controls (56
males, 22 females). All subjects included were interviewed using a
standardized questionnaire.
2.2. Statistical analysis of clinical and demographic data

ANOVAwith post-hoc Bonferroni analysis using a cutoff significance
level of p b 0.05was performed for clinical data, demographics, estimat-
ed volumes of different brain tissue classes (using http://www.cs.ucl.ac.
uk/staff/g.ridgway/vbm/get_totals.m) and total intracranial volume
(TIV, sum of CSF, gray matter, and white matter) using IBM SPSS Statis-
tics Version 19 (International Business Machines Corporation, Armonk,
New York, USA).
Table 1
Demographics and clinical characteristics of different cohorts and subgroups.

HC eCH o.b. eCH

Group size 78 46 22
Age [years] 42.78 ± 11.44

[18–64]
44.35 ± 10.95
[18–67]

45.4
[28–

Men/women 56/22 36/10 19/3
Number of attacks/day – 3.42 ± 2.34

[1–8]
2.68
[1–6

Last attack [days] – 241.20 ± 186.83
[16–911]

2.82
[0–1

Duration of disease [years] – 16.89 ± 9.64
[1–40]

11.7
[1–3

Av. attack duration [min] – 81.63 ± 59.55
[15–180]

55.6
[15–

Total intracranial volume [ml] 1625.04 ± 160.11
[1274.74–1958.03]

1639.53 ± 126.12
[1322.56–1857.49]

166
[140

HC= healthy controls; eCH o.b. = episodic cluster headache outside bout; eCH i.b. = episodic
patients.
2.3. VBM — data acquisition, processing and analysis

Imagingof all patients and controlswas performedon a1.5 Tesla scan-
ner (MagnetomAvanto, Siemens Healthcare, Erlangen, Germany) using a
standard 8-channel birdcage head coil. No participant was scanned twice.
No longitudinal analysis was performed. Prior to analysis all images were
rated regarding image quality and pathologies. These were double-
checked by an experienced neuro-radiologist (N.T.) blinded to diagnosis
and found to be unremarkable in all patients and controls included in
the final analysis. T1-weighted magnetic resonance imaging (MRI) 3D
datasets were obtained using a magnetization prepared rapid acquisition
gradient echo (MP-RAGE) sequence (TR: 2400 ms, TE: 3.52 ms, TI:
1200 ms, flip angle: 8, matrix: 256 × 256 mm², 160 slices, resolution:
1 × 1 × 1 mm³).

Data processing and analysis were performed using SPM8 (Wellcome
Trust Centre for Neuroimaging, UCL, London, UK [http://www.fil.ion.ucl.
ac.uk/spm/]) including “New Segment”, “DARTEL” (Ashburner, 2007)
and MATLAB (MATLAB 7.6.0.324, R2008a, The MathWorks, Natick, MA,
USA). Preprocessing involved “unified segmentation” (incl. normalization
into the Montreal Neurological Institute (MNI) space) and modulation in
order to adjust for volume changes during spatial normalization (Wright
et al., 1995; Ashburner and Friston, 1997; Friston, 1995;Good et al., 2001).
Spatial smoothing was performed with an isotropic Gaussian kernel of
10 mm full-width at half maximum (Ashburner and Friston, 2005).
Prior to preprocessing images of patients suffering from left-sided CH
were flipped to enhance analysis. Additionally, unflipped analysis was
performed to avoid false positive results due to normal brain asymmetry.
It showed alterations in the same brain regions, but observed effect
strengths were lower. Statistical whole brain analysis tested GM volume
differences between CHpatients and healthy controls (HC). Post-hoc sub-
group analysis was performed comparing the following groups with
healthy controls: (1) episodic CH i.b., (2) episodic CH o.b., and (3) cCH.
Although gender and age matching was performed these factors were
also included into the statistical model along with total intracranial vol-
ume. Gray matter changes are reported with a threshold of pFWE b 0.05
and correction for multiple comparison (family wise error). To avoid un-
intentional bias by a priori hypothesis, have better comparability to previ-
ous pain VBM studies, and not miss false negative regions a threshold of
punc b 0.001 uncorrected and a voxel size greater than 30 voxels were
also investigated.

3. Results

3.1. Clinical characteristics and demographics

Table 1 summarizes the clinical characteristics and demographics
of study participants. Physical and neurological examination was
i.b. cCH CH p/F

23 91
1 ± 9.60
67]

47.96 ± 10.56
[23–65]

45.52 ± 10.61
[18–67]

0.241/1.413

16/7 71/20 0.468/0.851
± 1.49
]

2.57 ± 1.92
[0.5–7]

3.03 ± 2.08
[0.5–8]

0.145/1.973

± 4.03
4]

2.39 ± 3.64
[0–12]

123.21 ± 178.46
[0–911]

b0.001/36.260

3 ± 9.55
3]

12.09 ± 7.63
[2–30]

14.42 ± 9.39
[1–40]

0.039/3.373

8 ± 43.60
180]

55.21 ± 33.12
[15–180]

68.68 ± 52.58
[15–180]

0.067/2.794

0.43 ± 135.63
9.22–1958.30]

1561.27 ± 155.06
[1274.74–1840.63]

1624.80 ± 139.91
[1274.74–1958.3]

0.177/1.994

cluster headache inside bout; cCH= chronic cluster headache, CH= all cluster headache

http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
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unremarkable in all patients and controls. Controls did not suffer from
any headache or other psychiatric or severe somatic disorder. No differ-
ences between the groups were observed in regard to age, gender, dis-
ease duration, attack frequency, average attack duration or number of
attacks per day during active periods (i.e., eCH i.b. and cCH). Patients
were categorized to be out of bout when 15 headache free days were
reached. No patient suffered a headache attack during the scanning pro-
cedure. Patients currently not suffering from headaches (eCH o.b.) re-
membered and rated their pain higher on a verbal analogue scale than
cCH patients (eCH o.b.: 9.326 ± 0.94; cCH: 8.217 ± 1.54).

3.2. Voxel-based morphometry

Seven scans (5 patients, 2 controls) were excluded from the final
analysis due to movement artifacts. Another patient was excluded due
Fig. 1. Gray matter changes in cluster headache. Areas with significant GM decrease (A) or incr
episodic CH outside bout (green), inside bout (blue), and chronic CH (purple), CH vs. HC, punc b
sensory cortex (S1), left inf. temporal gyrus, left dorsal hippocampus, left anterior insula, left ca
right posterior ACC, left superior medial gyrus, right perigenual ACC, and right orbitofrontal co
with corresponding GM increase from (left to right): first row: left orbitofrontal cortex, right a
right cerebellum, right ventral hippocampus, right posterior insula, (right anterior insula; over
(cluster-size) are given in Tables 3 and S2.
to previously unknown metal splint artifacts. In the remaining 169 (91
patients + 78 controls) MRIs included into the final analysis no mor-
phological abnormalities or artifacts were observed on visual inspection
of T1 weighted images. The results of the overall analysis comparing all
CH patients with healthy controls are displayed in Fig. 1 and Tables 2
and 3. In different areas similar GM changes over different subgroups
were detected. This is schematically illustrated in Fig. 2. ANOVA for vol-
umes of different brain tissue classes revealed significant GM volume
reduction in chronic CH compared to other patient subgroups. White
matter, CSF or total intracranial volume did not differ between groups.

3.2.1. All CH patients vs. healthy controls

3.2.1.1. GM decrease comparing all CH patients with healthy controls. CH
patients showed GM decrease in the ipsilateral temporal lobe and
ease (B) in overall comparison (left, CH vs. HC, punc b 0.001) and subgroup analysis (right;
0.001). A: Areas with corresponding GM decrease from (left to right): first row: primary

udate ncl, right caudate nlc., and right mid. temporal lobe; second row: right occipital lobe,
rtex. MNI-coordinates, T-value, and kE (cluster-size) are given in Tables 3 and S1. B: Areas
nterior insula, left occipital lobe, right ventral hippocampus, and left area 17; second row:
all not visible in this slice), and left orbitofrontal cortex. MNI-coordinates, T-value, and kE

image of Fig.�1


Table 2
Overview of gray matter changes in cluster headache.

Areas with GM changes in overall comparison All CH vs.
HC

Overview subgroup

eCHob eCHib cCH

a. Significant alterations using pFWE b 0.05
Temporal Right mid. temporal gyrus ↓* ↓ ↓↓* ↓
Hippocampus Left dorsal hippocampus ↓* ↓↓*
Insula Right posterior insula ↑* ↑ ↑↑* ↑
Cerebellum Right cerebellum ↑* ↑↑* ↑↑* ↑↑

Bilateral cerebellum ↑* ↑↑*
b. Significant alterations using punc. b 0.001
Temporal Left inferior temporal gyrus ↓ ↑ ↓↓

Left middle temporal gyrus ↑ ↑↑ ↑
Hippocampus Right ventral hippocampus ↑ ↑↑ ↑↑

Left ventral hippocampus ↑ ↑ ↑↑
Amygdala Right amygdala ↓ ↓ ↓
Insula Left anterior insula ↓ ↓↓

Right anterior insula ↑ ↑↑
Basal ganglia Left caudate nucleus ↓ ↓↓

Right caudate nucleus ↓
Orbitofrontal Right orbitofrontal cortex ↓ ↓↓

Left orbitofrontal cortex ↑ ↑↑ ↓
Pre-frontal Right superior frontal gyrus ↓

Left superior medial gyrus ↓ ↓↓ ↓
Left superior frontal gyrus ↓ ↓↓

SMA Left SMA/area 6 ↓ ↓ ↓↓
Right SMA/area 6 ↑ ↓ ↑↑

Somato-
sensory

Left primary somatosensory
cortex

↓ ↓ ↓

Right secondary
somatosensory cortex

↓ ↓↓

Cingulate Right perigenual ACC ↓ ↓ ↓
Right posterior ACC ↓ ↓↓

Occipital Right occipital lobe ↓ ↓↓
Left occipital lobe ↑ ↑ ↑ ↑
Area 17 ↑ ↑↑

Areas with significant GM changes (decrease or increase as marked by arrows) in overall
comparison (CH vs. HC, punc b 0.001, *pFWE b 0.05 threshold N 30 voxels) and overview of
corresponding GM alterations in subgroup analysis.
right-sided = ipsilateral, left-sided = contralateral to headache; ↓↓/↑↑ = strong GM
change in subgroup analysis (more than 90% of T value or cluster extent in comparison
to overall analysis). MNI-coordinates, T-value, and kE(cluster-size) are given in Tables 3
and S1 (GM-decrease) and S2 (GM-increase).
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contralateral dorsal hippocampus after correcting for multiple compar-
isons (pFWE) p b 0.05. Below an uncorrected threshold of punc b 0.001
GM volume decrease in pain processing structures such as the anterior
cingulate cortex (ACC), striatum, orbitofrontal cortex, hippocampus,
amygdala, insular cortex, and primary (S1) and secondary (S2) somato-
sensory cortices was detected as well as in the contralateral temporal
lobe, and premotor and occipital cortices (Tables 2 and 3).

3.2.1.2. Gray matter increase comparing all CH patients with healthy
controls. GM increase in CH could also be identified. The changes were
most pronounced in the cerebellumbilaterally and the ipsilateral poste-
rior insula passing a corrected threshold for multiple comparisons of
pFWE b 0.05. Alterations in the temporal lobe including the hippocam-
pus, as well in the occipital lobe and the anterior insular cortex were
below the threshold of punc b 0.001 uncorrected (Tables 2 and 3).

3.2.2. Subgroup analyses of CH patient3s o.b., i.b., and cCH vs. HC
Table 2 gives an overview of the results of overall and post hoc sub-

group analyses. Comparing the alterations of the subgroups vs. HC to
each other it becomes obvious that GM alterations differ substantially
within the different stages of disease. Some areas involved in pain pro-
cessing showed even opposite behavior. For example in cCHmost areas
showed a GM decrease while in some increase was seen in eCH inside
bout. Cluster headache patients out of the bout in general showed
less marked GM alterations compared to the other groups, but some
of those were quite characteristic (e.g. decrease in the striatum and
prefrontal areas). Details on subgroup analyses are given in the supple-
ment (Tables S1 and S2).

3.2.3. Intergroup analysis
Comparing different patient subgroupswith each other showed cor-

responding GM changes to overall and subgroup analyses which are
given in the supplement Table S3. To put it in a nutshell, with only
two exceptions i.b. patients showed GM increase while cCH showed
GM decrease in comparison to the other subtypes.

3.2.4. Correlation-analysis
Correlation analysis was performed for disease duration, attack fre-

quency and the number of days since the last attack for all CH patients
compared to HC and post-hoc analysis was performed for each patient
subgroup (Fig. 3).

For the number of days since the last attack, GM volume showed a
positive correlation (GM increase) in the posterior ACC. A GM decrease
in parallel with the number of days since the last attack in the
brainstem/spinal trigeminal nucleuswas detected in overall correlation.
In subgroup analysis these effects were only significant in patients cur-
rently o.b.

In regard to disease duration the posterior portion of the ACC
showed GM decrease in overall comparison, which was mainly related
to the cCH subgroup and remained significant in patients outside bout
as well. Prefrontal GM decrease in correlation to disease duration was
seen for all groups. No correlation was found for attack frequency.

4. Discussion

Characteristic distinct regional GMvolume changeswere seen in dif-
ferent states of disease in patients with CH.Most of the observed chang-
es are comparable to previously described findings. By virtue of the
episodic course of CH (i.e., transition of attack rich and attack free
states), we were able to further differentiate GM changes related to
transient (i.b.) and chronic (cCH) pain attacks, as well as changes possi-
bly related to the disease itself (i.e., in CH o.b.)— either as a consequence
of it or as a part of its underlying origin.

4.1. Main findings

The following discusses the brain areas with GM changes that
survived multiple comparison testing at a significance threshold of
p b 0.05 (FWE). Additional considerations will also acknowledge find-
ings with a lower, uncorrected significance threshold of p b 0.001 (see
Section 4.3) to be able to better compare our findings to previous stud-
ies on pain processing.

Alterations detected in the temporal lobe were most pronounced,
but partly divergent comparing different states of CH. The right middle
temporal lobe showed GM decrease in all analyses. This was FWE-
significant in all CH and i.b. patients only. Functional and structural
(Holle et al., 2011; Rocca et al., 2006; Schmidt-Wilcke et al., 2007;
Schmidt-Wilcke et al., 2005) alterations in the temporal lobe were
often described in different painful conditions, but its role for central
pain processing remains unclear and may be underrated. As the medial
temporal lobe is associated with the attentional and emotional modula-
tion of pain perception (Ploner et al., 2011), the role of the lateral tem-
poral lobe remains uncertain. In patients with migraine, increased
excitability of the temporal lobe was interpreted as part of central sen-
sitization that is well known for migraine (Moulton et al., 2011). This
would fit our finding of inferior temporal lobe GM decrease in chronic
CH quite well, if central sensitization could be regarded as one impor-
tant step towards the development of chronic pain as suggested previ-
ously (Obermann et al., 2009).

The second structure with significant alterations in FWE corrected
analysis and antipodal behavior in the different states of CH is the
insular cortex. The right posterior insular shows FWE significant GM



Fig. 2. Gray matter alteration in different brain areas in the different states of CH. Schematic overview over different areas with similar GM change behavior over different disease states.
Colored lines reflecting region-wise GM alteration as indicated on the left. Black lines show the estimated/approximated pattern dynamic. A: Areas with predominant GM loss in episodic
subtypes (i.b.) with GM increase and normalization in chronic CH (S1= primary somatosensory cortex, SMA= supplementary motor cortex) representing an episodic or transient pain
disease pattern. B: Areas with GM decrease in cCH, with increase in eCH (i.b. N o.b) representing a chronic pain disease pattern. C: Areas with pronounced GM decrease in pain free state
(o.b.).
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increase in all CH patients and patients inside bout. The insula is well
known to show GM alterations in different pain conditions (May,
2011). Functional imaging (Peyron et al., 2000) revealed that it codes
for many functions in regard to pain perception and processing includ-
ing the modulation of pain in a pro- and anti-nociceptive manner
(Jasmin et al., 2003). Particularly this could provide a valid explanation
for the structural reorganizationwithin this region from episodic pain to
cCH. From our data, GM increase within the anterior insula seems to be
predominantly related to patients currently inside bout, while GM de-
crease was found predominantly in cCH. The posterior insula on the
other hand shows GM increase over all subgroups (most pronounced
in patients inside bout). In regard to pain processing, the insula may
consist of two different functional parts as the anterior insula shows
the described dichotomic reorganization behavior from transient to
chronic pain, while the posterior insula does not. The different parts
are believed to have different functions in regard to sensation, emotion
and behavior (Ploner et al., 2011; Bernhardt and Singer, 2012; McGlone
et al., 2012; Gerstner et al., 2012). In pain, as for other senses, the
insula3s integrative capacities may be enormous, which could explain
the rather complex behavior of this structure to changing neuronal
input that certainly requires further research before it can even be re-
motely understood.

GM in the left dorsal hippocampuswas altered in overall comparison
and in patients suffering from the chronic subtype. The ventral part of
this anatomic-structure behaved exactly the opposite way in showing
GM increase (uncorrected) in transient pain. The ventral hippocampus
is associated with fear conditioning and therefore most likely much
more associated with acute pain (González-Pardo et al., 2012). The
dorsal hippocampus is associated with learning of conceptual informa-
tion, which could be considered closer related to a continuing experi-
ence of pain (Fanselow and Dong, 2010). Even more interesting is the
transition from GM increase in recently developed pain (eCH) within
the ventral hippocampus to decrease within the dorsal hippocampus
in cCH. This nicely fits the observation that an increase is mostly associ-
ated with acute pain, while a decrease is more related to a chronic con-
dition. A number of other brain regions such as the orbitofrontal and
anterior insula show a similar structural reorganization and change
from GM increase in eCH i.b. to a GM decrease in cCH (Fig. 2). This
structural brain plasticity was previously described in longitudinal
VBM studies and appears to be closely related to functional changes
(Obermann et al., 2009; Rodriguez-Raecke et al., 2009; Gwilym et al.,
2010; Teutsch et al., 2008).

The cerebellum showed significant GM increase over all analyzed
patient cohorts. When correction for multiple comparisons was applied
observed alterations remained significant except in cCH. Although cere-
bellar involvement in pain processing was shown very early using ana-
tomical (Randić et al., 1981), electrophysiological (Jie and Pei-Xi, 1992)
and functional MR-imaging (Helmchen et al., 2004; Helmchen et al.,
2003) techniques very little is known about its role in pain. Since
most imaging studies investigating pain do not use specific cerebellar
normalization procedures imaging results have to be interpreted very
carefully. Current discussion regarding cerebellar function in pain pro-
cessing includes direct nociceptive encoding and modulation, affective
processing, sensory–motor integration, withdrawal response and even
anticipation (Moulton et al., 2010). More research is needed to further
illuminate this.

image of Fig.�2


Table 3
Detail information on GM changes (decrease and increase) in overall comparison (CH vs.
HC).

MNI coordinates T kE

X Y Z

GM-decrease
Right mid. temp. gyrus* 47 −31 −3 5.59 1905
Left inferior temporal gyrus −36 −46 −12 4.04 454
Left caudate ncl. −11 23 −8 4.36 244
Right caudate ncl 11 24 9 4.18 239
Right orbitofrontal cortex 12 44 −21 3.53 86
Right superior frontal gyrus 20 56 36 3.52 144
Left superior medial gyrus −2 33 60 3.99 191
Left superior frontal gyrus −12 33 40 3.98 334
Left SMA /area 6 −18 −7 57 4.29 301
Left primary somatosensory cortex −53 −19 49 4.43 616
Right secondary somatosensory cortex 53 −45 25 3.64 129
Left dorsal hippocampus* −23 −38 −3 5.08 358
Left ant. insula −24 26 −2 4.04 206
Right amygdala 35 −4 −15 4.39 294
Right. perigenual ACC 17 41 12 4.37 571
Right posterior ACC 12 6 33 4.27 536
Right occipital cortex 11 −66 3 3.45 191

GM-increase
Right posterior insula* 50 −27 15 5.13 2046
Right anterior insula 32 29 −5 3.44 41
Left ventr. hippocampus −23 −6 −48 4.27 201
Left mid. temporal gyrus −44 −52 4 4.24 178
Right ventr. hippocampus 36 −36 −11 3.73 297
Left occipital lobe −18 −58 34 4.52 2280
Area 17 −3 −100 15 3.38 129
Left orbitofrontal −11 62 −23 3.59 491
Right SMA/area 6 48 −6 51 3.31 37
Right cerebellum* 27 −40 −53 3.34 2236
Bilateral cerebellum* 6 −67 −18 4.86 4539

punc b 0.001; *pFWE b 0.05 threshold N 30 voxels; MNI — Montreal Neurological Institute
coordinates, T: effect strength, kE: cluster-size; right-sided= ipsilateral, left-sided= con-
tralateral to headache.
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4.2. Hypothalamus

The first VBM study on CH detected isolated GM increased in the in-
ferior posterior hypothalamus compared to HC (May et al., 1999). More
recent VBM studies did not find structural GM changes in the hypothal-
amus (Matharu, 2006; Absinta et al., 2012; Yang et al., 2013). This also
accounts for our study. Increasing evidence for an unspecific role of
the hypothalamus in pain processing was gathered during the past
years where structural and functional data in different conditions
were able to show hypothalamic involvement (Holle et al., 2011). The
hypothalamus is involved in many regulatory mechanisms including
pain processing, but appears not to be specific for CH.
4.3. Additional considerations

4.3.1. Episodic cluster headache inside bout
Regional GM changes (mostly GM-increase, otherwise indicated as

decrease) related to acute and transient pain in patients with episodic
CH i.b. were most pronounced in the primary somatosensory cortex
(S1, GM-decrease), anterior and posterior insula, ventral hippocampus,
orbitofrontal gyrus, supplementary motor area (SMA, GM-decrease),
cerebellum, and occipital cortex (Figs. 1 and 2). This is in line with the
current literature that concedes acute pain to be associated predominate-
ly with primary and early secondary sensory processing areas (i.e., S1,
insula), motor processing areas (i.e., SMA, cerebellum), as well as areas
related to cognition and emotional processing (i.e., hippocampus,
orbitofrontal cortex) (Rocca et al., 2006; Kim et al., 2008; Schmidt-
Wilcke et al., 2008). The role of the occipital cortex remains unclear.
Even though it is often described in different pain conditions a good ex-
planation of its function in pain processing is still missing.
Most altered brain regions identified in patients i.b. showed GM in-
crease except for S1, SMA and the middle temporal gyrus. GM increase
is considered to be associated with acute and repeated painful stimuli.
Teutsch et al. for example showed GM increase in pain processing
areas after repeated painful stimuli over several days (Teutsch et al.,
2008). This is consistent with VBM data for exercise and learning and
the concept of activation dependent brain plasticity demonstrated in
humans (Draganski et al., 2004; Boyke et al., 2008). Absinta et al.
showed regional GM increase in eCH (Absinta et al., 2012) and Maleki
et al. demonstrated an increase in basal ganglia in high frequent mi-
graine (Maleki et al., 2011). Interestingly, a very recent, but small longi-
tudinal study in CH showed GM increase in bout-state compared to o.b.
in some regions including the cingulate and insular cortex (Yang et al.,
2013). A possible explanation for GM increase in acute pain may be
that the brain only reacts with local GM increase until a particular
task/stimulus is learned or processed adequately and further on recedes
(May, 2009). Regarding acute pain as part of the experience of learning
is further supported by our finding in the hippocampus. Interestingly,
the insular cortex showed similar behavior. Both regions are discussed
in more detail above.

Another region showing an increase in acute and decrease in chronic
CH is the orbitofrontal cortex. As part of the prefrontal cortex, it was
often described in different VBM studies on pain with clear association
to the affective component of pain in general and to the development
of chronic pain in particular (Schmidt-Wilcke et al., 2005; Kim et al.,
2008; Younger et al., 2010). Its main role is sensory integration,
decision-making and expectation (Kringelbach, 2005) and it is involved
in the expectation of a reward or punishment for any particular action
(Schoenbaum et al., 2011). This may explain its role for pain processing.

The primary somatosensory cortex (S1) and SMAbehave opposite to
most other brain areas altered in acute pain. Contrary to our current un-
derstanding and our hypothesis, S1 shows GM decrease in acute pain
and persistent GMdecrease in patients out of bout, possibly the primary
processing structures are more sensible to recurrent input and change
more quickly to repeated painful stimuli as adaptive mechanism possi-
bly reflecting habituation.
4.3.2. Chronic cluster headache (long standing pain-attacks)
Chronic CH patients predominantly showed GM decrease compared

to HC. This was reconfirmed by intergroup analysis. The decrease was
mainly detected in higher order, secondary and integrative cortical pro-
cessing centers such as the secondary somatosensory cortex (S2), the
posterior part (pACC) and the perigenual portion (pgACC) of the anteri-
or cingulate cortex, the amygdala and in the above discussed regions
orbitofrontal cortex, hippocampus, insular cortex and the inferior
temporal lobe (Fig. 2B). These regions are well known to be associated
with human pain processing and were consistently described with
GM decrease in the current literature (see reviews (Tracey and
Mantyh, 2007; May, 2011; May, 2009)). Several of these regions were
proposed to be especially important for the development and mainte-
nance of chronic pain in particular, such as the pACC and the amygdala
(Obermann et al., 2009; Rodriguez-Raecke et al., 2009; Gwilym et al.,
2010). Our data reconfirm this connection to chronic pain and underline
once again the neuroplastic capacity of these brain regions in response
to changing stimuli. GM decrease was detected in cCH within the
pACC and GM volume correlated with the interval between attacks,
which was mainly driven by CH outside bout. This could point towards
a recovery of this area after the painful episode recedes. No significant
correlation in this regard was found in the patients suffering from
cCH. It appears that the recovery potential of this area is severely
impaired in patients with longstanding pain-attacks. Similar, hypothet-
ically reactive increases of GM were described in longitudinal studies
in regard to cortical plasticity of the pACC (Obermann et al., 2009;
Rodriguez-Raecke et al., 2009). The incapacity of pACC recovery in
chronic pain is further supported by a negative correlation of GM



Fig. 3.Graymatter correlation analysis. Correlation analysis: areaswith significant GM increase or loss in correlationwith days gone since last attack (A+B) and disease duration (C+D),
left-sided graphical correlation, right-sided GM changes in image and correlation coefficient. Significance level: *p b 0.05; **p b 0.01, not starred = not significant. MNI coordinates and
details on overall correlation: A+ B: pACC (x: 15 y: 6 z: 33; kE: 431; T: 4.31), brainstem (x: 2 y: 36 z: 66; kE:468; T: 3.64); C+ D: pACC (x: 8 y: 9 z: 37; kE: 192; T: 3.61); prefrontal cortex
(x: 3 y: 51 z: 13; kE:1113; T: 4.69).
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volumewith disease duration. The prefrontal cortex, another potential-
ly anti-nociceptive region, behaved similarly.

GM decrease was also seen in the amygdala and pgACC in patients
with cCH confirming their role in chronification of pain. However, com-
parable changes were detected in CH o.b., whichmay hint at a predom-
inantly anti-nociceptive mechanism and an active attempt to suppress
or prevent the chronification. Extensive connections from the amygdala
to the ACC were described, along with their possible role for the defen-
sive behavioral system that controls transmission of nociceptive im-
pulses to the brain through multiple circuits that can be modulated by
stress, fear and expectation (Coghill et al., 2001; Sikes and Vogt, 1992;
Bingel et al., 2002). The amygdala contributes to emotional processing
rather than to sensory discriminative components of pain processing
(Bingel et al., 2002) and was demonstrated to show GM decrease in
chronic pain due to osteoarthritis that recovered completely within
18weeks after hip replacement surgery (Rodriguez-Raecke et al., 2009).

As mentioned before hippocampal alterations were of complex
behavior. Regional GMdecrease in the dorsal hippocampusmay suggest
a connection of memory and chronic pain. Previous VBM studies of
chronic pain reported changes in the hippocampus in support of this
assumption (Lutz et al., 2008; Schweinhardt et al., 2008). The negative
effect of chronic stress on the plasticity of the hippocampal formation
is undisputed. Chronic or persistent recurring pain is a major stressor
in this regard and in animal models leads to functional and morpholog-
ical changes of the hippocampus (McEwen, 2001). The reduction of GM
volume in cCH patients supports the association of hippocampus affec-
tion and chronification.
4.3.3. Pain-free state (out of bout)
Three possible mechanisms responsible for the underlying GM

changes o.b. must be considered. Changes may be residual alter-
ations persisting after the last bout, changes may represent a
predisposition for CH, or they may reflect an effective anti-nociceptive
network performance.

Since the areas altered most distinct in patients outside bout (pre-
frontal cortex and caudate nucleus), do not show marked alterations
in the other subgroups they are not likely to be “left over” and so have
to be evaluated in the context of predisposition or anti-nociception.
Prefrontal cortico-striatal connections were just recently described to
correlatewith the persistence of pain (Baliki et al., 2012). The persisting
GM decrease may suggest a dysfunction or incomplete connectivity
between the prefrontal cortex and the striatum in CH. This hypothesis
is further supported by FDG-PET data showing hypometabolism in fron-
tal brain areas and caudate nucleus predominantly in CH patients out of
bout (Sprenger et al., 2007). Involvement of the prefrontal cortex and in
CH was also described in two recent VBM analyses and was interpreted
as a possible correlate of an impaired descending pain modulation sys-
tem (Absinta et al., 2012; Yang et al., 2013). This underlines our expla-
nation of a deficient pain processing network leading to pain in CH
(Sprenger et al., 2007).

4.4. Methodological considerations

The core strength of this study is the large patient numbers that
allow sufficient subgroup analysis compared to properly matched
healthy controls. This is unique in the investigation of primary headache
disorders and provides insight into the dynamic of describedGMchang-
es in regard to the sensation of pain. One of the main limitations of this
study is the cross-sectional design, which not only gives a first impres-
sion of the dynamic of underlying GM changes following pain but also
demonstrates the urgent need for longitudinal analyses. Unfortunately,
VBM still has considerable methodological limitations. It remains un-
clear whether GM alterations are caused by irreversible mechanisms
such as neuronal degeneration/apoptosis, fast adjusting reversible
neuronal processes such as dendrite spine and synapse turnover, or

image of Fig.�3
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whether they simply reflect changes in extracellular space, microvascu-
lar volume or blood flow (Apkarian et al., 2004; Franklin et al., 2013).

The experience of pain has a powerful influence on psychology. It is
common sense that receptive or permanent painful stimuli have major
impact on mood and anxiety. The comorbidity of headache, depression
and anxiety is well investigated (Mercante et al., 2011; Antonaci et al.,
2011; Breslau et al., 2003; Mitsikostas and Thomas, 1999; Juang et al.,
2000) and probably shares common central processing pathways
(Milham et al., 2005; Radua et al., 2010; Yoo et al., 2005).

Another point to mention is the influence of preventive medication.
Most of the patients were on corticosteroids, verapamil and/or topi-
ramate. Only some were on lithium. No proper data exists for VBM
with verapamil or topiramate. Lithium was studied in small groups of
healthy humans and tends to cause a GM increase but studies are not
consistent regarding location (Cousins et al., 2013; Monkul et al.,
2007). The influence of depression, anxiety or medication cannot be
ruled out. One could argue that the timewindow for classification of ep-
isodic patients (15 days) may be too tight or too lose. Our prospective
decision to use 15 days as cutoff was chosen as a good balance between
possible misclassification of patients almost out of the bout and already
receding neuroplastic changes on the other hand.

5. Conclusion

In conclusion, characteristic GM change patterns for different stages
of disease in CH are highly dynamic and reflect the brain3s adaptation
capacity to different stimuli in regard to cortical plasticity. It isworth no-
ticing that GM decrease is predominantly seen in chronic pain, while
acute pain shows amore complex and partly opposite behavior. This dy-
namic provides an explanation for the diverse results of previous VBM
studies in pain. Different brain regions seem to have different adapta-
tion capacities and react differently to changing pain stimuli. Moreover
the brain apparently utilizes different parts of the same system for the
procession of acute and chronic pain. It becomes evident that complex
and remittent recurrent diseases such as CH are most likely related to
dysfunctional nociceptive and anti-nociceptive processing networks.
Disturbed inhibition and facilitationmechanismsmay lead to the devel-
opment of recurrent painful attacks as well as chronic pain in some pa-
tients eventually.
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