Note
 Triangle-free graphs with large chromatic numbers

A. Nilli
Department of Mathematics, Tel Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel

Received 19 September 1998; accepted 7 December 1998

Abstract

It is shown that there are two positive constants c_{1}, c_{2} such that the maximum possible chromatic number of a triangle-free graph with $m>1$ edges is at most $c_{1} m^{1 / 3} /(\log m)^{2 / 3}$ and at least $c_{2} m^{1 / 3} /(\log m)^{2 / 3}$. This is deduced from results of Ajtai, Komlós, Szemerédi, Kim and Johansson, and settles a problem of Erdős. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic number; Triangle-free graphs

In his open problems appendix [2, pp. 241-243], Paul Erdős raised the problem of determining or estimating the two functions $f(n)$ and $g(m)$, where $f(n)$ is the maximum possible chromatic number of a triangle-free graph with n vertices, and $g(m)$ is the maximum possible chromatic number of a triangle-free graph with m edges.

He mentioned that $n^{1 / 2} /(\log n)^{c_{1}} \leqslant f(n) \leqslant n^{1 / 2} /(\log n)^{c_{2}}$, where here and throughout this note $c_{1}, c_{2}, c_{3}, c_{4}, \ldots$ always denote absolute positive constants. Similarly, he remarked that $m^{1 / 3} /(\log m)^{c_{3}} \leqslant g(m) \leqslant m^{1 / 3} /(\log m)^{c_{4}}$, and added that the best possible values of the constants c_{i} in both estimates above are not known.

The asymptotic behaviour of the first function, $f(n)$, has been determined, up to a constant factor, by the main theorem of Kim [4], together with the earlier results of Ajtai et al., [1]. In [1] it is shown that any triangle-free graph on n vertices contains an independent set of size at least $\Omega(\sqrt{n} \sqrt{\log n})$. By repeatedly omitting such independent sets from such a graph we conclude that its chromatic number is at most $\mathrm{O}(\sqrt{n} / \sqrt{\log n})$, showing that

$$
\begin{equation*}
f(n) \leqslant c_{5} \frac{\sqrt{n}}{\sqrt{\log n}} \tag{1}
\end{equation*}
$$

Kim proved that this is tight, up to a constant factor, by showing that $f(n) \geqslant c_{6} \sqrt{n} /$ $\sqrt{\log } n$. To do so, he proved the existence of a triangle-free graph on n vertices with

[^0]no independent set of size $c_{7} \sqrt{n} \sqrt{\log n}$. The total number of edges in his graph is $m=\Theta\left(n^{3 / 2}(\log n)^{1 / 2}\right)$ and hence his construction also shows that $g(m) \geqslant \Omega$ $\left(m^{1 / 3} /(\log m)^{2 / 3}\right)$. In this brief note we prove that this is tight, up to a constant factor, namely, $g(m) \leqslant \mathrm{O}\left(m^{1 / 3} /(\log m)^{2 / 3}\right)$. In order to do so, it suffices to prove the following.

Theorem 1. There exists an absolute positive constant c_{7} so that the chromatic number of any triangle-free graph with at most m edges does not exceed $c_{7} m^{1 / 3} /(\log m)^{2 / 3}$.

To prove this theorem, we need the following result of Johansson.

Theorem 2 (Johansson [3]). There exists an absolute positive constant c_{8} such that for any triangle-free graph G with maximum degree at most d, $\chi(G) \leqslant c_{8}(d / \log d)$.

Proof of Theorem 1. Let $G=(V, E)$ be a triangle-free graph with at most m edges. Define $n=m^{2 / 3} /(\log m)^{1 / 3}$. If $|V| \leqslant n$ then, by (1)

$$
\chi(G) \leqslant \mathrm{O}\left(\frac{\sqrt{n}}{\sqrt{\log n}}\right)=\mathrm{O}\left(\frac{m^{1 / 3}}{(\log m)^{2 / 3}}\right)
$$

as needed. Otherwise, let V_{1} be the n vertices of largest degree in G, and let G_{1} be the induced subgraph of G on V_{1}. Then, by (1),

$$
\chi\left(G_{1}\right) \leqslant \mathrm{O}\left(\frac{\sqrt{n}}{\sqrt{\log n}}\right)=\mathrm{O}\left(\frac{m^{1 / 3}}{(\log m)^{2 / 3}}\right) .
$$

Let G_{2} be the induced subgraph of G on the rest of the vertices. Clearly, the maximum degree in G_{2} is at most $d=2 m /(n+1)<2 m^{1 / 3}(\log m)^{1 / 3}$. By the result of Johansson (Theorem 2 above) it follows that the chromatic number of G_{2} satisfies

$$
\chi\left(G_{2}\right) \leqslant \mathrm{O}\left(\frac{d}{\log d}\right)=\mathrm{O}\left(\frac{m^{1 / 3}}{(\log m)^{2 / 3}}\right) .
$$

Since $\chi(G) \leqslant \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$, this completes the proof.

Acknowledgements

I would like to thank N. Alon and M. Krivelevich for fruitful discussions, and N. Alon for his help in writing this manuscript.

References

[1] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory Ser. A 29 (1980) 354-360.
[2] N. Alon, J. Spencer, The Probabilistic Method, Wiley, New York, 1992.
[3] A.R. Johansson, Asymptotic choice number for triangle-free graphs, to appear.
[4] J.H. Kim, The Ramsey number $R(3, \mathrm{t})$ has order of magnitude $\mathrm{t}^{2} / \log \mathrm{t}$, Random Struct. Algorithms 7 (1995) 173-207.

[^0]: E-mail address: nilli@math.tau.ac.il (A. Nilli)

