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Let (u;),, , be a fixed point for a substitution D on a finite alphabet A and 
for aE A, f(a) a real number. We establish an asymptotic formula for S(N) = 
z” < N xi<. f(ui) in the case where the second largest eigenvalue of the substitution 
matrix equals one and under some additional hypothesis. More precisely S(N) = 
aN log, N + NF(N) + o(N), where the real number a depending on u and f  is 
explicitly determined and O > 1 is the largest eigenvalue of the substitution matrix; 
F is a continuous, nowhere differentiable (if a#O), real function such that 
F(k) = F(x) for all x > 0. Using the same method we prove a similar formula for 
E n < N s(n), s(n) the sum of digits function with respect to the system of numeration 
associated with CT. These formulae generalize some recent work concerning digital 
sum problems. 0 1991 Academic Press. Inc. 

1. INTRODUCTION 

In recent years, various summation formulae related to digit expansions 
have been proved in various ways. For instance 

(1) Cn<N(-1)S(3n)= NBF(N) + O(l), where s(n) = sum of digits in 
the binary expansion of n and /3 = log, (3) (see Coquet [ 81). 

(2) C”<N (- l)r(n) = N’j2G(N), where r(n) = number of blocks 11 in 
the binary expansion of n (see Brillhart, Erdos, and Morton [S] and, for 
a generalization to other blocks, [3]). 
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(3) L<N d(n) = +N log,(N) + NH(N) + 0( 1 ), where Q(n) counts 
those k <n which are representable as sums of three squares, d(n) = 
Q(n) - zn (see Osbaldstin and Shiu [ 171). The functions F, G, H are 
defined for any real x> 0, continuous and nowhere differentiable, and 
satisfy the equation @(4x) = Q(X) for all .Y > 0. 

(4) CncN s,(n) = ((q- 1)/2) Nlog,(N) + NFq(N), where s,(n)= sum 
of the q-ary digits of n (q is an integer 32) and F, is continuous, satisfying 
F,(qx) = Fq(x) for all x > 0 (see [lo]). This is the famous Delange formula 
and was generalized recently by P. J. Grabner and R. F. Tichy to digit 
expansions with respect to linear recurrences sequence G in the form 

(5) c n < N sG(n) = cG N log,(N) + NF,(N) + O(log N), where cG is a 
constant, CI the dominating characteristic root of G, and F, a continuous 
function satisfying F(ccx) = F(x) for all .Y > 0 (see [ 16, 181). 

In an earlier paper [ 131, we gave a generalization of (1) and (2) in the 
following way. Let A be a finite “alphabet” A = { 1. 2, . . . . d}; 0 a substitu- 
tion over A; (u,), a, a sequence of elements of A which is invariant under 
o; for each a E A, f(a) a real number; and 

d(n)= c f(Uj). 
;<?I 

Define L,(m) = number of occurrences of the letter i in the word m, and M 
(the “matrix of the substitution”) = (Li(a(j))),i,j,e,z. Let {0,/l Q i<6} be 
the set of the distinct eigenvalues of A4 such that i Q j 3 1 Bi 1 z 113, I. Assume 
that 

(H,) Misprimitiveand8=8,>1,Asaconsequenceib2=-18,1<8 
and there is a unique vector A = (IZi)ieA, M/i = 1!9n, and CiEA Ai= 1. 

(H,) 8,E[W+,82>1,i33~leii<$,. 

Let m be the integer such that m + 1 is the order of t12 in the minimal poly- 
nomial of M, and /I = log,(0,). Then there exists a continuous function F, 
defined for x > 0 such that 

(i) s’(N) = (/i .f) N+ (log, NYNBF(N)+o((log N)” N”) 

(ii) x > 0 * F(Ox) = F(x). 

Moreover F is Holder continuous with exponant fi, and except for the case 
FE 0, F is nowhere differentiable. The fact that the sums in (1) and (2) are 
of the form s’(N) can be found respectively in [7] and [6]. 

In the present paper, we want to study the “double sum” C, < N s’(n) in 
the case where (H,) is true and (HZ) is replaced by 

(Hi) 0,= 1, i>3* IO,1 < 1. 
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Without loss of generality, we may suppose that A ,f= 0 (if this is not the 
case we take f’(i) =f(i) - /1 .f in place of f). For technical reasons we 
assume that there exists a base of @” with eigenvectors of the matrix ‘M. 
Under the above hypothesis, the main result is the following: 

THEOREM, There exist a constant c1 and a continuous function F nowhere 
differentiable if CI # 0 defined for x > 0 such that 

(i) CncN si(n)=ctNlog,N+NF(N)+o(N) 

(ii) x > 0 + F(8x) = F(x). 

More precisely 
a=p1 JA Lf2(m)4cL 

mc<o(o) 

where f = Cp=, fi with fi an eigenvector for ‘M and Qi, E(a) = 
lim, -+ m 8-” ja”(a)l (1~11 =length of the word m), and the relation 
mc < a(a) means that the summation is extended to all the (m, c) E A * x A 
such that the word mc is a prefix of the word o(a). 

For instance the sequence Q(n) in (3) is of the form pf(n) with A = 
{1,2, . . . . 6); o(l)= 12, a(2)= 13, o(3)= 14, 0(4)=54, a(5)=62, a(6)=52; 

f(l)=f(2)=f(3)=f(5)=1, f(4)=f(6)=0; and (~,),,~~=lim~,,a~(l) 
(cf. [7, p. 172-173). 

The matrix M of cr has (2, f 1, 0} as eigenvalues and hence does not 
satisfy (Hi). But if we consider (r * instead of (T, with the same f, sf(n) 
remains the same and Hi is true (in H,, f3 is now 4). Moreover LI . f = 2 
and if f’=s(l, 1, 1, -5, 1, -5) we have A(n)=/(n). One has (for 
rr2 and f')f2=$(2, -1, -1, -4,2, -1) Va,aEA,E(a)=l, and LY=~ in 
accordance with [ 171. 

As another class of application of our theorem, we mention that if c1 is 
a quadratic algebraic number, the sequence 

I 

0 if O<frac(na)<+ 
x(h a)= , if 

4 < frac(ncr) < 1 

can be described by a sequence cp(ul) (p(uJ . . ., where (u,) is a fixed point 
for an appropriate substitution on a finite alphabet A and cp: A + (0, 1 }* 
(see Cl, 15, 191). 

For instance, if 1x=(&-1)/2 one has A={l,2,3}, a(l)=13, 
a(2)= 13223, a(3)= 1323, cp(l)=O, (p(2)=011, (p(3)=01, (u,),~, = 
1313231313223..., and (x(n, a)) = 001001011... (see [19]). 

The second largest eigenvalues of the substitutions matrices are + 1. 
These sequences and some more general ones are important in recent 
works in mathematical physics (see [ 1, 2, 51). 
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In Section 2, we give some results concerning systems of numeration 
associated with a substitution; some representations of the integers with 
respect to linear recurrence sequences appear as particular cases of our 
systems of numeration. 

In Section 3, we give an expression of S(N) related to the “digits” of N 
in the system of numeration described in Section 2, using a summation by 
column method. 

In Section 4, we establish the continuity and the nowhere differentiability 
of the function F. For this we investigate for the first time the properties of 
“self-similarity” of F; this method is very distinct from that used, for 
instance, in [ 16, 1 S] and allows more generality. 

In Section 5, we show how the computation developed in the preceding 
sections gives some results concerning the “sum of digits functions.” 

To conclude, let us note that, using another method, some results 
concerning the sums x,, ,+, (s’(n) - CI log, n)” (k E fW) were proved by the 
first author of this paper [12]. 

2. SYSTEMS OF NUMERATION ASSOCIATED WITH A SUBSTITUTION 

Here we recall some results proved in [ 133 and prove some useful new 
results. A* is the set of words on A and w  the empty word; for m E A*, 
Irnl = length of m. If m, m’ are in A* the relation “m is a prefix of m”’ 
means that there exists a word u such that m’ = mu and is written m d m’; 
m < m’~m <m’ and m # m’. o is a morphism from A* into itself 
(a(mm’) = a(m) a(m’)) such that 1 < a(l), and u = (u,)~, , is lim,, 7- a”(1 ), 
i.e., the fixed point for (T such that U, = 1. 

2.1. Representations of Integers 

DEFINITION. A sequence (m,, ai)i=O,,,.,,,. in A* x A is a-admissible 
(aE A) iff 

(i) mnan < a(a) 

(ii) l~i~n~m,~,ai-l~o(aj). 

THEOREM 2.1.1. Let N be an integer, N > 1. Then there exist a unique 
integer n = n(N) and a unique l-admissible sequence (m,, a,),=,,.,,, such that 
m,#w and 

Ul, u2, . . . . uN = a”(m,) . .. aO(mo). (2.1) 

For the proof see [13]. 
ForinstanceifA={1,2,3},a(l)=123,a(2)=31,a(3)=22,andN=l3 

(in decimal system!), n = 2, (m,, a*) = (12, 3), (ml, a,) = (w, 2), (m,, ao) = 
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(3, 1). Note that the digits m, belong to a finite set, the set of the proper 
prefixes of the words o(a), a E A, but are in general not independent of each 
other. For instance, if A = { 1,2}, o(l)= 12, o(2)= 1, one has miE {co, l} 
and in an “admissible writing” (2.1), (mi+ Ir mi) # (1, 1) for all i<n - 1. 
Clearly in this example the representation 

N= (u, . ..uN(= jj laj(m,)l 
j=O 

is the “normal” representation of N in the Fibonacci base. We now give a 
more general case in which the representation (2.1) leads to the ordinary 
reresentation (in the sense of [14]). 

PROPOSITION 2.1.2. Let d be an an integer, d>, 2, a, .. ad be integers 
with a,>a,a ... 3ad>0, and: 

a(i)= lyl(i+ 1) (iid) 

a(d) = 1Y 

Let N= C;=, loj(m,)l be the admissibze representation and-for Jo N define 
G,= Iaj(l)l, cj= Imjl. Then 

(i) Go= 1, 1 <kbd- 1 =G,=a,G,-, + ... +akGo+ 1 and 
kBO~G,,.d=a,G,.,-,+a,G,+,-z+ ... +adGk; 

(ii) N=C~=,E~G~, where G,<N<G,+, and Ed= [N,/G,], N,=N, 
16j<n*Nj-1=Nj-~jGj. 

In other words, we obtain the G-ary representation of N with digits ~~ and 
initial canonical values ( cJ: [ 16, 1 S] ). 

Proof: (i) Immediate using ok(i)= ok-‘(a(i)) and the definition of 
a(i) for iEA. 

(ii) We remember that for an admissible sequence (m,, a,!,=,...,. we 
have for k, 0 <k 6n, c$=, Id(mj)l < lak(mkak)l (see [13, Lemma 1.11). 
Moreover, if 16 j<d- 1, la”(j)1 =a, Ia”-‘(l)[ +]cr”-‘(j+ l)\, and hence, 
using a,>a,+,, lo”(j)1 >, lo”(j+ I)!. Furthermore, lo”(d)1 =ud Iu”~‘(~)\ < 
(#(d-1)1. Thence l<j,<d*lo”(j)l<G,, and we have for k,Odk<n, 

i F,Gj=,co lu’(m.j)l<l~k+l(Qk+l)l %Gk+l. 
j=O 

The relations (ii) are then very easy to prove. 

Remark. Part (ii) of Proposition 2.1.2 can be false if a, < a,. For 
instance d=2, a,=l, a,=3, N=4=la’(l)J+la”(ll)I, and G,=2, 
G, = 15. 



356 DUMONTANDTHOMAS 

Now, we give a “technical lemma” useful in the next section. This lemma 
generalizes for the substitution of an elementary well-known fact about 
numeration systems in an integer base g. Namely if c, are digits and 

f chgh<n<gk+ f chgh, then the k th digit of n is ck 
h = k h=k 

LEMMA 2.1.3. (i) Let u, u2 . uN = o”(m,,) . . oO(mo) be the admissible 
representation of N. Then a, = uN + , 

(ii) Let (mj, aj)O<j<v be a I-admissible sequence; k be an integer, 
0 6 k < v; m and m’ E A;;%, b’ E A such that mb d o’-~( I), m’b’ 6 a(b); and 
VEA* such that ran+’ ak(m’) d v < rsk+ ‘(m) ak(m’b’), u = #(m,(v)) ... 
o”(mO(v)) the admissible representation of v. Then mk(v) = m’. 

Proof: (i) The definition of a l-admissible sequence implies that 
#(m,) . . aa a, < on+ ‘( 1). Thus a, = uN+, . 

(ii) First, it is easy to prove that if UE A, TV A*, t < ok(a), then 
there exists and a-admissible sequence cm:? dOGr<k such that 
t=ak-‘(m;~,)...cro(mb) ( same proof as that of Theorem 1.5 in [ 131). 

The hypotheses of (ii) imply that v= uk* ‘(m) &(m’) t, where t E A*, 
t<ak(b’), and m=av~k-‘(m~,)-..ao(m;+,), where (m:, a:)kC,Cv is 
l-admissible. 

Now, using the above expression of t in which a = b’, we define rn; = m’, 
ah = b’ and we claim that (m:, u:)~~ iG y is l-admissible. Indeed by (i) of this 
lemma a;, , = 6, and thence rn;ai = m’b’ 6 a(b) = a(&+ 1). 

Thus u = ol’(mi,) . . . a”(mb) and by unicity of l-admissible writing one has 
mk(v) = m’. 

2.2. Representations of Real Numbers 

For the next theorem we suppose that 0, the maximum eigenvalue 
of h4, is such that 8 > 1 and that for any UE A, the limit E(G) = 
lim, + m P” jo”(a)l exists and s(a)>O. We write s(W)=0 and ~(a, -.,a,)= 
x,f=, ~(a,); remark that for any a E A, &(0(u)) = &(a). 

THEOREM 2.2.1. Zf UE A, XE [0, ~(a)[, there exists an unique sequence 
(mi, u~)~>, of elements of A* x A such that 

(i) x = xi,, &(mi) W’, 

(ii) m,a,da(a),i~2~miai~~(a,~,), 

(iii) VIE N, %>I, m,a,#cr(ai~ 1). 

For the proof see [13]. 
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3. A FIRST EXPRESSION FOR S(N) 

In this section we give an expression of S(N) related to the digits nz; 
of N. 

3.1. Some Notations 

In Sections 3 and 4, f is a vector (f(a)),,, such that f. /i =O; we write 
f(w)=0 and f(a,... ak) = Cf= i f(ai). {0,/l did S} denotes the set of 
distinct eigenvalues of the matrix M of a; for sake of simplicity we 
assume that Bi~[W. We assume that 8,=0>1, Q2=1, j>3=18,1<1 
and define fi, Ed, n,(a) for 1 6 i 6 6 by f= cf=, f,, ‘&&fi = 6,fi (i 3 2) 
‘( 1, 1, . ..) 1) = c;=, Ej, ‘ME, = l9$,, 

‘(0, . . . . 0, 1, 0, ..,) O)= i: &(a) 
i= 1 

(1 in the place of a), ‘MAi = BjAi(U). 

The components of the vector &(a) are written li(a, 6) (SEA). The com- 
ponents off, and si are written, respectively, S,(a) and q(a). 

LEMMA 3.1.1. (i) For any rz~ N, LZEA, 

i=l 

L,(a”(u)) = i l;(u, 6) e; for bEA. 
i= I 

(ii) a,(a)=limn,, f3-” Io”(u)l. We write El(a) = E(a). 
(iii) (~(a))-~ R,(u, 6) = lim,, 135 la”(u)/ -‘Lb(a”(u)) = lb (A, defined in 

(HI)). 

Proof: (i) We have f(a”+ ‘(u)),,~ = ‘Mf(a”(b)),,,; thence the first 
relation in (i) is a direct consequence of the properties off;:. The proof is 
the same for the other relations. fi 3 0 is a consequence off. A = 0 (see 
[13, Lemma 2.21). 

(ii) Consequence of the second relation in (i). 

(iii) The first relation is an easy consequence of (i). Moreover the 
two vectors (~(a)),,~ and (,?,(a, b))U6a are eigenvectors for ‘M and for 0 
and then they are homothetic. Thus ~(a)>0 and (E(U)))’ Il,(u, b) =&,. 
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But one can show that (IZb)bsA is an eigenvectot for A4 and 8 such that 
Cbe A & = 1. Thus &, = 1, (by (H, ) in the Introduction). 

3.2. Expression for S(N) 

Now N 2 1 is a fixed integer; let (m,, ~1,)~~,~~ be its l-admissible 
representation (m, # 0). 

We want to compute S(N) = C, < N f(ul . . u,). If n < N we write 
(mi(n)3 ai(n)h,;<v as the l-admissible representation for n, (possibly with 
m,(n) = w). For 0 <k < v we define Sk = C, < N f(d(mJn))). Then, clearly, 
SW)=Co.k., Sk. 

LEMMA 3.2.1. Let SL=O, andfor O<k<v- 1. 

s; = c f(ok(mf) Iok 
(m,c)~E(k) 

with Nk=~Y~k-l(mV)...oo(mk+,) and 

E(k)={(m,c)~A*xA/3(m’,b)~A*xA,m’h<N,,mc~o(b)} 

Si = C f(ak(m)) lf~~(b)l 
mh&mk 

Then, for 0 < k < v, Sk = Sb + S; + Sr. 

Proof. Each n< N belongs to exactly one of the segments of N, 

[Ia k+l(m’) ok(m Iok+’ o”(m)1 + ItIC, 

with m’b6 N,, mcfa(b), t=c’(c); or m’= N,, mb<m,, t =ak(c); or 
m’=N,, m=m,, t=ok-l(mk~,)...oo(mo). 

By Lemma 2.1.3, for such an n, mk(n) = m in the two first cases because 
Nk d rr+“(l), and by unicity of the l-admissible representation, in the last 
case, mk(n) = mk. 

LEMMA 3.2.2. Let E be { (6, m, c) E A x A* x A/me < a(b)} and 

a=()-’ 1 bfdm) E(c). 
(h.m.c)~ E 

Then, there exists for each a E A a real number p(a) such that if 
Aa, ...a,)=Cl,i..~L(ai), one has 
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proof: We have, by the definition of Sk in Lemma 3.2.1 and the defini- 
tion of E, for O<k<v-1, 

s; = c b,Wk)fbJk(N) bk(c)l. 
(h.m,c)~ E 

But Lb(Nk) = CyCk+ I &(a’- “-‘(m;)). Now, we can apply Lemma3.1.1, 
which leads to 

Sk= i 2 (e:,-k-‘)(ej2e,,)ka(j,,j2,j,,m,) 
i=k+l jl.j2.j3cd3 

j2Z 1 

with A= {I, . . . . S> and a(jt,j2,j,, w)=C (b,rn,C)EE 3,,(w w&4 %W. 
Now, we remark that 

i-l 

c ej;k-1 (ej2ej3)k= [(ej,ej,)i-e:,](ej2e,-e,,)-I 
k=O 

if ej, # 8,ej,, and = iQ;; l if Bj, = 8,0,. 

Ifj, # 1, (jz,j3)#(2, l), this expression is in O(i+ If%?,(‘). If (jl,jz,j3)= 
(1, 2, l), we have by Lemma 3.1.1 and the definition of a, 

a( 1, 2, 1, WY) = a&(w). 

Thus, the term of C;:h Sk corresponding to (j,, j,, jj) = (1,2, 1) is the 
first term of the result in Lemma 3.2.2. For the terms corresponding to the 
cases j, = 1, (j2, j,) # (2, l), we can define 

1.44 = 44 1 v- ej2w1 C Wj,(m) Ej,(c)2 

(j2$)~;2.1) (b,rn,C)EE 

and for the terms corresponding to j, # 1, (j2, jj) = (2, l), we define 

pya)= C (e-ej)y 1 J.j(U, 6) “62(m) E(C). 
j#l (b.m,c)EE 

The lemma is proved by letting ~(a) = p’(a) + ~“(a). 

THEOREM 3.2.3. (Same notations as that in Lemma 3.2.2). 

S(N) =a i ic(mj) 81 
i= 1 

+ i [a(mi)+f2(M,)~(mi)l ei+w2+ lees17 
i=O 
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with Mi=mi+,mi+2 . ..rn., M,, = W, and for each word m, cc(m) is a real 
number. 

Proof. Now we compute xi=, (SL + Sr). By Lemma 3.1.1 

f(ak(m)) =fAm) + WIUk) 

l@(b)1 =.z(b)Ok+O(l), 

and the theorem is proved with, for m E A *, 

Nm) = Am) + 1 fAm’) E(b). 

Remark. 

i iE(m,) #=Nl og,N-log, i &(m,)8’~“~’ 
i= 1 i i=O 1 

- 2 (v + 1 - i) E(mi) O’+ O(v’). 
i=O 

Indeed, by Lemma 3.1.1(i), 

N= 1 E(m;) 8’+ O(v), thence: 
i=o 

log,N=v+l+log, i 6(rni)Oi~‘~’ +O(vO-“). 
( i=O > 

4. A SECOND EXPRESSION FOR S(N) 

Now we prove the main result of this paper. First we define a family of 
functions FO, a E A, adapted to the problem. Then we establish relations 
between these functions and we can prove the continuity of F, and its 
nowhere differentiability when c1# 0. 

4.1. Definition and Properties of the Functions FJx) 

DEFINITION. Let a be a letter of A. For x E [0, .$a)[, let 
x = Xi”= 1 E(mi) Pi be the a-admissible representation (cf. Section 2.2) and 
M, a(m), be as defined in Theorem 3.2.3. We define 

F,(x)= -axlog,x+ f (-icrs(m;) 
,=l 

+ a(m,) + E(mi) f2(Ml)) e-1 

with xlog,x=O for x=0 and M;=o,M,!=m,m2...mi~1, if i32. 
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LEMMA 4.1.1. (i) a, bE A, b<a(a), XE [0, E(b)[. Then xW’ E [0, &(a)[ 
and F,(xe-‘) = PF,(x) 

(ii) Let be x as in the above definition, and for k >, 1, 

xk= i &(rn,) e--‘, t,=x-.Yk. 
,=l 

Then 

F,(X) = ~~~~~~ + e-~~~k(e~t,) - a(x log, x - xk log, xk) 

+ crtk log, tk + fi(Mk + 1) tk 

Prooj (i) x < E(b) d &(~(a)) = &(a) = x8-l <c(a). If the b-admissible 
representation of x is x =Cia, s(mi) fY’, one has m,al do(b), and thus 
the a-representation of x0-r is xi,, +_,)P with m,=o,a,=b, and 
an easily calculation proves (i). 

(ii) We have ektk=Cia, s(mk+i) &‘, Qktkc [0, ~(a~)[ (see [13, 
Lemma3.1]), with mk+iak+i<a(ak+jp,) for ial, and thus the right- 
hand side of the above equality is the a,-admissible representation of ektk. 
Here, too, we omit the simple computation which leads to (ii). 

LEMMA 4.1.2. Z~UEA,XE [0, &(a)[,x, as in Lemma4.1.1, then 

(i) F,(x) = 0( 1) 

(ii) jF,(x)-F,(xk)l = O(kewk). 

Proof (i) Clearly E(mi) and a(m,) are in O(l), andfi(MI) is in O(i). 
These imply (i), by the definition of J’Jx). 

(ii) We use the notation and result of Lemma 4.1.1 (ii). First 
tk = o(e-k), and by (i) of Lemma 4.1.2, e-k&,(ektk) = o(e-k). Secondly 
& = XlOg,X-Xk 10goXk = tk(lOg e))‘(l -tlOg C) with xk < C < X. But, 
if xk # 0, xk 2 8-k inf(s(a)/a E A} and Rk is in O(kedk). If xk = 0, 
Rk - t, log, tk = 0. Then, using tk = o(e-k), (ii) is proved. 

LEMMA 4.1.3. Zf x, y E [0, &(I)[ have a finite l-representation 

X= i c(mi) e-i, y= 5 &(n,)C1, 
I=1 i=l 

then 
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Proof We define the words u and v such that u = okp’(ml). . . a’(m,), 
v = a”-‘(~~) ... a”(nk) and the integers N = 1~1, N’ = (01. Using 
Theorem 3.2.3 and the remark just following it, the definition of F,, and 
the relations N = Bkx + O(k), N’ = eky + O(k), we have 

S(N) = aNlog, N+ BkF,(x) + O(k’+ l@,l”) 

and the same relation with N’ and y, respectively, in place of N and x. 
But if, for instance, N<N’, S(N’)-S(N)=C,..,,,f(u, . ..u.,)= 
O((N’- N)log N’) because f(u, .“~,)=CZ;=~f(o~rn~(n)) and by Lem- 
ma3.1.l(i). Moreover N’-N=~“(Y-~)+O(k),N’log~N’-Nlog,N= 
O((N’ -N) log N’), and log N’ = O(k). All these relations imply the 
lemma. 

LEMMA 4.1.4. Zf x, YE [0, &(l)[, xfy, then 

IF,(y)-F,(x)1 =O(ly-xl (log ly-d2+ b-4”) 

with fi = -log, It331 if 6, # 0, and the last term in 0 disappears if 63 = 0. 
Thus F, is a continuous function. 

Proof: 

x= 1 E(m,)&‘, y = C E(ni) 0-l (l-admissible writing). 
i=l i= I 

Let k be the integer such that 8-‘6 (y-xl Bk< 1, and 

xk = i .$mJ d-j, yk = i .z(ni) 8-‘. 
;= I r=l 

We have IF,(Y) - f’,(x)l G IF,(Y) - J’l(ydl + lFl(J’k) - F,h)l + 
IFI( F,(x)l. Moreover 

e-k=O(ly--xl),k=O(Log Iy-xl), yk-Xk=O((JJ-XJ), 

and 1031k=O(ly-x()P. 

Then, by using Lemma 4.1.2 and 4.1.3, we prove 4.1.4. 

LEMMA 4.1.5. If CY ~0, F, is a nowhere differentiable function on 

10, &(a)[. 

Proof: Clearly, it sufftces to show that the function G,(x) = F,(x) + 
ax log, x is nowhere differentiable. 
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First, if b E A for i large enough, (o’(b)1 b2 (by irreducibility of M) 
and for infinitely many i there exists C,E A such that the number 
ri = .s(ci) Vi has, for b-admissible representation, ri = c,z, a(mj) 8-j with 
mi = cj and mj= w  for j# i. We have, by definition of Fb, Gh(~,) = 
[ -i@c,)+~(cj)] 8-j; thus lim,-r t;‘GJr,) = co (using a # 0). Now 
suppose the existence of a E A and x E 10, &(a)[ such that G, is differentiable 
for x. Let (m,, uj)jal be the n-admissible sequence which represents X. 
There exist b EA and J infinite subset of N such that kEJ=z-ak = 6. Let t 
be an arbitrary number in 10, s(h)[, and for kE.J, xk = Et= 1 E(mj) 8-J; 
x; =.xk + tFk. Then .I$ E 10, E(u)[ and, by Lemma 4.1.1(u), 

But, one can prove easily that the limit for k E J, k --+ co, of the lhs of the 
above relation is precisely G:(x). Then 

t~‘Gb(t)=G:(x)-~imX [f2(m, . ..m.)-crk] 
ktf 

is independent of t, i.e., Gb(t) = Kt, in contradiction with the existence of 
ri --) 0 such that lim,, z‘ ri ‘Gh(ti) = co. 

Remark. The functions F, could be differentiable if CI = 0. For instance, 
if A=(l,2), a(l)=121, (r(2)=212, f(l)= -f(2)=1, one has S(N)= 
N/2 + 0( 1) and then F,(x) = x/2. 

4.2. The Main Result 

THEOREM 4.2.1. With the hypotheses and notation of Section 3, there 
exists a continuous function G defined for x > 0 such that 

(i) x > 0 * G(0x) = G(x) 

(ii) S(N) = crNlog, N+ NC(N) +0(N). 

Proof: The property 0 < x < s(l) =z- F,(x&‘) = @‘F,(x) (J&n- 
ma 4.1.1 (i) and 1 < (T( 1)) and the continuity of F, imply the existence of a 
continuous function F defined for all x > 0 such that F coincides with F, on 
10, E( 1) [ aud F(‘(ex) = 8F(x) everywhere. 

Now, if N = C;:d la’(m,_i)l (l-admissible representation), one has (see 
the proof of Lemma 4.1.3) 

S(N)=aNlog,N+PF i &(mJP +O(v*+)&&(“). 
,=I > 
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And, by using Lemma 4.1.4 and N - Cy= 1 E( mi) fY ’ = O(log N) we obtain 

B-“F(N)-F i c(m)@’ =0 -‘o(N). 
i=l ! 

Thus, S(N) = aN log, N + F(N) + o(N) and the theorem is proved with 
G(x) = XC’F(x) for x # 0. 

Remark. The same result remains true if some of the eigenvaiues 
8,, i > 3, are complex numbers, by considering the conjugate eigenvaiues 
and eigenvectors. 

5. SUMMATION FORMULAE FOR GENERALIZED SUM OF DIGIT FUNCTIONS 

Now, we consider a substitution cr on a finite alphabet A such that 
hypothesis (H,) of Section 1 is true, some real numbersf(m) for each word 
m-co(a) (aEA) and S(N)=C,,,s(n), where ~(n)=~Y=~f(m~(n)), 
(m,(n)),,,,,.,,,, being the digits of n is this l-admissible representation. For 
instance, if 0 is the substitution of Proposition 2.1.2 and for each m E A*, 
f(m) = (ml, then s(n) is the “ordinary” sum of digits of n in the natural 
system of Numeration relative to the sequence 

G,= lak(l)(. 

Once more, we assume that Cd has a base of eigenvectors for the matrix 
‘M; thus the two last relations in Lemma 3.1.1(i) remain true. We can do 
the calculus of S(N) in the same way as we did in Sections 3 and 4. In 
Lemma 3.2.1 nothing is changed, but in the definition of Sk, Sk, Si, 5’;’ we 
havef(m) instead off(ak(m)). For the other results we have to distinguish 
three cases for 8’ = l&l : 

Case 1: 8’> 1, Case 2: 0’ = 1, Case 3: 8’ < 1 

(the last case occurs when 8 is a Pisot number: for instance this is the case 
where cr is as in Proposition 2.1.2 (see [4])). In the notation nothing is 
changed, but now, in the definition of c( in Lemma 3.2.2, we read f(m) 
instead of f2(m). 

Concerning the results, the modifications are the following: 
In Lemma 3.2.2 the “error term” is 

o(ve’v) in Case 1 

O(v2) in Case 2 

O(l) in Case 3. 
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The same modifications are used for Theorem 3.2.3, apart from Case 3, 
where the error is O(v). 

In Lemma 4.1.3 the right-hand side of the result is 

O(ly-xl k+k(B’/B)k) in Case 1 

O(ly-xl k+k*F”) in Case 2 

Wlv--~l k) in Case 3. 

In Lemma 4.1.4, (F,(y)--F,(x)1 is 

0(~y-x~‘-‘“~““‘log /v-xl) in Case 1 

O(lY-xX( (log IY--x0’) in Case 2 

WIY-xl 1% Ir-4) in Case 3 

(the last result generalizes (13) in [9] concerning the Fibonacci case). 
In all cases the main result, i.e., Theorem 4.2.1, remains unmodified, the 

error term (depending on 0’) being always in o(N). In particular, in Case 3, 
using N = XI= i s(mi) (Vi + O(l), the error term is in O(log N), in 
accordance with [18]. In fact, concerning this last case, we can omit the 
hypothesis “Cd has a base of eigenvectors of *A4” because we have 

L,(dy~)) = A,&(a) 8” + o(ey 

As a consequence, we have 

for any 8” saisfying 0’ < 8” < 1. 

PROPOSITION 5. If s,Jn) is the sum of the digits of n relative to Gk = 
lok( 1 )I, CT being as in Proposition 2.1.2, there exists a continuous function G 
defined for x 2 0 such that 

(i) x 3 0 + G(k) = G(x) 

(ii) LN s&n) = cCV log, N + NG(N) + @log N), 

where 0 is the dominating root of Xd - a, Xd- ’ - . . - ad = 0 and 

=e-5(i) i i,ai(arl)+d~‘iiaia(i+l). 
i= 1 i= I 

Moreover, G is nowhere differentiable, as consequence of Lemma 4.1.5, 
because CI # 0. 

This proposition was obtained with a distinct but equivalent expression 
for CI by P. J. Grabner and R. F. Tichy [16]. 



366 DUMONTANDTHOMAS 

REFERENCES 

1. S. AUBRY. C. GODRECHE. AND J. M. LUCK, Scaling properties of a structure intermediate 
between quasiperiodicity and random, J. Sfafisf. Phys. 51 (1988). 1033-1075. 

2. E. BOMBIER~ AND J. E. TAYLOR, Which distributions of matter diffract? An initial 
investigation, J. Phys. Coil. C 3 (1986), 19, 28. 

3. D. W. BOYD, J. COOK, AND P. MORTON, On sequences of + I’s defined by binary patterns, 
Disserfnfiones Math. CCLXXXIII (1989). 

4. A. BRALJER, On algebraic equations with all one root in the interior of the unit circle, 
Math. Nachr. 4 (1951), 25c-257. 

5. J. BRILLHART, P. ERDOS, AND P. MORTON, On sums of Rudin-Shapiro coefficients, Ii. 
Pacific J. Math. 107 (1983), 271-323. 

6. G. CHRISTOL, T. KAMAE, M. MENDES-FRANCE, AND G. RAUZY, Suites algkbriques, 
automates et substitutions, Bull. Sot. Math. France 108 (1980). 401419. 

7. A. COBHAM, Uniform tag sequences, Mafh. Systems Theory 6 (1972), 164-192. 
8. J. COQUET, A summation formula related to the binary digits, Inuenf. Mark 73 (1983), 

107-l 15. 
9. J. C~QUET AND P. VAN DER BOSCH, A summation formula involving Fibonacci digits, 

J. Number Theory 22 (1986). 139-146. 
10. H. DELANGE, Sur la fonction sommatoire de la fonction “Somme des chiffres.” Enseign. 

Math. 21 (1975), 3147. 
11. J. M. DUMONT, Formules sommatoires et systkmes de numirations Ii&s aux substitutions, 

in “S&m. th. Nombres de Bordeaux, 1987-1988,” Exp. 39. 
12. J. M. DUMONT, Summation formulae for substitutions on a finite alphabet, in “Number 

Theory and Physics.” Springer Proceedings in Physics. Vol. 47, pp. 185-194, Springer- 
Verlag, New York/Berlin, 1990. 

13. J. M. DUMONT AND A. THOMAS, Systtmes de numtration et fonctions fractales relatifs aux 
substitutions, Theoref. Comp. Sci. 65 (1989), 153-169. 

14. A. S. FRAENKEL, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-l 14. 
15. C. GODRECHE, J. M. LUCK, AND F. VALLET, Quasiperiodicity and types of order: A study 

in one dimension, J. Phys. Ser. A 20 (1987). 4483-4499. 
16. P. J. GRABNER AND R. F. TICHY, Contributions to digit expansions with respect to linear 

recurrences, J. Number Theory 36 (1990). 16(t169. 
17. A. M. OSBALDESTIN AND P. SHIU. A correlated digital sum problem associated with sums 

of three squares, Bull. London Math. Sot. 21 (1989), 369-374. 
18. A. PETHO AND R. F. TICHY, On digit expansions with respect to linear recurrences, 

J. Number Theory 33 (1989). 243-256. 
19. G. RAUZY, Des mots en arithmktique, in “Journ&es de thiorie des langages et complexitC 

des Algorithmes, Avignon. 1983.” 


