Finite Groups with Sylow 2-Subgroups isomorphic to $T / Z(T)$, where T is of Type M_{24}

U. Schoenwaelder
Lehrstuhl D für Mathematik, Rheinisch-Westfölische
Technische Hochschule, Aachen, Germany
Communicated by B. Huppert

Received April 8, 1974

1. Introduction

A Sylow 2-subgroup T of the Mathieu group M_{24} has order 2^{10} and a center $Z(T)$ of order 2 . The factor group $T / Z(T)$ is a split extension of its unique (elementary) abelian subgroup of order 2^{6} (Lemma 3.1) by a dihedral group of order 2^{3}. We prove the following result.

Theorem. Let G be a finite group with a Sylow 2 -subgroup S isomorphic to $T / Z(T)$. Assume $O(G)=1$. Then the unique abelimn subgroup of order 2^{6} in S is a normal subgroup of G.

This result is interesting in comparison with the situation for a Sylow 2-subgroup T_{1} of Conway's simple group Co_{3}. Here again $\left|T_{1}\right|=2^{10}$, $\left|Z\left(T_{1}\right)\right|=2$, and $T_{1} / Z\left(T_{1}\right)$ is a split extension of an elementary abelian normal subgroup of order 2^{6} by a dihedral group of order 2^{3}. However, the infinitely many simple groups $A_{12}, A_{13}, S p(6,2), \Omega(7, q)$ with $q \equiv \pm 3$ (mod 8) have Sylow 2-subgroups isomorphic to $T_{1} / Z\left(T_{1}\right)$. See [11-15] for related characterizations.

Two recent results have facilitated our investigation. The first (Lemma 2.1) due to R. Solomon provides us with a convenient conjugation family (in the sense of Alperin). In our situation the local conjugating sets can be shown to lie in $C_{G}(Z(S))$ and $N_{G}(A)$ where A is the abelian subgroup of order 2^{6} in S. This enables us to prove that A is strongly closed in S with respect to G. At this point an application of D. M. Goldschmidt's classification of finite groups with an abelian strongly closed 2-subgroup (Lemma 2.5) completes the proof of the theorem.

In this way we obtain an independent proof of the main statement in [11, Key Theorem]:

Coroliaky. Let H be a finite group with a Sylow 2-subgroup T of type
M_{24}. Assume $Z(T) \subseteq Z(H)$ and $O(H)=1$. Then the unique normal extraspecial subgroup of order 2^{7} of T is normal in H.

For the sake of readability we have decided to include a fair amount of detail in the following presentation. Notation, however, is standard and will not be explained.

2. General Results

In this section we state some general results to be used later. In all cases J denotes a finite group.

Lemma 2.1 [13, Lemma 3.1, and 2]. Let p be a prime and P a fixed Sylow p-subgroup of J. Consider the set \mathscr{H} of subgroups H of P that satisfy the following conditions:
(1) H is a tame Sylow intersection with P, i.e., there is a Sylow p-subgroup Q of J with $H=P \cap Q$ such that $N_{P}(H)$ and $N_{Q}(H)$ are Sylow p-subgroups of $N_{J}(H)$;
(2) $C_{P}(H) \subseteq H$;
(3) H is a Sylow p-subgroup of $O_{p^{\prime}, p}\left(N_{J}(H)\right)$;
(4) $H=P$ or $N_{J}(H) / H$ is p-isolated.

Form the set \mathscr{S} of all pairs (H, N) with $H \in \mathscr{H}$ and

$$
\begin{gathered}
N=N_{J}(H), \quad \text { if } \quad H=C_{P} \Omega_{1} Z(H), \\
N=N_{J}(H) \cap C_{J} \Omega_{1} Z(H), \quad \text { if } H \subset C_{P} \Omega_{1} Z(H),
\end{gathered}
$$

and the set \mathscr{S}^{\prime} of pairs $\left(H, C_{J}(H)\right)$ where H satisfies (1), but not all of (2)-(4). Then $\mathscr{P} \cup \mathscr{P}^{\prime}$ is a conjugation family w.r.t. P in J. In particular, for elements x, y of P conjugate in J there exist $\left(H_{i}, N_{i}\right) \in \mathscr{S}(i=1, \ldots, m)$ and elements $x_{i} \in H_{i}, n_{i} \in N_{i}$ such that

$$
x=x_{1}, \quad x_{i}^{n_{i}}=x_{i+1} \quad \text { for } \quad 1 \leqslant i \leqslant m-1, \quad x_{m}^{n_{m}}-=y .
$$

By a fundamental theorem of H . Bender [3] a 2 -isolated group L has Sylow 2-suhgroups with just one involution or else L has normal subgroups $L_{1} \supseteq L_{2}$ such that L / L_{1} and L_{2} have odd order and L_{1} / L_{2} is isomorphic to one of the simple groups $\operatorname{PSL}\left(2,2^{n}\right), \operatorname{Sz}\left(2^{n}\right), \operatorname{PSU}\left(3,2^{n}\right)$ for suitable $n \geqslant 2$, a so-called simple group of Bender type.

Lemma 2.2. The only simple group of Bender type involved in $\operatorname{GL}(5,2)$ is $\operatorname{PSL}(2,4) \cong A_{5}$.

Proof. This follows from a comparison of group orders except for the case of $\operatorname{PSL}(2,8)$. A Sylow 3-subgroup of $\operatorname{PSL}(2,8)$ is cyclic of order 9 [8, p. 196] whereas $G L(5,2)$ has an elementary abelian Sylow 3-subgroup of order 9 which is contained in $G L(4,2) \cong A_{8}$.

Lemma 2.3. Let P be a Sylow subgroup of J and P_{1} a weakly closed subgroup of P w.r.t. J. If J acts on a set Ω, then J-conjugate elements of Ω that are fixed by P_{1} are already conjugate under $N_{J}\left(P_{1}\right)$.

Proof. O. Grün [7] has shown that this is a consequence of Sylow's theorems. This fundamental lemma is also a consequence of a more powerful, but elementary result of J. L. Alperin based on Sylow's theorems [1].

The following technical lemma on fusion has been suggested by B . Waldmulter; it will be applied in the proof of Lemma 4.2 .

Lemma 2.4. Suppose we have a subset B, a subgroup U, and elements x, y, g of J such that
(i) $1 \in B$ and $B \cap U=1$;
(ii) U is a 2 -subgroup $\neq 1$;
(iii) no two distinct elements of U are conjugate in J;
(iv) no element of B^{*} is conjugate to an element of U^{*} in J;
(v) $B x \cap U y=\varnothing$;
(vi) g has odd order, $x^{g}=y$, and $B x \cup U y$ is invariant under g.

Then $|U|=2$.
Proof. Assume by way of contradiction that $|U|-2^{m}$ with $m \geqslant 2$. We first show that
(vii) there is precisely one element $z \in U y$ with $z^{g} \in B x$.

The statement is clear if $B=\{1\}$; note that $\{x\} \cup U y$ is g-invariant by (vi) and $x \neq y$ by (v). If $B \neq\{1\}$ let $b \neq 1$ in B and suppose ($b x)^{g} \in \mathbb{U} y$. Then $u y=(b x)^{g}=b^{g} y$ for some $u \in U$, hence $u=b^{g}$ against (iv). Therefore $(b x)^{g} \in B x$ for all $b \neq 1$ in B; (vii) follows.
(viii) Suppose $y_{0} \in U y$ and $g: y_{0} \rightarrow u_{1} y_{0} \rightarrow u_{2} y_{0} \rightarrow \cdots$ wuith distinact elemenis $1, u_{1}, u_{2}$ of U. Then g fixes $u_{1} \neq 1$.

In fact, $u_{1}{ }^{g} \cdot u_{1} y_{0}=\left(u_{1} y_{0}\right)^{g}=u_{2} y_{0}$, hence $u_{1}^{g}-u_{2} u_{1}^{-1} \in U$ and, by (iii), $u_{1}^{g}=u_{1}$. We have $g: x \rightarrow y \rightarrow y^{g} \rightarrow \cdots$ where $y^{g} \in U y$ or $y^{g} \in B x$. Assume that $y^{g} \in B x$ so that $z=y$. Since we assume $m \geqslant 2$, the set $V=U y \backslash\{y\}$ is not empty. Clcarly V is invariant under g. Either g has an orbit in V
of length at least three or g fixes at least two elements of V. In the first case (viii) applies and g fixes an element $u \neq 1$ of U. In the second case, if g fixes the distinct elements $u_{1} y$ and $u_{2} y$ of V, then $u_{1} y \cdot\left(u_{2} y\right)^{-1}=$ $u_{1} u_{2}^{-1}=u \in U^{\#}$ serves the same purpose. In any case $g: u y \rightarrow u y^{g} \rightarrow \cdots$. If $u y^{g} \in B x$, then $z=u y$ against $z=y$ and $u \neq 1$. If $u y^{g} \in U y$, then $y^{g} \in U y \cap B x=\varnothing$. This contradiction shows that
(ix) $y^{g} \in U y$.

Set $y^{g}=v y$. We have to consider $(v y)^{g}$. If $(v y)^{g} \in B x$, then $z=v y=y^{g}$, $W=U y \backslash\left\{y, y^{g}\right\}$ is invariant under g and, as above, there is an element $u \in U^{\#}$ fixed by g. One gets $g: u y \rightarrow u y^{g} \rightarrow u(v y)^{g} \rightarrow \cdots$. Either $u(v y)^{g} \in B x$, whence $z=u y^{g}$ against $z=y^{g}$ and $u \neq 1$, or $u(v y)^{g} \in U y$, whence $(v y)^{g} \in$ $U y \cap B x=\varnothing$. This contradiction shows that
(x) $(v y)^{g} \in U y$.

It follows from (viii) that g fixes v. Hence

$$
g: y \rightarrow v y \rightarrow v^{2} y \rightarrow \cdots \rightarrow v^{n} y=y
$$

where n is the order of v and the length of the g-orbit of y. This number is a power of 2 by (ii) and odd by (vi). Hence $n=1$ and $v=1$, the final contradiction.

Lemima 2.5 [6]. Let S be a Sylow 2-subgroup of J, A an abelian subgroup of S stronyly closed in S w.r.t. J. Sel $M=\left\langle A^{J}\right\rangle$ und $\bar{J}=J / O(M)$. Then $\bar{A}=O_{2}(\bar{M}) \Omega_{1}\left(\bar{S}_{0}\right)$ for a Sylow 2-subgroup S_{0} of M containing A; and M is a central product of an abelian 2-group and groups L such that $L=L^{\prime}$ and $N=L / Z(L)$ is a simple group of one of the following types:
(a) N is of Bender type (see remark following Lemma 2.1);
(b) $N \cong \operatorname{PSL}(2, q), q \equiv 3,5(\bmod 8), q>3$;
(c) N is of type Janko-Ree, i.e. N has an involution t in the center of a Sylow 2-subgroup such that $C_{N}(t)=\langle t\rangle \times N_{0}$ with $N_{0} \cong \operatorname{PSL}(2, q)$, $q \equiv 3,5(\bmod 8)($ see $[6]$ for references $)$.

Moreover in case (b) and (c) $Z(L)$ has odd order.

3. The Structure of S

We consider a 2-group S presented by generators $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$, w, v_{1}, v_{2} and relations indicating that these generators are involutions and
transform each other according to the following table of conjugates $x^{y}=$ $y^{-1} x y$. A bar indicates that $x^{y}=x$. It follows from Table I in [11] that $S \cong T / Z(T)$ where T is a Sylow 2 -subgroup of M_{24}. One checks with Table I that the following mappings define automorphisms α_{i} of S. Again bars denote elements that are left fixed.

TABLE I
Conjugates x^{4}

$x y^{y}$	a_{1}	b_{1}	c_{1}	a_{2}	\bar{b}_{2}	ε_{2}	w	v_{1}	v_{2}
a_{1}	-	-	-	-	-	-	-	-	-
b_{1}	-	-	-	-	--	-	-	-	$a_{1} b_{1}$
c_{1}	-	-	-	-	-	-	$a_{1} c_{1}$	$a_{1} b_{1} c_{1}$	-
a_{2}	-	-	-	-	-	-	-	-	-
b_{2}	-	-	-	-	-	-	\sim	$a_{2} b_{2}$	-
c_{2}	-	-	-	-	-	-	$a_{2} c_{2}$	-	$a_{2} b_{2} c_{2}$
w	-	-	$a_{1} w$	-	-	$a_{2} 20$	-	-	-
v_{1}	-	-	$a_{1} b_{1} v_{1}$	-	$a_{2} v_{1}$	-	-	-	Wor
v_{2}	-	$a_{1} v_{2}$	-	-	-	$a_{2} b_{2} v_{2}$	-	$w v_{2}$	-

TABLE II
Images $x^{\alpha_{i}}$ for Some Automorphisms α_{i}

x	a_{1}	b_{1}	c_{1}	a_{2}	b_{2}	c_{2}	\approx	v_{1}	v_{2}
α_{1}	a_{2}	b_{2}	c_{2}	a_{1}	b_{1}	c_{1}	-	v_{2}	v_{1}
α_{2}	-	-	-	-	-	-	$w b_{1}$	-	$c_{1} v_{2}$
α_{3}	-	$a_{2} b_{1}$	$a_{1} a_{2} b_{2} \cdot c_{1}$	-	-	$a_{2} c_{2}$	-	-	-

We set $A=\left\langle a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\right\rangle, F=\left\langle a_{1}, a_{2}, b_{1}, b_{2}\right\rangle$, and $D=$ $\left\langle w, v_{1}, v_{2}\right\rangle$. Clearly $Z(S)=\left\langle a_{1}, a_{2}\right\rangle, S^{\prime}=F\langle w\rangle$, and $S=A D$ with $A \cap D=1$. The group S has 30 conjugacy classes of involutions with representatives x as listed in Table III.

Lemma 3.1. $|Z(M)| \leqslant 2^{3}$ for every maximal subgroup M of S. The elementary abelian subgroup A is the unique abelian subgroup of order 2^{3} in S.

TABLE III
S-Classes of Involutions

x	$\left\|x^{s}\right\|$	Remarks	$C_{S}(x)$
a_{1}	1		
a_{2}	1		
$a_{1} a_{2}$	1		
b_{1}	2		$A\left\langle w, v_{1}\right\rangle$
b_{2}	2	$\alpha_{1}: b_{1} \rightarrow b_{2}$	
$a_{2} b_{1}$	2	$\alpha_{3}: b_{1} \rightarrow a_{2} b_{1}$	
$a_{1} b_{2}$	2	$\alpha_{3} \alpha_{1}: b_{1} \rightarrow a_{1} b_{3}$	
$b_{1} b_{2}$	4	$x^{S}=\left\langle a_{1}, a_{2}\right\rangle b_{1} b_{2}$	A. $\langle w\rangle$
c_{1}	4	$x^{S}=\left\langle a_{1}, b_{1}\right\rangle c_{1}$	$A \cdot\left\langle v_{3}\right\rangle$
c_{2}	4	$\alpha_{1}: c_{1} \rightarrow c_{2}$	
$a_{2} c_{1}$	4	$x^{S}=a_{2} \cdot c_{1}{ }^{S}$	$C_{S}\left(c_{1}\right)$
$a_{1} c_{2}$	4	$\alpha_{1}: a_{2} c_{1} \rightarrow a_{1} c_{2}$	
$b_{2} c_{1}$	4	$x^{S}=\left\langle a_{1}, a_{2} b_{1}\right\rangle b_{2} c_{1}$	$C_{S}\left(c_{1}\right)$
$b_{1} c_{2}$	4	$\alpha_{1}: b_{2} c_{\perp} \rightarrow b_{1} c_{2}$	
$a_{1} a_{2} b_{2} \cdot c_{1}$	4	$\alpha_{3}: c_{1} \rightarrow a_{1} a_{2} b_{2} \cdot c_{1}$	
$a_{1} a_{2} b_{1} \cdot c_{2}$	4	$\alpha_{3} \alpha_{1}: c_{1} \rightarrow a_{1} a_{2} b_{1} \cdot c_{2}$	
$c_{1} c_{2}$	8		A
$a_{1} a_{2} b_{1} b_{2} c_{1} c_{2}$	8		A
w	4	$x^{S}=x^{C}$ for $C=\left\langle c_{1}, c_{2}\right\rangle$	$F D$
$w b_{1}$	4	$\alpha_{2}: w \rightarrow w b_{1}$	
${ }^{2} b_{2}$	4	$\alpha_{2} \alpha_{1}: w \rightarrow w b_{2}$	
$w b_{1} b_{1}$	4	$\alpha_{2} \alpha_{1} \alpha_{2}: w \rightarrow w b_{1} b_{2}$	
v_{1}	8		$\left\langle a_{1}, a_{2}, b_{1}, c_{2}, w, v_{1}\right\rangle$
v_{2}	8	$\alpha_{1}: v_{1} \rightarrow v_{2}$	
$a_{1} v_{1}$	8		$C_{S}\left(v_{1}\right)$
$a_{2} v_{2}$	8	$\alpha_{1}: a_{1} v_{1} \rightarrow a_{2} v_{2}$	
$c_{3} v_{2}$	8	$\alpha_{2}: v_{2} \rightarrow c_{1} v_{2}$	
$c_{2} v_{1}$	8	$\alpha_{1} \alpha_{2} \alpha_{1}: v_{1} \rightarrow c_{2} v_{1}$	
$a_{2} \cdot c_{1} v_{2}$	8		$C_{S}\left(c_{1} v_{2}\right)$
$a_{1} \cdot c_{2} v_{1}$	8	$\alpha_{1}: a_{2} \cdot c_{1} v_{2} \rightarrow a_{1} \cdot c_{2} v_{1}$	

Proof, If $x \in Z(M)$, then x has one or two conjugates. By Table III, $Z(M) \subseteq F$, but $b_{1} b_{2} \notin Z(M)$. Hence $|Z(M)| \leqslant 2^{3}$. Suppose $A^{*} \neq A$ is another abelian subgroup of order 2^{6}. Now $\left|A \cdot A^{*}\right| \cdot\left|A \cap A^{*}\right|=$ $|A| \cdot\left|A^{*}\right|=2^{12}$. All this implies $2^{5}=\left|A \cap A^{*}\right|$. Let $u=a \cdot d \in A^{*} \backslash A$ with $a \in A$ and $d \in D$. Then $A \cap A^{*} \subseteq C_{A}(u)=C_{A}(d)$. But Table III shows that $\left|C_{A}(d)\right| \leqslant 2^{4}$, a contradiction.

Lemma 3.2. The elementary abelian subgroups of order 2^{5} in $\mathcal{K}_{1}=C_{S}(w)$ are

$$
F\langle w\rangle=\left\langle a_{1}, a_{2}, w, b_{1}, b_{2}\right\rangle
$$

$R_{1}=\left\langle a_{1}, a_{2}, w, b_{1}, v_{1}\right\rangle$, and $R_{2}=\left\langle a_{1}, a_{2}, w, b_{2}, v_{2}\right\rangle$. These groups U are normal in $S, U=C_{S}(U)$, with factor groups S / U of lypes E_{16} and $C_{2} \times D_{8}$.

Proof. By Lemma 3.1, $\left\langle a_{1}, a_{2}, w\right\rangle=\Omega_{1} Z\left(K_{1}\right) \subseteq U$. We have $K_{1}=F D$ so that K_{1} / F is dihedral. In particular, $K_{1} \neq F U$. Therefore $\left\langle b_{1}, b_{2}\right\rangle \cap U \neq 1$. If $b_{1} b_{2} \in U$, then $U \subseteq C_{K_{1}}\left(b_{1} b_{2}\right)=K_{1} \cap A\langle w\rangle=F\langle w\rangle$, hence $U=F\langle w\rangle$. If $b_{1} b_{2} \notin U$, we may assume $b_{1} \in U$ where $C_{K_{1}}\left(b_{1}\right)=F\left\langle w, v_{1}\right\rangle$. Therefore $U=\left\langle a_{1}, a_{2}, w, b_{1}, x\right\rangle$ for some involution $x \in\left\langle b_{2}, v_{1}\right\rangle\left\langle\left\langle a_{2}, b_{2}\right\rangle\right.$. Hence $x \in\left\{v_{1}, a_{2} v_{1}\right\}$ and $U=R_{1}$.

Lemma 3.3. Set $S^{*}=S / Z(S)$. Then $Z\left(S^{*}\right)=\left\langle w^{*}, b_{1}{ }^{*}, b_{2}{ }^{*}\right\rangle$; the only elementary abelian subgroups of an order at least 2^{5} in S^{*} are

$$
\begin{gathered}
C=\left\langle Z\left(S^{*}\right), c_{1}^{*}, c_{2}^{*}\right\rangle \\
C_{1}=\left\langle Z\left(S^{*}\right), c_{1}^{*}, v_{2}^{*}\right\rangle, \quad \text { and } \quad C_{2}=\left\langle Z\left(S^{*}\right), c_{2}^{*}, v_{1}^{*}\right\rangle
\end{gathered}
$$

they are normal in $S^{*} ; C \cup C_{1} \cup C_{2} \backslash\{1\}$ is the set of involutions of S^{*}.
Proof. Recall that $Z(S)=\left\langle a_{1}, a_{2}\right\rangle$. By Table I, $Z\left(S^{*}\right)=\left\langle w^{*}, b_{1}{ }^{*}, b_{2}{ }^{*}\right\rangle$ and $S^{*}=Z\left(S^{*}\right) \cdot\left\langle c_{1}^{*}, c_{2}^{*}\right\rangle \cdot\left\langle v_{1}^{*}, v_{2}^{*}\right\rangle$. Let U be an abelian subgroup of S^{*} with $|U| \geqslant 2^{5}$ and $C \neq U$. Then U contains an involution $t=s c v$ with $z \in Z\left(S^{*}\right), c \in\left\langle c_{1}{ }^{*}, c_{2}{ }^{*}\right\rangle, v \in\left\langle v_{1}^{*}, v_{2}^{*}\right\rangle^{*}$, and $U \subseteq C_{S^{*}}(t)=C_{S^{*}}(c v)$. For these involutions $c v$ one computes $C_{S *}(c v)=C_{1}$ or C_{2}. The coset $C v_{1} *_{v_{2}} *$ consists of elements of order 4 ; the involutions of $C v_{1} *$ must centralize $v_{1}{ }^{*}$, hence lie in C_{2}; similarly the involutions of $C v_{2} *$ lie in C_{1}.

We paint the involutions of S^{*} red and green: an involution x^{*} will be called red when $x^{2} \neq 1$, otherwise green. Ultimately we shall be interested in green involutions only, but for the investigation of their fusion in Lemma 4.2 the red involutions have a key function.

TABLE IV
S^{*}-Classes of Red Involutions

x^{*}	$\left\|x^{*} s^{*}\right\|$	x^{2}	$x^{* s^{*}}$	contained in
$\left(w c_{1}\right)^{*}$	2	a_{1}	$\left\langle b_{1}^{*}\right\rangle\left(w c_{1}\right)^{*}$	$C_{1} \cap C$
$\left(w c_{1} b_{2}\right)^{*}$	2	a_{1}	$\left\langle b_{1}^{*}\right\rangle\left(w c_{1} b_{2}\right)^{*}$	$C_{1} \cap C$
$\left(b_{1} v_{2}\right)^{*}$	4	a_{1}	$\left\langle b_{2}{ }^{*}, w^{*}\right\rangle\left(b_{1} v_{2}\right)^{*}$	C_{1}
$\left(b_{1} c_{1} v_{2}\right)^{*}$	4	a_{1}	$\left\langle b_{2}^{*}, w^{*} b_{1}{ }^{*}\right\rangle\left(b_{1} c_{1} v_{2}\right)^{*}$	C_{1}
x^{*}				$C_{2}=C_{1}^{\alpha_{1}}$
$\left(w c_{1} c_{2}\right)^{*}$	4	$a_{1} a_{2}$	$\left\langle b_{1}^{*}, b_{2}^{*}\right\rangle\left(w c_{1} c_{2}\right)^{*}$	$C \backslash\left(C_{1} \cup C_{2}\right)$

4. Localisation of Fusion

From now on we fix a finite group G with $O(G)=1$ and Sylow 2-subgroup S (as described in Section 3). For the later application of Lemma 2.1 to the situation $(J, P)=(G, S)$ we wish to control the conjugating groups N appearing as $(H, N) \in \mathscr{S}$.

Lemma 4.1. Let $(H, N) \in \mathscr{S}$. If $H=C_{S} \Omega_{1} Z(H)$, then $A \subseteq H$ and $N \subseteq N_{G}(A)$. If $H \subset C_{S} \Omega_{1} Z(H)$, then $N \subseteq C_{G} Z(S)$.

Proof. By condition (2) of Lemma 2.1, $Z(S) \subseteq \Omega_{1} Z(H)$. Therefore $N \subseteq C_{G} Z(S)$, if $H \subset C_{S} \Omega_{1} Z(H)$. We now assume

$$
H=C_{S} \Omega_{1} Z(H)
$$

If $A \subseteq H$, then Lemma 3.1 implies $N=N_{G}(H) \subseteq N_{G}(A)$ as desired. We therefore assume

$$
\begin{equation*}
A \nsubseteq I I \tag{5}
\end{equation*}
$$

and seek a contradiction.
By (2') and (5) there is an involution $u \in \Omega_{1} Z(H) \backslash A$ with $H \subseteq C_{S}(u)$. Table III shows that some automorphism α of S in $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ maps $K=C_{S}(u)$ onto

$$
K_{1}=C_{S}(w) \quad \text { or } \quad K_{2}=C_{S}\left(v_{1}\right)
$$

It is clear that we need only exclude the cases $H \subseteq K_{1}$ and $H \subseteq K_{2}$.
Assume $H \subseteq K_{1} . \operatorname{By}(2), \Omega_{1} Z\left(K_{1}\right) \subseteq \Omega_{1} Z(H)$ where $\Omega_{1} Z\left(K_{1}\right)=\left\langle a_{1}, a_{2}, w\right\rangle$
has order 2^{3} and $\left|\Omega_{1} Z(H)\right| \leqslant 2^{5}$. If $\left|\Omega_{1} Z(H)\right|=2^{5}$, then by Lemma 3.2 and $\left(2^{\prime}\right) C_{S} \Omega_{1} Z(H)=\Omega_{1} Z(H), H \triangleleft S$, and $S / H \cong F_{18}$ or $C_{2} \times D_{8}$ is a Sylow 2-subgroup of $N(H) / H$. By (4) in conjunction with Bender's result stated in Section 2 and Lemma 2.2 this is impossible. If $\left|\Omega_{1} Z(H)\right|=2^{4}$, then $\Omega_{1} Z(H)=\left\langle a_{1}, a_{2}, w, x\right\rangle$ for an involution x in $\left\langle b_{1}, b_{2}\right\rangle \cup\left\langle b_{1}, b_{2}\right\rangle \mathscr{v}_{1} \cup$ $\left\langle b_{1}, b_{2}\right\rangle v_{2}$ with $\Omega_{1} Z(H)=\Omega_{1} Z\left(K_{1} \cap C(x)\right)$. Now $K_{1} \cap C\left(b_{1} b_{2}\right)=F\langle w\rangle$ is elementary of order 2^{5}, hence $x \neq b_{1} b_{2}$. If $x=b$, then $H=K_{1} \cap C\left(b_{1}\right)=$ $F\left\langle w, v_{1}\right\rangle \triangleleft S$ with $S / H \cong E_{8}$ against (4) as above. Similarly $x \neq \dot{b}_{2}$. If $x \in\left\langle b_{1}\right\rangle v_{1}$ then $H=K_{1} \cap C(x)=R_{1}$ against $\left|\Omega_{1} Z(H)\right|=2^{4}$. There are no further involutions in $\left\langle b_{1}, b_{2}\right\rangle v_{1}$. Similarly, $x \in\left\langle b_{1}, b_{2}\right\rangle v_{2}$ is impossible. We are left with $\Omega_{1} Z(H)=\left\langle a_{1}, a_{2}, w\right\rangle$, hence $H=K_{1}$. By $(1), N_{G}(H) / H$ has an elementary abelian Sylow 2 -subgroup of order 4 . This contradicts (4) and Lemma 2.2 as A_{5} is not involved in $G l(3,2)$.

Now assume $H \subseteq K_{2}$. Again $\left\langle a_{1}, a_{2}, b_{1}, v_{1}\right\rangle=\Omega_{1} Z\left(K_{2}\right) \subseteq \Omega_{1} Z(F)$. If $\left|\Omega_{1} Z(H)\right|=2^{5}$, then $\Omega_{1} Z(H)=\left\langle\Omega_{1} Z\left(K_{2}\right), x\right\rangle$ for an involution $x \in\left\langle w, c_{2}\right\rangle$. If $x=w$, then $\Omega_{1} Z(H)=R_{1}$ which we have seen is impossible. If $\tilde{\sim}=c_{2}$, then $\Omega_{1} Z(H)=H$ has $N_{S}(H)=A\left\langle v, v_{1}\right\rangle$ with $N_{S}(H) / H \cong E_{g}$. As before one abtains a contradiction from (1), (2'), (4), and Lemma 2.2. We are left with $\Omega_{1} Z(H)=\Omega_{1} Z\left(K_{2}\right)$, hence $H=K_{2}$. Here $N_{S}(H)=H \cdot\left\langle b_{2}, c_{1}\right\rangle$ with $H \cap\left\langle b_{2}, c_{1}\right\rangle=1$. The group $\vec{N}=N(H) / N(H) \cap C \Omega_{1} Z(H)$ acts faithfully on $\Omega=\left\langle a_{1}, a_{2}, b_{1}, v_{1}\right\rangle$ and has Sylow 2 -subgroup $\left\langle\bar{b}_{2}, \bar{c}_{1}\right\rangle \cong$ $N_{S}(H) / H$. Thus, \bar{N} has a normal series $\bar{N} \supseteq N_{1} \supset N_{2} \supseteq 1$ with $N_{1} / N_{2} \cong A_{5}$ and \bar{N} / N_{1} and N_{2} of odd order. Looking at $G L(4,2) \cong A_{8}$ we see that $N_{1} \supseteq B$ where $B \cong A_{5}$ contains $\left\langle\bar{b}_{2}, \bar{c}_{1}\right\rangle$. We study the action of B on Ω. The group $\left\langle\bar{b}_{2}, \bar{c}_{1}\right\rangle$ produces the eight classes $\{x\}$ for $x \in\left\langle a_{1}, a_{2}, b_{1}\right\rangle$ and the two classes $4 v_{1}$ and $4 a_{1} v_{1}$ on Ω. We compute $C_{\Omega}(z)=\left\langle a_{1}, a_{2}, b_{2}\right\rangle$ for any $z \in\left\langle b_{2}, \bar{c}_{1}\right\rangle^{*}$. It follows that there is an involution $e \in\left\langle a_{1}, a_{2}, b_{1}\right\rangle$ centralized by an element d of order three in $N_{B}\left(\left\langle\bar{b}_{2}, \bar{c}_{1}\right\rangle\right)$. This element e has precisely $5 B$-conjugates in Ω. Suppose there is also a B-orbit of length 10 . Then this orbit contains at least one $\left\langle\bar{b}_{2}, \bar{c}_{1}\right\rangle$-class $\{x\}$ with $x \in\left\langle a_{1}, a_{2}, b_{2}\right\rangle$ so that $\left[B: C_{B}(x)\right]$ is odd, a contradiction. Consequently there are three B-classes of length 5 each in Ω^{*}. In particular, $4 v_{1}$ fuses with some element $M, E\left\langle a_{1}, a_{2}, b_{1}\right\rangle^{* *}$, and we have an element $f \in B$ of order 5 with the action

$$
f: v_{1} \rightarrow x \rightarrow x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow v_{1}
$$

where x_{1}, x_{2}, x_{3} are in $4 v_{1}$ and of the form $x_{i}=y_{i} v_{1}$ with $y_{i} \in\left\langle a_{1}, a_{2}, b_{1}\right\rangle$. It follows that

$$
f: x v_{1} \rightarrow x_{1} x \rightarrow x_{2} x_{1} \rightarrow x_{3} x_{2} \rightarrow v_{1} x_{3} \rightarrow x v_{1}
$$

Clearly, $x v_{1}$ lies in $4 v_{1}$ or $4 a_{1} v_{1}$. So the B-orbit $\left\{x v_{1}, \tilde{x}_{1} x_{,} x_{2} x_{1}, x_{3} x_{2}, v_{1} x_{3}\right\}$ contains precisely one involution of $\left\langle a_{1}, a_{2}, b_{1}\right\rangle$. However, the distinct
elements $x_{2} x_{1}$ and $x_{3} x_{2}$ both lie in $\left\langle a_{1}, a_{2}, b_{1}\right\rangle$. This contradiction completes the proof of the lemma.

Lemma 4.2. The subgroup A is strongly closed in S with respect to $C_{G} Z(S)$.
Proof. We introduce the canonical homomorphism *: $K=C_{G} Z(S) \rightarrow$ $K^{*}=K / Z(S)$. Look at the elementary abelian subgroups of order 2^{5} in S^{*}, they are C, C_{1}, C_{2} (Lemma 3.3). If C_{1} is conjugate to C in K^{*}, then as S^{*} is weakly closed in S^{*} these groups are conjugate in $N_{K^{*}}\left(S^{*}\right)$ (Lemma 2.3). However, $C=\left(S^{*}\right)^{\prime} A^{*}$ is invariant under $N_{K^{*}}\left(S^{*}\right)$. Similarly, $C_{1} \sim C_{2}$ is impossible. Therefore C, C_{1}, C_{2} and $C C_{1}, C C_{2}$ are weakly closed in S^{*} w.r.t. K^{*}.

The group $C_{1} \cap C=Z\left(C C_{1}\right)$ has just two S^{*}-classes of red involutions (Table IV in Section 3). If $\left(w c_{1}\right)^{*} \sim\left(w c_{1} b_{2}\right)^{*}$ in K^{*} then this happens already in $N_{K^{*}}\left(C C_{1}\right)$ (Lemma 2.3). But the orbit of $\left(w c_{1}\right)^{*}$ under this normalizer has length an odd number times

$$
\left[S^{*}: C_{S^{*}}\left(\left(w c_{1}\right)^{*}\right)\right]=\left[S^{*}: C C_{1}\right]=2
$$

Consequently, the classes $2\left(w c_{1}\right)^{*}$ and $2\left(w c_{1} b_{2}\right)^{*}$ remain unfused in K^{*}. It. follows that an element of odd order in $N_{K^{*}}\left(C C_{1}\right)$ centralizes all red involutions in $C_{1} \cap C$. These involutions generate a subgroup of order 2^{3}. Therefore clements of odd order in $N_{K^{*}}\left(C C_{1}\right)$ act trivially on $C_{1} \cap C$. This proves that there is no K^{*}-fusion of S^{*}-classes of green involutions in $C_{\mathrm{x}} \cap C$ (Lemma 2.3). A corresponding statement holds for the involutions in $C_{2} \cap C$.

The red involutions x^{*} of C fall into three categories: those in $C_{1} \cap C$ have $x^{2}=a_{1}$, those in $C_{2} \cap C$ have $x^{2}=a_{2}$ and the remaining ones form one S^{*}-class with $x^{2}=a_{1} a_{2}$ (Table IV). There can be no fusion between distinct categories by the definition of K as $C_{G} Z(S)$. Therefore an element of odd order in $N_{K^{*}}(C)$ centralizes the four S^{*}-classes of length 2, the subgroup $\left\langle\left(w c_{1}\right)^{*}, b_{1}{ }^{*}, b_{2}^{*},\left(w c_{2}\right)^{*}\right\rangle$ they generate, hence C. By Lemma 2.3 there is no K^{*}-fusion of S^{*}-classes of green involutions in C.

We turn to C_{1} for which case the work has been done in Lemma 2.4. Again the possible fusion among elements of C_{1} already occurs in $N_{K^{*}}\left(C_{1}\right)$. By Table IV the S^{*}-classes of red involutions in C_{1} have lengths 2, 2, 4, 4. First suppose that some of these classes combine to a complete $N_{K^{*}}\left(C_{1}\right)$-orbit of length 10. Then $N_{K^{*}}\left(C_{1}\right)$ contains an element g of order five that does not centralize this orbit. However, g fixes the remaining class of length 2 and the subgroup of order 4 generated by it as well as the corresponding factor group C_{1} of order 2^{3}, so that g fixes C_{1}. This is a contradiction. Suppose now that there is no complete $N_{K^{*}}\left(C_{1}\right)$-class of red involutions of the form $2 \sim 4$. Then both classes of length 2 remain unfused. In particular, an clc-
ment of odd order in $N_{K^{*}}\left(C_{1}\right)$ must centralize the subgroup $\left\langle b_{1}{ }^{*}, b_{2}{ }^{*},\left(w c_{1}\right)^{*}\right\rangle$ generated by them and at least one of the remaining 8 red involutions; hence C_{1} is centralized. This shows that there is no K^{*}-fusion among S^{*}-classes of green involutions of C_{1} in this case. Finally, assume that $2 \sim 4$ occurs as a complete $N_{K^{*}}\left(C_{1}\right)$-orbit of red involutions. By Table IV the class of length 2 in this orbit has the form $B x$ with $B=\left\langle b_{1}{ }^{*}\right\rangle$ and the class of length 4 has the form $U y$ with $U=\left\langle b_{2}{ }^{*}, w^{*}\right\rangle$ or $U=\left\langle b_{2}{ }^{*}, w^{*} b_{1}{ }^{*}\right\rangle$. The elements x, y may be chosen in such a way that there is an element $g \in N_{K}\left(C_{1}\right)$ of odd order with $x^{g}=y$. Note that $\langle B, U\rangle \subseteq Z\left(S^{*}\right)=C_{1} \cap C \cap C_{2}$ so that the hypotheses of Lemma 2.4 are satisfied. We conclude that this situation is impossible.

Now let r be a green involution extremal in S^{*} w.r.t. K^{*} and let s be an involution conjugate to r in S^{*}. Then there is an element $j \in K^{*}$ with $s^{j}=r$ and $C_{S^{*}}(s)^{j} \subseteq C_{S^{*}}(r)$ [11, Lemma 2.5]. By Lemma 3.3, s is contained in one of the subgroups C, C_{1}, C_{2}, say $s \in C_{0}$. This subgroup is weakly closed in S^{*} w.r.t. K^{*}, hence $C_{0}=C_{0}{ }^{j} \subseteq C_{S^{*}}(r)$ and $r \in C_{S *}\left(C_{0}\right)=C_{0}$. As s and r both lie in C_{0} we conclude from what we have shown above that s and r are already conjugate in S^{*}. The subgroup A^{*} is normal in S^{*}, hence A is strongly closed in S w.r.t. K.

Remark. A repeated application of Glauberman's Z^{*}-theorem shows that K has a normal 2-complement. However, we do not need this result here.

5. Proof of the Theorem

We conclude from Lemma 4.1 and Lemma 4.2 on the basis of Lemma 2.1 that A is strongly closed in S even w.r.t. G. Hence Goldschmidt's theorem (Lemma 2.5) describes the structure of $M=\left\langle A^{G}\right\rangle$. Note that $O(M)=1$ since we assume $O(G)=1$. So $A=O_{2}(M) \Omega_{1}\left(S_{0}\right)$ where S_{0} is a Sylow 2-subgroup of M containing A. It follows that $A=\Omega_{1}\left(S_{0}\right)$ as A is elementary. We may assume $S_{0} \subseteq S=A D$. Hence $S_{0}=A \cdot\left(S_{0} \cap D\right)$. If $S_{0} \supset A$, then $1 \neq \Omega_{1}\left(S_{0} \cap D\right) \subseteq D \cap \Omega_{1}\left(S_{0}\right)=D \cap A=1$, q.e.a. We have shown that A is a Sylow 2 -subgroup of M (and G is not simple). In particular, the normal subgroups L of M occurring in Lemma 2.5 have elementary abelian Sylow 2 -subgroups. So $Z(I)=1$ and L is a simple group of type $\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$, or of type Janko-Ree.

Suppose a subgroup Δ of D normalizes one of these normal subgroups L of M. We show that 1 is the only element of Δ that induces an inner automorphism of L. In fact, an element $d \in D \cap N_{G}(L)$ also normalizes the Sylow 2-subgroup $L \cap A$ of L; if $f \in L$ induces the same automorphism $\vec{f}=d$ of L as d, then $f \in N_{L}(L \cap A), f=r \cdot a$ with $a \in L \cap A$ and r of
odd order, $\dot{f}=\dot{r} \cdot \dot{a}=\dot{d}, \dot{r}=\dot{d}^{-1} \in S, \dot{r}=1, \dot{d}=\dot{a}$, but $\dot{a} \mid A=1$, i.e., $d \in C_{D}(A)=1, d=1$. The same argument works with L replaced by L_{0} in the case of a simple group of type Janko-Ree provided that Δ normalizes L_{0}.

Clearly $\left\langle L^{D}\right\rangle$ is a direct product of simple groups isomorphic to L. This product can have at most three factors as L is simple with Sylow 2-subgroup of order at least 2^{2} and $|A|=2^{6}$. However, D acts on this set of direct factors [$8, \mathrm{p} .70]$, so their number is 1 or 2 . In the first case set $\Delta=D$. In the second case D has a normal subgroup Δ of index 2 that normalizes both factors. If L is of type Janko-Ree we choose an involution $t \in L \cap A$ that is centralized by Δ. Since L has only one class of involutions $[9 ; 10$, p. 275], $C_{L}(t)=\langle t\rangle \times L_{0}$ with $L_{0} \cong P S L(2, q), q \equiv 3,5(\bmod 8) ; C_{L}(t)$ and L_{0} are normalized by Δ. So in all cases Δ normalizes a group of type $\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$, and is isomorphic to a group of outer automorphisms of $P S L(2, q)$, i.e., a subgroup of $P I L(2, q) / P S L(2, q),[4$, pp. 103104, 96-97, 91-96]. Thus, Δ is abelian which excludes the first case where $\Delta=D$. In the second case $D=\left\langle\Delta, v_{1}\right\rangle$ or $D=\left\langle\Delta, v_{2}\right\rangle$; we may assume $D=\left\langle\Delta, v_{\mathbf{1}}\right\rangle$. Set $U=L \cap A$, resp. $U=L_{0} \cap A$ in the case of a group L of type Janko-Ree; we have $U^{\Delta}=U$. Then $U \cap U^{v_{1}}=1$ as $I \cap I^{v_{1}}=1$. On the other hand $C_{A}\left(v_{1}\right)=\left\langle a_{1}, a_{2}, b_{1}, c_{2}\right\rangle$ where $\left\langle a_{1}, a_{2}, b_{1}\right\rangle \subseteq C_{A}(w)$, hence U contains an element $x^{\prime} c_{1}=x c_{2}{ }^{i} c_{1}$ with $x^{\prime}, x \in C_{A}(w), i=0$ or 1 . Clearly $w \subset \Delta$. Hence U also contains $\left(x c_{2}{ }^{i} c_{1}\right)^{w}=\left(a_{2}{ }^{i} a_{1}\right)\left(x c_{2}{ }^{i} c_{1}\right)$ and $a_{2}{ }^{i} a_{1}$, which contradicts $U \cap U^{v_{1}}=1$. It follows that $M=A$. Q.E.D.

References

1. J. L. Alperin, On a theorem of Manning, Math. Zeitschr. 88 (1965), 434-435.
2. J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222-241.
3. H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt, J. Algebra 17 (1971), 527-554.
4. J. Dieudonné, "La Géométrie Des Groupes Classiques," Third edition, Springer Verlag, Berlin-Heidelberg-New York, 1971.
5. D. M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138-142.
6. D. M. Goldschmidt, 2-Fusion in finite groups, Annals Math. 99 (1974), 70-117.
7. O. Grün, Beiträge zur Gruppentheorie. III, Math. Nachr. 1 (1948), 1-24.
8. B. Hurpert, "Endliche Gruppen I," Springer Verlag, Berlin-Hcidelberg-Now York, 1967.
9. Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147-186.
10. Z. Janko and J. G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274-292.
11. U. Schoenwameder, Finite groups with a Sylow 2-subgroup of type M_{24}, I, J. Algedra 28 (1974), 20-45.

$$
\text { A SYLow 2-SUBGROUP RELATED TO } M_{24}
$$

12. U. Schoenwarlder, Finite groups with a Sylow 2 -subgroup of type M_{24}, Π, J. Algebra 28 (1974), 46-56.
13. R. Solomon, Finite groups with Sylow 2-subgroups of type π_{12}, J. Algebra 24 (1973), 346-378.
14. R. Solomon, Finite groups with Sylow 2-subgroups of type $\Omega(7, q), q \equiv \pm 3$ (mod 8), J. Algebra 28 (1974), 174-181.
15. R. Solonon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra 28 (1974), 182-198.
