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1. InTRODUCTION

A Bylow 2-subgroup T of the Mathieu group My, has order 219 and a
center Z{T') of order 2. The factor group T/Z(7T') is a split extension of its
unique (elementary) abelian subgroup of order 26 (Lemma 3.1) by a dihedral
group of order 2%. We prove the following result.

TrurorEM. Let G be a finite group with a Sylow 2-subgroup S isomorphic
to T|Z(T). Assume O(G) = 1. Then the unique abelian subgroup of ovder 2%
in S is a normal subgroup of G.

This result is interesting in comparison with the situation for a Sylow
2-subgroup T, of Conway’s simple group Co,. Here again | T, | = 2!°,
[ Z(T) =2, and T1JZ(T,) 1s a split extension of an eclementary abelian
normal subgroup of order 2% by a dihedral group of order 28 However,
the infinitely many simple groups Ay, , 4;5, Sp(6, 2), (7, ¢) with g = +3
(mod 8) have Sylow 2-subgroups isomorphic to 73/Z(7}). See [11-15] for
related characterizations.

T'wo recent results have facilitated our investigation. The first (Lemma 2.1)
due to R. Solomon provides us with a convenient conjugation family (in
the sense of Alperin). In our situation the local conjugating sets can be
shown to lie in Cg(Z(S)) and Ng(A4) where A is the abelian subgroup of
order 2% in 8. This enables us to prove that 4 is strongly closed in S with
respect {0 . At this point an application of D. M. Goldschmidt’s classification
of finite groups with an abelian strongly closed 2-subgroup (Lemma 2.5}
completes the proof of the theorem.

In this way we obtain an independent proof of the main statement in
[11, Key Theorem]:

CoroLLARY. Let H be a finite group with a Sylow 2-subgroup T of type
395
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My, . Assume Z(T)C Z(H) and O(H) = 1. Then the unique normal extra-
special subgroup of order 27 of T is normal in H.

For the sake of readability we have decided to include a fair amount
of detail in the following presentation. Notation, however, is standard and
will not be explained.

2. GENERAL REsurrts

In this section we state some general results to be used later. In all cases
J denotes a finite group.

Levmma 2.1 [13, Lemma 3.1, and 2].  Let p be a prime and P a fixed Sylow
p-subgroup of ]. Consider the set H of subgroups H of P that satisfy the following
conditions:

(1) His a tame Sylow intersection with P, i.e., there is a Sylow p-subgréup
Q of J with H = P 0\ Q such that Np(I) and Ny(H) are Sylow p-subgroups
of Ny(H);

() CoH)C H;

(3) H is a Sylow p-subgroup of O, ,(N,(H));

(4) H = P or N,(H)[H is p-isolated.
Form the set & of all pairs (H, N) with He H and

N=N(H), i H=C22H),
N = NAH) N CRZH), i HCCZH),

and the set &' of pairs (H, C,(H)) where H satisfies (1), but not all of (2)~(4).
Then & U &' is a conjugation family w.r.t. P in ]. In particular, for elements

x, y of P conjugate in [ there exist (H; , N)Ye & (i = 1,..., m) and elements
x,€ H; , n; € N; such that

® =%, wpt=wx,,  for 1<i<m—1, alm = y.

By a fundamental theorem of H. Bender [3] a 2-isolated group L has
Sylow 2-subgroups with just one involution or else L has normal subgroups
L, 2L, such that L/L, and L, have odd order and L,/L, is isomorphic to
one of the simple groups PSL(2, 2%), Sz(2"), PSU(3, 2») for suitable n > 2,
a so-called simple group of Bender type.

Lemma 2.2. The only simple group of Bender type involved in GL(5, 2)
is PSL(2,4) =~ 4;.
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Proof. This follows from a comparison of group orders except for
the case of PSL(2, 8). A Sylow 3-subgroup of PSL(2, 8) is cyclic of order 9
18, p. 196] whereas GL(S, 2) has an elementary abelian Sylow 3-subgroup
of order 9 which is contained in GL(4, 2) o= 4, .

Levmva 2.3, Let P be a Sylow subgroup of | and Py a weakly closed subgroup
of Pwat. J. If ] acis on a set 2, then [-comjugaie elemenis of 2 that ave
fixed by Py are already conjugate under N (Py).

Proof. O. Griin [7] has shown that this is a consequence of Sylow’s
theorems. This fundamental lemma is also 2 consequence of a more powerful,
but elementary result of J. L. Alperin based on Sylow’s theorems [1].

The following technical lemma on fusion has been suggested by B.
Waldmiiller; it will be applied in the proof of Lemma 4.2.

Levma 2.4, Suppose we have a subset B, a subgroup U, and elements
%, v, g of ] such that
(i) 1eBand BN U = 1;
(i) Uis a 2-subgroup #1;
(iit) o two distinct elements of U are conjugate in J;
(iv) no element of B* is conjugate to an element of U* in ],
vy BxnUy = g;
(vi) g has odd order, &° =y, and Bx U Uy is invariani under g.
Then | U| = 2.

Proof. Assume by way of contradiction that | U] = 27 with m > 2.
We first show that

(vil) there is precisely one element x € Uy with 29 € Bx.

The statement is clear if B = {1}; note that {x} U Uy is g-invariant by
(vi) and ® % y by (v). If B 5 {1} let b 5= 1 in B and suppose (bx)’ € Uy.
Then uy = (bx)? = b% for some u € U, hence u = b7 against (iv). Therefore
(bx) € Bx for all b += 1 in B; (vii) follows.

(viil) Suppose yoe Uy and g:yy—> wy ¥ — tsyy —> **+ with distinct
elemenis 1, u; , uy of U. Then g fixes u, # 1.

in fact, w7 * ¥y == (49,0 = ¥, hence u? = uyt € U and, by (i),
uy? = 1; . We have g1 x — y — y9 — --- where 39 € Uy or ¥ € Bx. Assume
that y? € Bx so that 2 = y. Since we assume m > 2, the set V = Up\{y}
is not empty. Clearly V is invariant under g. Either g has an orbit in ¥
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of length at least three or g fixes at least two elements of V. In the first
case (viii) applies and g fixes an element # 54 1 of U. In the second case,
if g fixes the distinct elements #y and #,y of V, then wy - (uy)2 =
wuy" = ue U* serves the same purpose. In any case g: uy — uy? — -
If wy? e Bx, then 3 = uy against ¥ =y and u £ 1. If wy? e Uy, then
y?e Uy N Bx = @. This contradiction shows that

(ix) y?e Uy.

Bet 3¢ = 9y. We have to consider (vy). If (vy)? € Bx, then & = vy = 37,
W = Uy\{y, y%} is invariant under g and, as above, there is an element
ue U#* fixed by g. One gets g: uy — uy? —> u(vy)? — -~ Either u(vy)? € B,
whence z = uy? against 2 = 3¢ and # 5 1, or u(vy)? € Uy, whence (vy)
Uy N Bx = @. This contradiction shows that

x) (w)yely.
It follows from (viii) that g fixes v. Hence
g:y__)vy__>712 — -—>7)”_’y =y

where 7 is the order of v and the length of the g-orbit of y. This number
is a power of 2 by (ii) and odd by (vi). Hence z = 1 and v = 1, the final
contradiction.

LEvmma 2.5 [6]. Let S be a Sylow 2-subgroup of J, A an abelian subgroup
of S strongly closed in S w.r.t. J. Set M = (A7) and | = J|O(M). Then
A = Oy(M)2(S,) for a Sylow 2-subgroup S, of M containing A; and M
s a central product of an abelian 2-group and groups L such that L =L’ and
N = L[Z(L) is a simple group of one of the following types:

(a) N is of Bender type (see remark following Lemma 2.1);

(b) Nz PSL(2,q9), ¢=3,5 (mod 8), ¢ > 3;

(¢) N i of type Janko-Ree, i.e. N has an involution t in the center
of a Sylow 2-subgroup such that Cy(t) = {&> X Ny with Ny~ PSL(2,q),
g = 3, 5 (mod 8) (see [6] for references).

Moreover in case (b) and (c) Z(L) has odd order.

3. THE STRUCTURE OF S

We consider a 2-group S presented by generators 4y, by, ¢;, a3, by, ¢;,
w, vy, 9y and relations indicating that these generators are involutions and
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transform each other according to the following table of conjugates x¥ =
=gy, A bar indicates that x¥ = x. It follows from Table I in [i1] that
S = T|Z(T) where T is a Sylow 2-subgroup of M,,. One checks with
Table I that the following mappings define automorphisms «; of S. Again
bars denote elements that are left fixed.

TABLE I

Conjugates x¥

¥
x ay by <y ay b, Zy w Uy 2y

ay — —_— — — — — — — —
by — —_ — — — — - — N
€ — — — — — — ae;  abiey —
a, — — — — — — — — —
ba — —_ — — — — — ashy —
Cs — — — — — —_ 56y — ashycs
w — — a,w — — ayW — — —
Uq - —  aybyyy — s, — — - wy,
Ty — ayv, — —_ —  aybyv, — WO, —

TABLE II
Images x* for Some Autormorphisms «;

x a; by ¢y as by ¢y w Uy Ty

oy a, by Cy ay by ¢y — Vg vy

oy — — — — — —_ wh; — £1%s

Oy - ahy ayashy ey — - Al - - —

We set A =day,by,¢,a,by,¢50, F=4{a,,a,,0,by, and D =
{w, vy, vgp. Clearly Z(S) =<ay,ay, S =Fw), and § = AD with
AnD =1. The group S has 30 conjugacy classes of involutions with
representatives x as listed in Table ITL

Lemma 3.1, | Z(M)] < 28 for every maximal subgroup M of S. The
elementary abelian subgroup A is the unique abelian subgroup of order 28 in S.
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TABLE 111

S-Classes of Involutions

x | x5 Remarks Cs(x)

a; 1
Qs 1

aya, 1
by 2 ALw, v
b, 2 by — by

asby 2 ot by — aghy

ab, 2 agtg: by —> aghy

byb, 4 &5 = {ay, az) bib, A - {w)
Cy 4 x5 = {ag, b ¢ A4 - Loy
Cy 4 i €y —> Cy

ase, 4 x5 = g, ¢S Cyler)

ac, 4 0l @y > A4Cs

by6, 4 & = {ay , ashy) byey Cyley)

byc, 4 oq: bacy —> bico

a,axb, * ¢ 4 Ol €y —> Qylaby * €y
aydqby ¢ ¢y 4 a0t € —> Qydobs * €y
€16y 8 A
Ay a30,0501¢5 8 A4

w 4 x5 = x€ for C = {¢;,¢p FD

why 4 oyt w —> why

why 4 g0yt o —> why

2wbyby 4 OOyttt W —> Wwhiby

Uy 3 @1,82,b1, 6, w00
Ty 8 QY —> Uy

a,vy 8 Co(vy)

azv, 8 0yl Ay > AgTs

€10y 8 Kol Uy —> C1Vs

€Uy 8 XXty Uy —> Caly

as * €10, 8 Cglerva)
a, * Coy 8 )1 @y * €Uy —> Gy ¢ €30y
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Proof. 1f we Z(M), then x has one or two conjugates. By Table III,
Z(MYCF, but bb,¢ Z(M). Hence | Z(M)| < 2°. Suppose A* # 4 is
another abelian subgroup of order 28, Now [ A4 -4¥|-|4dNA4A¥| =
| A -] A% =222 All this implies 20 = | AN A% |. Let u =g - de AN4
with a4 and deD. Then AN A*C C,u) = C{d). But Table III
shows that | C(d)| <C 2%, a contradiction.

Levmma 3.2. The elementary abelian subgroups of ovder 2° in K, = Cy(w)
are

F<Z{)> = <a1>az’ w, b19b2>ﬂ

R, ={a,ay,w, b, ,v), and Ry = {ay, ay, w, by, vyp. These groups U are
normal in S, U = Cy(U), with factor groups S|U of types Eyg and C, X Dg.

Progf. By Lemma 3.1, {a;, a,, w) = &, Z(K,) C U. We have K; = FD
so that K, /F is dihedral. In particular, K; 5 FU. Therefore by , by> N U % 1.
If b:6,€ U, then UC Cg (byby) = Ky N ASw) = F(w), hence U = Fl(w).
If b5, ¢ U, we may assume b, € U where Cy (by) = Fw, vp). Therefore
U={(Ka,a,,w,b,xy for some involution xe& (b, , v,>\{(ay, by>. Hence
xe{vy, avpand U =R, .

Levvia 3.3, Set S* = SJZ(S). Then Z(S*) = {w*, by*, b,*); the only
elementary abelian subgroups of an order at least 25 in S* are

C = <Z(S*)s Cl*’ CZ*>5
Cl == <Z(S*): Cl*a (02*>> and Cz = <Z(S*>> 62*) 7)1*>7

they are normal in S*; C U Cy U C,\{1} is the set of involutions of S*.

Proof. Recall that Z(S) = {ay , a5). By Table I, Z(S*) = {(w*, b,*, b,*>
and S* = Z{S*) - {;*, ¢, - {0y *, v,*>. Let U be an abelian subgroup
of 8* with | U] == 25 and C == U. Then U contains an involution ¢ = zcw
with ze Z(S*), ce{¢*, *, velo™, v,07%, and UC Cult) = Colev).
For these involutions cv one computes Cgcw) = Cy or C,. The coset
Cou *v,* consists of elements of order 4; the involutions of Cv,* must
centralize v,*, hence lie in C, ; similarly the involutions of Cz,* lie in C, .

We paint the involutions of S* red and green: an involution x* will be
called red when & 5£ 1, otherwise green. Ultimately we shall be interested
in green involutions only, but for the investigation of their fusion in
Lemma 4.2 the red involutions have a key function.
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TABLE IV

S*.Classes of Red Involutions

a* | %5 x% Pl contained in
(zocy)* 2 a <by*H(wey)* andC
(we,bg)* 2 & by *)(aoeyb2)* ancC
{bywa)* 4 ay {by*, w¥)(byvy)* Cy
(bye105)* 4 a1 <bo*, by *p(breyvs) * (6]
X * C, 2 = C :1
(wei65)* 4 10, <by*, be*p(wocicn)® C\(CLu Cy

4. LocALISATION oF FusioN

From now on we fix a finite group G with O(G) = 1 and Sylow 2-subgroup
S (as described in Section 3). For the later application of Lemma 2.1 to
the situation ([, P) = (G, S) we wish to control the conjugating groups N
appearing as (H, N)e &.

Levva 4.1. Let (H,N)e . If H = C@Z(H), then ACH and
N C Ng(A). If HC CsQ,Z(H), then N C CsZ(S).

Proof. By condition (2) of Lemma 2.1, Z(S)C ,Z(H). Therefore
NC CeZ(S), if HC Cyf2,Z(H). We now assume

H = CeQZ(H). @)

If AC H, then Lemma 3.1 implies N = Ng(H) C Ny(4) as desired. We
therefore assume

ALCH ®)
and seck a contradiction.
By (2') and (5) there is an involution e, Z(H)\A with H C Cg(n).

Table II1 shows that some automorphism « of §in {oy , o> maps K = Cy()
onto

K; = Cy(w) or K, = Cy(»y)-

It is clear that we need only exclude the cases H C K, and HC K, .
Assume H C K, . By (2), 2,Z(K,) C £, Z(H)where 2 Z(K,) = {ay, ay, w)
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has order 28 and | Q,Z(H)| < 25 If | Q,Z(H)| = 25, then by Lemma 3.2
and (2" CsQZ(H) = G, Z(H), H<1 S, and S[Hx Eyg or Cy X Dy is 2
Sylow 2-subgroup of N(H)/H. By (4) in conjunction with Bender’s result
stated in Section 2 and Lemma 2.2 this is impossible. If | 2, Z(H)] = 24
then Q,Z(H) = {a; , a5 , w, x) for an involution x in by , by> U {(by, bypv; U
(by , byyo, with 2 Z(H) = 2. Z(K; N C(x)). Now K, N Clbiby) = Fw) is
elementary of order 2%, hence x 5% byb, . If ¥ = &, then H = K, N C{y) =
Flw,v> <0 S with S/H =~ E; against (4) as above. Similarly x 34 b,.
If x € (b)v; then H = K; N C(x) = Ry against | 2, Z(H)| = 2% There are
no further involutions in (b, , byyvy . Similarly, x & (b , b,)v, is impossible.
We are left with @,Z(H) = {a;, a,, w), hence H = K, . By (1}, N(H)/H
has an elementary abelian Sylow 2-subgroup of order 4. This contradicts
(4) and Lemma 2.2 as A; is not involved in GL(3, 2).

Now assume HCK,. Again {a,,a,, b, v = Z(K,)C 2 Z(H). I
| S, Z(ED| == 25, then £,Z(H) = (@ Z(K,), x) for an involution x € (w, ).
If % = w, then £2,Z(H) = R; which we have seen is impossible. If x = ¢, ,
then @&, Z(H) = H has Ny(H) = A<w, v,y with NJ(H)[H o~ E;. As before
one obtains a contradiction from (1), (27), {4), and Lemma 2.2. We are
left with £,Z(H) = Q,Z(K,), hence H = K, . Here NJ{H} = H - (by, ¢y
with H N {by, ¢y = 1. The group N = N(H)/N(H)N CQZ(H) acts
faitbfully on 2 = {a,, a,, b;, 0 and has Sylow 2-subgroup (b, , &) =~
Ng(H)/H. Thus, N has a normal series N 2 N, D N, 2 1 with N,/N, = 4,
and N[N; and N, of odd order. Looking at GL(4,2) =~ Ay we see that
N; 2 B where B o Aj contains (b, , £,>. We study the action of B on 2.
The group (&,, &) produces the eight classes {x} for x e {ay, a5, &) and
the two classes 4o, and 4a;9; on £. We compute Tz} = {a;,4a,, 6
for any 2 € {d,, &;>*. It follows that there is an involution ec {ay , 65, 5>
centralized by an element d of order three in Ng(<h,, &), This element ¢
has precisely 5 B-conjugates in £2. Suppose there is also a B-orbit of length 10.
Then this orbit contains at least one (&, , & >-class {x} with x € {ay, a,, b,>
so that [B: Cg(x)] is odd, a contradiction. Consequently there are three
B-classes of length 5 each in £#. In particular, 4v, fuses with some element
x € {a.,a,, b, ", and we have an element f€ B of order 5 with the action

o= x—x x> %, — 0

where %; , %, , X3 are in 4v; and of the form x; = y2, with y,€ {a;, 2., 5.
It follows that

I 20— 230 > KXy > Xgy —> VN —> KTy .

Clearly, sz, lies in 4o, or 4a,v, . So the B-orbit {av, , xyx, %o, , %%, , U;%5}
contains precisely one involution of {a,, 4y, b;>. However, the distinct
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elements xyx; and xyx, both lie in {a; , @, , b;>. This contradiction completes
the proof of the lemma.

Levma 4.2. The subgroup A is strongly closed in S with respect to CsZ(S).

Proof. We introduce the canonical homomorphism *: K = C¢Z(S) —
K* = K|Z(S). Look at the elementary abelian subgroups of order 25 in S*,
they are C, C;, C, (Lemma 3.3). If C, is conjugate to C in K*, then as S*
is weakly closed in S* these groups are conjugate in Ng.(S*) (Lemma 2.3).
However, C = (S*)’4* is invariant under Ng«(S¥*). Similarly, C; ~ C,
is impossible. Therefore C, C;, C, and CC;, CC, are weakly closed in
S* wr.t. K*

The group C; N C = Z(CC,) has just two S*-classes of red involutions
(Table IV in Section 3). If (we)* ~ (wegby)™ in K* then this happens
already in Ng«(CCy) (Lemma 2.3). But the orbit of (we)* under this
normalizer has length an odd number times

[8%: Cauf(r0e)®)] = [S*: CCy] = 2.

Consequently, the classes 2(we;)* and 2(we,b;)* remain unfused in K*. It
follows that an element of odd order in Ng«(CC,) centralizes all red involu-
tions in C; N C. These involutions generate a subgroup of order 23. Therefore
elements of odd order in Ny (CCy) act trivially on C; N C. This proves
that there is no K*-fusion of S*-classes of green involutions in C; N C
(Lemma 2.3). A corresponding statement holds for the involutions in
Con C.

The red involutions x* of C fall into three categories: those in C; N C
have &2 == @, , those in C, N C have #* = a, and the remaining ones form
one S*-class with x* = g,a, (Table IV). There can be no fusion between
distinct categories by the definition of K as CgZ(S). Therefore an element
of odd order in Ng.(C) centralizes the four S*-classes of length 2, the sub-
group {(wey)*, by*, by*, (wey)*)> they generate, hence C. By Lemma 2.3
there is no K*-fusion of S*-classes of green involutions in C.

We turn to C) for which case the work has been done in Lemma 2.4.
Again the possible fusion among elements of C already occurs in Ng.(C}).
By Table IV the S*-classes of red involutions in C; have lengths 2, 2, 4, 4.
First suppose that some of these classes combine to a complete Ng.(Cy)-orbit
of length 10. Then Ng«(C;) contains an element g of order five that does
not centralize this orbit. However, g fixes the remaining class of length 2
and the subgroup of order 4 generated by it as well as the corresponding
factor group C; of order 23, so that g fixes C; . 'This is a contradiction. Suppose
now that there is no complete Ny.(Cy)-class of red involutions of the form
2 ~ 4. Then both classes of length 2 remain unfused. IB particular, an ele-
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ment of odd order in N.(Cy) must centralize the subgroup (5%, 8,*, (we)*>
generated by them and at least one of the remaining 8 red involutions; hence
C, is centralized. This shows that there is no K*-fusion among S*-classes
of green involutions of € in this case. Finally, assume that 2 ~ 4 occurs
as a complete Ng.(Cy)-orbit of red involutions. By Table IV the class of
length 2 in this orbit has the form Bx with B = (4;*) and the class of
length 4 has the form Uy with U = &%, w*) or U = (&%, w*b*>. The
elements x, y may be chosen in such a way that there is an element g € Np.(C)
of odd order with x7 = y. Note that (B, U) CZS*) =C;NnCNC, so
that the hypotheses of Lemma 2.4 are satisfied. We conclude that this
situation is impossible.

Now let ¥ be a green involution extremal in S* w.r.t. K and let s be an
involution conjugate to 7 in S*. Then there is an element j € K* with s/ = »
and Cg(s) C Cgulr) {11, Lemma 2.5]. By Lemma 3.3, s is contained in
one of the subgroups C, C;, C,, say s € C, . This subgroup is weakly closed
in S* wurt. K* hence Cy = Cy C Cuu(r) and re Cgo(Cy) = C,y. As s
and r both Iie in C; we conclude from what we have shown above that s
and » are already conjugate in S*. The subgroup 4* is normal in S*, hence
A is strongly closed in S w.r.t. K.

Remark. A repeated application of Glauberman’s Z*-theorem shows
that K has a normal 2-complement. However, we do not need this result here.

5. PrROOF OF THE THEOREM

We conclude from Lemma 4.1 and Lemma 4.2 on the basis of Lemma 2.1
that A is strongly closed in S even w.r.t. G. Hence Goldschmidt’s theorem
(Lemma 2.5) describes the structure of M = (A%). Note that O{M) = i
since we assume OQ(G) = 1. So 4 = Oy(M) 2,(S,) where S, is a Sylow
Z-subgroup of M containing A. It follows that 4 = ©,(S,) as 4 is elementary.
We may assume S,C 8 = A4D. Hence Sy = 4 -(S,nD). If §,D 4,
then 1 % 2(S;ND)CDNR(S)) =D N A =1, qea We have shown
that 4 is a Sylow 2-subgroup of M (and G is not simple). In particular,
the normal subgroups L of M occurring in Lemma 2.5 have elementary
abelian Sylow 2-subgroups. So Z(L) = 1 and L is a simple group of type
FSL2,9), g =0, 3, 5 (mod 8), or of type Janko-Ree.

Suppose a subgroup 4 of D normalizes one of these normal subgroups
L of M. We show that 1 is the only element of 4 that induces an inner
automorphism of L. In fact, an element de D N Ng(L) also normalizes
the Sylow 2-subgroup L N 4 of L; if f€ L induces the same automorphism
f=dof L as d, then fe N (LN A), f=7 a with acL N 4 and r of
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odd ordet, f=7#-d=d, s =dilcS, #=1, d =4, but a4 =1,
ie., de Cp(4) =1, d = 1. The same argument works with L replaced
by L, in the case of a simple group of type Janko-Ree provided that 4
normalizes L, . .

Clearly {LP) is a direct product of simple groups isomorphic to L. This
product can have at most three factors as L is simple with Sylow 2-subgroup
of order at least 22 and | 4 | = 2. However, D acts on this set of direct
factors [8, p. 70], so their number is 1 or 2. In the first case set 4 = D,
In the second case D has a normal subgroup 4 of index 2 that normalizes
both factors. If L is of type Janko-Ree we choose an involution telL N 4
that is centralized by 4. Since L has only one class of involutions [9; 10,
p- 275], Cy(f) = {&> X Ly with Ly~ PSL(2,9), ¢ =3,5 (mod 8); C.(¢)
and L, are normalized by 4. So in all cases 4 normalizes a group of type
PSL(2,q), =0, 3, 5 (mod 8), and is isomorphic to a group of outer auto-
morphisms of PSL(2, ), i.e., a subgroup of PI'L(2, q)/PSL(2, q), [4, pp. 103~
104, 96-97, 91-96]. Thus, 4 is abelian which excludes the first case where
4 = D. In the second case D = {4, v;> or D = {4, v,>; we may assume
D =<{d,v). Set U=LNA,resp. U=L,N A in the case of a group L
of type Janko-Ree; we have U4 = U. Then UN U =1 asL NL» = 1.
On the other hand C(v) = {4y, 45, by, ¢;> Where {a;, ay, b;> C C (w),
hence U contains an element x'c; = xcy’¢y with &', xe Cy(w), £ = 0 or 1.
Clearly we 4. Hence U also contains (xcy’c;)” = (as’a;)(xc’c;) and aya, ,
which contradicts U N U% = 1. It follows that 4/ = 4. Q.E.D.
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