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Abstract 

Multiple sensor monitoring of machining was investigated for online cutting tool life assessment through cognitive decision making based on 
signal processing for feature extraction and pattern recognition. Sensor signals obtained from sensor monitoring of turning operations were 
processed and analysed. The outcome was a set of extracted signal features correlated with the consumed tool life percentage. The aim of the 
work is to build an online cognitive system, based on artificial neural networks, able to predict the consumed tool life during turning operations.  
A preliminary experimental campaign was carried out for the construction of the sensorial knowledge database; the neural network type, 
architecture and training algorithm. After setting up the sensorial knowledge database and the neural network paradigm, the cognitive decision 
making system is ready to be implemented for online cutting tool life prediction during actual turning operations by exploiting the capacity of 
neural networks to constantly learn and improve through interaction with the sensorial data acquisition and processing system. 

© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 
2015. 
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1. Introduction 

Monitoring and control of machining processes represent a 
major concern in industry and call for intense research and 
development in the field. One main research focus is given by 
the implementation of multiple sensor monitoring systems 
based on sensor fusion technology, allowing for the 
integration of information from sensors of different nature in 
order to improve the quality and robustness in the 
characterization of the process, cutting tool or operating 
machine [1]. This approach gives rise to novel requirements 
that need to be addressed, including the critical issue of 
handling ambiguous or noisy sensor signals.  

Sensor monitoring systems can be effectively grounded on 
learning schemes, such as those based on cognitive 
paradigms, making use of sensorial data input to obtain output 
information about the machining operation, particularly when 
the process is so complex as to defy clear mathematical 
modelling. In recent years, research has emphasized the 
capability of intelligent sensing techniques applied to 
machining, which can be summarised as the detection of 
signals provided by multiple sensors during cutting, the 
conditioning and processing of these signals for cutting 

conditions control, and the utilisation of relevant signal 
features for cognitive decision making on the quality of the 
process. The capabilities of machining process monitoring 
through cognitive approaches comprise the continuous 
feedback of information on operative conditions to the 
machine tool numerical control. Examples of process 
conditions that can be monitored are the in-process evaluation 
of tool wear, the quick identification of tool fracture, the 
classification of chip form, and the verification of the nature 
and properties of the work material [2-4].  

The final scope of the present research is tool life 
monitoring using a multiple sensor system provided with a 
cutting force sensor, a vibration sensor and an acoustic 
emission sensor mounted on a CNC turning machine. Sensor 
fusion technology investigations are carried out through 
advanced signal processing and feature extraction. The output 
relevant features are to be related to the tool condition via 
cognitive paradigms based on neural network (NN) pattern 
recognition aimed at tool life prediction [5,6]. This paper 
focuses on the building of the decision making part of the 
intelligent monitoring system, which requires experimental 
testing to generate the training set necessary for NN learning. 
These activities have been carried out within the EC FP7 
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Project "Real-Time In Situ Monitoring of Tool Wear in 
Precision Engineering Applications – REALISM" [7]. 

2. System setup 

2.1 Multiple sensor monitoring system 

Monitoring systems supplied with multiple sensors are 
highly appropriate for the detection of the diverse physical 
outputs from the machining process. These physical outputs 
can be used for the identification of correlations between 
sensorial data and cutting tool conditions. The multiple sensor 
system utilized in this work is composed of a cutting force 
sensor, a vibration sensor, and an acoustic emission sensor 
mounted on a CNC lathe (Fig. 1). During turning tests, signals 
are detected, digitized and stored on PC for post-processing. 

2.2 Tool wear measurement 

Cutting tool wear land was stepwise measured during 
turning tests through a small portable microscope positioned 
on the lathe tool holder to avoid cutting tool dismounting.. 

3. Sensorial knowledge database generation 

To implement the NN decision making system for tool 
wear assessment, the execution of an experimental turning 
campaign to generate the sensorial knowledge database is 
required to make up the training set for NN learning. 

3.1 Experimental turning campaign  

Longitudinal turning tests on AISI 316 stainless steel using 
carbide inserts were carried out with multiple sensor signal 
detection for tool wear monitoring and stepwise measuring of 
tool flank wear. The criterion to consider the tool life fully 
consumed was the achievement of the maximum allowable 
wear land, upon which the turning test was concluded [8]. 

3.2 Sensor signal pre-processing  
 

The detected sensor signals need to be pre-processed to be 
made suitable for signal analysis. Signal pre-processing 
consists of signal cleaning by which the head and tail of each 
signal are cut off to eliminate the transient periods, and signal 
segmentation by which homogeneous signal portions, 
corresponding to regime cutting conditions, are extracted. 
 
3.3 Sensor signal processing for feature extraction  

In the literature, several methods are proposed for sensor 
signal processing in order to extract features useful for NN 
pattern recognition and decision making: e.g. statistical 
feature extraction, Principle Component Analysis, and 
Wavelet feature extraction [2-4,6,8]. In the present work, the 
Wavelet feature extraction method was applied [9]. 

 

Fig. 1. Location of the three sensors on the tool holder.  

3.4 Neural network based pattern recognition 
 

NN pattern recognition based on feature patterns 
constructed through sensor fusion technology was utilized for 
decision making on tool life assessment. 

NN are inspired by the biological nervous system [10]: 
they are composed of simple nodes that are interconnected 
and operate in parallel. The typology of the connections 
between the nodes determines the function of the network. 
NN are trained to perform a particular function by adjusting 
the weights of the connections between the nodes. One main 
function that NN are trained for is pattern recognition, i.e. 
distinguishing a pattern among the input features and relating 
this input pattern to the desired output. The NN architecture is 
typically made of input, hidden and output nodes, respectively 
contained in the input, hidden and output layers [10]. 

In this work, different three-layer feed-forward back-
propagation NN configurations were implemented by varying 
the number of nodes contained in the hidden layer. For each 
NN architecture, the training algorithm utilized was the leave-
k-out (LKO) method [11] whereby one homogeneous group 
of k patterns is removed from the full training set and held 
back in turn for testing, while the rest of the patterns are used 
for training. In the present case, k is equal to the number of 
feature patterns constructed for one fully consumed tool life 
and varies for each considered tool life. 

4. Neural network decision making system 

To implement the online NN decision making system for 
tool life assessment, a sensorial knowledge database must be 
generated and a suitable type of NN and an adequate training 
and testing algorithm need to be set up.  

As regards the sensorial knowledge database, sensor 
signals detected during monitoring of turning operations were 
processed by the Warsaw University of Technology (WUT) 
within the EC FP7 REALISM project [7], providing 6-
element pattern vectors, made of 6 extracted signal features 
(SF), related to a corresponding output given by the 
percentage of consumed tool life, estimated on the basis of the 
measured tool wear level, for seven identical cutting tool 
inserts. Table 1 reports the 6-SF pattern vectors with the 
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matching percentage of consumed tool life for three of the 
seven identical cutting tool inserts, the life of which was fully 
consumed by the same turning operation.   

Thus, each set of 6-SF pattern vectors, identified in Table 1 
by a block highlighted with the same grey tone, corresponds 
to the complete tool life of one cutting insert. Sensor signal 
acquisition and processing for SF extraction is interrupted 
when the tool life of the cutting insert is fully consumed, 
which is indicated in the table by 100%.  

To carry out the prediction of consumed tool life based on 
cognitive processing of the 6-SF pattern vectors, diverse 
supervised NN paradigms were implemented using the Neural 
Networks Toolbox in MatLab and the Machine Learning 
Toolkit in LabVIEW. 

In all cases, the NN was trained by a number of known 
instances identified by the couples constituted by one input 
feature pattern vector and one output quality value. The 
elements of the input feature pattern vector are the 6 SF 
extracted from the sensor signals, and the correspondent 
percentage consumed tool life is the output quality value. The 
trained NN is then tested with instances unknown to the 
network with the scope to assess the NN performance in 
consumed tool life prediction. 

The implemented NN architectures are characterized by 3 
layers: the input layer with 6 input nodes corresponding to the 
6 SF, the hidden layer with a number of hidden nodes related 
to the number of input nodes, and the output layer with 1 
output node yielding the predicted percentage of consumed 
tool life. The max number of epochs or iterations that the NN 
can perform during the training phase to achieve convergence 
is initially set. If convergence occurs before reaching the max 
number of epochs, NN training is halted. 

The NN training and testing procedure was carried out as 
follows: the input 6-SF pattern vectors and the related 
percentage consumed tool life values for tool life # 1 were 
used for NN training, while the input 6-SF pattern vectors for 
tool life # 2 were used for NN testing. Next, the input 6-SF 
pattern vectors and the related percentage consumed tool life 
values for tool lives # 1 and # 2 were used for NN training, 
while the input 6-SF pattern vectors for tool life # 3 were used 
for NN testing. Finally, the input 6-SF pattern vectors and the 
related percentage consumed tool life values for tool lives # 1, 
# 2 and # 3 were used for NN training and, one at a time, tool 
lives # 4, # 5, # 6 and # 7 were used for NN testing. 

4.1 Neural network implementation in MatLab  

First approach using cascade-forward backpropagation NN 

The cascade-forward backpropagation NN paradigm was 
applied in the first approach with 5 different NN architectures, 
built by varying the number of hidden nodes in the hidden 
layer, for NN learning: 6-3-1, 6-6-1, 6-9-1, 6-12-1, 6-15-1. 

For each NN architecture, the MatLab function ‘newcf’ 
was used to create a cascade-forward backpropagation 
network [12]. The algorithm utilized for NN training was the 
symmetric sigmoid transfer function, converting the NN layer 
net input into its net output, known as ‘tansig’ in MatLab [13].  

Fig. 2 reports the predicted consumed tool life values, 
obtained from the 6-3-1 MatLab implemented cascade-
forward backpropagation NN architecture, ΔTcalculated (%), vs. 
the actual consumed tool life values, ΔTreal (%). 

Table 2 reports the performance of the 5 MatLab 
implemented cascade forward backpropagation NN 
architectures for consumed tool life prediction. 

Second approach using feed-forward backpropagation NN 

The feed-forward backpropagation NN paradigm was used 
in the second approach. Feed-forward NN consist of a series 
of layers: the first layer has a connection from the NN input 
with weights from the input. Each subsequent layer has a 
connection from the previous layer and a weight coming from 
the previous layer. The final layer provides the NN output. 

Utilizing the MatLab Neural Network Toolbox, feed-
forward NN were configured with input layers employing the 
DOTPROD weight function, the NETSUM net input function, 
and the transfer function "purelin" [14]. Each layer's weights 
and biases are initialized with the INITNW layer initialization 
function. Adaption is done with the incremental training 
algorithm that updates weights with the learning function 
"trainlm", i.e. a NN training function that updates weight and 
bias values according to the Levenberg-Marquardt algorithm 
[15]. Performance is measured according to the specified 
performance function "mse", which measures the NN 
performance according to the mean of squared errors. 

The architecture utilised for the feed-forward 3-layer NN 
was as follows: the input layer had 6 input nodes equal to the 
number of SF in the input pattern vectors, the hidden layer 
had 4 nodes, and the output layer had only one node. The 
number of hidden nodes was chosen according to a "feed 
learning" procedure: hidden units are added one at a time until 
an acceptable training speed is achieved.  

Fig. 3 reports the predicted consumed tool life values, 
obtained from the 6-4-1 MatLab implemented feed-forward 
backpropagation NN architecture, ΔTcalculated (%), vs. the 
actual consumed tool life values, ΔTreal (%). 

Table 2 reports the performance of the MatLab 
implemented feed-forward backpropagation NN for 
consumed tool life prediction. 
Table 1. Extracted sensor signal features coupled with the corresponding tool 
wear value for three of the seven cutting tool inserts. 

Tool 
life # 

SF1 SF2 SF3 SF4 SF5 SF6 
Consumed 

tool life (%) 
1 -0.077 230 4.600 48.43 1231 -0.407 13 
1 0.018 254 4.610 47.23 1312 0.039 25 
1 -0.045 438 4.637 48.40 1330 0.736 38 
1 0.028 584 4.724 47.68 1355 2.279 50 
1 -0.025 569 4.815 48.45 1404 -0.165 63 
1 0.241 753 4.769 49.15 1451 -0.223 75 
1 0.047 1545 5.204 49.87 1425 -0.749 88 
1 0.033 1187 4.975 50.67 1395 -0.794 100 
2 -0.060 199 4.653 47.47 1306 0.236 20 
2 0.016 259 4.655 47.65 1304 1.441 40 
2 0.054 474 4.892 48.16 1342 1.016 60 
2 0.092 550 4.773 47.63 1378 -0.439 80 
2 0.051 782 4.817 49.15 1423 -0.834 100 
3 -0.013 149 4.599 47.12 1318 0.386 17 
3 0.009 190 4.652 47.73 1332 -0.016 33 
3 0.039 313 4.689 47.63 1361 0.845 50 
3 0.027 513 4.721 48.53 1391 0.178 67 
3 0.050 732 4.820 48.59 1431 -1.629 83 
3 0.084 1036 4.988 49.20 1434 1.165 100 
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4.2 Neural network implementation in LabVIEW 

In the third approach, the LabVIEW platform was used to 
implement the same 5 cascade-forward backpropagation NN 
architectures as in the first MatLab approach (section 4.1): 6-
3-1, 6-6-1, 6-9-1, 6-12-1, 6-15-1 

The LabVIEW add-on library Machine Learning [16] was 
used for training and testing the NN architectures to compare 
the LabVIEW and MatLab platform effectiveness. Two VIs 
were used: back-propagation learn (BP Learn: training VI) 
and back-propagation evaluate (BP Evaluate: testing VI).  

For each VI, the input data need to be set up. The input and 
output datasets are saved in text files: train input, train output, 
test input, test output. The output of the BP Learn VI is 
connected as input to the BP Evaluate VI. The output of the 
BP evaluate is a 1D vector containing the predicted outputs. 
The number of hidden neurons is specified in the BP Learn 
VI. The training algorithm is the Levenberg-Marquardt 
algorithm. By default, the number of epochs is set to 100. 

Fig. 4 reports the predicted consumed tool life values, 
obtained from the LabVIEW implemented cascade-forward 
backpropagation NN architecture 6-3-1, ΔTcalculated (%), vs. the 
actual consumed tool life values, ΔTreal (%). 

Table 2 reports the performance of the 5 LabVIEW 
implemented cascade forward backpropagation NN 
architectures for consumed tool life prediction. 

5. Online cognitive decision making system implementation 

After the creation of the sensorial knowledge database, the 
online decision making system for tool life assessment can be 
set up. As mentioned earlier, the NN training set is composed 
of sensorial features from three complete tool lives, i.e. three 
sets of 6-SF pattern vectors coupled with the corresponding 
percentages of consumed tool life. 

For the proper implementation of the cognitive online 
system, a dedicated PC is required for the installation of the 
decision making software code and the connection to the CNC 
of the turning machine. Fig. 5 illustrates the information flow 
diagram of the cognitive decision making system throughout 
the machining process. The CNC controller sends the process 
code to the decision making system running on the PC (Fig. 
5a). The system uses this code to identify the machining 
process and, accordingly, the appropriate learned NN, the NN 
trained with the relevant couples of sensorial feature pattern 
vectors and output quality values for the selected process. 

Next, the turning operation starts, the identified NN 
identified through is ready for sensorial data processing, and 
the sensor signal data acquisition is initiated. A sensorial data 
acquisition time window of 1 second was considered 
sufficient to extract the signal features and send them as input 
to the learned NN in order to obtain as output the predicted 
consumed tool life value (Fig. 5b).  

Once the predicted consumed tool life value is obtained, it 
is compared with 1 that represents the end of tool life and the 
need to change the cutting insert. If the predicted consumed 

tool life value is less than 1, another 1 second of machining is 
carried out; otherwise, the turning operation is interrupted for 
tool change. For each successive 1 second of machining, the 
extracted signal features composed of the sensorial pattern 
vectors are coupled with the predicted consumed tool life 
value obtained by interrogating the learned NN. 

These newly generated data, made up of the additional 
couples of feature pattern vectors and predicted consumed 
tool life values, are stored sequentially in a buffer (Fig. 5c). 

 

 
Fig. 2. Consumed tool life prediction results for  the  MatLab  implemented  

6-3-1 cascade-forward backpropagation NN architecture. 
 

 

 
Fig. 3. Consumed tool life prediction results for  the  MatLab  implemented  

6-3-1 feed-forward backpropagation NN architecture. 
 

 
 

Fig. 4. Consumed tool life prediction results for the LabVIEW implemented 
6-3-1 cascade-forward backpropagation NN architecture. 
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Table 2. Performance of the diverse NN approaches for consumed tool life prediction in terms of prediction error given by (ΔTreal - ΔTcalculated) / ΔTreal (%), where 

ΔTreal is the actual consumed tool life and ΔTcalculated is the predicted consumed tool life.  

  MatLab approach using cascade-forward 
backpropagation NN 

MatLab approach using cascade-
forward backpropagation NN 

LabVIEW approach using cascade-forward 
backpropagation NN 

 Consumed tool life 
(%) 

3 
nodes 

6 
nodes 

9 
nodes 

12 
nodes 

15 
nodes 

3 nodes 3 
nodes 

6 
nodes 

9 
nodes 

12 
nodes 

15 
nodes 

TL 2 

20 25.41 13.01 14.36 16.35 34.37 31.89 39.47 45.76 54.81 27.35 71.84 
40 26.09 16.12 15.29 16.36 48.32 35.27 1.96 52.60 8.82 0.22 20.79 

60 40.73 48.72 46.14 41.76 115.01 9.95 55.57 46.08 72.68 54.80 91.68 

80 32.99 66.56 63.69 59.32 85.25 21.22 13.51 7.42 4.00 73.76 6.56 
100 77.22 85.36 84.27 83.59 92.70 0.00 24.76 25.00 16.49 17.56 7.30 

Average error (%) 40.49 45.95 44.75 43.48 75.13 19.67 27.05 35.37 31.36 34.74 39.64 

TL 3 

0.17 22.63 17.32 19.22 20.56 8.89 21.76 55.94 51.53 58.15 111.15 47.68 
0.33 38.43 27.11 29.32 29.96 17.18 37.41 56.15 5.678 58.35 163.17 47.93 
0.50 63.84 46.76 46.41 45.78 40.92 37.44 31.09 15.42 34.53 17.43 18.16 
0.67 82.78 66.34 65.98 65.09 62.42 17.23 21.54 16.13 25.47 17.59 6.83 
0.83 90.94 94.30 96.56 99.90 101.12 8.33 2.59 8.99 2.54 31.99 21.83 
1.00 63.62 63.97 68.08 69.74 132.43 8.42 11.52 4.75 5.95 23.87 32.44 

Average error (%) 60.37 52.63 54.26 55.17 60.49 18.96 29.81 17.09 30.83 110.87 29.15 

TL 4 

0.17 44.02 27.83 31.33 45.07 23.29 27.49 31.96 63.69 84.29 74.01 145.04 
0.33 43.90 47.35 44.62 41.84 39.59 40.12 15.55 43.49 35.21 110.55 22.69 
0.50 76.89 78.93 79.29 72.62 37.97 8.78 26.86 57.85 58.59 64.56 45.79 
0.67 64.53 67.89 68.87 71.55 55.10 1.44 20.80 1.33 2.78 23.18 9.24 
0.83 82.48 82.91 82.62 82.07 80.28 4.51 6.85 0.10 0.45 74.55 0.28 
1.00 82.19 88.36 86.59 82.07 107.53 0.65 3.56 11.64 13.41 69.43 18.95 

Average error (%) 65.67 65.55 65.55 65.87 57.29 13.63 17.60 29.68 32.46 69.38 40.33 

TL 5 

0.14 22.89 1.52 1.34 29.46 2.82 46.27 121.69 15.14 120.02 128.16 120.12 
0.29 37.69 35.97 38.04 41.80 23.77 43.11 11.62 25.07 18.43 131.49 18.02 
0.43 70.01 77.29 72.99 63.84 44.93 29.21 12.63 102.81 3.96 33.90 4.48 
0.57 57.73 61.88 64.08 60.72 52.00 4.82 1.65 46.92 9.22 7.41 8.77 
0.71 90.58 95.43 94.97 92.73 63.76 22.89 3.20 29.30 10.65 64.22 10.20 
0.86 100.68 96.05 94.69 97.01 101.83 6.70 27.65 9.09 17.82 17.42 18.41 
1.00 92.29 96.17 88.48 65.80 95.07 9.87 2.49 19.86 5.40 40.99 4.93 

Average error (%) 67.41 66.33 64.94 64.48 54.88 20.45 25.85 35.46 26.50 89.08 26.42 

TL 6 

0.17 66.09 63.83 63.86 62.22 82.62 92.16 124.39 175.52 175.66 113.84 163.99 
0.33 43.87 46.06 46.92 45.41 84.47 32.99 24.47 39.57 42.17 37.49 33.48 
0.50 80.01 88.91 78.12 69.15 93.58 25.65 22.78 77.81 56.24 24.39 32.69 
0.67 94.09 98.13 96.26 93.83 120.71 37.33 33.66 46.46 43.67 50.01 36.80 
0.83 98.23 99.43 99.34 102.19 80.66 9.64 52.52 19.79 19.69 22.62 23.18 
1.00 89.87 94.72 87.98 65.94 65.52 5.11 181.09 5.28 12.02 34.31 30.44 

Average error (%) 78.69 81.84 78.74 73.12 87.92 32.11 139.82 77.40 74.91 63.78 70.10 

TL 7 

0.17 11.32 8.73 10.25 32.65 13.46 6.53 10.36 48.63 39.70 165.02 91.65 
0.33 52.38 56.92 51.54 49.39 25.76 50.49 11.68 72.49 56.17 109.49 51.60 
0.50 75.28 77.35 73.94 70.91 54.01 16.21 22.23 54.71 47.89 174.46 32.45 
0.67 69.12 71.78 71.87 68.48 54.29 11.55 8.31 7.13 7.27 18.89 5.19 
0.83 90.89 87.32 90.02 88.85 53.98 6.69 26.39 5.21 8.46 122.08 1.16 
1.00 107.68 97.59 102.91 89.57 65.79 12.67 25.55 2.41 2.91 154.37 23.89 

Average error (%) 67.78 66.61 66.76 66.64 44.55 7.05 17.42 31.76 27.07 124.05 34.32 

 
Fig. 5. Information flow diagram of the cognitive decision making system throughout the machining process. 
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This procedure is repeated till the predicted consumed tool 

life value reaches 1, attaining the maximum allowable tool 
wear and calling for the cutting insert change. Once this event 
is verified, an output STOP command is sent to the CNC 
controller in order to interrupt the turning operation, and an 
alert sign is displayed on the CNC controller screen warning 
the operator to change the cutting insert (Fig. 5d).  

In the meantime, the original training set, initially employed 

for NN learning, is modified in the following manner. The first 
tool life sensorial dataset, composed of the coupled sensorial 
feature pattern vectors and consumed tool life values, is 

removed. The new tool life sensorial dataset is inserted and NN 

is retrained with the updated training set. After changing the 

cutting insert, the retrained NN is employed to predict the 
consumed tool life value of the new insert. 

6. Conclusions 

Sensor signal feature pattern vectors, obtained from 
experimental sensor monitoring of turning tests, were coupled 
with consumed tool life percentages and used to develop a 
cognitive decision making system for tool life assessment. 

Neural network (NN) based pattern recognition for tool life 
consumption prediction was implemented on the basis of 
known instances given by the couples of input sensorial 
feature pattern vectors and correspondent output consumed 
tool life percentages. 

Two NN types, a cascade-forward NN and a feed-forward 
NN, were investigated after implementation with the software 
packages: MatLab and LabVIEW. The preliminary results 
showed that the feed-forward NN implemented with MatLab 
provided the best performance in comparison with the 
cascade-forward NN implemented with MatLab and the 
cascade-forward NN implemented with LabVIEW. 

On the grounds of the obtained results, an online cognitive 
decision making system was designed and set up for real-time 
tool life monitoring during turning. The system detects sensor 
signals from a given turning operation, processes them to 
extract relevant signal features, constructs input feature 
pattern vectors and forwards them to the appropriate learned 
NN for tool life prediction in the selected turning process. 

If the predicted consumed tool life is lower than the usable 
tool life, a further machining term is performed. For each 
successive machining term, the extracted sensorial feature 
pattern vector is coupled with the predicted consumed tool life 
and stored sequentially in a buffer. When the predicted 
consumed tool life equals the usable tool life, the turning 
process is interrupted and the operator is warned for cutting 
tool change. Concurrently, the previous tool life dataset is 
removed, the new tool life dataset is inserted and the NN is 
retrained with the updated training set. The newly learned NN 
is then used to predict the consumed life of the new cutting 
tool. In this way, continuous learning in machine intelligence 
is realised by exploiting the NN capacity to constantly learn 
and improve through interaction with the sensorial data 
acquisition and processing system. 

The most important aspect of the intelligence of the 
developed cognitive system is its capacity to constantly learn 
and improve through interaction with the environment in 
which it acts, i.e. continuous learning from the inputs to the 
cognitive system along time creating a continuous feedback in 
the machine learning algorithm.  
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