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Abstract 

Debart, F., P. Enjalbert and M. Lescot, Multimodal logic programming using equational and 

order-sorted logic, Theoretical Computer Science 105 (1992) 141-166. 

In our previous works a method for automated theorem proving in modal logic, based on algebraic 

and equational techniques, was proposed. In this paper we extend the method to multimodal logic 

and apply it to modal logic programming. Multimodal systems under consideration have a finite 

number of pairs of modal operators (Oi, q i) of any type among KD, KT, KD4, KT4, KF, and 

interaction axioms of the form q iA+ 0 jA. We define a translation from such logical systems to 

specially tailored equational theories of classical order-sorted logic, preserving satisfiability, and 

then use SLD E-resolution for theorem proving in these theories. 

Introduction 

In our previous works [4,3] we proposed a method for automated theorem proving 
in modal logic, based on algebraic and equational techniques. The aim of this paper is 
twofold. Firstly, we extend the method to multimodal logic developing [9]; secondly, 
we investigate its application to modal logic programming. 

The multimodal systems under consideration have a finite number of pairs of modal 
operators pi = (0 i, 0 i) (“modalities” in this paper) declared with some arbitrary 
“modal type” among KD, KT, KD4, KT4, KF. The standard possible-worlds seman- 
tics is straightforwardly extended: with each modality pi, a binary “accessibility 
relation” R, between worlds is associated, with the properties corresponding to the 
assigned modal type, respectively: seriality, reflexivity, seriality and transitivity, reflex- 
ivity and transitivity, or functionality. Moreover, we can assume inclusion relations 
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Rjc Ri, the semantical counterpart of interaction axioms of the form q ++ 0 jA. 

Examples are given in Section 1 to illustrate the use of such logical systems in 

knowledge representation. 

Concerning automated theorem proving (ATP in short), two different ways open. 

We may design specific “direct” methods, dealing with multimodal formulas them- 

selves. Or we may first use some translation to classical logic, and then apply (or 

adapt) some classical ATP technique. The method presented in this paper is in the 

second manner. We believe that recent experience shows that it is the right way to do; 

this important point is discussed in [4] and in the conclusion. It works as follows. 

With any multimodal system S, an order-sorted signature C(S) is associated, together 

with a set of equations E(S), and a translation T is defined in such a way that a given 

multimodal formula B is S-satisfiable iff its translation T(B) is E(S)-satisfiable. Then 

the various methods for ATP in equational order-sorted theories can be used. We 

have developed a method we call C-E-resolution, which is a combination of E- 
resolution defined by Plotkin [30], already used in [4, 31, and C-resolution (without 

paramodulation) as in [31, 331, which seems especially well fitted since, as in the 

monomodal case, all the properties of the modal operators are coded in the unifica- 

tion algorithm. 

If one considers Horn clauses (in the usual sense) and SLD C-E-resolution, using 

standard theoretical results, we immediately get a general framework for logic pro- 

gramming in various multimodal systems. For instance a temporal logic program- 

ming system which subsumes Abadi and Manna’s TEMPLOG [l] is obtained, whose 

completeness immediately follows from our general theorems. 

The paper begins with a brief introduction to multimodal logic. In Section 2 we 

introduce the order-sorted languages and equational theories in which multimodal 

logic is translated, and study the translation. Section 3 addresses the main technical 

difficulty, unification; it presents a unification algorithm for the considered order- 

sorted signatures and equations. which terminates on the fragment obtained by 

translation from multimodal logic. Section 4 then presents SLD Z-E-resolution and 

illustrates the method with two examples. Finally, a comparison with other ap- 

proaches of modal logic programming is discussed in the conclusion. 

1. Multimodal logic 

In this section, we define the syntax and semantics of multimodal systems and 

mention some of their applications in knowledge representation and processing. For 

further details, the reader may consult e.g. [7, 181. 

Let E be a first-order signature consisting of a set G of function symbols (denoted as 

,fi y, h ) and a set P of predicate symbols (denoted as p, q, r . ) of any arity. Each 
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one is declared rigid or ,flexible. We are also given a set of modal operators Oi and 

q i for i = 1, . , r. Each pair pi =( 0 i, Oi) will be called a modality. In this paper, 

a modal system name is an element of { KD, KT, KD4, KT4, KF} (the terminology 

comes from the axiomatics of the various systems of modal logic). A multimodal system 

is S=(Z, (Mi)i=l, ,*, <) consisting Of 

- a signature E, 

~ foreveryi=l, . . . . r, a modal system name Mi - the “type” of the modality (0 i, O,), 

~ a set of declarations pi < /lj for some pairs (i, j) of distinct elements of { 1, . . . , r}. 

Terms and formulas are defined in a standard way using a set V of variables 

(denoted as x, y, z . . .), the classical connectives and quantifiers A, V , 1, V, 3, and the 

modal unary operators (Oi, Oi)i= 1. .,I. 

1.2. Semantics 

Given some multimodal system S, an S-interpretation .f (or Kripke structure) 

consists of 

~ a set W, elements of which are called worlds, 

~ a set of binary relations on W, { Ri/i = 1, . , r}, the accessibility relations, 

~ a set D, the domain of .f (or discourse domain), 

- for every function symbol ,f of arity n, and every world w, a function f.y : D”+ D, 

- for every predicate symbol p of arity n, and every world \v, a function py : D”+ { 0, 1 }. 

Hence, for every world w, we have a classical interpretation 3 w with the same domain 

D, where the f‘; and py interpret the function and predicate symbols. Iff (p) is a rigid 

function (predicate) symbol, then f? (p?) does not depend on M?, and does if this 

symbol is jexible. Furthermore, we suppose that 

(1) for every i, Ri has the following property according to Mi: serial (Vx 3y x Ri y) if 

Mi = KD; reflexive if Mi = KT; serial and transitive if Mi = KD4; reflexive and transi- 

tive if Mi = KT4; functional ( VX 3 ! J? x Ri y) if Mi = KF; and 

(2) if pj<pi then RjcRi. 

A valuation of the variables is a function rr : V+D. If x is a variable, d an element of 

D, CT: denotes the valuation equal to 0 except that [~(x)=d. Given some interpretation 

X, some valuation rr, and some world w, the interpretation of a term t relative to 9, cr, 

and w, denoted as (X, C, w) t is defined classically as the value of t in .g” for the 

valuation 0. Similarly, the satisfaction of a formula relatively to .g, CJ, and w is defined 

by 
X,a,~~I=p(t~ ,..., t,) iff pY((.f,o,w)t, ,..., ($,o,w)t,)=l, 

.F,a, WI= OiLI iff for all w’ in W such that wRjw’, .Y,a,w’j=B, 

X, CT, WI= OiB iff there is some u” in W such that w Ri w’ and .Y, CJ, w’+ B, 

and the classical rules for the boolean connectives and the quantifiers. 

We say that a formula B is S-satisjable iff there is some S-interpretation 9 and 

some [T, w. such that Y, cr, w. + B. The notions of validity and logical consequence are 

then defined in a standard way. 



Finally, we say that a formula is in rzeyatior~ normu/ ,form (NNF) if the scope of every 

negation sign is an atomic formula. Using the logical equivalence between 1 O,lB 

and OiB, holding for every formula B, it is easy to check that for any formula there is 

an equivalent one in NNF. 

Remarks. (1) There exist axiomatics for these multimodal systems (see [7, 181). 

Especially, the relation < on modalities is axiomatised by a set of interaction axiom 

schemas of the general form (Axij) O,A+O,A if ~(j<~‘i. 

(2) All modalities we consider are (at least) serial. The reason will be explained later. 

Also observe that all the .B ““s have the same domain. Such interpretations are said to 

be “with constant domain”. A smoother condition often considered is that 9” be 

included in .1”” if W’ is accessible from W. This restriction of our theory could possibly 

be relaxed, but this should be carefully investigated. On the other hand, we deal with 

rigid or flexible symbols as well. 

(3) If (L, 0) is of type KF, it is easy to see that for any formula A, n A and 0 A are 

equivalent. 

(4) Let < * be the pre-order generated by < Clearly, if 11 j < *pi and pi < *pj, then 

the two modalities are equivalent, i.e. niA and 0, A are logically equivalent, for any 

formula A. Similarly. since all accessibility relations are serial, any modality /‘i smaller 

than a KF one 11, is equivalent to ~Lj. Moreover. if /lj is of type KT, or KT4, they are 

degenerated: LliA is equivalent to A for any A. And if ~j is of type KD4, they are 

quasi-degenerated: _ i( A = CI i A) is true in every world. 

Hence, throughout the paper WC .suppo.se tl~ut < * is acyclic (in other terms, the graph 

oj < is u DAG) md thp ndalitirs of type K F we rnininzal. 

The interest in multimodal logic arises from the possible mixing of the various 

modal operators with various interpretations. 

The first example concerns the so-called epistemic logic. The idea is to formalise the 

expression “agent i knows (or believes) that . .” by means of modal operators J i of 

a certain modal type according to the notion of knowledge or belief one has in mind: 

generally KT, KT4, KD4, or KT5 not to be considered in this paper (see e.g. [19] for 

details). A “world” \v’ such that \t’ Ri w’ in the semantics is some “state of affairs” 

compatible with the knowledge of agent i in state W; we call it after Hintikka an 

epistemic alternutive to ~1. Observe that, if 5I ! x p(u) is true, the formula 3x rJ,p(x) is 

a good formalisation of “agent i knows who has property p”, while n i 3.x p(x) means 

only that agent i knows that there is such an element s. An interaction axiom (A.~ij) is 

read “agent j knows everything agent i knows”. 

Another interpretation is ternporcrl logic, in which we consider the set of worlds as 

time instorlts. A system of special interest is the [inear discrete temporal logic, which 
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received much attention for parallel program verification [2]. The language possesses 

two modalities p,=(O,, 0,) and pL2=(c12, 0,). The “worlds” of the Kripke struc- 

ture we have in mind constitute an infinite sequence of “instants” to, cl, t2, . . . , t,, . . .; 

R 1 and R2 are respectively the “next instant” and “future” relations: ti RI tj iff j = i + 1 

and tiR2tj iff i<j. Hence, (Gr, 0,) is of type KF and (O,, 0,) of type KT4, and 

pI <p2. Of course, these constraints do not force the sequential structure of instants. 

We shall call a srandard interpretation as the one in which this structure is indeed 

isomorphic to the structure of natural numbers with the successor (RI) and the order 

(R2) relations. Since R, is functional, 0 1A and 0 1 A are equivalent; following Pnueli 

who introduced this system, we shall denote by “ ” 0 1 or 0 1 and simply write 0 for 

O2 and 0 for 0 z. An example of formula is then the following: 0 (p-L q), which 

says that always (in the present and in the future) if p is true, then q will be true in the 

following instant. 

Finally, we may consider “worlds” as different “states of affairs” obtained by 

performing actions. We obtain I/~namic logic [20]. With each modality is associated 

some class of actions and 0 i A is read: after performing any action “of kind i”, A will 

be true; conversely, OiA is read: it is possible to perform an action of kind i and then 

A will be true. 

We give now two examples illustrating and mixing these interpretations. 

Example 1.1 (The safe problem). John must open a safe. He does not know the 

combination but knows that it is written on some puper which is in the desk in the room. 

Find a sequence of actions such that John knows it will open the sgfe. 

This problem was formulated in [25]: We shall first formalise the problem 

in some adequate multimodal logic. Later on we shall show how to solve it 

automatically. 

The siynature contains the following predicate symbols: comb(X, S) for “X is the 

combination of the safe s”, written-in ( Y, L) for “ Y is written in location L”, open(S) 

for “S is open”; and the constant symbols safel, desk1 denoting the safe and the desk 

of the problem. All predicates are flexible since their denotation may change accord- 

ing to various states or alternatives: constants safe1 and desk1 are rigid: they are, so to 

speak, proper names. 

We use the following modal operators. We write [mod] and (mod ) for Ornod and 

0 mod and for each, we give its intuitive meaning and its modal type. 

- [know].4 “John knows that A” KT4 (or KT) 

- [read] A “After John performed some reading, 

A must be true” KD 

- [dial] A “After John performed some dialing, 

A must be true” KD 

- [actions] A “After any action, A is true” KT4 

- CslA “In every state A is true” KT4 
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The intended meaning is that an “action” is any sequence of reading or dialing. [s] is 

a “super modality” used to express properties true after any action and in any 

epistemic alternative. 

Hence, we have the following interaction axioms: 

[actions] A--f [read] A, [actions] A -+ [dial] A, 

[s] A + [actions] A, [s] A+[know] A, 

and the corresponding order: /iread < ~,,tions, etc. 

But we want more. Let R* denote the reflexive transitive closure of the relation R. 

In the intended interpretation: Ra,-tions = (RreadU Rdial)* and R, =(RactionsU Rknow)*. We 

shall say that such an interpretation is a stundard one. 

The problem is coded in the following set of modal formulas (the variables are in 

capital letters). 

(1) [s] VSV’LVX ((comb(X, S)A written_in(X, L)) 

-+(read) [know] comb(X, S)). 

(2) [s] VS((3X [know] comb(X, S))-+(dial) open(S)), 

(3) [know]3X(comb(X, safel) A written_in(X, deskl)), 

from which we want to infer 

(4) [know] (actions) open(safe1) 

These formulas may be read as follows: 

(1) In every state, for every (safe) S, (location) L, and (number) X, if X is the 

combination for S and is written in L, then there is some reading action after which 

John knows that X is the combination of S. 

(2) In every state, for every (safe) S, if John knows what is the combination of S, then 

there is some dialing operation John can perform and after which S will be open. 

(Observe the standard formalisation of “knowing what . ..“) 

(3) John knows (in the actual present state) that the combination of safe1 is written 

in deskl. 

(4) John knows that there is some complex action after which the safe will be open. 

Note that the “goal” (4) is not quite satisfactory since we have no way to name 

precisely actions in the language of multimodal logic. We shall see how the translation 

solves this problem. 

Example 1.2 (TEMPLOG). We now consider linear discrete temporal logic. Abadi 

and Manna [l] have defined a subset of the set of temporal formulas and a so-called 
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temporal SLD resolution for this class of formulas. The resulting system is called 

TEMPLOG. Here is a typical TEMPLOG program: 

fib(O) 

fib(l) 

q ( fib(X)cfib( Y), fib(Z),X is Y+Z) 

which defines the flexible predicate fib in such a way that fib(X) is true at the nth next 

instant if X is the nth element of the Fibonacci sequence. The constants 0, 1,2, . . . and 

+, = are rigid, since arithmetics and the identity relation does not change in time. 

A query for this program is 

tfib(R) 

and the answer in TEMPLOG will be the sequence of values of R at the successive 

instants: 0, 1, 1,2,3,5, . . . In other words: fib(O), ~,fib(l), . . . . i ‘L’ ,fib(5), . . . are conse- 

quences of the clauses of the program in all standard interpretations. 

2. Path theories and the translation from multimodal logic 

2.1. Introduction: ,fiames and algebraic fhmes 

Understanding the proposed translation from modal to classical logic needs a re- 

consideration of Kripke semantics we shall present now before the formal definitions. 

For the sake of simplicity, let us consider standard modal logic, with only one 

modality. 

Interpretations for modal logic include a relational structure ( W, R) consisting of 

a set of “worlds” and an “accessibility relation” in order to interpret the modal 

operators. Moreover, various constraints on this structure, called a frame, define the 

various modal system types. The first key idea for our method is to replace this 

structure by an algebraic one ( W, A, ! ), where 

~ W is as usual a set of “worlds”, 

~ A is a set, elements of which are called operators, 

~ !isafunction WxA+W. 

Let us call it an algebraic frame. Clearly, given any algebraic frame ( W, A, ! ) one can 

define a frame ( W, R ) by (we use infix notation for !): 

(*) MB R MI’ iff there exists an operator UEA such that w!u = w’. 

Conversely, it is not difficult to see (proved in Section 2.3 in the general case) that 

given some frame ( W, R) one can define an algebraic frame ( W, A, !) such that (*) 

holds. Informally, we can represent things as follows. Consider ( W, R) as a graph. Let 

A be a set of labels such that for every vertex w, and every a in A, there is one and only 
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wl 

“7 
w2 

b 

Wl w2 

a b 

RCWxW 

a a 

A = (a,b) 

!:WxA-+A 

w R w’ 3c(<A w!rx=w’ 

Fig. 1. 

one edge with source w labelled by a. We define w! a as the only u” such that (w, w’) is 

labelled by a. The correspondence is illustrated in Fig. 1. Observe that since ! is 

a function (defined everywhere), R is serial. This is the reason why KD is for us the 

minimal modal system. 

But there is one problem left: What is the counterpart in an algebraic frame of the 

properties of the associated “relational” frame? The nice fact and the second key idea 

is that the properties of reflexivity, transitivity and functionality, are mirrored in 

equutionul constraints on the set of operators A. Reflexivity, is ensured by assuming 

that there is a unit element 1, i.e. such that w!l =w for all w; we have transitivity if 

a composition operation * is defined on A with NJ! (a * a’) = (w! a)! a’ (again we use infix 

notation); the relation R is functional if A is reduced to a single operator (see Fig. 2). 

The reader can easily imagine how to extend these ideas to the multimodal case: one 

set of operators Ai will be associated with every modality pi, instead of the accessibility 

relation Ri. And each of them will have to satisfy the set of equations corresponding to 

the modal type of ,nLi. Moreover, if /lj<pi, Rjc Rj and, therefore, Ajc Aj also. 

Reflexivity 
X3’ 

w!l =w 

Transitivity 

!1 . , 0 wcw2 w!a!a’ = w!(a*a’) 

. 
a*a’ W’ 

Functionality l a,,a,,a, 

Fig. 2. 
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In the next section we introduce the systems of first-order logic with ordered sorts, 

and the equational theories (called “path theories” for reasons presented below) 

adequate to these semantical structures. The translation from modal to path theories 

is defined and studied in Section 2.3. 

2.2. Path theories 

2.2.1. Order-sorted logic 

Syntax. We adopt notations from [23]. A signature for logic with ordered sorts is: 

C = (( 5, < ), G, P, Dee), where (s, 6) is a partially ordered set of sort symbols, G 

and P are, respectively, sets of function and predicate symbols, and Dee a set of 

declarations: 

f: 91 x ‘.’ x §n+§n+ 1 if f is in G, p: 91 x ... x q+BooO if p is in P 

where the 9i)s are sort symbols and BooU a distinct symbol. §,, + 1 is the range sort 

of 1: Note that a function or predicate symbol may have several declarations. 

We only impose that the arity II is the same in all declarations. Given some set 

{t’i:si)i=1,2.... of sorted variables one can build well-formed terms and formulas 

in an obvious way, and define a relation “the term t has sort §” - t : .s in symbolic 

notation - in such a way that if t : s and s< E+, then t: 4’. We assume that < is the 

partial order generated by some relation < given by some set of order declarations: 

§i < sj. Terms, formulas, clauses, etc., are defined as usual. 

Semantics. Different interpretations may be defined for such languages [16, 17,23, 

321. We shall use the following one, adequate for our purpose. An interpretation for 

I= (( S, d ), G, P, Dee) as above is some triple: 

where 
_ each D, is a nonempty set, the carriers for sorts .s. Moreover, D,c DI if §< b; 
_ each fJ is a function such that for every declaration f: s1 x ... x sn+s,,+ 1, for every 

(a,, ...,an)ED,I x ... xD,,,, fJ(a,, . . ..a.,) is defined and belongs to Dsm+,; fJ is unde- 

fined otherwise; 
_ each qJ is a predicate such that for every declaration q: .sl x ... x q+EhmU, for 

every (al, . . . . a,,)sD,, x ... x D,,, pJ(al, . . . . a,,) is defined, and is undefined other- 

wise. 

If J is some interpretation, u a term and A some formula, the value of u in J for c, 

denoted as (J, a)~, and the relation “A is true in J for a”, denoted as J, a+ A, are 

defined in the usual way. The usual definitions of validity, satisfiability, etc., follow. 

2.2.2. Path theories 

Language. Consider some multimodal system S=((G, P),(M,)i, I, ,I, <) as in 

Section 1. We define a signature C(S) = (( ~5, <), G’, P’, Dee) as follows: 
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~ S= ( W, AI, . . , A,, LI], where D is the sort for elements of the discourse domain, 

Wfor worlds, and the Ai’s for operators on worlds. 

~ Aj<Ai iff pj<pi. 

- P’=P. 

~ G’=Gut?, where O= (e,!, *. 1 JUlai/Mi=KF), where the Q’S are fresh symbols. 
_ if f has arity II and p arity ~1 in S, 

j’: D”+D and p: D”-+5aaoO (if they are rigid) 

.f: Mvx D”+D and p: VVx D”+&DoO (if they are flexible) 

are in Dee and also 

El MY, !: MVXAi~MV for every i=l,...,r, 

1: Ai i for every i such that Mi is KT or KT4, 

*:Ai x Ai-+Ai for every i such that Mi is KD4 or KT4, 

ui:Ai for every i such that hili is KF. 

We use infix notation for ! and *. We decide that * and ! associate to the left, so 

that a!b!c=(u!b)!c and a*b*c=(u*b)*c. The set of variables is split into V’= 

{x: D,,y: @z: @...) and R= 1’~: AI,,fi: Aij, 1. The language built on Z(S) is the 

language of the path theory associated with S. Formulas in this language will be called 

puth formulas. 

Note that path formulas do not contain any variable of sort o/o! so that the only 

terms with this sort have the general form c!a’ !‘..!ak, for some (possibly empty) 

sequence of terms ~j: A i,. The reader can fruitfully interpret such an expression as 

denoting some world which can be reached from an “initial” world E through some 

“path” whose “transitions” from one world to another are labelled by the aj’s. 

Hence, an interpretation for the language of a path theory can be written as 

l=(W,A,,...,A,,D,G;,P;), 

where W, Ai, D are the carriers for sorts MY,Aii, D, respectively, and G;, Pi the 

interpretation of symbols in G’ and P’. Moreover. if A i < A j is in C, then Ai c Aj. 

Equationul throries. Finally, with every modal system name Mi we associate a set of 

equations E( AI,): 

E(KD) = 8, 

E(KT)=j\v! 1 =w), 

E(KD4)=(w!(zxcc’)=(\t’!cc)!cc’, (,*,‘)*,“=.*(,‘*.“)~, 

E(KT~)=E(KD~)uE(KT)u(s* 1 =a, 1 *~=a), 

E(KF)={a=cri), 



Multimodal logic programming 151 

where the z’s in E(Mi) have sort Ali and w is a variable of sort Moused only in these 

equations. With any multimodal system S we associate the set of equations 

E(S)= Ui=l,,,,,,E(Mi) the path theory for S. 

A a-E(S)-inrerpretation is an interpretation for C(S) which satisfies E(S). A set 

of closed formulas 9 on C(S) is E( S)-satisfiable if it is satisfied in some C( S))E( S)- 

interpretation. A formula A is an E(S)-consequence of F (FkECS, A) if the universal 

closure of A is true in every ,E( S)-E( S)-model of F. (We shall generally write simply 

E( S)-interpretation, E(S)-satisfiable, etc.) 

If we orient the equations of E(S) from left to right, we obtain a rewriting system 

R(S). By careful examination of the possible critical pairs one can check the following 

proposition. 

Proposition 2.1. For any multimodal system S, R(S) is canonical. 

Hence, every term t has a unique normal form, denoted as t 1, and we have an easy test 

for equality modulo the set of equations E(S). This remark will be useful later. 

2.3. Translation jrom modal logic to path theories 

Let T be the function from the set of multimodal formulas to the corresponding set 

of path formulas defined by 

T(F)= r(s, F), 

where t is an intermediate function which, given a KY-sorted term 71 and a modal 

formula or term, specifies a path formula or term. t is recursively defined as follows: 

t(rr, x)=x if x is a D-sorted variable, 

t(~,f(rl,...,t,))=.f(t(x,r,), . . ..@.r,)) if f is rigid, 

r(n,f(r,, . . ..r.))=f(r? t(n, 511, . . ..t(% 7,)) if f is flexible, 

r(n, P(S,, . . . . T,))=P(@n> TI), . . ..t(T G)) if p is rigid, 

r(% P(S,, ...> T,))=P(?r,t(71,7.1),...,t(7(, ‘b,)) if p is flexible, 

t(7c,1F)=1t(7r,F), 

t(aF,VF,)=t(~r,F,)Vt(n,F2), 

t(nn,F, AF,)=t(n,Fl)A t(n,Fz), 

t(lc, VxF)=V.x: Dt(n,F), 

t(n,3xF)=3x: Dt(x, F), 

t(n, EiF)=Vx: Ait(n! a, F) where z is not in Var(n), 

t(z, OiF)=3%: Alit(n!X, F), where CI is not in Var(z). 
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Example. Let G = 0 1 0 2 3.~ 0 3p(,f‘(x)), with p flexible and f rigid. Then 

T(G)=v’~:Al,v’P:~~3s:~3~:Ai3p(E!r!P!~,f(x)). 

Proposition 2.2. Let S be a multimodul system and B a modal ,formulu 

B is S-satisfiable $f T(B) is E(S)-satisfiable. 

Proof 

Lemma 2.3. Let S be some multimodul system and .f some interpretation ,for S, 

W denoting the set of worlds und Ri for i = 1, ( r the uccessibility relations. There exist 

r f&~ilies A i of mappings from W to W, such that 

~ Ri= Uat*, a, and 
~ {f Ric Ri, then Aic Aj. 

Moreover, [f Mi = KT, then IdEAi; if Mi= KD4, then Ai is u sub semigroup of the 

semigroup of‘ mappings ,from W to W; If ML= KT4, then Ai is a submonoid qf the 

monoid of mappings ,from W to W; if Mi= KF, then Ai is reduced to one singleton. 

Proof of Lemma 2.3. We have assumed that the graph of the relation < on modalities 

is a DAG. We build the Ai’S step by step, beginning with the minimal PCS. For every 

i= 1, . . ..r let Bi= (j/pj<pii and BRi= ujtB, Rj. Suppose that k is such that Aj has 

been built for each j in B,; it is easy to check that at each step of the construction there 

exists at least one such k. Let d = Rk’\,,BRk and for every w in W, A,,= {w’/wd~~‘~. Let 

H be the least upper bound of the cardinals of all the d,‘s, and, for every \v, .f, some 

surjective mapping from H to A,,,. For every 11 f H we define a mapping a,, : W-+ W by 

Uh(M’)=,fM,(h). Clearly, A,.= U~,~nah. Let Qk=(UjsBr Aj)u (a,,/heHj. We Set 

- Ak=SZk if Mk=KD or KF, 

~ A,=!22,u{ldl if Mk=KT, 

~ Ak is the semigroup generated by Qk in the monoid of mappings from W to W if 

Mk = KD4, and the monoid generated by Q2k if Mk = KT4. 

One can check easily that the requirements of the lemma are fulfilled. Observe in 

particular that if Mk=KF, then Bk is empty and H = 1, so that Ak is reduced to one 

singleton. q 

Proof of Proposition 2.2 (Continued). Let S be some multimodal system and 

I=( W,A1,..., A,, D, G;, Pi) some E(S)-interpretation. We build an S-interpretation 

[I] as follows. The set of worlds and the discourse domain are, respectively, Wand D. 

The accessibility relations are defined by 

IV Ri IV’ iff there exist some u in Ai such that M”= VV!,U 

For every \V in Wand every n-ary predicate symbol p of P, 

- P;;](x, , . ., .x,)=p,(.~, , ,x,) if p is rigid, 

~ Pfi,(X,,. ..,X,)=p[(M’,X 1, . , x,) if p is flexible, 



and we give a similar definition for Gt,,. One can check easily that [I] is an 

S-interpretation. If 0 is some valuation of the variables in VuQ, let (T” be its restriction 

to v. 

Lemma 2.4. For uny term u and every ,formula B qf u multimodal system S, every 

E(S)-interpretation I, rtlery term 7c of‘ sort VV, and etrery valuation O, 

(i) (I,o>t(7C,U)=(CIl,~y,(I,~)TC)u, 
(ii) I, oI= t(n, B) iff [r],r~~, (I, 0)7-l= B. 

Proof of Lemma 2.4. The proof is easy, by induction on the structure of terms and 

formulas. 

Lemma 2.5. Let S be some multimodul system, 9 an S-interpretation, wO some world in 

,f. There exists some E( S)-interpretation I such that [I ] = .Y and E~ = wO. 

Proof of Lemma 2.5. I = ( W, A, . , A,, D, G;, Pi) is defined as follows. Wand D are 

the sets of worlds and discourse domains of .Y’, respectively. We build the Ats as in 

Lemma 2.3. We set 

~ w!,u=u(w) for all CI in U,A,, 

~ u*~u’=u a for all u,u’ in some Ai such that Mi= KD4 or KT4, 

~ lr=Id, SO that lIEA, if Mi=KT or KT4, 
_ Ui, = the unique element of Ai if Mi = KF. 

The rest of G; and Pi are defined in the obvious way. 0 

Proof of Proposition 2.2 (Conclusion). Suppose B is satisfiable, and let X,0, ~~~~ /= B. 

Let I be as in Lemma 2.5. By Lemma 2.4 I,a’I= T(B) for any CJ’ such that a;=~. 

Conversely, if I,af=T(B), then [1],a,,(I,a)~l=B and B is satisfiable. 0 

2.4. The closure propert?, 

If R is some relation, let R , R ‘, R* denote, respectively, the reflexive, transitive and 

reflexive-transitive closures of R. Let .J be some S-interpretation for some multi- 

modal system S as in Section 1, and for every k = 1, . , r, B, and BRI, defined as 

previously. 

Definition. We say that 9 has the closure property w.r.t. some modality pk if 

~ R,=BR, if M,=KD, 

~ Rk=(BRk) if hilk=KT, 

~ Rk=(BRk)+ if Mk=KD4, 

~ R, = (BR,)* if Mk = KT4. 
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The “standard models” considered in Examples 1.1 and 1.2 are precisely those having 

the closure property. No complete calculus w.r.t. models with the closure property can 

be produced for the whole language of first-order multimodal logic in the presence of 

“transitive” modalities [2]. But there are useful fragments for which our method is 

complete. In particular, the fragment corresponding to TEMPLOG program (see 

Section 4). Note also that the propositional version of our multimodal system, even 

with closure properties, is decidable since it can be embedded in propositional 

dynamic logic [20]. 

Definition. Let I be some E(S)-interpretation and BAI, = UjtBk Aj. We say that I has 

the closure property w.r.t. some sort Al k if 

~ Ak=BAk if Mk=KD, 

~~ A,=jl,)uBAk if Mk=KT, 

~ Ah is the semigroup generated by BAI, for *, if MI,=KD4, 

Ak is the monoid generated by BAI, for *I with 1, as neutral element if Mk=KD4. 

A careful examination of the proof of Proposition 2.2 shows the following. 

Proposition 2.6. Let S he a multimodal system and B a modal fbrmula. B admits a model 

with the closure property> w.r.t. ,uk if T(B) is E( S)-satisjiahle in some interpretation with 

the closure property 1r.r.t. Ak. 

2.5. “Strong” Skolemisation and the unique prcifix property (UPP) 

Skolem form of formulas can be defined as usual. But there is another, nonstandard, 

notion which provides simpler formulas and is quite natural for the class of formulas 

obtained by translation from modal logic. Moreover, as we shall see in the next 

section, this form is needed in order to ensure the termination of our unification 

algorithm. We call it the “strong” Skolem form. For brevity, we present here the 

combination of the translation itself and the procedure of strong skolemisation. 

Let T’ be the function from the set of multimodal formulas in NNF to the 

corresponding set of path formulas defined by 

T’(B)=t’(c,@, B), 

where, if IX is a term of sort My and X is a set of D-sorted variables, t’(n, X, B) is 

recursively defined as follows (r is the function defined in Section 2.3): 

t’(z, X, B) = t(z, B) if B is a literal, 

t’(n,X,B,dBZ)=t’(~,X,B,)dt’(x,X,B2) (dg(A\, V;), 

t’(n,X,V’x B)=V’x: Dt’(n, Xv(x), B) 

t’(z, X, 3x B) = t’(z, Xu [xl, B) [,f(z, X)/x], 
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where j’: MYx D”-+D is a fresh function symbol, and n is the cardinal of X 

t’(7C,X, UiB)=~‘cc:Ait’(7C!r,X,B), 

where r is a fresh variable 

t’(7C, X, Oi B)=t’(7(! (p(71, X), X, I?), 

where cp : MYx D”-tAi is a fresh function symbol and n is the cardinal of X. 

Example. Let G = 0 1 0 23x 0, p(f‘(x)), with p flexible and f rigid. Then 

T’(G)=V’x: Ai, V’p: ~o,p(e!z!B!~(~!~!lj,g(~!~!P)),f‘(y(~!~!B))). 

Proposition 2.7. Let S be some multimodal system. A ,formula B is S-satisjable $f T’(B) 

is E(S)-satisjiable. Moreover. B admits a model with the closure property w.r.t. pk if 

T’(B) is E(S)-satkfiable in some interpretation with the closure property w.r.t. Ak. 

The formulas obtained by strong skolemisation of translated modal formulas, i.e. 

by the function T’, possess the following unique prefix property (UPP in short): UPP, 

or rather a similar property formulated in his own formalism, is due to Ohlbach [26]. 

Definition. A set of terms or atoms S has the unique prefix property iff for every 

variable cx in Q having some occurrence in S, the terms 7c! E in which it occurs are such 

that 71 is independent of the particular occurrences of r. 

Example. The formula T(G) in the previous example has the UPP. But 

p(e!cc!/I!q(r:!a!~,g(e!cc!/I)),f(g(c-:!a!/I))) has not since fi occurs in two different terms 

E!cI!IJ and E!a!jI. 

Proposition 2.8. For any multimodal ,formula B, T’(B) has the UPP. 

We shall not prove these propositions. The proof requires some long prerequisites 

(in fact, the correct definition of UPP itself is more technical). and is a straightforward 

extension of the corresponding proof in the monomodal case [4] (see [lo] for details). 

In order to justify the second part of Proposition 2.7, we can just note that, as in the 

standard case, a path formula F has a model iff its strong Skolem form has one with 

the same domain. 

3. Unification in path theories 

3.1. C-substitutions and C-E-uni$ers 

Let C be some signature with ordered sorts. A C-substitution (or substitution, in 

short) is a mapping from a finite set D, of sorted variables to the set of terms (for which 
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we use postfix notation) such that for every vi : §i in D,, vim has sort si. A substitution 

is denoted by its graph (~i/ti)i:,, .k. The empty graph 8 denotes the identical 

substitution. Composition of substitutions is defined in the usual way; again we use 

postfix notation. 

If E is some set of equations, we say that two terms t and t’ are E-equal (t=Et’) if 

t = t’ is a logical consequence of the theory E. A C-E-unifier of two terms t and t’ is 

a C-substitution c such that to=Et’o. Given some set of variables X, we say that two 

substitutions T and (T are equal modulo E and X (T=~,~o) iff CT=~VU for every 

variable in X. Finally, we can define order relations on substitutions by a<,,,~ 

iff there is some jb such that t=E.X~j.. Also recall that we have an easy test for 

E(S)-equality by comparing the normal form of the operands. 

A C-E-complete set qf unifiers (C-E-CSU in short) of two terms t and t’ is a set U of 

&E-unifier such that for every C-E-unifier T there is some 0 in U with o < E.X r, where 

X=Var(t)uVar(t’). 

3.2. A unijkution ulgorithm for path theories 

Let us now consider the problem of unification in path theories. An important and 

well-known fact (see, for instance, [22, 231) is that Z-E-CSUs are not in general 

reduced to one singleton, and may not even be finite. Indeed, if E is E(KD4), we have 

a situation similar to the so-called “associative unification” and CSUs are, in general, 

infinite. Try, for instance, to unify E!Z!C and E! c!cc, where c( is a variable and 

c a constant with the same sort Ai i such that the associated modality 11~ is of type KD4. 

It is readily seen that (a/c, c(/c * c, , a/c * c *...* c, . . . } is an infinite minimal CSU. 

What can we do? We may use a general algorithm, as proposed in [22] to 

enumerate, possibly infinite, CSUs. But there is a better way on. By Proposition 2.8, 

we know that formulas obtained by the translation T’ belong to the fragment of UPP 

,formulas and we shall see that UPP guarantees the existence of finite CSUs. More 

precisely, it ensures termination of the algorithm presented below. (For instance, UPP 

clearly rules out the counterexample {E! cr! c, c! c! LY>.) 

The algorithm is an extension of the one presented in [4] for only one modality, 

combined with ideas from Walther’s algorithm for order-sorted unification [33]. We 

shall first introduce some notations and illustrate the main ideas by an example. 

3.2.1. Notutions 
_ If t and t’ are two VW-sorted terms, we set 

#t<t’ if t is a prefix oft’ (t’=t!al!.“!ak), 

# t and t’ are comparuble if t < t’ or t’ < t. 

_ If CJ is a substitution, ,P a term or set of terms, we write o 1 F for (aY)J. 

~ Consider some path signature associated with some multimodal system. For 

any sort s= Ai i, we say that D is reflexive (transitive) if 1 is a term of sort 9, 
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i.e. the corresponding accessibility relation Ri is reflexive (* has a declaration 

Ai x Ai+Ali and Ri is transitive). We denote this by REF(s) or TRANS(s) 

accordingly. Moreover, we define the following sets: 

- lb(t ff’)={s~s/ s< U, s< U’, not 3§‘(§< s’, s’< U, s’< a’)} ~ lower bound of f, a’; 
_ mtrans (a) = the set of maximal elements in {SE s/.s< f and TRANS(§)} ~ maximal 

“transitive” sorts smaller than a. 

Example. Suppose first that we want to unify two terms of sort My: ti =rci !a, and 

t2=7T2!x2, where u1 : A I and c(~: Al 2 are variables. There are several possibilities: 

(1) For every sort A\ 3 such that A 3 < A 1 and A 3 < A z and every unifier 0 of 

rrl and rr2, o{cc,/jI, z,/fl} (where 8: A 3 is a fresh variable) unifies tl and tZ: standard 

case, using “weakening” of ‘zl and (x2 if necessary. 

(2) If Al 1 is reflexive, for every unifier CJ of 7ti and f2, CJ {aI /l} unifies t 1 and t,: 

symmetrical situation if Ai 2 is reflexive. 

(3) ForeverysortAi,andAi4suchthatAl,dAi,,A,bA,,A,dA,,andA,is 

transitive, let p:Ai 3 and fl’: A 4 be fresh variables. For every unifier 0 of rri !fi and rc2, 

Ota,lB*B’> Q/P,) unifies tl and tZ: symmetrical situation exchanging tl and tZ. 

Now if, for instance, az were not a variable, we have a similar situation except that, 

of course, there can be no weakening of x2. Observe also that if two terms tl and t2 are 

comparable, unification fails UnkSS, for instance, t2 = tl ! cil ! ... ! ak, where, for every 

i=l , . . . , k, LY~: Al i is a variable with Al i reflexive, in which case we have the obvious 

mgu: {x,/l, . . ..a&}. 

Finally, suppose that ti =E! xl and t2 =E! x2, A 1 and A 2 are both transitive, and 

there is some nontransitiue A 3 such that Al 3 < A 1 and Al 3 < A 2. By simple weakening 

we compute, as in case 1, the unifier {~~/p, rz//I}, f or some variable fi : A 3. But this is 

not a mgu! For instance, {zi/p’ * p”, (z//Y * fl”], with p, p’: A 3 unifies tl and tz, while 

{p/p’ * a”} is not a well-formed substitution, since /Y * /Y’ has not the sort A 3. In fact, 

in order to have finite CSUs, we must rule out such situations by imposing a transitive 

A4 such that A,<A 1r A 4 < A z and A 3 < A 4. This is the restriction on the set of 

sorts mentioned in Proposition 3.1. In fact, this is not a real restriction since we may 

always add such a sort: its domain A4 will be something between the semigroup 

generated by A, and the intersection of Al and A,. 

For the sake of simplicity, we present an algorithm unifying sets {t, t’} of two 

terms; its extension to atoms is straightforward. It is written in functional form, the 

only specific feature being the use of nondeterministic “or” expressions, described 

below. 

Syntax 

or bool,=>fexpl; . . . . bool,=-fexp, end-or 

where the boolls (the guards) are boolean expressions, and the fixpi’s are nondeter- 

ministic functional expressions. 



Semantics 

- Choose some i such that hooli is true, and evaluate j&pi. 

~ If there is not such i, return ,failure. 

Hence, a functional expression including or-expressions may have several evalu- 

ations, leading to different results. A result can be either a proper value (here, 

a substitution), or ,firilu~~. A computation is successful if it produces a proper value. 

We extend the composition of substitutions in such a way that (a ,failure)=,failure. 

The un$cclfion algorithm is presented at the end of the section. It consists of three 

mutually recursive nondeterministic functions: 

~ Unify(t,, tz) is the main one. Every computation returns E(S)-unifiers oft, and f2. 

~ If L,=(u,,...,uJ and Lz=(pl,...,t>L) are two lists of terms of the same length, 

Unify-list(L 1, L2) produces substitutions that E(S)-unify all the pairs (ui, /li). 

~ Unify- o/n/(t,, tz) is a specialisation of Unify(t,, t2) for terms of sort MY, and concen- 

trate the specific aspects of our algorithm. 

Finally, note that in each step terms will be rewritten in normal form, and we 

suppose that the variables introduced in weakening operations are fresh ones. 

Remark. A rule-based algorithm ~ in fact, simply an iterative presentation of the same 

algorithm ~ is possible using u stctcli policy, for the set of equations. We choose to give 

the recursive expression of control which reflects better the real structure of our 

algorithm. It must be stressed that, in any case, full nondeterminism does not seem 

possible for unification in path theories (roughly speaking, unification of MY-terms 

must be ordered from one end of the “path” to the other). Also note that extending 

UPP to sets of equations in a consistent way is not trivial, especially if one accepts 

equations of the form ~=t, where x is some variable in R. But this is needed for 

a direct proof of a standard rule-based algorithm. 

Proposition 3.1. Assume that jbr trnJ> transitive sorts A i ad Ai j, lb(Ai, Aj) is empty or 

has otd_y transitive elemrtzts. Then 

(i) The un$ication alyorithm termitwtes ot1 UPP sets of terms or trtoms utd produces 

N (notmccessar~~ minimal) C(S)-E( S)-CSU. 

(ii) Morrowr, if B is sots quatztjfier ,frw UPP ,fhwulu, ./iv an)’ substitution 

o cotnputrd by t/w algorithm. Ba 11tr.s the UPP. 

Due to lack of place, we omit the proof, which is long and intricate and essentially 

the same as in the monomodal case [4]. After this paper was written, rule-based 

algorithms and simplified proofs have been elaborated [IO]. 

E( S)-Unification Algorithm 

Unify(t 1, tz) = 
if tI or t2 is a variable x 

then let t be the other term in 

if t=u then 8 else if rEVar(t) then .fuilurc else {.x/t) 
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else 
if tI and tz are of sort Mv then Unify- o/w(t,, t2) 

else 

let tI =,f(u,, . . . . u,) and t2 =y(u,, . . . . v,) in 

if f#g then @lure else Unify-list((uI, . . . . u,,),(u~, . . . . u,)) 

Unify-list((u,, . . . . u,),(L.~, . . . . u,))= 

begin 

k := 0; z:= 8; 

while k <n and z #failure do 

begin k:=k+l; ~:=Unify(slu,,alz,k); r:=tp end; 

return(r) 

end 

Unify-MV(t,,t,)= 

if tI and t2 are comparable 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

then let (s1,.s2)={tl,t2) s.t. s2=s,!aI!~~~!ak (k>O) in 

if k=O then 0 

else if every aiEQ with Ui: si and REF(§i) 

then {ai/1 3i= 1. ,, .k else @lure 

else let {Us, u2} = {t l, tz} nondeterministically in 

or 

u~=u;!s(:s~ and c/~=u)~!N:.Q with XE!~, a$!$ c$Var(a), .Y~ 6 s1 

*{x/u) Unify- MY(u;, u;); 

uI=u~!cc:sI and u~=u;!u:~~ with ~EQ, u$Q, a$Var(u) 

*{x/[~:s~*u) Unify-w(/(u;!/I,u;) 

rzlhere .~~mtrans(q), Q > s2, fl: s3 is a fresh variable; 

u,=u’,!u and u2=u;!h with u,b$Q 

*Unify-list((u;, a), (u;, h)); 

u1 =u;!a:sl with r~!2 and REF(s,) 

*[m/l) Unify- U@(u;, u2); 

u~=u’~!~~:s~ and ~1~=u;!r~:§~ with cc,,cc,~Q 

=~(~~/fl:~~}(r~/fl:~~) Unify-MY(u’I,u;) 

where q~lb(s~, Q) and b: s3 is a fresh variable; 

u~=u;!~(,:~, and u2=u;!x2:s2 with a,, cc2~Q 

=qx2IP2:94) j%lr(jl:%*P2:~441 t Unify-W(ufI!fi,,u;) 

where ~3~mtrans(s,), §4glb(s3, s2), and p1:~3,/?2:sq are fresh variables; 

end-or 

4. Logic programming in path theories 

By Propositions 2.2, 2.6 and 2.7, multimodal reasoning has been reduced to 

deduction in path theories. Without loss of generality, we may consider path 

formulas in clausal form. If the considered set of clauses is Horn, we can apply SLD 



resolution and get a system for logic programming in path theories. We call it 

PATH LOG. 

Throughout this section we consider some multimodal system S and the corres- 

ponding path theory E(S) in the language generated by Z(S). 

Definition. A ~O~JPNIH clau.sc~ is any expression A+ A, A ... A A,, with n 30, where 

A and the Ai’s are atoms. A goul is an expression +A1 A ‘.. A A, with n 20, where the 

Ai’S are atoms. A PATHLOG proymn is a pair (P. G) consisting of a set of program 

clauses P and a goal G such that Pu(Gj has the UPP. An (IIZS\V~V suhtitution is 

a C-substitution CT such that P/=k.cs,(A, A .‘. A A,,)o. 

We suppose that for all atoms A. il’, T(A, A’) is a finite C(S)-S(S)-CSU of A and A’. 

SLD resolutiorz is defined for PATHLOG programs in an almost standard way. The 

only difference is that in each step, not only do we choose some atom Bi in the current 

goal B, A ... A B,, and a clause C= A 6 A 1 A “. A A,,, but also a C(S)- E( S)-unifier in 

T(A, Bi). A drricotiorz is then defined in the usual way, and the computed substitution is 

the composition of these unifiers. Observe that by Proposition 3.1 UPP is preserved, 

so that our unification algorithm is applicable in each step of the derivation. 

Proposition 4.1 (Soundness of SLD C E-resolution). Ewr~~ computed substitution is 

(111 un.ww sutwtitution. 

Proposition 4.2 (Completeness of SLD C-E-resolution). Let cr be sornr answer substi- 

tution ,fiu LI PA THLOG poyrnrn (P, G). Th thrr exists some computed substitution 

5 rrnd .so111e ;’ suc~h tht C-J = ,;,s,r;,. 

The proof follows very closely the proof of the corresponding propositions in 

standard logic programming as presented in 1241. 

The main technical point concerns the definition of Herbrand interpretations. If G’ 

is the set of function and constant symbols, let T(G’) be the set of ground terms on the 

alphabet G’. We suppose that for each minimal sort symbol s. there is some term t : s; 

otherwise, we add some constant. Let H = T(G’);‘=E,s,. the quotient set of T(G’) by 

E(S) equality, and for every s, H,= (cEH,!3tEct: s). Obviously. H,cH,, if s<s’ 

and each If, is nonempty. A Herbrand Z‘(S)-E(S)-interpretation is any N= 

(H,,, H ;, , . . . . H j,, Hi , G’,,, P’,,). where for any function symbol ,f‘ in G’, .fK is the 

quotient of the canonical function ,f’ from T(G’)” to T(G’) by =E(S,. It should be noted 

that this construction is made possible by the form of the sort declarations in C(S) and 

of the equational theories E(S). 

Let 2 be the equivalence relation on ground atoms defined by 

p(t,, . . . . t,,)-f~(t’~, . . . . t:,) iff ti=E(S,tj for all i. 
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The Herbrand base is the set whose elements are equivalence classes for ‘v. Observe 

that since E(S) is canonical, every class can be represented by some atom p(tl , . . , t,), 

where the ti’s are in normal form. Clearly, a Herbrand interpretation N is completely 

defined by a subset B:, of the Herbrand base with NI=p(tI, ., t,) iff the class of 

p(t1,..., t,) belongs to BBt. As usual, we identify M and BH. 

As in the standard case, the intersection of the Herbrand models of a program P is 

again a Herbrand model of P, the minimal model LM,. 

Proposition 4.3. Given uny PATHLOG program P, and ground utom A, the following 

are equivalent: 

~ P/=A. 
_ A is consequence of P w.r.t. Herbrand z(S)-E(S)-interpretations. 

- The %-class of A belongs to H,. 

The rest of the proof is a straightforward adaptation of [24, Chapter 21. 0 

Note that by translation back, these results provide “for free” a notion of Herbrand 

interpretation for multimodal logic; other attempts are [S, 291. Also we have a mini- 

mal Herbrand model for sets of Horn clauses, including a construction of a set of 

worlds “minimal” in a certain manner. 

Proposition 4.4. Suppose (P, G) is u PATHLOG program und that there is no function 

symbol with declared runge sort Ak. Then Herbrand models of P have the closure 

property w.r.t. &. Hence, Proposition 4.2 holds when answer substitutions are defined 

relative to the class of interpretations having this property. 

Proof. Consider for instance the case where M, is KT4. The carrier for AIk in the 

Herbrand universe is { 1, ur, a, * u2,ul * a2 * a3,. . }, where al a2, u3, etc., are normal 

forms of arbitrary terms of sort Aj for arbitrary j’s in Bk. 0 

We conclude with two examples of PATHLOG programs, solving the problems of 

Examples 1.1 and 1.2. 

4.2. The safe problem (continued) 

First we must define the adequate path theory and translate the given set of 

formulas. We have sort symbols D, MVand Osunasw, UMIUJ, aIian0, ~~a%apuns, s associated 

with the considered modalities in an obvious way, with the order diagram and sort 

declarations shown in Fig. 3. After translation, we get the following clauses, where 

c(, p, y, 6, X, Y, Z, L are variables and cp, $, ‘1, g, h skolem function symbols; we indicate 

the sort of CI, /I, ;‘, 6 and the range sort of cp, $, y once in each clause; D is the sort of 

X, Y, Z, L and the range sort of g and h: 
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c: w !:wxs+s . . . 

*: s x s + s, 
aclj ns 

A 
k r CD] ‘“&F actions x actlons +a ctions 

know x know -+ know 

rrC3ad diz 1: know, s, actions 

Fig. 3. 

(1) comb(E!~:O!cp(r:!~,S,L,X):~~~~!;l:06rmaD~,X,S) 

+comb(c!r, X, S), written-in(e! CC, X, L). 

(2) open(i:!x:s!g(i:!r,S):~i~U,S) 

tcomb(i:!x!~(r:!x,X.S):06rmaa~,X,S). 

(3) comb(e!il: Odrmo~,12(1:!~).safel). 

(3)’ written_in(r:!;~:06rmow,I1(~:!;~),deskl). 

The goal 

topen(i:!6 : lkumw!~~: ac%imns, safel) 

can be read: find the epistemic alternatives 6 and the action sequences p such that in 

these alternatives, after performing /?. the safe is open. If one finds a sequence p such 

that for all 6 the goal formula holds, this means that John knows that /I opens the safe. 

We have the following successful derivation (at each step we indicate the selected 

clause and the unifier): 

+comb(>:!ci:Osuuo~!/I, :~cU~orme!ll/(~!fS!/j~,X,safel):06ooaow,X,safeI) 

by (2) with (p//jr *1l(r:!3!p,,safel),~/(S*a,,S/safel), 

tcomb(f:!(S : Osuno~~, X, safel), written-in(e!b, X, L) 

by (I) with X renamed in X, and the unifier 

(J~6,pli43(E!6,safel,L,X),~~~(E!(5!cp(t:!6,safel,L,X,safel),X), 

X,!X.S/safel), 

+written_in(i:!6: Osuno~~,h(c!~S),L) by (3) with (X//t(~!6),;‘/5), 

+-U by (3)‘with (L,/deskl,;l;!S). 

Hence, we get the answer 

/I=y(c!6,safel,deskl,h(c!6)):re& 

*I~(E!cS!(P(E!CS. safel,deskl,h(E!6)), safel):diaaO, 

with 6 unbound; the following formula is a logical consequence of the program: 

VCS open(r-:!6:Osunow!cp(E!d,safel,desk l,h(e!b)):rehn~~I 

!~(1:!LS!cp(r:!6. safel,deskl,/r(~:!fi)),safel):~i~U,safel). 
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Similarly, the multimodal formula 

[know] (read) (dial) open(safe1) 

is a logical consequence of the formulas (l)-(3) of Example 1.1. 

Observe that, by Propositions 2.6 and 4.4, the logical consequence holds in 

“standard” interpretations, with the closure property w.r.t. the modalities acrions 

and s. 

4.3. TEMPLOG (continued) 

Now we show how to implement TEMPLOG and program the Fibonacci example. 

We shall use the sort symbols VW, D, IV and E W corresponds to ‘I (next) and d to 

(U,O)(future). Wehave: IV-C& *:FxF-+V, l:&anda:N. 

Suppose we write PATHLOG programs with no function symbol of range sort E 

Then, by Proposition 4.4, we have completeness w.r.t. interpretations with the closure 

property relative to E Indeed, the Herbrand models are such that 

N= ‘a’ 1 I$ F = {a, a * a, a * a * a, . ), W= {e, E!a,E!a!a,&!a!a!a!a, . ..$ 

and W is isomorphic to the set of natural numbers. These interpretations correspond 

exactly to standard models of the temporal logic being considered. PATHLOG is 

complete with respect to that class of interpretations. 

Now, it happens that the set of “temporal clauses” proposed by Abadi and Manna 

[l] for TEMPLOG (roughly, no 0 in positive occurrence) are mapped by the 

translation into Horn clauses with the above restriction. Hence, we have the definition 

of an interpreter for TEMPLOG with completeness as a consequence of our general 

theory. 

Example. The “fibonacci program” is translated into 

fib@, 0) 

fib(s!a, 1) 

fib(E!a!a!a,X)+fib(a!r, Y),fib(c!z!u,Z),X is Y+Z 

with the goal 

tfib(r:!/?, X ) 

The answers are (“is” is as in standard Prolog): 

/j=l, X=0; p=a, X=1; p=a*a, X=1; /j=a*a*u, X=2; etc. 

In other words, the following formulas are consequences of the given set of clauses: 

fib(c,O), fib(c!a, I), fib(c!a!a, l), . . . . 
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and fib(O), fib(l), fib(l). 

LOG program, as expected. 

fib(2). . . . are consequences of the original TEMP- 

Comments. (1) Certainly, much should be done in order to define a methodology for 

knowledge representation in this formalism, either directly in PATHLOG or in 

multimodal logic, followed by translation. These examples intend only to illustrate the 

evaluation mechanism of PATHLOG programs and show encouraging indications 

concerning their expressive power. In particular, note that we get answers not 

expressible in the modal language itself. 

(2) One might argue that this is not rn~llal logic programming, strictly speaking. 

Indeed, further work, should be done in order to define the class of modal formulas 

which produces sets of Horn clauses by translation, and to examine how answers and 

proofs might be “decompiled”. But this sounds like a rather routine task without 

special difficulties. 

Conclusions: relation with other works and discussion 

(1) Ohlbach [26] and Farinas and Herzig [13] have proposed ATP methods for 

modal logic (with one modality) strongly related to ours as given in [4, 33. The 

difference essentially lies in the purr/~! alyebruic techniques used in our approach. We 

believe that it gives our formalism a better mathematical tractability, since we can 

either directly use or easily adapt the known results and techniques of classical logic. 

The results presented in Section 4, concerning the declarative semantics of 

PATHLOG (Proposition 4.3) and the completeness of SLD resolution (Propositions 

4.2 and 4.4) with the consequences for TEMPLOG, are quite significant. 

(2) Modal logic programming is something like a current technical challenge and 

several approaches have been proposed in the past few years. All the following use 

“direct” methods, without translation in classical logic. 

We already presented Abadi and Manna’s TEMPLOG [l] and showed how 

PATHLOG subsumes it. In [lS] Gabbay proposes another approach to temporal 

logic programming. He defines a notion of “Horn temporal clauses” with a specific 

computation rule for “temporal programs”. Compared to ours, on the one hand, his 

language deals as well with linear or branching time with future and past operators, 

but, on the other hand, there is no “next” operator and the set of “Horn clauses” is 

more restricted. Moreover, the computation rule is an ad hoc one, quite intricate and 

far from the standard PROLOG. 

Farinas’s MOLOG [ 121 accepts a class of very expressive multimodal languages in 

which modal operators are indexed by first-order terms, and is, for that reason, very 

attractive and stimulating. For instance, one can write such a clause as “[believe(x)] 

[know(father(.u))] P(r)“, where .X is a variable, which can be read “everybody believes 

that his father knows that he possesses property P”. It is inspired by Farinas’s “modal 

resolution” [l I]. But there is no clear logical semantics (and, hence, completeness 
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results) for MOLOG. Attempts restricted to fragments corresponding to quantifier- 

free basic modal systems from K to KT5 (S5) are made in [6] and [S]. In fact, the 

former may be seen as a premisse to the method of Farinas and Herzig [13]. And the 

difficulties encountered in the latter were the determining factors for switching to 

a “translation” method. 

Orgun and Wadge [29] propose a “general theory of intensional logic program- 

ming”, which owes a part of its inspiration to the Lucid experience. Their approach 

can deal with modal operators with a more general semantic than the standard 

“possible worlds” one. But restricted to this case, there are limitations we do not have; 

for instance, they cannot cope with KT4 operators, the considered “Horn clauses” are 

less general, and the set of worlds in Kripke structures is always isomorphic to w. Also, 

and this is a major problem, they provide only a declarative semantic, not a pro- 

cedural one. Finally, in [28] Okada presents proof-theoretic preliminaries for modal 

logic programming, but the theory is not fully developed. 

Hence, it seems that the path theories approach is placed quite well w.r.t. expressiv- 

ity of the accepted modal languages and theoretical results. We think this pleads for 

the translation from modal to classical logic when automated reasoning is concerned, 

and provided one uses a “good translation”. 

(3) Now, what is a “good translation “? Two related criteria can be invoked. First, it 

should preserve “something” of the structure of modal formulas. Second, there should 

be some special device to deal with the structure of worlds. In other words, we should 

be able to determine a fragment of classical logic, for which specific methods can be 

used. In our approach, the fragment is characterised by UPP and the specialised 

method is C(S)-E(S)-unification. The situation is similar in Ohlbach’s work. Another 

interesting approach filling these conditions is that of Frisch and Scherl [14], where 

the target language and the method are those of some constraint logic. 

(4) After this paper was written, an extension to h la MOLOG multimodal lan- 

guages has been elaborated [lo]. Indeed, we believe that this is the kind of formalism 

needed if some application is to be considered. The semantics of such a logic and 

translations in classical logic are also investigated in [26] and [21], but no specific 

automated method is provided there. 
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