Theoretical Computer Science 105 (1992) 141-166 141
Elsevier

Multimodal logic programming
using equational and
order-sorted logic*

Frangoise Debart, Patrice Enjalbert and Madeleine Lescot

Laboratoire d’'Informatique, Université de Caen, 14032 Caen Cedex, France

Abstract

Debart, F., P. Enjalbert and M. Lescot, Multimodal logic programming using equational and
order-sorted logic, Theoretical Computer Science 105 (1992) 141-166.

In our previous works a method for automated theorem proving in modal logic, based on algebraic
and equational techniques, was proposed. In this paper we extend the method to multimodal logic
and apply it to modal logic programming. Multimodal systems under consideration have a finite
number of pairs of modal operators (<, [J,) of any type among KD, KT, KD4, KT4, KF, and
interaction axioms of the form [1,4—[1 4. We define a translation from such logical systems to
specially tailored equational theories of classical order-sorted logic, preserving satisfiability, and
then use SLD E-resolution for theorem proving in these theories.

Introduction

In our previous works [4, 3] we proposed a method for automated theorem proving
in modal logic, based on algebraic and equational techniques. The aim of this paper is
twofold. Firstly, we extend the method to multimodal logic developing [9]; secondly,
we investigate its application to modal logic programming.

The multimodal systems under consideration have a finite number of pairs of modal
operators u;=(<;, ;) (“modalities” in this paper) declared with some arbitrary
“modal type” among KD, KT, KD4, KT4, KF. The standard possible-worlds seman-
tics is straightforwardly extended: with each modality y;, a binary “accessibility
relation” R; between worlds is associated, with the properties corresponding to the
assigned modal type, respectively: seriality, reflexivity, seriality and transitivity, reflex-
ivity and transitivity, or functionality. Moreover, we can assume inclusion relations
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R;c= R, the semantical counterpart of interaction axioms of the form [U;4—01;A.
Examples are given in Section | to illustrate the use of such logical systems in
knowledge representation.

Concerning automated theorem proving (ATP in short), two different ways open.
We may design specific “direct” methods, dealing with multimodal formulas them-
selves. Or we may first use some translation to classical logic, and then apply (or
adapt) some classical ATP technique. The method presented in this paper is in the
second manner. We believe that recent experience shows that it is the right way to do;
this important point is discussed in [4] and in the conclusion. It works as follows.
With any multimodal system S, an order-sorted signature 2(S) is associated, together
with a set of equations E(S), and a translation 7 is defined in such a way that a given
multimodal formula B is S-satisfiable iff its translation T(B) is E(S)-satisfiable. Then
the various methods for ATP in equational order-sorted theories can be used. We
have developed a method we call 2—E-resolution, which is a combination of E-
resolution defined by Plotkin [307, already used in [4, 3], and Z-resolution (without
paramodulation) as in [31, 33], which seems especially well fitted since, as in the
monomodal case, all the properties of the modal operators are coded in the unifica-
tion algorithm.

If one considers Horn clauses (in the usual sense) and SLD X-E-resolution, using
standard theoretical results, we immediately get a general framework for logic pro-
gramming in various multimodal systems. For instance a temporal logic program-
ming system which subsumes Abadi and Manna’s TEMPLOG [1] is obtained, whose
completeness immediately follows from our general theorems.

The paper begins with a brief introduction to multimodal logic. In Section 2 we
introduce the order-sorted languages and equational theories in which multimodal
logic is translated, and study the translation. Section 3 addresses the main technical
difficulty, unification; it presents a unification algorithm for the considered order-
sorted signatures and equations, which terminates on the fragment obtained by
translation from multimodal logic. Section 4 then presents SLD X—E-resolution and
illustrates the method with two examples. Finally, a comparison with other ap-
proaches of modatl logic programming is discussed in the conclusion.

1. Multimodal logic

In this section, we define the syntax and semantics of multimodal systems and
mention some of their applications in knowledge representation and processing. For
further details, the reader may consult e.g. [7, 18].

1.1. Multimodal systems

Let = be a first-order signature consisting of a set G of function symbols (denoted as
f.g,h...)and a set P of predicate symbols (denoted as p, g, r...) of any arity. Each
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one is declared rigid or flexible. We are also given a set of modal operators <; and
O, for i=1, ..., r. Each pair u;=(L];, ©;) will be called a modaliry. In this paper,
a modal system name is an element of {KD, KT, KD4, KT4, KF} (the terminology
comes from the axiomatics of the various systems of modal logic). A multimodal system
is S=(Z,(M;);=,,_,, <) consisting of
— a signature =,
— foreveryi=1,...,r, a modal system name M, — the “type” of the modality ([];, <;),
— a set of declarations p; < u; for some pairs (i, j) of distinct elements of {1, ..., r}.
Terms and formulas are defined in a standard way using a set V' of variables
(denoted as x, y, z ...), the classical connectives and quantifiers A, V,—1,V, 3, and the
modal unary operators (LJ;, ©;)i=1. ..,

1.2. Semantics

Given some multimodal system S, an S-interpretation ¥ (or Kripke structure)
consists of
— a set W, elements of which are called worlds,

— a set of binary relations on W, {R;/i=1,...,r}, the accessibility relations,

— a set D, the domain of .# (or discourse domain),

for every function symbol f of arity n, and every world w, a function f%:D"—D,
— for every predicate symbol p of arity n, and every world w, a function p%: D"— {0, 1}.
Hence, for every world w, we have a classical interpretation .# * with the same domain
D, where the '} and p} interpret the function and predicate symbols. If f (p) is a rigid
function (predicate) symbol, then f% (p¥) does not depend on w, and does if this
symbol is flexible. Furthermore, we suppose that

(1) for every i, R; has the following property according to M;: serial (Vx 3y x R; y) if
M;=KD; reflexive if M;=KT; serial and transitive if M;=KD4; reflexive and transi-
tive if M;=KT4; functional (Vx 3!y xR;y) if M;=KF; and

(2) if p;<p; then R;=R,.

A valuation of the variables is a function ¢: VV—D. If x is a variable, d an element of
D, o¢ denotes the valuation equal to ¢ except that o(x)=d. Given some interpretation
4, some valuation o, and some world w, the interpretation of a term ¢ relative to .4, o,
and w, denoted as {.#,0,w >t is defined classically as the value of ¢ in #* for the
valuation ¢. Similarly, the satisfaction of a formula relatively to .#, o, and w is defined
by

|

*fﬁa,v”:p(tlv '”stn) lﬁ P,v;(<=¢50', wY>l‘1s ...,<<7,0’,W">tn)=],
F,o,wl=1;B iff for all w’ in W such that wR;w’, .#,0,w’'|=B,
F,0,wi= ;B iff there is some w’ in W such that w R;w’ and .#,0,w'= B,

and the classical rules for the boolean connectives and the quantifiers.

We say that a formula B is S-satisfiable iff there is some S-interpretation .# and
some o, w, such that .#, g, wo = B. The notions of validity and logical consequence are
then defined in a standard way.
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Finally, we say that a formula is in negation normal form (NNF)if the scope of every
negation sign is an atomic formula. Using the logical equivalence between —1 ;B
and <©;B, holding for every formula B, it is easy to check that for any formula there is
an equivalent one in NNF.

Remarks. (1) There exist axiomatics for these multimodal systems (see [7, 18]).
Especially, the relation < on modalities is axiomatised by a set of interaction axiom
schemas of the general form (Ax;;)) LI; A= U A if p;<p;.

(2) All modalities we consider are (at least) serial. The reason will be explained later.
Also observe that all the .# *’s have the same domain. Such interpretations are said to
be “with constant domain™. A smoother condition often considered is that .#™ be
included in .# ™ if w' is accessible from w. This restriction of our theory could possibly
be relaxed, but this should be carefully investigated. On the other hand, we deal with
rigid or flexible symbols as well.

(3) If (-, O)is of type KF, it is easy to see that for any formula A4, [14 and < A are
equivalent.

{(4) Let <* be the pre-order generated by <. Clearly, if u4;<*p; and p;<*u;, then
the two modalities are equivalent, i.e. (J;4 and ;4 are logically equivalent, for any
formula A. Similarly, since all accessibility relations are serial, any modality u; smaller
than a KF one g is equivalent to ;. Moreover, if u; is of type KT, or KT4, they are
degenerated: ;A is equivalent to 4 for any A. And if p; is of type KD4, they are
quasi-degenerated: ©_;(A=[];A4) is true in every world.

Hence, throughout the paper we suppose that <* is acyclic (in other terms, the graph
of < is a DAG) and the modalities of type KF are minimal.

1.3. Applications -~ Examples

The interest in multimodal logic arises from the possible mixing of the various
modal operators with various interpretations.

The first example concerns the so-called epistemic logic. The idea is to formalise the
expression “agent i knows (or believes) that ...” by means of modal operators Cl; of
a certain modal type according to the notion of knowledge or belief one has in mind:
generally KT, KT4, KD4, or KT5 not to be considered in this paper (see e.g. [19] for
details). A “world” w’ such that w R, w’ in the semantics is some “state of affairs”
compatible with the knowledge of agent i in state w; we call it after Hintikka an
epistemic alternative to w. Observe that, if 3!x p(x) is true, the formula Ix TJ;p(x) is
a good formalisation of “agent i knows who has property p”, while [J;3x p(x) means
only that agent i knows that there is such an element x. An interaction axiom (4x;;) is
read “agent j knows everything agent i knows”.

Another interpretation is temporal logic, in which we consider the set of worlds as
time instants. A system of special interest is the linear discrete temporal logic, which
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received much attention for parallel program verification [2]. The language possesses
two modalities u; =([1,, <) and u, =([1,, ¢3). The “worlds” of the Kripke struc-
ture we have in mind constitute an infinite sequence of “instants” tq,t1,t5, ..., s, ...;
R, and R; are respectively the “next instant” and “future” relations: ¢; R, t;iff j=i+1
and t; R,¢; iff i<j. Hence, (0,, <y) is of type KF and (O,, <3) of type KT4, and
Uy < ti,. Of course, these constraints do not force the sequential structure of instants.
We shall call a standard interpretation as the one in which this structure is indeed
isomorphic to the structure of natural numbers with the successor (R;) and the order
(R,) relations. Since R, is functional, [J; 4 and <& | 4 are equivalent; following Pnueli
who introduced this system, we shall denote by “~” [J; or & and simply write < for

f £
1

N oand T fae T An o In ~
o ana U Ior L. An eXampie oi iorm

¢ of formula is then the following: O{p—cq), which
says that always (in the present and in the future) if p is true, then g will be true in the
following instant.

Finally, we may consider “worlds” as different “states of affairs” obtained by
performing actions. We obtain dynamic logic [20]. With each modality is associated
some class of actions and [J; 4 is read: after performing any action “of kind i”, 4 will
be true; conversely, < ;A4 is read: it is possible to perform an action of kind i and then
A will be true.

We give now two examples illustrating and mixing these interpretations.

Example 1.1 (The safe problem). John must open a safe. He does not know the
combination but knows that it is written on some paper which is in the desk in the room.
Find a sequence of actions such that John knows it will open the safe.

This problem was formulated in [25]: We shall first formalise the problem
in some adequate multimodal logic. Later on we shall show how to solve it
automatically.

The signature contains the following predicate symbols: comb(X, S) for “X is the
combination of the safe §”, written_in (Y, L) for “ Y is written in location L”, open(S)
for “S is open™; and the constant symbols safel, desk! denoting the safe and the desk
of the problem. All predicates are flexible since their denotation may change accord-
ing to various states or alternatives; constants safel and desk1 are rigid: they are, so to
speak, proper names.

We use the following modal operators. We write [mod] and {mod ) for O,,,4 and
< moa and for each, we give its intuitive meaning and its modal type.

- [know] 4 “John knows that 4” KT4 (or KT)
— [read] 4 “After John performed some reading,
A must be true” KD
— [dial] A4 “After John performed some dialing,
A must be true” KD
— [actions]4  “After any action, A4 is true” KT4

|

[s]1A4 “In every state A4 is true” KT4
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The intended meaning is that an “action” is any sequence of reading or dialing. [s] is
a “super modality” used to express properties true after any action and in any
epistemic alternative.

Hence, we have the following interaction axioms:

[actions]A—[read] A4, [actions] 4 —[dial] 4,
[s]A—[actions] A4, [s]A-[know] A,

and the corresponding order: pyeaq < Mactions, €LC.

But we want more. Let R* denote the reflexive transitive closure of the relation R.
In the intended interpretation: R,cions =(Riead U Rgia)* and R, = (R, ions Rknow ). We
shall say that such an interpretation is a standard one.

The problem is coded in the following set of modal formulas (the variables are in
capital letters).

(1 [s]VSVYLVX ((comb(X, S)Awritten_in(X, L))
—{read) [know] comb(X, §)),
(2) [s]VS((3X [know] comb(X, S))—<{dial) open(S)),
(3) [know]3X (comb(X, safel} A written_in(X, desk1)),
from which we want to infer
4) [know] {actions) open(safel)
These formulas may be read as follows:

(1) In every state, for every (safe) S, (location) L, and (number) X, if X is the
combination for S and is written in L, then there is some reading action after which
John knows that X is the combination of S.

(2) Inevery state, for every (safe) S, if John knows what is the combination of S, then
there is some dialing operation John can perform and after which S will be open.
(Observe the standard formalisation of “knowing what ...”)

(3) John knows (in the actual present state) that the combination of safel is written
in desk1.

{(4) John knows that there is some complex action after which the safe will be open.

Note that the “goal” (4) is not quite satisfactory since we have no way to name
precisely actions in the language of multimodal logic. We shall see how the translation
solves this problem.

Example 1.2 (TEMPLOG). We now consider linear discrete temporal logic. Abadi
and Manna [1] have defined a subset of the set of temporal formulas and a so-called
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temporal SLD resolution for this class of formulas. The resulting system is called

TONDYT M Waeas o o tyminal TENADY NS saeagrara:
FTLIVIDEAJNT, IIVIC Iy d Lypleal 1 LLIVIDLAJNT pPlouglalll.

fib(0)
fib(1)
CI(-o fib(X )fib(Y), - fib(Z), X is Y+2)

which defines the flexible predicate fib in such a way that fib(X) is true at the nth next

instant if X is the nth element of the Fibonacci sequence. The constants 0, 1,2, ... and

+, = are rigid, since arithmetics and the identity relation does not change in time.
A query for this program is

—fib(R)

and the answer in TEMPLOG will be the sequence of values of R at the successive
instants: 0,1, 1,2, 3,5, ... In other words: fib(0), ~fib(1), ..., cccocfib(5), ... are conse-
quences of the clauses of the program in all standard interpretations.

2. Path theories and the translation from multimodal logic

2.1. Introduction: frames and algebraic frames

Understanding the proposed translation from modal to classical logic needs a re-
consideration of Kripke semantics we shall present now before the formal definitions.
For the sake of simplicity, let us consider standard modal logic, with only one
modality.

Interpretations for modal logic include a relational structure { W, R> consisting of
a set of “worlds” and an “accessibility relation” in order to interpret the modal
operators. Moreover, various constraints on this structure, called a frame, define the
various modal system types. The first key idea for our method is to replace this
structure by an algebraic one (W, A4,!), where
— W is as usual a set of “worlds”,

— A is a set, elements of which are called operators,

— lis a function Wx A— W.

Let us call it an algebraic frame. Clearly, given any algebraic frame { W, 4,!> one can
define a frame { W, R> by (we use infix notation for!):

(%) w R w’ iff there exists an operator ae 4 such that wla=w".

Conversely, it is not difficult to see (proved in Section 2.3 in the general case) that
given some frame { W, R) one can define an algebraic frame { W, 4,!) such that ()
holds. Informally, we can represent things as follows. Consider { W, R) as a graph. Let
A be a set of labels such that for every vertex w, and every a in A, there is one and only
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b
i — U Y
wi w2 w1 w2
b,a
a b
w3 w4 w3 > w4
‘ O O
a a
RC WxW A = {ab}
LWxA=A
w R w Ja €A wln=w'
Fig. 1.

one edge with source w labelled by a. We define w!a as the only w’ such that (w, w') is
labelled by a. The correspondence is illustrated in Fig. 1. Observe that since ! is
a function (defined everywhere), R is serial. This is the reason why KD is for us the
minimal modal system.

But there is one problem left: What is the counterpart in an algebraic frame of the
properties of the associated “relational” frame? The nice fact and the second key idea
is that the properties of reflexivity, transitivity and functionality, are mirrored in
equational constraints on the set of operators A. Reflexivity, is ensured by assuming
that there is a unit element [, i.e. such that w!l =w for all w; we have transitivity if
a composition operation * is defined on 4 with wl{a xa’)=(w!a)!a’ (again we use infix
notation); the relation R is functional if 4 is reduced to a single operator (see Fig. 2).

The reader can easily imagine how to extend these ideas to the multimodal case: one
set of operators A; will be associated with every modality y;, instead of the accessibility
relation R;. And each of them will have to satisfy the set of equations corresponding to
the modal type of y;. Moreover, if y;< y;. R;< R; and, therefore, A;< A4; also.

Reflexivity WOI wil=w

w
a » .
Transitivity \X wlala' = wl(a*a)
w
L J
a*a' w'
Functionality o 2y 0 dyed,
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In the next section we introduce the systems of first-order logic with ordered sorts,
and the equational theories {(called “path theories” for reasons presented below)
adequate to these semantical structures. The translation from modal to path theories

is defined and studied in Section 2.3.

2.2. Path theories

2.2.1. Order-sorted logic
Syntax. We adopt notations from [23]. A signature for logic with ordered sorts is:
=((S, <), G, P,Dec), where (S, <) is a partially ordered set of sort symbols, G
and P are, respectively, sets of function and predicate symbols, and Dec a set of
declarations:

fis; X - x8,—>S,+1 If fisin G, p:sX--xs,~Bool ifpisinP

where the s/s are sort symbols and Bool a distinct symbol. s, is the range sort
of f. Note that a function or predicate symbol may have several declarations.
We only impose that the arity n is the same in all declarations. Given some set
{v;:8;}i=1.2.... of sorted variables one can build well-formed terms and formulas
in an obvious way, and define a relation “the term t has sort s” — t:s in symbolic
notation — in such a way that if t:s and s<¢, then t:s. We assume that < is the
partial order generated by some relation < given by some set of order declarations:
s;<s;. Terms, formulas, clauses, etc., are defined as usual.

Semantics. Different interpretations may be defined for such languages [16, 17, 23,
323. We shall use the following one, adequate for our purpose. An interpretation for
2=((8, <), G, P,Dec) as above is some triple:

J:<(Ds)se§a(fJ)fEG»(CIJ)qu>a

where

— each Dq is a nonempty set, the carriers for sorts s. Moreover, D, D, if s<;

— each f; is a function such that for every declaration f:s, X - x 5,— 8, 1, for every
(ay,...,a,)eD; x -~ x D, , fylay,...,a,) is defined and belongs to D, ., ,; f; is unde-
fined otherwise;

— each ¢, is a predicate such that for every declaration ¢q:s; x --- x s,—»Bool, for
every (a,,...,a,)eD, x---x D, , pslai,...,a,) is defined, and is undefined other-
wise.

If J 1s some interpretation, v a term and 4 some formula, the value of u in J for o,
denoted as {J,o)u, and the relation “A is true in J for ¢”, denoted as J,o}= A, are
defined in the usual way. The usual definitions of validity, satisfiability, etc., follow.

2.2.2. Path theories
Language. Consider some multimodal system S=((G,P),(M;);=1. . ,,.<) as in
Section 1. We define a signature 2(S)=((S, <), G', P', Dec) as follows:
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- S={W, A,,...,A,, D], where D is the sort for elements of the discourse domain,
W for worlds, and the 4;’s for operators on worlds.

- A< A ift py<p;.

- P =P,

- G'=Gul, where 0={¢,!,*,1}u{a;/M;=KF}, where the a;s are fresh symbols.

— if f has arity n and p arity m in S,

:D"->D and p:D"->Bool (if they are rigid)

S WxD"-»D and p: Wx D"->Bool (if they are flexible)
are in Dec and also

e W, VWx A;—- W foreveryi=I1,...,r,

1:4; for every i such that M; s KT or KT4,

1Ay x A;— A, for every i such that M; is KD4 or KT4,

a;: A; for every i such that M, is KF.

We use infix notation for ! and *. We decide that = and ! associate to the left, so
that alblc=(a'b)!c and a*xb=c=(axb)xc. The set of variables is split into V'=
{x:D,y:D,z:D,...} and Q={a: A, B:A;,...}. The language built on X(§) is the
language of the path theory associated with S. Formulas in this language will be called
path formulas.

Note that path formulas do not contain any variable of sort W, so that the only
terms with this sort have the general form ela'!---!a*, for some (possibly empty)
sequence of terms a’: A;;. The reader can fruitfully interpret such an expression as
denoting some world which can be reached from an “initial” world ¢ through some
“path” whose “transitions” from one world to another are labelled by the a’s.

Hence, an interpretation for the language of a path theory can be written as

I:<W,A1,...,A,,D,G/,P,[>,

where W, A;,D are the carriers for sorts W, A4, D, respectively, and Gj, P} the
interpretation of symbols in G' and P’. Moreover. if A;<A;isin Z, then A;< A4;.

Equational theories. Finally, with every modal system name M; we associate a set of
equations E(M,):

E(KD)=0,

EKT)={w!l=w},

E(KD4)= {wl(axo)=(wlo)le, (xxo')* o =a*(« *a")},
E(KT4)=E(KD4)UEKT)U{a* 1 =a, | xa=a),

E(KF)y={a=a,},
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where the o’s in E(M;) have sort A; and w is a variable of sort W used only in these
equations. With any multimodal system S we associate the set of equations
E(S)={Ji=1. ..E(M,) the path theory for S.

A X (S)-E(S)-interpretation is an interpretation for X(S) which satisfies E(S). A set
of closed formulas % on 2(8) is E(S)-satisfiable if it is satisfied in some X(S)-E(S)-
interpretation. A formula A is an E(S)-consequence of F (F |= s, A) if the universal
closure of A is true in every 2(S)-E(S)-model of &#. (We shall generally write simply
E(S)-interpretation, E(S)-satisfiable, etc.)

If we orient the equations of E(S) from left to right, we obtain a rewriting system
R(S). By careful examination of the possible critical pairs one can check the following
proposition.

Proposition 2.1. For any multimodal system S, R(S) is canonical.

Hence, every term ¢ has a unique normal form, denoted as ¢ |, and we have an easy test
for equality modulo the set of equations E(S). This remark will be useful later.

2.3. Translation from modal logic to path theories

Let T be the function from the set of multimodal formulas to the corresponding set
of path formulas defined by

T(F)=t(s, F),

where t is an intermediate function which, given a W-sorted term n and a modal
formula or term, specifies a path formula or term. ¢ is recursively defined as follows:

t(m, X)=x if x is a D-sorted variable,
tm, f (g, t))=ft(m, 1), .ot (7, T,) if f is rigid,
tm, f(ty, ..., t)Y=f(m, t{m, 1y), ..., t(n, 7,)) if fis flexible,
tm, pl(ty,....7,))=p(t(x, 1q), ..., t(7, T,)) if p is rigid,
tm, p(ty,....0))=p(r, t(n,7y), ..., t(m, 1)) if p is flexible,
t(n,—1F)y="t(n, F),

tHm, FyVE)=tr F)Vi(n, F,),

tin, Fy ANFy))=t(n, F))Nt(n, F),

Hrm, VxF)=Vx:Dt(n, F),

t(n,IxF)=3x:Dt(n, F),

t(n, 5, F)=Va: A;t(n!a, F) where « is not in Var(n),

t(m, O;F)y=3a: A;t(nlo, F), where « is not in Var(x).
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Example. Let G=[J; [J,3x C3p(f(x)), with p flexible and f rigid. Then
T(G)Y=Vo: A, V: A, 3x: DIy Ayplela! Bly, f(x)).

Proposition 2.2. Let S be a multimodal system and B a modal formula

B is S-satisfiable iff T(B) is E(S)-satisfiable.
Proof

Lemma 2.3. Let S be some multimodal system and ¥ some interpretation for S,
W denoting the set of worlds and R; for i=1,...,r the accessibility relations. There exist
r families A; of mappings from W to W, such that

- Ri=Juca,a, and

— if Ry<R;, then A;c A;.

Moreover, if M;=KT, then ldeA;; if M;=KD4, then A; is a sub semigroup of the
semigroup of mappings from W to W, if M;=KT4, then A; is a submonoid of the
monoid of mappings from W to W if M;=KF, then A; is reduced to one singleton.

Proof of Lemma 2.3. We have assumed that the graph of the relation < on modalities
is a DAG. We build the A4,’s step by step, beginning with the minimal y;'s. For every
i=1,....rlet B;={j/p;<p;} and BR;={J;.p R;. Suppose that k is such that 4; has
been built for each jin By; it is easy to check that at each step of the construction there
exists at least one such k. Let 4=R,\BR, and for every w in W, 4,,={w'/wAw’}. Let
H be the least upper bound of the cardinals of all the 4,.’s, and, for every w, f,. some
surjective mapping from H to 4,,. For every h < H we define a mapping a,: W— W by
an(w)=f,,(h). Clearly, A,=|Jycnan. Let Q=(jen, A;)u{a,/heH}. We set
- Ay=Q, if M=KD or KF,
- A, =Quild} if M, =KT,
— A, is the semigroup generated by €, in the monoid of mappings from W to W if
M,;=KD4, and the monoid generated by Q, if M, =KT4.
One can check easily that the requirements of the lemma are fulfilled. Observe in
particular that if M, =KF, then B, is empty and H=1, so that A4, is reduced to one
singleton. [

Proof of Proposition 2.2 (Continued). Let S be some multimodal system and
I=(W,A,,...,A,,D, G}, P}) some E(S)-interpretation. We build an S-interpretation
[I] as follows. The set of worlds and the discourse domain are, respectively, W and D.
The accessibility relations are defined by

wR;w' iff there exist some a in A4; such that w' =w!,a

For every w in W and every n-ary predicate symbol p of P,
- pinxy. . x,)=pr(xy, ..., x,) 0f pis rigid,
= pin(xy,ax)=prlw, xq, .., x,) i pis flexible,



Multimodal logic programming 153

and we give a similar definition for G,;;. One can check easily that [1] is an
S-interpretation. If ¢ is some valuation of the variables in VU@, let o} be its restriction
to V.

Lemma 2.4. For any term u and every formula B of a multimodal system S, every
E(S)-interpretation 1, every term n of sort W, and every valuation o,

) <IL,o)t(mouy=<{[1]),0v,.{I,6>7)u,

() Lol=t(rn,B)iff [I],04,{l,6)>n]=8B.

Proof of Lemma 2.4. The proof is easy, by induction on the structure of terms and
formulas.

Lemma 2.5. Let S be some multimodal system, .# an S-interpretation, w, some world in
S There exists some E(S)-interpretation I such that [1]1=.% and e;=w,.

Proof of Lemma 2.5. I=<{W, A, ...,A,,D,G}, P}> is defined as follows. W and D are
the sets of worlds and discourse domains of .7, respectively. We build the 4;’s as in
Lemma 2.3. We set

- & =Wo,

~ wlya=a(w) for all a in | J);4;,

— ax;a'=da - aforall a,d¢" in some A; such that M;=KD4 or KT4,

— 1,=1d, so that 1,eA4; if M;=KT or KT4,

— a;;=the unique element of A4, if M;=KF.

The rest of G} and P; are defined in the obvious way. [J

Proof of Proposition 2.2 (Conclusion). Suppose B is satisfiable, and let .#, g, wol=B.
Let I be as in Lemma 2.5. By Lemma 2.4 I,0'= T(B) for any ¢’ such that ¢} =o.
Conversely, if I,ol=T(B), then [I],0,,<{I,c)>¢l=B and B is satisfiable. [

2.4. The closure property

If R is some relation, let R, R*, R* denote, respectively, the reflexive, transitive and
reflexive-transitive closures of R. Let .# be some S-interpretation for some multi-
modal system S as in Section 1, and for every k=1,...,r, B, and BR, defined as
previously.

Definition. We say that .# has the closure property w.r.t. some modality p, if
- R,=BR, if M,=KD,

— Ry=(BR})" if M;=KT,

- R,=(BRy)" if M, =KD4,

- R,=(BRy)* if M, =KT4.
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The “standard models” considered in Examples 1.1 and 1.2 are precisely those having
the closure property. No complete calculus w.r.t. models with the closure property can
be produced for the whole language of first-order multimodal logic in the presence of
“transitive” modalities [2]. But there are useful fragments for which our method is
complete. In particular, the fragment corresponding to TEMPLOG program (see
Section 4). Note also that the propositional version of our multimodal system, even
with closure properties, is decidable since it can be embedded in propositional
dynamic logic [20].

Definition. Let I be some E(S)-interpretation and BA,=|J;.5, 4;. We say that I has
the closure property w.r.t. some sort A, if

— A,=BA, if M, =KD,

~ Ag=1{1;}UBA, if M;=KT,

— A, is the semigroup generated by BA, for #; if M, =KD4,

- A, is the monoid generated by BA, for *; with 1; as neutral element if M, =KD4.
A careful examination of the proof of Proposition 2.2 shows the following.

Proposition 2.6. Let S be a multimodal system and B a modal formula. B admits a model
with the closure property w.r.t. y, iff T(B)is E(S)-satisfiable in some interpretation with
the closure property w.r.t. Ay.

2.5. “Strong™ Skolemisation and the unique prefix property (UPP)

Skolem form of formulas can be defined as usual. But there is another, nonstandard,
notion which provides simpler formulas and is quite natural for the class of formulas
obtained by translation from modal logic. Moreover, as we shall see in the next
section, this form is needed in order to ensure the termination of our unification
algorithm. We call it the “strong” Skolem form. For brevity, we present here the
combination of the translation itself and the procedure of strong skolemisation.

Let 7' be the function from the set of multimodal formulas in NNF to the
corresponding set of path formulas defined by

T'(B)=t'(c.0,B).

where, if 7 is a term of sort Wand X is a set of D-sorted variables, t'(n, X, B) is
recursively defined as follows (t is the function defined in Section 2.3):

t'(m, X, B)=t(n,B) if B is a literal,
(X, B, A By)=t'(m, X, B) At (m, X, By) (Ae{A,V}),
I'(r, X,Yx B)=Vx: Dt'(n, X u{x},B)

f(m, X,3x B)=t"(n, Xu{x}, B)[ f(n, X)/x],
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where f: Wx D"— D is a fresh function symbol, and #n is the cardinal of X
t'(n, X, ;By=Va: A;t'(n!a, X, B),

where « is a fresh variable
t'(m, X, C;B)="t'(nle(n, X), X, B),

where ¢: Wx D"— A, is a fresh function symbol and rn is the cardinal of X.

Example. Let G="[1], [,3x $; p(f(x)), with p flexible and f rigid. Then
T(G)=Vou: A, VB: A, plela! Blota! B, glela! B)), f(glela! f))).

Proposition 2.7. Let S be some multimodal system. A formula B is S-satisfiable iff T'(B)
is E(S)-satisfiable. Moreover, B admits a model with the closure property w.r.t. py iff
T'(B) is E(S)-satisfiable in some interpretation with the closure property w.r.t. A,.

The formulas obtained by strong skolemisation of translated modal formulas, i.e.
by the function 7", possess the following unique prefix property (UPP in short): UPP,
or rather a similar property formulated in his own formalism, is due to Ohlbach [26].

Definition. A set of terms or atoms S has the unique prefix property iff for every
variable « in £ having some occurrence in S, the terms !« in which it occurs are such
that = is independent of the particular occurrences of «.

Example. The formula T7T(G) in the previous example has the UPP. But
pleta! Blo(etal B, g(ela! B)), f(g(e!a! £))) has not since f occurs in two different terms
gla!f and ela!p.

Proposition 2.8. For any multimodal formula B, T'(B) has the UPP.

We shall not prove these propositions. The proof requires some long prerequisites
(in fact, the correct definition of UPP itself is more technical), and is a straightforward
extension of the corresponding proof in the monomodal case [4] (see [ 10] for details).
In order to justify the second part of Proposition 2.7, we can just note that, as in the
standard case, a path formula F has a model iff its strong Skolem form has one with
the same domain.

3. Unification in path theories

3.1. Z-substitutions and X—E-unifiers

Let X be some signature with ordered sorts. A X-substitution (or substitution, in
short) is a mapping from a finite set D, of sorted variables to the set of terms (for which
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we use postfix notation) such that for every v;: s; in D,, v;6 has sort s;. A substitution
is denoted by its graph {v;/t;};.1. . The empty graph ¢ denotes the identical
substitution. Composition of substitutions is defined in the usual way; again we use
postfix notation.

If E is some set of equations, we say that two terms t and ¢’ are E-equal (t=g¢t') if
t="1is a logical consequence of the theory E. A X—E-unifier of two terms ¢ and ¢’ is
a Z-substitution ¢ such that to = ;t'o. Given some set of variables X, we say that two
substitutions t and ¢ are equal modulo E and X (1=g yo) iff v1=vo for every
variable in X. Finally, we can define order relations on substitutions by o <g xt
iff there is some A such that t=; xo4. Also recall that we have an easy test for
E(S)-equality by comparing the normal form of the operands.

A Z-E-complete set of unifiers (2—E-CSU in short) of two terms ¢ and ¢’ is a set U of
2—E-unifier such that for every Z—E-unifier t there is some ¢ in U with 0 < 4 7, where
X =Var(t)uVar(t').

3.2. A unification algorithm for path theories

Let us now consider the problem of unification in path theories. An important and
well-known fact (see, for instance, [22, 23]) is that Z—E-CSUs are not in general
reduced to one singleton, and may not even be finite. Indeed, if E is E(KD4), we have
a situation similar to the so-called “associative unification” and CSUs are, in general,
infinite. Try, for instance, to unify ela!c and elcla, where o is a variable and
¢ a constant with the same sort 4 ; such that the associated modality ¢, is of type KD4.
It is readily seen that {a/c,a/c xc,...,o/c*c*---x¢, ...} is an infinite minimal CSU.

What can we do? We may use a general algorithm, as proposed in [22] to
enumerate, possibly infinite, CSUSs. But there is a better way on. By Proposition 2.8,
we know that formulas obtained by the translation 7' belong to the fragment of UPP
formulas and we shall see that UPP guarantees the existence of finite CSUs. More
precisely, it ensures termination of the algorithm presented below. (For instance, UPP
clearly rules out the counterexample {¢!alc,elcla}.)

The algorithm is an extension of the one presented in [4] for only one modality,
combined with ideas from Walther’s algorithm for order-sorted unification [33]. We
shall first introduce some notations and illustrate the main ideas by an example.

3.2.1. Notations

— If t and t" are two W-sorted terms, we set
#t<t' if t is a prefix of ¢’ (t'=tla ! a),
#t and ¢’ are comparable if t<t' or ' <t.

— If ¢ is a substitution, 7 a term or set of terms, we write ¢ | 7 for (6.7 )|.
— Consider some path signature associated with some multimodal system. For
any sort s=A4;, we say that s is reflexive (transitive} if 1 is a term of sort s,
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i.e. the corresponding accessibility relation R; is reflexive (* has a declaration
A;xA;—»A; and R, is transitive). We denote this by REF(s) or TRANS(s)
accordingly. Moreover, we define the following sets:
—Ib(f, t")={seS/s<t, s<t',not Is'(s<s’, s'<f §'K ')} — lower bound of £ ¢
— mtrans (#)=the set of maximal elements in {se S/s< fand TRANS(s)} — maximal
“transitive” sorts smaller than 7

Example. Suppose first that we want to unify two terms of sort W:t, =n,!«; and
ty=m,'2%,, where 2,: A, and «,: A , are variables. There are several possibilities:

(1) For every sort A such that A;<A,; and A;<A, and every unifier ¢ of
ny and 7,, o{o; /B, %2/ B} (where f: A 4 is a fresh variable) unifies ¢, and t,: standard
case, using “weakening” of «; and «, if necessary.

(2) If A, is reflexive, for every unifier o of 7, and t,, 6{o;/1} unifies ¢, and ¢,:
symmetrical situation if A , is reflexive.

(3) For every sort A ;3 and A 4 such that 4,<A [, A, <A;5, Ay<A,, and Ay is
transitive, let : 4 ; and B': A , be fresh variables. For every unifier ¢ of n,!# and n,,
oloy/B*f, ay/B'} unifies ¢; and ¢,: symmetrical situation exchanging ¢, and ¢,.

Now if, for instance, «, were not a variable, we have a similar situation except that,
of course, there can be no weakening of a,. Observe also that if two terms ¢, and ¢, are
comparable, unification fails unless, for instance, t,=t;!a;!--- !, where, for every
i=1,...,k «;:A,;is a variable with A, reflexive, in which case we have the obvious
mgu: {ay/1, ..., 0/l

Finally, suppose that t; =¢!x, and t,=¢!a,, A, and A, are both transitive, and
there is some nontransitive A 3 such that A ;<A | and A ;< A ,. By simple weakening
we compute, as in case 1, the unifier {a,/8,%,/f}, for some variable §: 4 ;. But this is
not a mgu! For instance, {«, /8 * 8", 02/ * f"}, with §, ' : A 5 unifies ¢, and t,, while
{B/B = B"} is not a well-formed substitution, since ' * §” has not the sort A ;. In fact,
in order to have finite CSUs, we must rule out such situations by imposing a transitive
A4 such that 4,<A;, A,<A, and A< A,. This is the restriction on the set of
sorts mentioned in Proposition 3.1. In fact, this is not a real restriction since we may
always add such a sort: its domain A, will be something between the semigroup
generated by 4; and the intersection of 4, and A4,.

For the sake of simplicity, we present an algorithm unifying sets {t,#'} of two
terms; its extension to atoms is straightforward. It is written in functional form, the
only specific feature being the use of nondeterministic “or™ expressions, described
below.

Syntax

or bool,=fexp,; ...; bool,= fexp, end__or

where the bool;’s (the guards) are boolean expressions, and the fexp/’s are nondeter-
ministic functional expressions.
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Semantics
- Choose some i such that bool; is true, and evaluate fexp;.

— If there is not such i, return failure.

Hence, a functional cxpression including or-expressions may have several evalu-
ations, leading to different results. A result can be either a proper value (here,
a substitution), or failure. A computation is successful if it produces a proper value.
We extend the composition of substitutions in such a way that (o failure)=failure.

The unification algorithm is presented at the end of the section. It consists of three
mutually recursive nondeterministic functions:

— Unify(t,,t,) is the main one. Every computation returns E(S)-unifiers of r; and ¢,.
- Li=(uy,....up) and L,=(vy,...,1vx} are two lists of terms of the same length,

Unify-list(L, L,) produces substitutions that E(S)-unify all the pairs (u;, ;).

— Unify-W(t,,1,) is a specialisation of Unify(t,t,) for terms of sort W, and concen-
trate the specific aspects of our algorithm.

Finally, note that in each step terms will be rewritten in normal form, and we
suppose that the variables introduced in weakening operations are fresh ones.

Remark. A rule-based algorithm —in fact, simply an iterative presentation of the same
algorithm — is possible using a stack policy for the set of equations. We choose to give
the recursive expression of control which reflects better the real structure of our
algorithm. It must be stressed that, in any case, full nondeterminism does not seem
possible for unification in path theories (roughly speaking, unification of W-terms
must be ordered from one end of the “path” to the other). Also note that extending
UPP to sets of equations in a consistent way is not trivial, especially if one accepts
equations of the form «=1, where x is some variable in Q. But this is needed for
a direct proof of a standard rule-based algorithm.

Proposition 3.1. Assume that for any transitive sorts A; and A ;, 1b(A;, A ;) is empty or
has only transitive elements. Then

(i) The unification algorithm terminates on UPP sets of terms or atoms and produces
a (nonnecessary minimal) X(S)-E(S)-CSU.

(i) Moreover, if B is some quantifier free UPP formula, for any substitution
o computed by the algorithm, Ba has the UPP.

Due to lack of place, we omit the proof, which is long and intricate and essentially
the same as in the monomodal case [4]. After this paper was written, rule-based
algorithms and simplified proofs have been elaborated [10].

E(S)-Unification Algorithm
Unify(ty,t,)=
if 7, or t, is a variable x
then let ¢ be the other term in
if t=x then 0 else if xeVar(t) then failure else {x/t}
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else
if t; and ¢, are of sort W then Unify- W(t,,1>)
else
let t, =f(uy,...,u,) and t,=g{vy,...,v,,) In
if f#g then failure else Unify-list((uy, ..., u,), (v1, ..., 0,))
Unify-list((uy, ..., t,), (U1, ..., 0)) =
begin
k:=0; 1:=9;
while k <n and t#failure do
begin k:=k+1; p:=Unify(t | u,, 0 | v,); Ti=1u end;
return(t)
end
Unify- W(t,t5)=
if t; and t, are comparable
then let {s,,s,}={t,,t5} s.t. s=s,'a;!---1a, (k>0) in
if k=0 then 0
else if every a;eQ with ¢;:s; and REF(s;)
else let {uy,u,}={t,,t,} nondeterministically in
or

(1) uy=uilas, and u,=ujla:s, with xeQ, a¢Q, a¢Var(a), s, <s;

={x/a} Unify-W(uy,u’);
2) u,=ujlo:s; and u,=ubla:s, with aeQ, a¢Q, a¢Var(a)
={a/B:s3*a} Unify-W(ui!B,u?)
where syemtrans(s,), s;=s,, f#:s; is a [resh variable;

3) u;=ujla and u,=uslb with a,b¢Q
= Unify-list((u}, a), (13, b));
4 u,=uloa:s; with xeQ and REF(s,)
={o/1} Unify- Wi, uz);
(5) u,=uylay s, and u,=usbla, s,  with ay,a,eQ

=>{0‘1/ﬂ3§3}‘{9‘2/ﬁi§3} Unify- W(u', u3)
where s;€lb(s,,s;) and f:s; is a fresh variable;
6) u,=uylais; and u, =ublay s, with oy, 0,eQ
={23/P1:8:} {o1/B1is3* By sy) Unify-Wi(uy!f,u%)
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where syemtrans(s, ), ss€lb(s;, s,), and f,:s3, ff2:s4 are fresh variables;

end_or

4. Logic programming in path theories

By Propositions 2.2, 2.6 and 2.7, multimodal reasoning has been reduced to
deduction in path theories. Without loss of generality, we may consider path
formulas in clausal form. If the considered set of clauses is Horn, we can apply SLD
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resolution and get a system for logic programming in path theories. We call it
PATHLOG.

4.]1. PATHLOG and SLD resolution

Throughout this section we consider some multimodal system S and the corres-
ponding path theory E(S) in the language generated by 2(S).

Definition. A program clause is any expression A—A4, A---A A, with n=0, where
A and the A/’s are atoms. A goal is an expression «— A, A --- A A, with n =0, where the
A;'s are atoms. A PATHLOG program is a pair ( P, G) consisting of a set of program
clauses P and a goal G such that PU{G} has the UPP. An answer substitution is
a 2-substitution ¢ such that Pl=y5 (A A-- A A4,)a.

We supposc that for all atoms 4, 4°, I'(4, A’} is a finite 2(S)-E(S)-CSU of 4 and 4".
SLD resolution is defined for PATHLOG programs in an almost standard way. The
only difference is that in each step, not only do we choose some atom B; in the current
goal By A---AB,and a clause C=A4<A4, A--- A4, but also a X(S)-E(S)-unifier in
I'(A. B;). A derivation is then defined in the usual way, and the computed substitution is
the composition of these unifiers. Observe that by Proposition 3.1 UPP is preserved,
so that our unification algorithm is applicable in each step of the derivation.

Proposition 4.1 (Soundness of SLD X E-resolution). Every computed substitution is
an answer substitution.

Proposition 4.2 (Completeness of SLD X—E-resolution). Let ¢ be some answer substi-
tution for a PATHLOG program (P, G). Then there exists some computed substitution
T and some 7 such that o=y 17.

The proof follows very closely the proof of the corresponding propositions in
standard logic programming as presented in [24].

The main technical point concerns the definition of Herbrand interpretations. If G’
is the set of function and constant symbols, let 7(G') be the set of ground terms on the
alphabetl ('. We suppose that for each minimal sort symbol s, there is some term ¢: s;
otherwise, we add some constant. Let H=T(G")/ = s,. the quotient set of T(G') by
E(S) equality, and for every s, H,={ceH/Jtect:s}. Obviously, H,cH, if s<s
and each H_ is nonempty. A Herbrand X(S)-E(S)-interpretation is any H=
(H, H.,....H.. H.. G, P> where for any function symbol [ in G', fy is the
quotient of the canonical function f from T(G')" to T(G') by =g It should be noted
that this construction is made possible by the form of the sort declarations in X(S) and
of the equational theories E(S).

Let ~ be the equivalence relation on ground atoms defined by

plty, .. t)=plty. ...ty iff =gt for all i,
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The Herbrand base is the set whose elements are equivalence classes for ~. Observe
that since E(S) is canonical, every class can be represented by some atom p(t,,...,t,),
where the t;’s are in normal form. Clearly, a Herbrand interpretation H is completely
defined by a subset By, of the Herbrand base with H|=p(ty,...,t,) iff the class of
plty,...,t,) belongs to By,. As usual, we identify / and By,.

As in the standard case, the intersection of the Herbrand models of a program P is
again a Herbrand model of P, the minimal model H,.

Proposition 4.3. Given any PATHLOG program P, and ground atom A, the following
are equivalent:
~ PEA.
— A is consequence of P w.r.t. Herbrand X(S)-E(S)-interpretations.
—~ The ~-class of 4 belongs to Hp.
The rest of the proof is a straightforward adaptation of [24, Chapter 2]. [J

Note that by translation back, these results provide “for free” a notion of Herbrand
interpretation for multimodal logic; other attempts are [8, 29]. Also we have a mini-
mal Herbrand model for sets of Horn clauses, including a construction of a set of
worlds “minimal” in a certain manner.

Proposition 4.4. Suppose (P, G)is a PATHLOG program and that there is no function
symbol with declared range sort A,. Then Herbrand models of P have the closure
property w.r.t. A,. Hence, Proposition 4.2 holds when answer substitutions are defined
relative to the class of interpretations having this property.

Proof. Consider for instance the case where M, is KT4, The carrier for A4, in the
Herbrand universe is {1,a,,a, *a,,a; xay *as, ...}, where a, a,,as, etc., are normal
forms of arbitrary terms of sort A; for arbitrary j’s in B,. [

We conclude with two examples of PATHLOG programs, solving the problems of
Examples 1.1 and 1.2

4.2. The safe problem (continued)

First we must define the adequate path theory and translate the given set of
formulas. We have sort symbols D, Wand know, read, dial, actions, s associated
with the considered modalities in an obvious way, with the order diagram and sort
declarations shown in Fig. 3. After translation, we get the following clauses, where
o, f,7,0,X, Y, Z, L are variables and ¢, , 1, g, h skolem function symbols; we indicate
the sort of o, 5,7,0 and the range sort of ¢,,n once in each clause; D is the sort of
X,Y,Z,L and the range sort of g and h:
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/S\ e W liWxs—->s ...

*13%xs5-> 8,

H 1 TS AT . . .
actions xnow actions x actions —a ctions
/ know x know — khow

read dia: 1: know, 38, actions

Fig. 3.

(1) comb(ela:sto(eta, S, L. X ):read!y: know, X, S)
«—comb(ela, X, S), written_in(e!x, X, L).
(2) open(e!x: stn(e!a, S):dial, S)
—comb(c!aly(ela, X, S): know, X, S).
(3) comb(e!y:know, h(z!7}),safel).
(3)" written_in{s!y: know, h(&!y), desk 1).
The goal

—open(e!d: know!f:actions, safel)

can be read: find the epistemic alternatives o and the action sequences ff such that in
these alternatives, after performing f, the safe is open. If one finds a sequence f such
that for all 6 the goal formula holds, this means that John knows that § opens the safe.

We have the following successful derivation (at each step we indicate the selected
clause and the unifier):

—comb(e!d: know!f, ractions!y(e!0! 5, X, safel): know, X, safel)
by (2) with { /B, = n(e!3!f,,safel),o/d * f§,, S/safel},
—comb(e!d: know, X, safel), written_in(e!d, X, L)
by (1) with X renamed in X, and the unifier
{a/d, Pljp(e! d,safel, L, X ), vy (10! @(e!d, safel, L, X, safel), X ),
X./X,S/safel},
—written_in(&!9: know, h(e!d), L) by (3) with { X /h(e!d),7/3},
« 0 by (3) with | L/desk1,7/0}.
Hence, we get the answer
p=(e!d,safel, deskl, h(c!d)): read
xn(e!olp(e!d, safel, desk1, h(s!d)), safel): dial,
with 0 unbound; the following formula is a logical consequence of the program:
V3 open(e!d: know lp(e!d, safel, desk 1, h(e!d)): read
(e!dlp(e!d, safel, desk 1, h(c!d)), safel): dial, safel).
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Similarly, the multimodal formula
[know] {read ) {dial » open(safel)

is a logical consequence of the formulas (1)—(3) of Example 1.1.

Observe that, by Propositions 2.6 and 4.4, the logical consequence holds in
“standard” interpretations, with the closure property w.r.t. the modalities actions
and s.

4.3. TEMPLOG (continued)

Now we show how to implement TEMPLOG and program the Fibonacci example.
We shall use the sort symbols W, D, N and £ N corresponds to © (next) and F to
(, ©) (future). We have: N<F, =: fx F—F, 1:F, and a: N.

Suppose we write PATHLOG programs with no function symbol of range sort £.
Then, by Proposition 4.4, we have completeness w.r.t. interpretations with the closure
property relative to F. Indeed, the Herbrand models are such that

N={a}, F={a,axa,axax*a,...}, W={e ela,etala,elalalala,...}

and W is isomorphic to the set of natural numbers. These interpretations correspond
exactly to standard models of the temporal logic being considered. PATHLOG is
complete with respect to that class of interpretations.

Now, it happens that the set of “temporal clauses” proposed by Abadi and Manna
[1] for TEMPLOG (roughly, no < in positive occurrence) are mapped by the
translation into Horn clauses with the above restriction. Hence, we have the definition
of an interpreter for TEMPLOG with completeness as a consequence of our general
theory.

Example. The “fibonacci program” is translated into
fib(e, 0)
fib(ela, 1)
fib(elalala, X )fib(e!a, V), fib(elata, Z), X is Y+ Z
with the goal
«—fib(e!f, X))
The answers are (“is” is as in standard Prolog):
=1, X=0; f=a, X=1;, f=axa, X=1, f=axa*a, X=2;c¢tc
In other words, the following formulas are consequences of the given set of clauses:

fib(e,0), fib(ela, 1), fib(elala, 1),...,
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fib(2), ... are consequences of the original TEMP-
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Comments. (1) Certainly, much should be done in order to define a methodology for
knowledge representation in this formalism, either directly in PATHLOG or in
multimodal logic, followed by translation. These examples intend only to illustrate the
evaluation mechanism of PATHLOG programs and show encouraging indications
concerning their expressive power. In particular, note that we get answers not
expressible in the modal language itself.

(2) One might argue that this is not modal logic programming, strictly speaking.
Indeed, further work, should be done in order to define the class of modal formulas
which produces sets of Horn clauses by translation, and to examine how answers and
proofs might be “decompiled”. But this sounds like a rather routine task without
special difficulties.

Conclusions: relation with other works and discussion

(1) Ohlbach [26] and Farinas and Herzig [13] have proposed ATP methods for
modal logic (with one modality) strongly related to ours as given in [4, 3]. The
difference essentially lies in the purely algebraic techniques used in our approach. We
believe that it gives our formalism a better mathematical tractability, since we can
either directly use or easily adapt the known results and techniques of classical logic.
The results presented in Section 4, concerning the declarative semantics of
PATHLOG (Proposition 4.3) and the completeness of SLD resolution (Propositions
4.2 and 4.4) with the consequences for TEMPLOG, are quite significant.

(2) Modal logic programming is something like a current technical challenge and
several approaches have been proposed in the past few years. All the following use
“direct” methods, without translation in classical logic.

We already presented Abadi and Manna's TEMPLOG [1] and showed how
PATHLOG subsumes it. In [15] Gabbay proposes another approach to temporal
logic programming. He defines a notion of “Horn temporal clauses” with a specific
computation rule for “temporal programs”. Compared to ours, on the one hand, his
language deals as well with linear or branching time with future and past operators,
but, on the other hand, there is no “next” operator and the set of “Horn clauses” is
more restricted. Moreover, the computation rule is an ad hoc one, quite intricate and
far from the standard PROLOG.

Farinas’s MOLOG [12] accepts a class of very expressive multimodal Janguages in
which modal operators are indexed by first-order terms, and is, for that reason, very
attractive and stimulating. For instance, one can write such a clause as “[believe(x)]
[know(father(x))] P(x)", where x is a variable, which can be read “everybody believes
that his father knows that he possesses property P”. Tt is inspired by Farinas’s “modal
resolution™ [11]. But there is no clear logical semantics (and, hence, completeness



Multimodal logic programming 165

results) for MOLOG. Attempts restricted to fragments corresponding to quantifier-
free basic modal systems from K to KT5 (S5) are made in [6] and [S]. In fact, the
former may be seen as a premisse to the method of Farinas and Herzig [13]. And the
difficulties encountered in the latter were the determining factors for switching to
a “translation” method.

Orgun and Wadge [29] propose a “general theory of intensional logic program-
ming”, which owes a part of its inspiration to the Lucid experience. Their approach
can deal with modal operators with a more general semantic than the standard
“possible worlds” one. But restricted to this case, there are limitations we do not have;
for instance, they cannot cope with KT4 operators, the considered “Horn clauses™ are
less general, and the set of worlds in Kripke structures is always isomorphic to w. Also,
and this is a major problem, they provide only a declarative semantic, not a pro-
cedural one. Finally, in [28] Okada presents proof-theoretic preliminaries for modal
logic programming, but the theory is not fully developed.

Hence, it seems that the path theories approach is placed quite well w.r.t. expressiv-
ity of the accepted modal languages and theoretical results. We think this pleads for
the translation from modal to classical logic when automated reasoning is concerned,
and provided one uses a “good translation”.

(3) Now, what is a “good translation™? Two related criteria can be invoked. First, it
should preserve “something” of the structure of modal formulas. Second, there should
be some special device to deal with the structure of worlds. In other words, we should
be able to determine a fragment of classical logic, for which specific methods can be
used. In our approach, the fragment is characterised by UPP and the specialised
method is Z(S)-E(S)-unification. The situation is similar in Ohlbach’s work. Another
interesting approach filling these conditions is that of Frisch and Scherl [14], where
the target language and the method are those of some constraint logic.

(4) After this paper was written, an extension to a la MOLOG multimodal lan-
guages has been elaborated {10]. Indeed, we believe that this is the kind of formalism
needed if some application is to be considered. The semantics of such a logic and
translations in classical logic are also investigated in [26] and [21], but no specific
automated method is provided there.
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