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SUMMARY

The transmembrane protein deleted in colorectal
cancer (DCC) and its ligand, netrin-1, regulate synap-
togenesis during development, but their function
in the mature central nervous system is unknown.
Given that DCC promotes cell-cell adhesion, is
expressed by neurons, and activates proteins that
signal at synapses, we hypothesized that DCC
expression by neurons regulates synaptic func-
tion and plasticity in the adult brain. We report that
DCC is enriched in dendritic spines of pyramidal
neurons in wild-type mice, and we demonstrate
that selective deletion of DCC from neurons in the
adult forebrain results in the loss of long-term poten-
tiation (LTP), intact long-term depression, shorter
dendritic spines, and impaired spatial and recogni-
tion memory. LTP induction requires Src activation
of NMDA receptor (NMDAR) function. DCC deletion
severely reduced Src activation. We demonstrate
that enhancing NMDAR function or activating Src
rescues LTP in the absence of DCC. We conclude
that DCC activation of Src is required for NMDAR-
dependent LTP and certain forms of learning and
memory.

INTRODUCTION

Axon guidance cues are emerging as regulators of synaptogen-

esis during development; however, their potential contribution to

synaptic plasticity in the mature central nervous system (CNS) is

not clear (Shen and Cowan, 2010). Here, we asked whether the

netrin receptor, deleted in colorectal cancer (DCC), plays a role in

synaptic function and plasticity in the adult brain. Many types of

neurons express netrin-1 and DCC, and expression is not limited
C

to development. Although both netrin-1 and DCC are essential

for normal development, their function in the adult nervous

system is not known. Studies in several species support a role

for netrins in influencing synaptogenesis during development.

Genetic analyses have identified a role for netrin in nerve-muscle

synaptogenesis in Drosophila. When the amount of netrin ex-

pressed by muscle cells is increased, more synaptic connec-

tions are made by motoneurons (Mitchell et al., 1996; Winberg

et al., 1998), whereas in the absence of DCC, fewer synapses

form (Kolodziej et al., 1996). In Caenorhabditis elegans, the

netrin-1 homolog Unc-6 regulates synaptogenesis by organizing

the subcellular distribution of presynaptic proteins (Colón-

Ramos et al., 2007; Poon et al., 2008; Stavoe and Colón-Ramos,

2012). In Xenopus, application of netrin-1 protein to the optic

tectum increases the number of axon branches and synapses

made by retinal ganglion cells through a DCC-dependent

mechanism (Manitt et al., 2009). The contribution of netrins to

synapse formation suggests that DCC expressed by neurons

in the mature mammalian brain may influence synapse func-

tion and plasticity. Notably, DCC activates the cytoplasmic

tyrosine kinase Src in neurons (Li et al., 2004). Activation of Src

regulates NMDA receptor (NMDAR) function and is essential

for long-term potentiation (LTP), a form of activity-dependent

synaptic plasticity (Lu et al., 1998). Here, we tested the hypoth-

esis that DCC expressed by neurons regulates synaptic plas-

ticity in the adult brain.

RESULTS

DCC Enrichment at Synapses
To establish whether netrin-1 and DCC are present at synapses

in the mature mammalian brain, we fractionated subcellular

components of adult rat hippocampus (Huttner et al., 1983).

We found that both netrin-1 and DCC are present in synapto-

somes (fraction P2, Figure 1A). Following synaptosome lysis

and further fractionation, netrin-1 and DCC were present in

fraction LP1, which is composed of pre- and postsynaptic
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Figure 1. DCC Is Enriched in Mature Dendritic Spines

(A) Subcellular fractionation of adult rat brain. The diagram illustrates fractions

of interest. DCC and netrin-1 are present in synaptic fractions, and DCC

enricheswith the PSD. H, whole-brain homogenate; P1, pellet with nuclear and

cellular debris; P2, mitochondria and synaptosome-enriched pellet; S2 and

S3, soluble fractions; P2*, synaptosome-enriched pellet; LP1, synaptic plasma

membrane enriched; LP2, synaptic vesicle enriched.

(B) DCC immunoreactivity (white) on dendritic spines along an fRFP-labeled

dendrite. Scale bar, 1 mm. Enlarged images of DCC-immunoreactive spines

are shown below.

(C) Immunoelectron microscopy detects DCC immunostaining at PSDs

of a subset of dendritic spines (wide arrows) but not at others (narrow
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plasma membranes, consistent with enrichment of GluA2/3 in

this fraction. DCC and netrin-1 were also enriched in fraction

LP2, which contains synaptotagmin- and synaptophysin-posi-

tive transmitter vesicles and various cargo transport vesicles.

Fractionation of adult rat brain to enrich for the postsynaptic

density (PSD) (Fallon et al., 2002) revealed DCC cofractionating

with the PSD protein PSD-95 (Figure 1A). These results provide

evidence that netrin-1 andDCC are enriched atmature synapses

associated with synaptic plasma membranes and intracellular

vesicles, and that DCC cofractionates with the PSD.

Dendritic spines are postsynaptic specializations that undergo

activity-dependent changes in shape and number that are

thought to be important for learning and memory (Nimchinsky

et al., 2002). To examine the distribution of DCC in CA1 pyra-

midal cell dendrites and spines, we imaged hippocampal

organotypic slices infected with a Semliki Forest virus encoding

membrane-targeted farnesylated red fluorescent protein (fRFP)

(Haber et al., 2006). The results demonstrated a striking enrich-

ment of DCC immunoreactivity in the head of dendritic spines

(Figure 1B). Consistent with this distribution, immunoelectron

microscopy revealed enrichment of DCC in PSDs in the CA1

stratum radiatum of adult rat brain (Figure 1C). These findings

demonstrate that DCC is enriched at mature synapses in

dendritic spines.

Conditional Deletion of DCC from Forebrain Neurons
DCC is expressed by dentate gyrus granule cell neurons,

hippocampal CA1 and CA3 pyramidal neurons, and neurons

throughout the neocortex during postnatal development and

in adults (Livesey and Hunt, 1997; Volenec et al., 1997). Conven-

tional DCC null mice die within hours of birth, which makes it

impossible to examine synaptic plasticity in the adult CNS in

these animals (Fazeli et al., 1997; Serafini et al., 1996). To delete

DCC selectively from neurons in the mature brain, we adopted

a cre/loxP gene-targeting strategy (Sauer, 1998). Floxed DCC

(DCCf/f) mice were crossed to a line expressing cre regulated

by the promoter of the a-subunit of the Ca2+/calmodulin-depen-

dent kinase II gene (T29-1 CaMKIIa-cre), which drives expres-

sion exclusively by neurons in the adult forebrain (Benson

et al., 1992; Burgin et al., 1990; Jacobs et al., 1993). Although

endogenous CaMKIIa is not expressed during embryogenesis,

upregulation occurs postnatally (Bayer et al., 1999). Critically,

cre is expressed by neurons after axon guidance is complete,

which gives us the opportunity to selectively address DCC

function in mature neural circuits in vivo.

Cre is first expressed in T29-1 CaMKIIa-cre mice at

�2.5 weeks of age and is initially restricted to CA1 hippocampal

pyramidal neurons (Tsien et al., 1996). By 1month of age (Sonner

et al., 2005), cre is expressed by CA1 and CA3 pyramidal

neurons, dentate gyrus granule cells, and neurons throughout
arrow). Scale bars, left: 0.5 mm; right: 0.25 mm. at, axon terminal; ds, dendritic

spine.

(D) Cre is broadly expressed in the forebrain in progeny of T29-1 CaMKIIa-Cre

crossed with ROSA26-lacZ mice. Brain sections were obtained from b-gal-

negative (left) and -positive (right) 2- and 12-month-old mice (b-gal stain).

Neuronal expression of crewas observed in CA1, CA3, the dentate gyrus, and

the neocortex in coronal (top) and sagittal (bottom) sections. Scale bar, 1 mm.



the neocortex, but not by glia. We confirmed this pattern of

expression by crossing T29-1 mice with ROSA26-lacZ reporter

mice (Soriano, 1999), which express b-galactosidase (b-gal)

following cre-induced recombination (Figure 1D). Crossing the

DCCf/f mice with T29-1 mice generated conditional DCC knock-

outs (DCCf/f,cre+) that are homozygous DCCf/f and carry at least

one copy of CaMKIIa-cre. The crosses also yield DCCf/f,wt/wt

and DCCf/wt,wt/wt littermates that were used as wild-type (WT)

controls. All analyses used male mice only.

Levels of DCC protein in the hippocampus of DCCf/f,cre+ mice

were substantially reduced at 3, 8, and 18months of age (Figures

2A and 2B) but were unchanged at postnatal day 14 (P14) (Fig-

ure 2A), indicating that normal levels of DCC are present

throughout embryogenesis and initial maturation of the nervous

system. Conventional DCC knockouts lack a corpus callosum

(Fazeli et al., 1997). Cresyl violet staining revealed no obvious

gross morphological changes in the brains of adult DCCf/f,cre+

mice (Figure 2C), which is consistent with normal expression of

DCC in young mice and demonstrates the feasibility of removing

DCC from neurons after axon guidance is complete.

We previously reported defects in axo-oligodendroglial para-

nodal junctions in conventional DCC knockout mice that result

from the absence of DCC function in oligodendrocytes (Jarjour

et al., 2008). No such deficit was found in the hippocampi of adult

DCCf/f,cre+ mice, in which DCC is deleted only from neurons (Fig-

ure 2D). Consistent with selective deletion of DCC from neurons,

immunohistochemical staining for cre and the astrocyte marker

glial fibrillary acidic protein (GFAP) did not label the same cells

(Figure 2E, top panels). We also assessed the distribution of cells

expressing cre using b-gal expression in the progeny of T29-1

mice crossed with ROSA26-lacZ reporter mice. b-gal, indicating

cre expression, did not overlap with tyrosine hydroxylase (TH)-

immunopositive neurons, consistent with cre not being ex-

pressed by ventral midbrain dopaminergic neurons (Figure 2E,

bottom panels).

In 2- to 4-month-old mice (hereafter referred to as young

adults) and 5-month-old and older mice (hereafter referred to

as older adults), although the levels of DCC in hippocampal

homogenates were significantly decreased, we did not detect

significant changes in the expression of a variety of synaptic

proteins (Figure 2F).

DCC-Deficient Dendritic Spines Are Smaller
To determine whether DCC influences dendritic spine morpho-

logy, we first established hippocampal organotypic slice cultures

derived from conventional DCC knockout mice (Fazeli et al.,

1997). Adult DCC heterozygotes were crossed to generate

litters composed of newborn DCC null pups (Fazeli et al.,

1997), heterozygotes, and WT littermate controls. To visualize

dendrites, hippocampal cultures derived from null and WT

pups were infected with Semliki Forest virus encoding

membrane-targeted green fluorescent protein (GFP) (Haber

et al., 2006). Analysis of dendritic spine morphology in pyramidal

neurons that had never expressed DCC revealed significantly

smaller spines (Figure 3A), with reduced spine head size and

neck width, compared with controls (Figure 3B).

To determine whether selective postnatal deletion of DCC

from neurons would alter dendritic spine morphology in vivo,
C

we examined the brains of young (2–4 months) and older

(>5 months) DCCf/f,cre+ and age-matched controls using the

Golgi-Cox staining technique (Figure 3C). Spineswere quantified

along segments of dendrites of CA1 hippocampal neurons

(Figure 3A) by an investigator blind to genotype. No significant

difference was found in spine density or head width, but a signif-

icant decrease in spine length was detected along dendritic

branches in older DCCf/f,cre+ mice compared with control mice

(Figure 3D). Importantly, no significant difference was detected

in the younger mice, indicating that the loss of DCC expression

by mature neurons in the DCCf/f,cre+ mice results in a decrease

in spine size as the mice age.

DCC Loss Impairs Memory
To test the hypothesis that DCC contributes tomemory, we used

the Morris water maze, a hippocampus-dependent spatial

memory task (Clark and Martin, 2005). For 3 days, mice were

trained to swim to a visible platform. All of the mice performed

comparably and reached the platform within the same time on

the third day, indicating intact sensory and motor function. After

training, the spatial visual cues in the surroundings were

switched and the mice learned anew to swim to a submerged

platform located in a different quadrant of the maze. On the

eighth day, 2 hr after the last test, the platform was removed,

and a probe trial was run in which the time and distance spent

in the appropriate quadrant were measured. Testing young

DCCf/f,cre+ and littermate control mice (2–4 months old) revealed

no significant difference between groups (Figures 4A–4C).

However, when the same mice were tested using this 8 day

protocol at >5 months of age, the probe trial revealed that

the control mice traveled significantly farther and spent more

time in the appropriate quadrant than their DCCf/f,cre+ counter-

parts, and made more passes over the former location of

the submerged platform (Figures 4D–4F). Swimming speed did

not vary between genotypes at any age (Figures 4A and 4D).

These findings identify a spatial memory impairment in older

DCCf/f,cre+ mice.

We also applied the novel-object-recognition test, which is

based on the tendency of normalmice to interactmorewith novel

objects than with familiar objects (Bevins and Besheer, 2006). In

this test, each mouse is first habituated to an empty field, and

the next day the mouse is returned to the same open field, now

containing two identical, biologically neutral objects, which it is

allowed to explore for 5 min. After a 4 hr rest, the mouse is re-

turned to the open field, where one familiar object has been re-

placed by a novel object (Figure 4G). The relative amount of

time spent attending to the novel object can be used as a

measure of the memory for the familiar object (Bevins and Besh-

eer, 2006). We then calculated cognition and difference scores

for 24 DCCf/f,cre+ mice and 24 controls, with the experimenter

being blind to genotype. The total time spent exploring the

two objects did not differ between genotypes (Figure 4H);

however, novel-object recognition was significantly impaired in

DCCf/f,cre+ mice (Figures 4I and 4J). When performance was

binned based on age, young (2–4 months) DCCf/f,cre+ mice were

not different from controls, whereas older (>5months)DCCf/f,cre+

mice were significantly impaired in recognition memory com-

pared with age-matched controls (Figures 4I and 4J).
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Figure 2. Characterization of DCCf/f,cre+ Mice

(A) Western blots of hippocampal homogenates from P14, 3-month-old, and 8-month-old controls and DCCf/f,cre+ littermates show decreased levels of DCC

in adult DCCf/f,cre+ mice.

(legend continued on next page)
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Figure 3. DCC Deficiency Decreases Spine

Size

(A) Illustration of CA1 pyramidal neuron dendritic

branching and spine morphology of DCC-deficient

mice.

(B) Hippocampal organotypic slice cultures from

P0 conventional DCC knockout or WT pups were

infected with a virus encoding farnesylated GFP

(fGFP). Analysis revealed decreased spine head

length and width and neck width in DCC null

neurons (***p < 0.005; error bars depict SEM).

(C) Representative images of Golgi-Cox stained

spines from control and DCCf/f,cre+ mice. Scale

bar, 10 mm.

(D) Analysis of Golgi-Cox stained spines of young

(2–4 months) and older (>5 months) mice. Spines

from proximal CA1 pyramidal dendritic branches

in older DCCf/f,cre+ mice exhibit significantly

reduced spine length (***p < 0.005; error bars

depict SEM).
Importantly, the behavioral tests revealed no significant differ-

ence between the young DCCf/f,cre+ and control mice. We

conclude that deficits develop during aging as a result of the

absence of DCC function in neurons, and that DCC expression

by neurons in the mature brain contributes to spatial memory

and the recognition of novelty.

Impaired LTP but not Long-Term Depression
in DCC-Deficient Mice
To determine whether DCC loss leads to changes in synaptic

efficacy, we used acute hippocampal slices from both young

(2–4 months) and older (>5 months) adult DCCf/f,cre+ or age-

matched control mice to record field excitatory postsynaptic

potentials (fEPSPs) in CA1 evoked by stimulation of the Schaffer
(B) Immunostained CA1 in hippocampal sections from 18-month-old control and DCCf/f,cre+mice (red, b-tubul

(C) Cresyl-violet-stained coronal sections of 18-month-old control and DCCf/f,cre+ mice. Scale bar, 1 mm. C

(D) Axo-oligodendroglial paranodes of 8-month-old control and DCCf/f,cre+ mice exhibit no significant differen

between Kv1.2 juxtaparanodes. Error bars depict SEM.

(E) Immunohistochemical staining of cre-positive and -negative coronal brain sections. A section from cre-po

ROSA26-lacZ mice (far left) shows the location of immunostained regions (scale bar, 1 mm). Top panels show

mice (red, GFAP; green, Cre; blue, Hoechst; scale bar, 10 mm). Bottom panels show adjacent brain sec

cre-positive progeny. An overlay of stained sections is shown in the far-right bottom panel (red, TH; green,

(F) Western blots of hippocampal homogenates of young (3 months) and older (>5 months) mice. Histog

DCCf/f,cre+ mice (n/genotype indicated under histogram) normalized using b-tubulin III as a loading control

error bars depict SEM).
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collaterals. Analysis of the input/output

relationship at CA3-CA1 synapses across

a range of stimulus intensities did not

detect significant differences between

hippocampal slices derived from older

DCCf/f,cre+ and control mice (Figure 5A).

Critically, this indicates that CA3-CA1

synaptic contacts are intact in animals

lacking DCC, and that basal levels of

synaptic transmission in DCCf/f,cre+ mice

are not altered by the deletion of DCC.

To determine whether DCC deletion influ-
ences synaptic plasticity, we next assessed LTP and long-term

depression (LTD) at CA3-CA1 Schaffer collateral synapses

(Figure 5).

LTP is an experimental model of activity-dependent synaptic

strengthening that may function as a neural substrate underlying

learning and memory (Bliss and Collingridge, 1993). To assess

the role of DCC in LTP, we used high-frequency stimulation

(HFS; 1 s, 100 Hz) to induce LTP in hippocampal slices derived

from DCCf/f,cre+ mice and age-matched controls (Figures 5B

and 5C). Whereas slices from control animals showed robust

LTP, slices from older (>5 months) DCCf/f,cre+ mice exhibited

a striking absence of potentiation 1 hr after induction (Figure 5B).

To determine whether this impairment was due to a develop-

mental deficit in DCCf/f,cre+ animals, we tested hippocampal
in III; green, DCC; blue, Hoechst; scale bar, 10 mm).

C, corpus callosum.

ces in width of Caspr immunoreactivity or distance

sitive progeny of T29-1 CaMKIIa-Cre crossed with

hippocampal CA1 from cre-positive and -negative

tions containing substantial nigra (TH-positive) of

Hoechst; blue, b-gal; scale bar, 1 mm).

rams plot the average intensity from control and

(Student’s two-tailed t test, *p < 0.05, **p < 0.01;

, January 31, 2013 ª2013 The Authors 177



Figure 4. Impaired Spatial and Recognition Memory in Aged DCCf/f,cre+ Mice

(A–F) Morris water maze. Young (A) and older (D) controls and DCCf/f,cre+ mice swim at similar speeds. Genotypes show no difference between young (B) and

older (E) mice during training to learn the location of a submerged platform. In a probe trial to test spatial memory of the location of the submerged platform, 2 hr

after the last day of training, passes over the former location of the platform, distance, and time in the appropriate quadrant were analyzed (C and F). Young

(2–4 months) control and DCCf/f,cre+ mice perform similarly (n = 8/group) (C). (F) Older (>5 months) DCCf/f,cre+ mice score lower than controls (control: n = 7,

DCCf/f,cre+: n = 8). Statistical analysis was performed using a two-tailed t test (*p < 0.05, **p < 0.01; error bars depict SEM).

(G) Diagram of the novel-object-recognition test.

(H) Young (2–4 months) and older (>5 months) control and DCCf/f,cre+ mice explore objects for similar durations (young control: n = 13; young DCCf/f,cre+: n = 11,

older control: n = 11; older DCCf/f,cre+: n = 13).

(I and J) Performance was worse for older DCCf/f,cre+ mice in cognition (I) and difference (J) scores (two-tailed t test; *p < 0.05; error bars depict SEM).
slices from 2- to 4-month-old DCCf/f,cre+ mice (Figure 5C). In

contrast to their aged counterparts, fEPSPs in slices from

young (2–4 months) DCCf/f,cre+ mice and their age-matched

controls demonstrated significant potentiation 1 hr post-tetanus

(DCCf/f,cre+ versus age-matched controls, p > 0.05). We

conclude that the impairment exhibited by older animals is not

due to a deficit in the early development of DCCf/f,cre+ mice.

We also assessed fEPSP amplitudes during the HFS train

and found no significant differences between genotypes (Fig-

ure 5D), suggesting that the lack of LTP did not resulting from

an inability to follow the HFS train.

To determine whether LTP impairment may be due to altered

presynaptic function, we examined paired-pulse facilitation

(PPF) across a range of stimulus intervals. Changes in PPF are

generally attributed to changes in the probability of presynaptic
178 Cell Reports 3, 173–185, January 31, 2013 ª2013 The Authors
transmitter release. PPF ratios were not significantly different in

slices from older (>5 months) control and DCCf/f,cre+ mice at

intervals ranging from 20 to 100 ms (Figure 5E), or in slices

from younger control and DCCf/f,cre+ mice (data not shown).

The absence of a difference in PPF supports the conclusion

that deletion of DCC does not result in a significant alteration in-

presynaptic transmitter release, and is consistent with DCC

deletion resulting in a postsynaptic deficit.

Repeated low-frequency stimulation (LFS) induces LTD of

evoked responses at CA3-CA1 synapses. To determine whether

DCC contributes to LTD, we used a paired-pulse LFS (PPLFS)

paradigm to induce LTD (15 min, 1 Hz paired-pulse stimulation,

1,800 pulses, 25 ms interpulse interval; Kourrich et al., 2008).

Hippocampal slices from >5 months old DCCf/f,cre+ mice and

their age-matched controls demonstrated significant depression



Figure 5. Impaired LTP but Intact LTD in DCCf/f,cre+ Mice

(A) No significant difference is detected between control and DCCf/f,cre+ in CA3-CA1-evoked fEPSP amplitudes in older animals.

(B) Following HFS in older animals (>5 months), DCCf/f,cre+ does not display LTP. The mean amplitude of fEPSPs is potentiated in control (137.6% ± 8.0%,

p < 0.001) but not in DCCf/f,cre+ slices at 1 hr (116.1% ± 8.2%; p > 0.05). Representative fEPSPs from control (left) and DCCf/f,cre+ (right) before (gray) and after

(black) HFS (arrow) are shown.

(C) Slices from young (2–4months)DCCf/f,cre+mice and age-matched controls remain significantly potentiated 1 hr after HFS (113.9% ± 5.2% inDCCf/f,cre+ versus

121.3% ± 12.5% in controls, p > 0.05).

(D) No significant differences in fEPSP amplitude during the HFS train between older (>5 months) control and DCCf/f,cre+ mice are observed.

(E) PPF ratios in slices from older control and DCCf/f,cre+ mice do not differ significantly (p > 0.05).

(F) PPLFS (bar, 15 min) induced LTD in older control (n = 7) and DCCf/f,cre+ mice (n = 8; p < 0.01 versus baseline).
of synaptic responses following PPLFS (p < 0.01; Figure 5F), indi-

cating that the LTP deficit is the not the result of a general loss

of synaptic plasticity.

DCC Regulates NMDAR Subunit GluN2B Expression
We then investigated the mechanism that underlies the deficit in

LTP induction inDCCf/f,cre+mice.Western blot analyses revealed

no significant change in the expression of the synaptic proteins

synaptophysin, N-ethylmaleimide-sensitive factor (NSF), AMPA

receptor (AMPAR) subunits GluA1 and GluA2/3, or NMDAR

subunits GluN1 and GluN2A in hippocampal homogenates of

adult DCCf/f,cre+ mice compared with controls (Figures 2F and

6A). In contrast, a significant increase in the amount of NMDAR

subunit GluN2B was found in young (3 months) and older

(>5 months) DCCf/f,cre+ mice (Figure 6A) that persisted in

20-month-old DCCf/f,cre+ mice (Figure 6B). Increased GluN2B

protein was detected in whole hippocampal homogenates and

in the synaptosome LP1 plasma membrane fraction (Figure 6B),

which includes the synaptic apposition and extrasynaptic

plasma membranes.

To determine whether increased levels of GluN2B contribute

to electrophysiological differences in slices from control and

DCCf/f,cre+ mice, we examined the various currents that con-

tribute to the fEPSP response in slices from older (>5 months)

control and DCCf/f,cre+ mice by applying appropriate pharmaco-

logical inhibitors (Figure 6C). Following application of picrotoxin

(PTX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to

block GABA receptors and AMPARs, respectively, we added
C

ifenprodil to selectively block the function of GluN2B-contaning

NMDARs. In the presence of ifenprodil, we observed no differ-

ence in the evoked NMDAR-mediated responses between

DCCf/f,cre+ mice and their age-matched controls (Figure 6D).

This result indicates that the increased expression of GluN2B

in DCCf/f,cre+ mice does not alter the electrophysiological

response, which suggests that the increased GluN2B protein is

not located at synapses.

DCC Regulates Src, Phospholipase C g, and
Phosphorylated Src Family Kinase Expression
DCC activates both phospholipase C (PLC) and Src family

kinases (SFKs) in neurons (Liu et al., 2004; Xie et al., 2006),

and activation of the tyrosine kinase Src is necessary and suffi-

cient for the induction of LTP (Lu et al., 1998). Src regulates

NMDAR function by phosphorylating the GluN2A subunit (Salter

and Kalia, 2004), and PLC activation of Src through protein

kinase C (PKC) increases the opening probability and open

time of NMDAR without changing the channel conductance or

reversal potential (MacDonald et al., 2007; Yu et al., 1997; Yu

and Salter, 1998). We therefore investigated how loss of DCC

might alter the expression and function of these proteins.

In hippocampal homogenates of older (>5 months), but not

young (3 months) DCCf/f,cre+ mice, we detected a significant

decrease in the amount of phosphorylated PLCg1, but not total

PLCg1 (Figure 7A), consistent with reduced PLCg1 activation in

the absence of DCC. We also identified a significant decrease in

the amount of total Src protein in the DCCf/f,cre+ animals, but no
ell Reports 3, 173–185, January 31, 2013 ª2013 The Authors 179



Figure 6. DCC Regulates NMDAR Function

(A) Protein expression levels of NMDAR subunits in

hippocampal homogenates from young (3months)

and older (>5 months) mice (n = 3/genotype; two-

tailed t test, *p < 0.05; error bars depict SEM).

(B) Subcellular fractionation of hippocampi from

control and DCCf/f,cre+ mice (20 months old). In

DCCf/f,cre+ mice, GluN2B is enriched in the

LP1 synaptic membrane fraction. No significant

changes were detected between genotypes in

levels of GluA1, PSD-95, or synaptophysin.

(C) Pharmacological inhibitors were applied to

slices of older (>5 months) control and DCCf/f,cre+

mice in low-Mg2+ (0.1 mM) ACSF. fEPSP ampli-

tude was measured during this treatment.

(D) No significant difference was detected in

fEPSP amplitudes measured for control and

DCCf/f,cre+ mice. Normalized fEPSP amplitude in

the presence of PTX and CNQX is shown; error

bars depict SEM.
change in the SFK Fyn. Furthermore, we detected decreased

pan-SFK Y416 phosphorylation, revealing substantially reduced

SFK activity in neurons lacking DCC (Figure 7A). Activation of

DCC by addition of netrin-1 to synaptosomes purified from

the cortex of WT adult mice increased phosphorylated SFK

(pSFK) compared with unstimulated control synaptosomes

(Figure 7B), providing evidence that netrin-1 activates SFKs at

synapses. The emergence of these deficits with age supports

the conclusion that loss of DCC results in a deficit in key synaptic

signaling mechanisms in older adults.

The influx of calcium (Ca2+) through NMDARs is critical for

the induction of LTP, but is blocked by magnesium (Mg2+)

at resting membrane potentials. SFK activation promotes the

influx of Ca2+ through the NMDAR by increasing both the prob-

ability of NMDAR opening and the open time (Lu et al., 1998;

Salter and Kalia, 2004; Yu and Salter, 1998). To determine

whether the LTP deficit in older (>5 months) DCCf/f,cre+ mice is

a consequence of reduced Ca2+ influx through NMDARs, we

facilitated NMDAR function by reducing the concentration of

Mg2+ from 2.0 mM to 1.3 mM in the artificial cerebrospinal fluid

(ACSF) perfusing the slice. This resulted in a striking rescue of

LTP following HFS (1 s, 100 Hz) in hippocampal slices derived

from older (>5 months) DCCf/f,cre+ mice, resulting in LTP that

was indistinguishable from that evoked in age-matched controls

in the same ACSF (Figure 7C).
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We then directly tested the hypothesis

that the LTP deficit in older (>5 months)

DCCf/f,cre+ mice is specifically due the

lack of activated Src. We thus aimed to

selectively activate Src in the DCCf/f,cre+

mice and determine whether this was

sufficient to rescue LTP in the absence

of DCC. To do this, we applied pituitary

adenylate cyclase activating peptide-38

(PACAP-38), a 38 amino acid peptide

that activates PAC1R, a G-protein-

coupled receptor expressed by hippo-
campal neurons (Miyata et al., 1990; Zhou et al., 2000).

PACAP-38 binding of PAC1R signals through PLC and PKC to

activate Src and enhance NMDAR function (Macdonald et al.,

2005). Application of PACAP-38 during the HFS train (1 s,

100 Hz) rescued LTP in hippocampal slices derived from older

(>5 months) DCCf/f,cre+ mice in ACSF containing 2.0 mM of

Mg2+. Critically, this rescue was blocked by addition of the

SFK inhibitor PP2 but not its inactive analog, PP3 (Figure 7D),

indicating that SFK activation was essential for PACAP-38 to

rescue LTP. We conclude that in the absence of DCC, sub-

stantially reduced SFK signaling underlies deficient NMDAR

function that results in a severe deficit in the capacity to induce

LTP, with coincident defects in hippocampal-dependent

memory (Figure 7E).

DISCUSSION

Many proteins that are essential for normal neural development

are also expressed in the adult brain, raising the intriguing

possibility that they may in some way influence plasticity. Here,

we report that DCC-dependent activation of Src in mature

hippocampal neurons is required for the induction of NMDAR-

dependent LTP, and that DCC expression by forebrain neurons

contributes to spatial and recognition forms of memory. Further-

more, DCC deletion from mature neurons resulted in shorter



Figure 7. Netrin-1 and DCC Regulate Src Activation

(A) Phosphorylated and total SFKs and PLCg1 proteins in hippocampal homogenates in control andDCCf/f,cre+mice, normalized to b-tubulin III (n/genotype under

histogram; two-tailed t test, *p < 0.05). Error bars depict SEM.

(B) Netrin-1 stimulation of P2* purified synaptosomal fraction isolated from adult WT brain significantly increases levels of pSFKs, normalized to synaptophysin as

a loading control (n = 6/condition; two-tailed t test, *p < 0.05; error bars depict SEM).

(C) Slices from older (>5months) control andDCCf/f,cre+mice in reduced 1.3mMMg2+ ACSF remain significantly potentiated 1 hr after HFS (1 s, 100 Hz, 148.6% ±

10.9% in DCCf/f,cre+; 139.4% ± 6.6% in age-matched controls; p < 0.01).

(D) Slices from olderDCCf/f,cre+mice treatedwith PACAP-38 during HFS and perfusedwith ACSF containing 2.0mMMg2+ and the inactive compound PP3 remain

significantly potentiated after 1 hr. The SFK inhibitor PP2 blocks potentiation (124.7% ± 4.5% in PP3; 108.2% ± 7.7% in PP2; p < 0.05).

(E) Model.
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dendritic spines and increased levels of NMDAR subunit

GluN2B, indicating that DCC is required to maintain mature

synaptic morphology and an appropriate balance of NMDAR

subunit expression. These findings identify a role for DCC as

an essential upstream activator of Src signaling at mature CNS

synapses, and of synaptic plasticity and memory formation in

the mature mammalian brain.

A key aspect of these findings is the relatively minor differ-

ences detected between young DCCf/f,cre+ and control mice,

and the increased severity of the deficits with age, which support

the conclusion that impairments develop during aging due to

loss of DCC function in neurons. At P14, the level of DCC protein

in the hippocampus of DCCf/f,cre+ mice did not differ from that

in controls. Between P14 and 3 months of age, levels of DCC

protein were substantially reduced. Although memory was intact

and significant changes in most synapse-associated proteins

were not detected in young (2–4 months) DCCf/f,cre+ mice,

increased levels of GluN2B were present in the hippocampal

homogenates of these mice. This indicates that although DCC

loss has not yet resulted in dramatic defects, the initial con-

sequences of deleting DCC can be detected at this age. In

contrast, levels of Src, pSFK, PLCg1, and pPLCg1 in young

DCCf/f,cre+ mice were not significantly different compared with

controls. Mean levels of Src and pSFK showed a tendency to

be slightly reduced, however, which may represent the onset

of deficits that become more severe in older animals. We

conclude that DCC expression by these neurons is essential to

maintain the function of synapses that contribute to memory,

but that in young adult mice (2–4 months), the deficits are not

yet sufficiently severe to disrupt memory formation. These

findings support the hypothesis that DCC loss results in a

progressive deficit in synapse function as the mice age.

Beyond Axon Guidance: A Postsynaptic Function
for DCC in Mature Neurons
Subcellular fractionation and immunohistochemical analyses

indicate that DCC is enriched in dendritic spines and associated

with the PSD. Previous studies of DCC function in neurons

focused on axonal growth cones, where DCC directs the

organization of F-actin to regulate motility and adhesion (Lai

Wing Sun et al., 2011). Actin is also the major cytoskeletal

element that regulates the structure of dendritic filopodia and

spines. Notably, the actin regulatory proteins Nck1 (Dock),

Pak1, and Rho GTPases (Cdc42, Rac1, and RhoA) all regulate

dendritic spine morphology (Tada and Sheng, 2006), and all

are downstream effectors of DCC in axons (Lai Wing Sun et al.,

2011). Our findings raise the possibility that DCC functions

in dendrites upstream of Rho GTPases to maintain mature

dendritic spine morphology.

Little, if any, DCC immunoreactivity was detected in pre-

synaptic terminals in mature neurons. This is in contrast to the

role of DCC in directing extending axons, which upon reaching

an appropriate target form presynaptic terminals. Our findings

highlight a postsynaptic role for DCC; however, it remains to

be determined how DCC is distributed within dendrites during

maturation, when DCC becomes predominantly localized to

postsynaptic spines, and whether DCC function in mature

neurons is restricted to a postsynaptic role.
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DCC Regulation of GluN2B Expression
Following DCC loss, we detected increased levels of the NMDAR

subunit GluN2B. During early development, high levels of

GluN2B relative to GluN2A are normally present at synapses,

with a switch to more GluN2A and less GluN2B occurring during

maturation (Barria and Malinow, 2002; Sheng et al., 1994; Wil-

liams et al., 1993). NMDARs present at immature hippocampal

synapses are largely GluN1-2B complexes (Tovar and West-

brook, 1999) that are thought to inhibit the recruitment of AMPAR

GluA1 subunits to the plasma membrane and compromise

synapse maturation (Kim et al., 2005). Interestingly, transgenic

mice that selectively increase GluN2B expression in forebrain

neurons exhibit enhanced hippocampal LTP and improved

learning and memory (Tang et al., 1999). In contrast, we found

that increased GluN2B expression due to DCC deletion is asso-

ciated with a deficit in LTP induction and compromised spatial

and recognition memory. Importantly, although we detected

increased GluN2B protein in hippocampal homogenates and in

the LP1 synaptosomal plasma membrane fraction isolated

from mature brain, electrophysiological analyses revealed no

difference in the contribution of GluN2B to fEPSP responses

between genotypes, suggesting that the increased GluN2B

detected in DCCf/f,cre+ mice may be chiefly extrasynaptic. This

suggests that defects induced by loss of DCC may occlude

the expected enhancement of synapse function induced by

increasing levels of GluN2B.

Netrin-1 and DCC Function at Synapses
The requirement for DCC in activity-dependent plasticity raises

questions about how DCC and netrins might be regulated by

activity. Both netrin-1 and DCC are enriched in the LP2 fraction

of adult brain synaptosomes, consistent with trafficking in

cargo vesicles at synapses. Whether netrin-1 is secreted from

neurons by constitutive or regulated pathways is unknown,

and it remains to be determined whether exocytosis of netrin-1

may be regulated in an activity-dependent manner. In contrast,

we previously reported that membrane depolarization recruits

DCC to the plasma membrane of embryonic cortical neurons,

and that this promotes axon outgrowth in response to netrin-1

(Bouchard et al., 2008). This finding raises the tantalizing possi-

bility that DCC trafficking may be similarly regulated by activity

at synapses, and that activity-induced recruitment of DCC to

the synaptic plasma membrane may enhance NMDAR function.

Src Is Essential for LTP Induction
Netrin-1 signaling through DCC activates PLCg (Xie et al., 2006)

and Src in neurons (Li et al., 2004), and activation of Src by PLC

(MacDonald et al., 2007) is required for Schaffer collateral CA1

NMDAR-dependent LTP (Lu et al., 1998). The NMDAR GluN2A

subunit is phosphorylated by Src (Salter and Kalia, 2004), and

NMDAR function is enhanced by signaling from PLC to PKC to

activate Src (MacDonald et al., 2007). DCC-deficient mice

exhibit reduced levels of Src protein, reduced activation of

SFK and PLCg, and a severe deficit in the induction of LTP.

We therefore tested the hypothesis that reduced activation of

Src results in a deficit in NMDAR function that underlies the

absence of LTP. We found that enhancing NMDAR func-

tion either by decreasing extracellular levels of Mg2+ or by



pharmacologically activating Src completely rescued LTP

in DCCf/f,cre+ mice. We conclude that DCC expression by

hippocampal pyramidal neurons is essential to maintain the

morphology of mature dendritic spines, and that DCC activation

of Src is required for the induction of NMDAR-dependent LTP,

with consequences critical for memory in adult animals.

EXPERIMENTAL PROCEDURES

Animals

All procedures involving animals were performed in accordance with the

Canadian Council on Animal Care’s guidelines for the use of animals in

research. T29-1 CaMKIIa-cre mice were obtained from The Jackson Labora-

tory (Bar Harbor, ME, USA). Floxed DCC mice were generated as previously

described (Krimpenfort et al., 2012).

Immunostaining

Western blot analyses utilized the following antibodies: mouse a-b-tubulin III

(1:500, T4026; Sigma-Aldrich, St. Louis, MO, USA), mouse a-DCCin

(1:1,000, 554223; BD PharMingen, San Diego, CA, USA), rabbit a-Fyn (gift of

Dr. Andre Veillete; Davidson et al., 1992), rabbit a-GluR1 (1:1,000, AB1504;

Chemicon, Temecula, CA, USA), rabbit a-GluR2/3 (1:1,000, AB1506; Chemi-

con), mouse a-NR2B (1:3000, N59/60; NeuroMab, Davis, CA, USA), rabbit

a-NSF (1:5,000, AB1764; Chemicon), mouse a-phospho-PLCg1 (1:200,

pY783.27; Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit a-phos-

pho-Src family (Tyr416; 1:1,000, 2101; Cell Signaling Technology, Beverly,

MA, USA), mouse a-PLCg1 (1:1,000, 05-163; Millipore, Billerica, MA, USA),

mouse a-PSD95 (1:500; BD PharMingen), mouse a-Src family (WTAPE), clone

2E8.2 (1:1,000, 05-1461; Millipore), and mouse a-synaptophysin (1:10,000,

S-5768; Sigma-Aldrich).

Immunohistochemical analyses of 16 mm cryostat sections utilized

a-b-tubulin III, goat polyclonal a-DCCex (1:500, A20: sc-6535; Santa Cruz

Biotechnology), Hoechst stain (1:10,000, 33258; Sigma-Aldrich), and

secondary donkey a-goat Alexa-488 (1:500, A11055; Invitrogen, Eugene,

OR, USA) or donkey a-mouse Alexa-555 (1:500, A31570; Invitrogen).

Confocal and Electron Microscopy

Axonal-oligodendroglial paranodes labeled with mouse a-Caspr (#75-001;

NeuroMab) and rabbit a-Kv1.2 (#APC-010; Alomone Labs, Jerusalem, Israel)

were imaged with a confocal microscope (510 LSM; Carl Zeiss, Toronto,

Canada). Immunoelectron microscopy on adult rat CA1 followed a pre-

embedding immunoperoxidase protocol as previously described (Tremblay

et al., 2009) using mouse a-DCCin (1:200, G97-449; BD PharMingen),

and sections were examined at 60 kV (CM100 electron microscope; Philips,

Eindhoven, The Netherlands).

Subcellular Fractionation

Subcellular fractionation utilized adult rat brain and mouse hippocampi or

cortex as previously described (Huttner et al., 1983). PSD fractionation of adult

rat brain (unstripped, 7–8 weeks old, ID 56004-2; Pel-Freez Biologicals,

Rogers, AR, USA) was carried out as previously described (Fallon et al.,

2002). Western blots were probed with antibodies against DCCin, GluR1,

netrin-1 (rabbit polyclonal PN2, 11760; Manitt et al., 2001), NR2B, PSD-95,

synaptophysin, and synaptotagmin (rabbit polyclonal 8907, provided by

P. De Camilli, Yale University, New Haven, CT, USA).

Organotypic Slice Culture and Spine Morphology

Slices (250 mm thick) from the hippocampi of P0 DCC knockout pups and

WT littermates were cultured 60 DIV, infected with a virus encoding farnesy-

lated fluorescent protein, and fixed 24 hr later. Analysis of spines (WT: n =

275 spines; DCC�/�: n = 392 spines) used Reconstruct software (John Fiala,

Boston University, Boston, MA, USA).

Golgi Staining and Spine Morphology

Mouse brains (n = 3/condition) were processed (FD Rapid GolgiStain Kit;

FD Neurotechnologies, Catonsville, MD, USA) and R50 mm sections were
C

cut with a cryostat. CA1 dendrite segments were traced and analyzed

(Neurolucida 9 and NeuroExplorer 9; MBF Bioscience, Williston, VT, USA;

spines in young mice: WT: n = 204, DCCf/f,cre+: n = 208; spines in aged mice:

WT: n = 192, DCCf/f,cre+: n = 267; dendritic segments young: WT: n = 11,

DCCf/f,cre+: n = 11; dendritic segments aged: WT: n = 13, DCCf/f,cre+: n = 15).

Morris Water Maze

Mice were trained to find a submerged platform in a water maze in an 8-day

training protocol as previously described (Nicolakakis et al., 2011). Swimming

was tracked with the use of an overhead video tracking system (2020 Plus

tracking system, Ganz FC62D video camera; HVS Image, Mountain View,

CA, USA) and tracking software (Water 2020 software; HVS Image). The

time and distance traveled in each quadrant were calculated using Water

2020 software.

Novel-Object-Recognition Test

Recognition memory was assessed by means of the novel-object-recognition

test (Bevins and Besheer, 2006). Exploration time (duration % body length

away from the object, head pointed toward object) was recorded by overhead

video (VideoTrack; ViewPoint Life Sciences, Otterburn Park, QC, Canada).

Recordings (24 mice/genotype) were assessed by an investigator who was

blind to genotype. Difference score = (timewith novel object – timewith familiar

object). Cognition score = (time with novel object/total exploration time).

Electrophysiology

Acute brain slices (350–400 mm) were obtained from mice as previously

described (Glasgow and Chapman, 2007, 2008). During recording, slices

were continuously perfused with oxygenated ACSF (95% O2, 5% CO2, 1.5–

2 ml/min).

LTP and LTD tests began after 20–30 min baseline (intensity adjusted to

evoke responses 40%–70% of maximum). LTD was assessed with prolonged

PPLFS (900 paired pulses, 25 ms interval, 1 Hz for 15 min). LTP was induced

byHFS (1 s, 100Hz train). In the LTP rescue experimentwith reducedMg2+, the

ACSF contained 1.3 mMMg2+ and 2.5 mMCa2+ (versus 2mMMg2+ and 2 mM

Ca2+). In the LTP rescue experiment with PACAP-38, either PP2 or PP3 (1 mM in

DMSO) was present in the 2.0 mM Mg2+ ACSF for the duration of recording,

and PACAP-38 (1 nM) was administered from 10 min before HFS to 20 min

after HFS. For analysis of fEPSPs in the presence of pharmacological

inhibitors, slices were recorded in low-Mg2+ ACSF (0.1 mM Mg2+) to which

100 mM PTX, 5 mM CNQX, 3 mM ifenprodil, and 100 mM APV (Tocris, Minneap-

olis, MN, USA) were added sequentially.

Data Analysis

Statistical significancewas tested at the 95%confidence level (p < 0.05). In the

graphs, error bars indicate SEM. Student’s two-tailed t test was used to

compare differences between two means.

For additional details, see Extended Experimental Procedures.
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