JOURNAL OF FUNCTIONAL ANALYSIS 71, 195-197 (1987)

On the Continuity of the Volterra Variational Derivative

WASHEK F. PFEFFER

Department of Mathematics, University of California, Davis, California 95616 Communicated by the Managing Editors Received April 15, 1985

We give a sufficient condition for the continuity of the Volterra variational derivative of a functional with respect to a fixed function. For linear functionals this condition is automatically satisfied, and so the Volterra variational derivative of a linear functional is always continuous. - + 1987 Academic Press, Inc.

Throughout, all functions and functionals are real-valued. The linear space of all continuous functions on an interval [a, b] is denoted by $\mathscr{C}([a, b])$. Given a Lebesgue integrable function λ on [a, b], we define a linear functional L on $\mathscr{C}([a, b])$ by setting

$$L(f) = \int_{a}^{b} \lambda(x) f(x) \, dx$$

for each $f \in \mathscr{C}([a, b])$. Hamilton and Nashed proved (see [1, Theorem 2]) that if λ is bounded from below, and for each $x \in [a, b]$ the Volterra variational derivative $\delta L/\delta f(x)$ with f = 0 exists and equals $\lambda(x)$, then λ is continuous. Their proof utilizes in an essential way the boundedness from below of λ : an assumption which will be shown here to be unnecessary. The result itself is an interesting and potentially useful observation which deserves to be formulated in a more general setting and proved in a transparent and straightforward manner. It turns out that the added generality enhances the understanding of what is going on.

Let X be a completely regular Hausdorff space, and let μ be a locally finite Baire measure in X which assigns a positive measure to each open Baire subset of X. By \mathcal{H} we denote the family of all bounded continuous functions on X which do *not change sign* and whose support is contained in a Baire set of finite measure. Thus $0 \neq \int_X h d\mu \neq \pm \infty$ for each nonvanishing function $h \in \mathcal{H}$. Let \mathcal{F} be a collection of functions on X (not necessarily continuous) which is stable with respect to perturbations by elements of \mathcal{H} , i.e., if $f \in \mathcal{F}$ and $h \in \mathcal{H}$, then $f + h \in \mathcal{F}$. Finally, let J be a functional on \mathcal{F} . **DEFINITION.** Let $x \in X$ and $f \in \mathcal{F}$.

(i) We say that J is *continuous* at (x, f) if given $\varepsilon > 0$, we can find a $\delta > 0$ and a neighborhood U of x so that

$$|J(f+h) - J(f)| < \varepsilon$$

for each $h \in \mathscr{H}$ with $|h| < \delta$, $h(x) \neq 0$, and supp $h \subset U$.

(ii) We say that J is strongly continuous at (x, f) if there are a $\delta > 0$ and a neighborhood U of x such that J is continuous at (x, f+k) for each $k \in \mathcal{H}$ with $|k| < \delta$ and supp $k \subset U$.

(iii) We say that J is Volterra differentiable at (x, f) if there is a real number α such that given $\varepsilon > 0$, we can find a $\delta > 0$ and a neighborhood U of x so t that

$$\left|\frac{J(f+h)-J(f)}{\int_X h \, d\mu}-\alpha\right|<\varepsilon$$

for each $h \in \mathcal{H}$ with $|h| < \delta$, $h(x) \neq 0$, and supp $h \subset U$.

It follows easily from the assumptions imposed on the measure μ that the number α from part (iii) of the previous definition is determined uniquely. We call it the *Volterra derivative* of J at (x, f) denoted by $\delta J/\delta f(x)$. It is immediate that J is continuous at (x, f) whenever $\delta J/\delta f(x)$ exists. In particular, the existence of $\delta J/\delta f(x)$ for all $f \in \mathcal{F}$ implies the strong continuity of J at (x, f) for any $f \in \mathcal{F}$.

THEOREM. Let $f \in \mathcal{F}$, and let D be the set of those $x \in X$ for which $\delta J/\delta f(x)$ exists. Then the function $x \mapsto \delta J/\delta f(x)$ on D is continuous at $x_0 \in D$ whenever J is strongly continuous at (x_0, f) .

Proof. Let $x_0 \in D$ be such that J is strongly continuous at (x_0, f) , and let $\varepsilon > 0$. Find a $\delta > 0$ and an open neighborhood U of x_0 so that

$$\left|\frac{J(f+h) - J(f)}{\int_X h \, d\mu} - \frac{\delta J}{\delta f(x_0)}\right| < \frac{\varepsilon}{2} \tag{1}$$

for each $h \in \mathcal{H}$ with $|h| < 2\delta$, $h(x_0) \neq 0$, and supp $h \subset U$. Using the strong continuity of J at (x_0, f) , we may assume that J is continuous at $(x_0, f+k)$ for each $k \in \mathcal{H}$ with $|k| < \delta$ and supp $k \subset U$. If $x \in D \cap U - \{x_0\}$, choose i. $k_0 \in \mathcal{H}$ so that $|k_0| < \delta$, $k_0(x) \neq 0$, supp $k \subset U$, and

$$\left|\frac{J(f+k_0)-J(f)}{\int_X k_0 \, d\mu} - \frac{\delta J}{\delta f(x)}\right| < \frac{\varepsilon}{2}.$$

Let $\gamma > 0$ be such that

$$\left|\frac{J(f+k_0)-J(f)+\alpha}{\int_X k_0 \, d\mu+\beta} - \frac{\delta J}{\delta f(x)}\right| < \frac{\varepsilon}{2}$$
(2)

whenever $|\alpha| < \gamma$ and $|\beta| < \gamma$. As J is continuous at $(x_0, f + k_0)$, there are $\delta^* > 0$ and a Baire neighborhood V of x_0 such that $V \subset U$, $\mu(V) < +\infty$, and

$$|J(f + k_0 + h) - J(f + k_0)| < \gamma$$
(3)

for each $h \in \mathscr{H}$ with $|h| < \delta^*$, $h(x_0) \neq 0$, and $\operatorname{supp} h \subset V$. Let u be a continuous function on X such that $0 \leq u \leq 1$, $u(x_0) = 1$, and $\operatorname{supp} u \subset V$. Find a positive $\eta < \min(\delta, \delta^*)$ so that $\eta \int_X u \, d\mu < \gamma$, and let $h_0 = \eta u \operatorname{sign} k_0(x)$. Then both h_0 and $h = h_0 + k_0$ belong to \mathscr{H} , $|h_0| < \delta$, $|h| < 2\delta$, $h_0(x_0) h(x_0) \neq 0$, $\operatorname{supp} h_0 \subset \operatorname{supp} h \subset U$, and $|\int_X h_0 \, d\mu| < \gamma$. Thus by (1)–(3),

$$\begin{aligned} \left| \frac{\delta J}{\delta f(x)} - \frac{\delta J}{\delta f(x_0)} \right| \\ &\leq \left| \frac{\delta J}{\delta f(x)} - \frac{J(f+k_0) - J(f) + \left[J(f+k_0+h_0) - J(f+k_0)\right]}{\int_X k_0 \, d\mu + \int_X h_0 \, d\mu} \right| \\ &+ \left| \frac{J(f+h) - J(f)}{\int_X h \, dm} - \frac{\delta J}{\delta f(x_0)} \right| < \varepsilon, \end{aligned}$$

and the theorem is proved.

COROLLARY. Let \mathcal{F} be a linear space and let J be a linear functional. Choose an $f \in \mathcal{F}$ and denote by D the set of those $x \in X$ for which $\delta J/\delta f(x)$ exists. Then the function $x \mapsto \delta J/\delta f(x)$ is continuous on D.

Indeed, for a linear functional J the existence of $\delta J/\delta f(x)$ for some $f \in \mathscr{F}$ implies the existence of $\delta J/\delta f(x)$ for all $f \in \mathscr{F}$; and of course, the value of $\delta J/\delta f(x)$ is independent of the choice of $f \in \mathscr{F}$.

Now with no restriction on λ , the result of Hamilton and Nashed is an immediate consequence of the Corollary. The second example in [1, Section 5.4] does not contradict the Corollary, as it is easy to see that in this example $\delta J/\delta y(0)$ exists only when 0 is an isolated point of [-1, 1].

EXAMPLE. Let X = [0, 1], $\mathscr{F} = \mathscr{C}([0, 1])$, and for $f \in \mathscr{F}$, set $J(f) = \int_0^1 f(x) dx$ if $f(0) \neq 0$, and J(f) = 0 otherwise. Letting $f \equiv 0$, it is easy to see that J is not strongly continuous at (0, f). We also have $\delta J/\delta f(0) = 1$, and $\delta J/\delta f(x) = 0$ for each $x \in (0, 1]$.

Reference

1. E. P. HAMILTON AND M. Z. NASHED, Global and local variational derivatives and integral representations of Gateaux differentials, J. Funct. Anal. 49 (1982), 128-144.