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We give a sufficient condition for the continuity of the Volterra variational 
derivative of a functional with respect to a fixed function. For linear functionals this 
condition is automatically satisfied, and so the Volterra variational derivative of a 
linear functional is always continuous. ‘%T 1987 Academic Press. Inc. 

Throughout, all functions and functionals are real-valued. The linear 
space of all continuous functions on an interval [a, b] is denoted by 
%?( [a, b]). Given a Lebesgue integrable function i on [a, 61, we define a 
linear functional L on %( [a, h]) by setting 

L(f) = j-’ L(x) f(x) d.u 
L, 

for each f~ 5$( [a, h]). Hamilton and Nashed proved (see [ 1, Theorem 21) 
that if A is bounded from below, and for each XE [a, 61 the Volterra 
variational derivative 6L/6f(x) with f =0 exists and equals i(s), then 1 is 
continuous. Their proof utilizes in an essential way the boundedness from 
below of A: an assumption which will be shown here to be unnecessary. 
The result itself is an interesting and potentially useful observation which 
deserves to be formulated in a more general setting and proved in a trans- 
parent and straightforward manner. It turns out that the added generality 
enhances the understanding of what is going on. 

Let X be a completely regular Hausdorff space, and let p be a locally 
finite Baire measure in X which assigns a positive measure to each open 
Baire subset of X. By J? we denote the family of all bounded continuous 
functions on X which do not change sign and whose support is contained in 
a Baire set of finite measure. Thus 0 # Jxh dp # + cc for each nonvanishing 
function 12 E 2. Let 9 be a collection of functions on X (not necessarily 
continuous) which is stable with respect to perturbations by elements of 
X, i.e., if f~9 and h E YE’, then f + h ~9. Finally, let .I be a functional 
on 9. 
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DEFINI’rION. Let x E x and ftz F. 

(i) We say that J is continuous at (x, f) if given E > 0, we can find a 
b > 0 and a neighborhood U of .x so that 

IJ(f+h)-J(f)1 <E 

for each G1 E .X with Ihl < 6, h(x) # 0, and supp h c U. 
(ii) We say that J is strongly continuous at (x, f) if there are a d > 0 

and a nelghborhood U of x such that J is continuous at (x, f + k) for each 
kgX with (kl <6 and suppkcU. 

(iii) We say that J is Volterra differentiable at (x, f) if there is a real 
number CC such that given E > 0, we can find a 6 > 0 and a neighborhood Ii 
of x so t lat 

J(f +h)-J(f) 
jxh 4 

--c( <E 

for each h E X with Jhl <S, h(x) # 0, and supp h c U. 

It follc ws easily from the assumptions imposed on the measure p that the 
number I~ from part (iii) of the previous definition is determined uniquely. 
We call .t the Volterra derivative of J at (x, f) denoted by 6J/6f(x). It is 
immedia:e that J is continuous at (x, f) whenever sJ/df(x) exists. In par- 
ticular, t 1e existence of SJ/df (_ ) f Y or all f E 9 implies the strong continuity 
of J at (.‘c, f) for any f E 3. 

THEOREM. Let f E 9, and let D be the set of [hose .Y E X for which 
bJ/Gf(x) exists. Then the function x H fiJ/df(.x) on D is continuous at x0 E D 
whenever J is strongly continuous ar (x,, f ). 

Proof. Let X~E D be such that J is strongly continuous at (x,, f), and 
let E > 0. Find a 6 > 0 and an open neighborhood U of x0 so that 

J(f + h) - J(f) 65 E 

l,d& -6fo -=% (1) 

for each k G YE with Ihl < 26, h(x,) # 0, and supp h c U. Using the strong 
continui;y of J at (x,, f), we may assume that J is continuous at 
(s,,f+k)foreachkE~withIkl<6andsuppkcU.If.uEDnU-(.u,}, 
choose 1. k, E X so that lk,, < 6, k,(x) # 0, supp kc U, and 

J(f +k,)- J(f) bJ E 
j&h -6fo 3. 

Let 1’ > 0 be such that 
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J(f+k,)-J(f)+a 6J E -- 
J&O &+P bf(x) -5 (2) 

whenever Ial <y and Ifi/ <y. As J is continuous at (~,,f+k,), there are 
6* > 0 and a Baire neighborhood V of x0 such that Vc U, p(V) < +co, 
and 

IJ(f+k,+k)-J(f+h)l <Y (3) 

for each hi% with Ihl < 6*, h(x,) ~0, and supp hc V. Let u be a con- 
tinuous function on X such that 0 d u 6 1, u(xO) = 1, and supp u c V. Find 
a positive q <min(S, 6*) so that qsX u dp <y, and let h,= vu sign k,(s). 
Then both A, and h = h, +k, belong to 31G, lhoj ~6, Ihl < 26, 
hO(.~,,) h(x,) # 0, supp h, c supp h c U, and Il,Y II, dpl < 7. Thus by (1 t(3), 

6J -- 
d C?f(x) 

+ J(f+ 
s.3 

J(f+h)- - 

11) - J(f) 
,. h dm 

ko + ho 
‘.u 

I)-JU-+ko)l 

and the theorem is proved. 

COROLLARY. Let 3 be a linear space and let J be a linear functional. 
Choose an f E 9 and denote by D the set of those x E X for which 6J/6f(x) 
exists. Then the function x H sJ/df(x) is continuous on D. 

Indeed, for a linear functional J the existence of SJ/Sf (x) for some f E 9 
implies the existence of 6J/6f(x) for all f E 9; and of course, the value of 
SJ/Sf (-u) is independent of the choice off E 9. 

Now with no restriction on 1, the result of Hamilton and Nashed 
is an immediate consequence of the Corollary. The second example in 
[ 1, Section 5.41 does not contradict the Corollary, as it is easy to see that 
in this example 6J/6y(O) exists only when 0 is an isolated point of [ - 1, 11. 

EXAMPLE. Let X= [0, 11, 9 = V( [0, l]), and for f E 9, set J(f) = 
JAf(x) d.u iff(0) #O, and J(f) = 0 otherwise. Letting f E 0, it is easy to see 
that J is not strongly continuous at (0, f). We also have SJ/Sf(O) = 1, and 
dJ/df(x) = 0 for each x E (0, 11. 
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