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For every two ideals I ⊆ J in C(X), we call I a z J -ideal if Z( f ) ⊆ Z(g), f ∈ I and g ∈ J
imply that g ∈ I . An ideal I is called a relative z-ideal, briefly a rez-ideal, if there exists an
ideal J such that I � J and I is a z J -ideal. We have shown that for any ideal J in C(X),
the sum of every two z J -ideals is a z J -ideal if and only if X is an F -space. It is also shown
that every principal ideal in C(X) is a rez-ideal if and only if X is an almost P -space and
the spaces X for which the sum of every two rez-ideals is a rez-ideal are characterized.
Finally for a given ideal I in C(X), the existence of greatest ideal J such that I to be a
z J -ideal and also for given two ideals I ⊆ J in C(X), a greatest z J -ideal contained in I and
the smallest z J -ideal containing I are investigated.
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1. Preliminaries

Throughout this paper, we denote by C(X), the ring of all real-valued continuous functions on a completely regular
Hausdorff space X and for terminology and notations, the reader is referred to [2,5,6]. For every f ∈ C(X), the intersection
of all maximal (minimal prime) ideals of C(X) containing f is denoted by M f (P f ). An ideal I in C(X) is called a z-ideal
(z◦-ideal) if M f ⊆ I (P f ⊆ I), ∀ f ∈ I . It is easy to see that M f = {g ∈ C(X): Z( f ) ⊆ Z(g)} and P f = {g ∈ C(X): intX Z( f ) ⊆
intX Z(g)}, see also [2,3]. Equivalently I is a z-ideal (z◦-ideal) if f ∈ I , g ∈ C(X) and Z( f ) ⊆ Z(g) (intX Z( f ) ⊆ intX Z(g))
imply that g ∈ I . Clearly M f (P f ) itself is a z-ideal (z◦-ideal) for every f ∈ C(X), which we call a basic z-ideal (z◦-ideal).
Note that P f = C(X) if and only if intX Z( f ) = ∅. Since the sum and the intersection of z-ideals in C(X) is a z-ideal, then
for a given ideal I in C(X) the smallest z-ideal containing I and the greatest z-ideal contained in I always exist and in
the notation of Mason in [6], we denote these z-ideals by Iz and I z respectively. The following proposition which is proved
in [2] characterizes the ideals Iz and I z in term of basic z-ideals. This proposition also gives an elementwise characterization
for these ideals. For a different elementwise characterization, see [6].

Proposition 1.1. If I is an ideal in C(X), then Iz = {g ∈ C(X): g ∈ M f for some f ∈ I} = ∑
f ∈I M f and I z = {g ∈ C(X): Mg ⊆ I} =∑

M f ⊆I M f .

An arbitrary intersection of z◦-ideals is also a z◦-ideal and hence the smallest z◦-ideal I◦ containing a given ideal I
always exists. But the sum of two z◦-ideals even in C(X) need not be a z◦-ideal. A necessary and sufficient condition that
the sum of z◦-ideals in C(X) be a z◦-ideal is given by the following theorem due to B. de Pagter in 11.1 of [9] using different
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terminology. First we recall that a completely regular Hausdorff space X is an F -space (resp. quasi F -space) if its cozerosets
(resp. dense cozerosets) are C∗-embedded. Equivalently, X is an F -space (resp. quasi F -space) if finitely generated ideals
(resp. finitely generated ideals containing a nondivisor of 0) of C(X) are principal. By 14.26 in [5], we have also that X is
an F -space if and only if every ideal in C(X) is absolutely convex. An ideal I in a partially ordered (lattice ordered) ring is
called convex (absolutely convex) if, whenever 0 � x � y (|x| � |y|) and y ∈ I , then x ∈ I . For more details and properties of
F -spaces and quasi F -spaces, see [4,5,9].

Theorem 1.2. The sum of two z◦-ideals of C(X) is always a z◦-ideal or all of C(X) if and only if X is a quasi F -space.

If I is a nonregular ideal (i.e., every member of I is a zerodivisor) in C(X), then I◦ = ∑
f ∈I P f = {g ∈ C(X):

g ∈ P f for some f ∈ I} and whenever X is a quasi F -space, then the greatest z◦-ideal I◦ contained in I exists and
I◦ = ∑

P f ⊆I P f = {g ∈ C(X): P g ⊆ I}, see [2].
In any commutative ring, it is well known that every minimal ideal in the class of prime ideals containing a z-ideal

is a z-ideal, see Theorem 1.1 in [7]. The following proposition which is proved in [2,8] by different ways, shows that the
converse is also true in C(X).

Proposition 1.3. An ideal I in C(X) is a z-ideal if and only if every prime ideal minimal over I is a z-ideal.

It follows from Proposition 1.3 that an ideal I in C(X) is a z-ideal if and only if
√

I is a z-ideal. We have also Iz = (
√

I)z ,
I z = (

√
I)z . The corresponding statement holds for z◦-ideals in C(X) and for any nonregular ideal I in C(X), we have

I◦ = (
√

I)◦ and I◦ = (
√

I)◦ , see [2]. We also cite the following simple result which will be referred to in the sequel.

Proposition 1.4. Suppose that I is an ideal and P is a prime ideal in C(X). If I ∩ P is a z-ideal (z◦-ideal), then either I or P is a z-ideal
(z◦-ideal). In particular if P and Q are prime ideals which are not in a chain and P ∩ Q is a z-ideal (z◦-ideal), then both P and Q are
z-ideals (z◦-ideals).

A nonzero ideal in a commutative ring is said to be essential if it intersects every nonzero ideal nontrivially. The following
proposition which topologically characterizes essential ideals of C(X) is proved in [1].

Proposition 1.5. A nonzero ideal E in C(X) is an essential ideal if and only if
⋂

Z [E] = ⋂
f ∈E Z( f ) is nowhere dense (has an empty

interior).

One can easily see that every free ideal in C(X) is essential and a principal ideal ( f ) in C(X) is essential if and only if
intX Z( f ) = ∅. It is also easy to see that every non-maximal prime ideal in C(X) is an essential ideal.

2. Relative z-ideals (z◦-ideals) in C(X)

For every two ideals I ⊆ J in C(X), I is said to be a z J -ideal if Z( f ) ⊆ Z(g), f ∈ I and g ∈ J imply that g ∈ I . In other
words, I is called a z J -ideal if M f ∩ J ⊆ I , ∀ f ∈ I . Clearly every ideal I is a zI -ideal and every z-ideal in C(X) is a z J -ideal
for all ideals J containing I . We call an ideal I a relative z-ideal, or briefly a rez-ideal if there exists an ideal J in C(X)

such that I � J and I is a z J -ideal. Similarly an ideal I in C(X) is called a z◦
J
-ideal if I ⊆ J and intX Z( f ) ⊆ intX Z(g), f ∈ I

and g ∈ J imply that g ∈ I or equivalently if P f ∩ J ⊆ I , ∀ f ∈ I . I is called a relative z◦-ideal or briefly a rez◦-ideal if there
exists an ideal J in C(X) such that I � J and I is a z◦

J
-ideal. Clearly every z◦

J
-ideal in C(X) is a z J -ideal and every z◦-ideal

in C(X) is a rez◦-ideal.
According to the above definitions, the proof of the following proposition is evident. By this proposition, it turns out that

for every ideal J and every z-ideal (z◦-ideal) K in C(X), J ∩ K is a z J -ideal (z◦
J
-ideal).

Proposition 2.1. Let I and J be two ideals in C(X) and I ⊆ J .

(a) The following statements are equivalent:
(a1) I is a z J -ideal.
(a2) Iz ∩ J = I .
(a3) There exists a z-ideal K in C(X) such that K ∩ J = I .

(b) The following statements are equivalent:
(b1) I is a z◦

J
-ideal.

(b2) I◦ ∩ J = I .
(b3) There exists a z◦-ideal K in C(X) such that K ∩ J = I .
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Whenever J is a z-ideal, then every z J -ideal I ⊆ J is also a z-ideal. In fact, if f ∈ I , g ∈ C(X) and Z( f ) ⊆ Z(g), then
g ∈ J for J is a z-ideal. Now since I is a z J -ideal, then g ∈ I , i.e., I is a z-ideal. On the other hand in any ideal J there are
many z-ideals, for example if f ∈ J , then O Z( f ) = {g ∈ C(X): Z( f ) ⊆ intX Z(g)} is a z-ideal contained in J . The following
proposition shows the existence of z J -ideals in any given ideal J which are not z-ideals.

Proposition 2.2. Suppose that J is an ideal in C(X) which is not a z-ideal. Then there exists an ideal I � J which is a z J -ideal but not
a z-ideal.

Proof. Since J is not a z-ideal, then there exist k ∈ J and h ∈ C(X) such that Z(k) ⊆ Z(h) and h /∈ J . Consider g ∈ C(X),
where Z(g)∩ Z(h) = ∅, gh 
= 0 and take I = Mg ∩ J . By Proposition 2.1, I is a z J -ideal and since 0 
= gh ∈ I , k ∈ J and k /∈ Mg ,
then (0) 
= I � J . Now it is enough to show that I is not a z-ideal. In fact we have g2k ∈ I and Z(g2k) ⊆ Z(g2h) but g2h /∈ I .
For otherwise if g2h ∈ I , then k2h ∈ J implies that (g2 + k2)h ∈ J . But g2 + k2 is a unit and hence h ∈ J , a contradiction. �
Examples 2.3. (a) Every nonessential ideal in C(X) is a rez-ideal. If I is a nonessential ideal in C(X), then there exists an
ideal K in C(X) such that I ∩ K = (0). If we let J = I + K , obviously I � J . We show that I is a z J -ideal. Let f ∈ I and
g ∈ J such that Z( f ) ⊆ Z(g). Hence g = i + k, where i ∈ I , k ∈ K and Z( f ) ⊆ Z(i + k). Now we have Z( f 2 + i2) ⊆ Z(k), so
X = Z(0) = Z(k( f 2 + i2)) ⊆ Z(k) which implies that k = 0. Therefore g = i ∈ I , i.e., I is a z J -ideal and hence I is a rez-ideal.
We note that every nonessential ideal in C(X) is not necessarily a z-ideal.

(b) If P and Q are prime ideals in C(X) such that P is not a z-ideal and Q is a z-ideal. Then by Proposition 2.1,
I = P ∩ Q is a zP -ideal. Whenever P and Q are not in a chain, then by Proposition 1.4, I is not a z-ideal and hence I will
be a rez-ideal, for I 
= P . Similarly, if we consider Q as a prime z◦-ideal not in a chain with P , then I will be a rez◦-ideal.

(c) Finally we show that a principal ideal ( f ) in C(X) is a rez-ideal if and only if Ann( f ) 
= (0) (intX Z( f ) 
= ∅). If
intX Z( f ) 
= ∅, then by Proposition 1.5, ( f ) is a nonessential ideal and by example (a), ( f ) is a rez-ideal. Conversely, suppose
there exists J � ( f ) such that ( f ) is a z J -ideal and suppose that Ann( f ) = (0). By Proposition 2.1, we have M f ∩ J =
( f )z ∩ J = ( f ). Take g ∈ J − M f , such g exists for otherwise J ⊆ M f implies M f ∩ J = J = ( f ) which contradicts ( f ) � J .
Therefore Z( f ) � Z(g) and hence there exists x0 ∈ Z( f ) such that g(x0) 
= 0. Clearly g f 1/3 ∈ M f ∩ J = ( f ) and consequently
there exists k ∈ C(X) such that g f 1/3 = kf . Now if x /∈ Z( f ), we have g(x) = k(x) f 2/3(x). But x0 ∈ Z( f ) and intX Z( f ) = ∅
imply that there exists a net (xα) in X \ Z( f ) such that xα → x0. But g(xα) = k(xα) f 2/3(xα) → 0 which contradicts g(x0) 
= 0.
This means that intX Z( f ) 
= ∅ or Ann( f ) 
= (0).

By example (c) above, we have the following corollary. We recall that a space X is an almost P -space if every nonempty
zeroset (or every nonempty Gδ-set) in X has a nonempty interior.

Corollary 2.4. Every principal ideal in C(X) is a rez-ideal if and only if X is an almost P -space.

The concepts “rez-ideal” (“rez◦-ideal”) and “z-ideal” (“z◦-ideal”) coincide for prime ideals of C(X). Moreover, if I is a
z J -ideal, then J is contained in every non-z-ideal prime ideal minimal over I . This shows that whenever P is a prime ideal
minimal over I which is not a z-ideal and I is a zP -ideal, then P is the greatest member of { J : I is a z J -ideal}. In this case,
P is the only prime ideal minimal over I which is not a z-ideal.

Proposition 2.5.

(a) Every prime rez-ideal in C(X) is a z-ideal.
(b) Suppose that P is a prime ideal in C(X) which is not a z-ideal and it is minimal over a z J -ideal I . Then J ⊆ P . In case I is not a

z-ideal, then there exists at most one prime ideal P minimal over I such that I is a zP -ideal.
(c) If Q is a semiprime (absolutely convex) ideal in C(X), then every zQ -ideal is also a semiprime (absolutely convex) ideal.

Proof. (a) If P is a prime rez-ideal, then there exists an ideal J in C(X) such that P � J and P z ∩ J = P . This shows that
either J ⊆ P which implies that P = J , a contradiction or P z ⊆ P which implies that P = P z , i.e., P is a z-ideal.

(b) Let P be a prime ideal minimal over I which is not a z-ideal. Since Iz ∩ J = I ⊆ P , then either Iz ⊆ P or J ⊆ P . Iz ⊆ P
implies that P is a z-ideal by Proposition 1.3 which contradicts our hypothesis, hence J ⊆ P . If P and Q are two prime
ideals minimal over I such that I is a zP -ideal and is a zQ -ideal, then clearly P and Q are not z-ideals, for I = Iz ∩ P = Iz ∩ Q
and I is not a z-ideal. Now by first half of this part, P ⊆ Q and Q ⊆ P imply that P = Q .

(c) Since Iz ∩ Q = I , then I is a semiprime (an absolutely convex) ideal. �
In the following proposition, we observe that for any semiprime ideal I , the collection { J : I is a z J -ideal} has a largest

member. We call an ideal I an almost z-ideal if in every representation of
√

I as an intersection of prime ideals, there exists
at least one prime z-ideal.
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Proposition 2.6.

(a) Every rez-ideal in C(X) is an almost z-ideal.
(b) For every semiprime ideal Q in C(X), there exists a greatest ideal J containing Q such that Q is a z J -ideal. Moreover, a semiprime

ideal is a rez-ideal if and only if it is an almost z-ideal.
(c) If I is a rez-ideal, then

√
I is also a rez-ideal.

Proof. (a) If I is a rez-ideal, then there exists an ideal J � I such that Iz ∩ J = I . Suppose that I is not an almost z-ideal,
then

√
I = ⋂

α∈S Pα , where Pα is a non-z-ideal prime ideal minimal over I , ∀α ∈ S . Now by Proposition 2.5(b), J ⊆ Pα ,
∀α ∈ S and hence J ⊆ √

I . But J = (
√

I)z ∩ J = Iz ∩ J = I contradicts J � I . Therefore I is an almost z-ideal.
(b) Let Q be a semiprime ideal, A be the collection of all non-z-ideals prime ideals minimal over Q and J = ⋂

P∈A P .
Clearly Q ⊆ J , moreover Q z ∩ J = Q , for Q z is the intersection of all prime z-ideals minimal over Q and hence Q z ∩ J is
the intersection of all minimal prime ideals over Q . This implies that Q is a z J -ideal. Whenever K is an ideal containing
Q and Q is a zK -ideal, then K ⊆ P , ∀P ∈ A, by Proposition 2.5(b), i.e., K ⊆ J . This means that J is the greatest ideal such
that Q is a z J -ideal. The proof of the second part of (b) is evident by part (a).

(c) Since I is a rez-ideal, then I is an almost z-ideal by part (a). Therefore
√

I �
⋂

P∈A P = J , where A is the collection
of all non-z-ideals prime ideals minimal over I . Now (

√
I)z ∩ J = Iz ∩ J = √

I implies that
√

I is a rez-ideal. �
Not only for semiprime ideals, but for every ideal I in C(X), where X is an F -space, there exists a greatest ideal J such

that I is a z J -ideal.

Proposition 2.7. If X is an F -space, then for every ideal I in C(X), the collection { J : I is a z J -ideal} has a greatest member.

Proof. We put J◦ = { f ∈ C(X): Mg ∩ ( f ) ⊆ I, ∀g ∈ I} and show that J◦ is an ideal. First we prove that whenever
Mg ∩ ( f ) ⊆ I , then Mg ∩ (| f |) ⊆ I . To see this let h ∈ Mg ∩ (| f |), then Z(g) ⊆ Z(h) and there exists k ∈ C(X) such
that h = k| f | and Z(g) ⊆ Z(h) = Z(kf ). Since X is an F -space, then I is absolutely convex and so |h| = |kf | and
kf ∈ Mg ∩ ( f ) ⊆ I imply that h ∈ I , i.e., Mg ∩ (| f |) ⊆ I . Next suppose that f1, f2 ∈ J◦ and g ∈ I . Since X is an F -space,
then Mg ∩ ( f1 + f2) ⊆ Mg ∩ ( f1, f2) = Mg ∩ (| f1| + | f2|), see Theorem 14.25 in [5]. Now if h ∈ Mg ∩ (| f1| + | f2|), then
Z(g) ⊆ Z(h) and h = k(| f1| + | f2|) for some k ∈ C(X). Thus Z(g) ⊆ Z(k| f1|) and Z(g) ⊆ Z(k| f2|), so k| f1| ∈ Mg ∩ (| f1|) and
k| f2| ∈ Mg ∩ (| f2|). On the other hand f1, f2 ∈ J◦ implies that Mg ∩ ( f1) ⊆ I , Mg ∩ ( f2) ⊆ I and hence k| f1| ∈ Mg ∩ (| f1|) ⊆ I ,
k| f2| ∈ Mg ∩ (| f2|) ⊆ I , imply that h ∈ I , i.e., Mg ∩ (| f1|+ | f2|) = Mg ∩ ( f1 + f2) ⊆ I , so f1 + f2 ∈ J◦ . Now suppose that f ∈ J◦
and h ∈ C(X). For all g ∈ I , we have Mg ∩ ( f h) ⊆ Mg ∩ ( f ) ⊆ I and hence f h ∈ J◦ . Therefore J◦ is an ideal. Moreover we
have Mg ∩ J◦ ⊆ I , ∀g ∈ I , in fact Iz ∩ J◦ = (

⋃{Mg : g ∈ I}) ∩ J◦ = ⋃{Mg ∩ J◦: g ∈ I} ⊆ I . This shows that I is a z J◦ -ideal.
Finally suppose that there exists an ideal K containing I such that I is a zK -ideal. Hence Mg ∩ ( f ) ⊆ Iz ∩ K = I , ∀g ∈ I and
∀ f ∈ K . Thus K ⊆ J◦ and this means that J◦ is the greatest member of { J : I is a z J -ideal}. �

It is evident that every ideal I in C(X) is a zI -ideal, but one may ask when is every subideal of a given ideal I a zI -ideal?
The following lemma and corollary show that such an ideal should be a z-ideal whose every member has an open zeroset.
As an example of such ideals, consider C F (X) = { f ∈ C(X): X \ Z( f ) is finite}. Recall that a space X is a P -space if every
zeroset (Gδ-set) in X is open or if every prime ideal in C(X) is a z-ideal, see [5, 4J].

Lemma 2.8. If f ∈ C(X), then every subideal of the principal ideal ( f ) is a z( f )-ideal if and only if Y = X \ Z( f ) is a closed P -space.

Proof. If every subideal of ( f ) is a z( f )-ideal, then ( f 2) is a z( f )-ideal and hence ( f 2)z ∩ ( f ) = ( f 2), i.e., M f ∩ ( f ) = ( f 2).
But f ∈ M f ∩ ( f ) = ( f 2) implies that f = kf 2 for some k ∈ C(X). Hence f (1 −kf ) = 0 means that Z( f )∪ Z(1 −kf ) = X and
Z( f )∩ Z(1 −kf ) = ∅ which imply that Z( f ) is open, so Y is closed. Now suppose that g ∈ C(Y ) and g∗ is an extension of g
on X , say g∗(x) = g(x), ∀x ∈ Y and g∗(x) = 1, ∀x /∈ Y . Since (g∗ f ) ⊆ ( f ), then (g∗ f ) is a z( f )-ideal, i.e., Mg∗ f ∩ ( f ) = (g∗ f ).

Thus g∗1/3
f ∈ Mg∗ f ∩ ( f ) = (g∗ f ), but f is a unit on Y , therefore g1/3 ∈ (g) which implies that Z(g) is open and hence Y

is a P -space. Conversely suppose that Y is a closed P -space and I ⊆ ( f ). Assume that g ∈ I and h ∈ M g ∩ ( f ), then there
exists k ∈ C(X) such that h = f k and Z(g) ⊆ Z(h) = Z( f k). Thus Z(g|Y ) ⊆ Z( f |Y k|Y ) = Z(k|Y ) for f is a unit on Y . Since
Z(k|Y ) is open, then k|Y is a multiple of g|Y , i.e., t ∈ C(X) exists, such that k|Y = t|Y g|Y . Now kf = tg f ∈ I implies that
h = kf ∈ I , i.e., Mg ∩ ( f ) ⊆ I which means that I is a z( f )-ideal. �
Corollary 2.9. Let I be an ideal in C(X). Then every subideal of I is a zI -ideal if and only if Z( f ) is open, ∀ f ∈ I .

Proof. If Z( f ) is open, ∀ f ∈ I , then I is a z-ideal and clearly every subideal of I is a zI -ideal. Conversely, if every subideal
of I is a zI -ideal, then for all f ∈ I , ( f 2) is a zI -ideal. Now by definition, ( f 2) is also a z( f )-ideal and by first part of the
proof of Lemma 2.8, Z( f ) is open. �
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We conclude this section with the following result. Part ( f ) of this result shows that for every two ideals I ⊆ J , there
exists the smallest z J -ideal containing I which we denote by Iz J . By Proposition 2.1, Iz ∩ J is a z J -ideal containing I and if
K ⊆ J is also a z J -ideal containing I , then Kz ∩ J = K and hence Iz ∩ J ⊆ Kz ∩ J = K . This means that Iz J = Iz ∩ J . A similar
result may be stated for the smallest z◦

J
-ideal containing I .

Proposition 2.10. Let A, B, I , J , K and Iα , ∀α ∈ S be ideals in C(X).

(a) If I ⊆ J ⊆ K and I is a zK -ideal, then I is also a z J -ideal.
(b) If I ⊆ J ⊆ K , I is a z J -ideal, and J is a zK -ideal, then I is a zK -ideal.

(c) If
√

I ⊆ J and I is a z J -ideal, then I = √
I . In particular, if I is a z√

I -ideal, then I = √
I .

(d) If I ⊆ J and I is a z J -ideal, then
√

I is a z√
J
-ideal.

(e) If A ⊆ J , B ⊆ K , A is a z J -ideal and B is a zK -ideal, then A ∩ B is a z J∩K -ideal.
(f) If Iα ⊆ J and Iα is a z J -ideal, ∀α ∈ S, then

⋂
α∈S Iα is also a z J -ideal.

Proof. The proof of parts (a), (b) and (c) are evident. For parts (d), (e) and (f), we have

(
√

I)z ∩ √
J = Iz ∩ √

J = √
Iz ∩ √

J = √
Iz ∩ J = √

I,

(A ∩ B)z ∩ ( J ∩ K ) = Az ∩ Bz ∩ J ∩ K = (Az ∩ J ) ∩ (Bz ∩ K ) = A ∩ B,⋂
α∈S

Iα ⊆
( ⋂

α∈S

Iα

)
z
∩ J ⊆

( ⋂
α∈S

Iα z

)
∩ J =

⋂
α∈S

(Iα z ∩ J ) =
⋂
α∈S

Iα. �

3. Sum of relative z-ideals (z◦-ideals) in C(X)

We observed that if I ⊆ J are two ideals in C(X), then Iz J , the smallest z J -ideal containing I always exists and it is equal
to Iz ∩ J and is equal to the intersection of all z J -ideals containing I . In this section we want to investigate the existence
of I z J , the greatest z J -ideal contained in I for every two ideals I ⊆ J in C(X). Clearly, whenever the sum of every two
z J -ideals is a z J -ideal, then I z J exists and we will show in this section that the converse is also true. In Theorem 3.4, we
show that the sum of every two z J -ideals is a z J -ideal for all ideals J in C(X) if and only if X is an F -space. First we need
the following propositions and lemma.

Proposition 3.1. Let J be an ideal in C(X), then the following statements are equivalent.

(a) For every two z-ideals I and K in C(X), (I + K ) ∩ J = I ∩ J + K ∩ J .
(b) Sum of every two z J -ideals is a z J -ideal.
(c) For every subideal I of J , I z J exists and I z J = ∑

M f ∩ J⊆I M f ∩ J .

Proof. First we show that (a) and (b) are equivalent. If (a) holds and I and K are z J -ideals, then I + K = Iz ∩ J + Kz ∩ J =
(Iz + Kz) ∩ J = (I + K )z ∩ J which means that I + K is a z J -ideal (note that (I + K )z = Iz + Kz by Proposition 3.1 in [6]).
Conversely, suppose (b) holds and I and K are z-ideals in C(X). Take f ∈ (I + K )∩ J , then f = f1 + f2, where f1 ∈ I , f2 ∈ K
and f ∈ J . Thus f 2 = f f1 + f f2 ∈ I ∩ J + K ∩ J . Since I ∩ J and K ∩ J are z J -ideals by Proposition 2.1, then I ∩ J + K ∩ J
is also a z J -ideal by part (b). Hence f ∈ M f 2 ∩ J ⊆ I ∩ J + K ∩ J , i.e., (I + K ) ∩ J = I ∩ J + K ∩ J . Next we show that
(b) and (c) are equivalent. If (b) holds, since each M f ∩ J is a z J -ideal, then

∑
M f ∩ J⊆I M f ∩ J is a z J -ideal contained

in I . Now suppose that T ⊆ I and T is also a z J -ideal. If g ∈ T , then Mg ∩ J ⊆ T ⊆ I and therefore T ⊆ ∑
M f ∩ J⊆I M f ∩ J .

This means that I z J = ∑
M f ∩ J⊆I M f ∩ J . Conversely, suppose I z J exists, ∀I ⊆ J and K and T are two z J -ideals. Hence

K + T = K z J + T z J ⊆ (K + T )z J ⊆ K + T , which means that K + T is a z J -ideal. �
We have a similar result for the sum of z◦

J
-ideals as follows.

Proposition 3.2. Suppose that X is a quasi F -space and J is an ideal in C(X), then the following statements are equivalent.

(a) For every two z◦-ideals I and K in C(X), (I + K ) ∩ J = I ∩ J + K ∩ J .
(b) Sum of every two z◦

J
-ideals is a z◦

J
-ideal.

(c) For every subideal I of J , I z◦
J exists and I z◦

J = ∑
P f ∩ J⊆I P f ∩ J .

Proof. We note that if X is a quasi F -space, then P f + P g is a z◦-ideal or all of C(X), ∀ f , g ∈ C(X). Now using basic
z◦-ideals instead of basic z-ideals in the proof of Proposition 3.1, the proof is similar to that of Proposition 3.1 step by
step. �
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In the following lemma, we show that whenever J is an absolutely convex ideal, then part (a) in Proposition 3.1 holds
for every two z-ideals (z J -ideals or semiprime ideals) I and K in C(X). By Proposition 3.1, this means that for an abso-
lutely convex ideal J , the sum of two z J -ideals is a z J -ideal. Although part (b) of the following lemma will show that
the hypothesis of absolute convexity of J is needed, we can also give an easy example showing this hypothesis cannot be
omitted. To see this, take the principal ideal J = (i) in C(R), where i is the identity function in C(R). J is convex, by 5E
in [5]. Now consider two functions f , g ∈ C(R) defined by f (x) = 0, ∀x � 0, f (x) = x, ∀x � 0 and g(x) = 0, ∀x � 0, g(x) = x,
∀x � 0. Therefore (M f + Mg) ∩ J 
= M f ∩ J + Mg ∩ J for i = f + g ∈ (M f + Mg) ∩ J but i /∈ M f ∩ J + Mg ∩ J . In fact if
i ∈ M f ∩ J + Mg ∩ J , then i = f ′i + g′i, where [0,∞) = Z(g) ⊆ Z(g′) and (−∞,0] = Z( f ) ⊆ Z( f ′). Thus f ′(x) + g′(x) = 1,
∀x 
= 0 and hence f ′ + g′ is a unit which contradicts f ′(0) = 0 = g′(0). Now by part (a) of Proposition 3.1, the sum of two
z J -ideals in C(R) is not necessarily a z J -ideal.

Lemma 3.3.

(a) Let J be an absolutely convex ideal and I and K be two z-ideals (or z J -ideals) in C(X), then (I + K ) ∩ J = I ∩ J + K ∩ J .
(b) If J is a convex ideal in C(X) and for every two z-ideals I and K in C(X) we have (I + K )∩ J = I ∩ J + K ∩ J , then J is absolutely

convex.

Proof. (a) The proof resembles that of Lemma 3.1 in [10]. Let h ∈ (I + K ) ∩ J . Then there is an f ∈ I , g ∈ K such that
h = f + g . Define the following two continuous functions:

t(x) =
{

0, x ∈ Z( f ) ∩ Z(g),
hf 2

f 2+g2 , x /∈ Z( f ) ∩ Z(g),
s(x) =

{
0, x ∈ Z( f ) ∩ Z(g),

hg2

f 2+g2 , x /∈ Z( f ) ∩ Z(g).

Since |t| � |h|, |s| � |h|, h ∈ J and J is absolutely convex, then s, t ∈ J . On the other hand I and K are z-ideals (or
z J -ideals), Z( f ) ⊆ Z(t), Z(g) ⊆ Z(s) and f ∈ I , g ∈ K imply that t ∈ I ∩ J and s ∈ K ∩ J . Thus h = t + s ∈ I ∩ J + K ∩ J and
hence (I + K ) ∩ J = I ∩ J + K ∩ J .

(b) Using Theorem 5.3 in [5], it is enough to show that | f | ∈ J , ∀ f ∈ J . Since M f −| f | and M f +| f | are both z-
ideals, then by our hypothesis, (M f +| f | + M f −| f |) ∩ J = M f +| f | ∩ J + M f −| f | ∩ J , whence 2 f = ( f + | f |) + ( f − | f |) ∈
(M f +| f | + M f −| f |) ∩ J . So f = s + t , where s, t ∈ J , Z( f + | f |) ⊆ Z(s) and Z( f − | f |) ⊆ Z(t). But ( f + | f |)( f − | f |) = 0
implies that ( f − | f |)s = 0 and ( f + | f |)t = 0. Now we have

| f |( f + | f |) = f
(

f + | f |) = s
(

f + | f |) + t
(

f + | f |) = s
(

f + | f |) = s
(

f − | f | + 2| f |) = 2| f |s.
Thus | f (x)| + f (x) = 2s(x), ∀x /∈ Z( f ) and since Z( f ) ⊆ Z(s), then | f | + f = 2s, i.e., | f | + f ∈ J and hence | f | ∈ J . �

Now using preceding facts, we prove the main result of this section.

Theorem 3.4. The following statements are equivalent.

(a) X is an F -space.
(b) For every ideal J in C(X), the sum of every two z J -ideals is a z J -ideal.
(c) For every ideal J in C(X), the sum of every two z◦

J
-ideals is a z◦

J
-ideal.

Proof. If X is an F -space, then every ideal J in C(X) is absolutely convex and hence by Lemma 3.3 and Proposition 3.1,
(a) implies (b). Now we suppose that (b) holds and show that X is an F -space. To prove this it is enough to show that
for every f ∈ C(X), there exists k ∈ C(X) such that f = k| f |, see Theorem 14.25 in [5]. Put J = (| f |), since M f −| f | and
M f +| f | are z-ideals, then by part (b) in Proposition 3.1, we have (M f +| f | + M f −| f |) ∩ J = M f +| f | ∩ J + M f −| f | ∩ J . Now
| f | ∈ (M f +| f | + M f −| f |) ∩ J implies that | f | = s + t , where s, t ∈ J = (| f |), Z( f + | f |) ⊆ Z(s) and Z( f − | f |) ⊆ Z(t). Hence
| f |( f − | f |) = s( f − | f |) + t( f − | f |) = −2t| f |, so | f | − f = 2t . But t ∈ J = (| f |) implies that t = k| f | for some k ∈ C(X),
therefore f = | f | − 2k| f | = (1 − 2k)| f |. The proof of the equivalence of parts (a) and (c) is similar. �

Finally we show that if the sum of every two rez-ideals in C(X) is a rez-ideal, then X is a P -space.

Proposition 3.5. The following statements are equivalent.

(a) X is a P -space.
(b) Every ideal in C(X) is a rez-deal.
(c) Sum of every two rez-ideals is a rez-ideal.

Proof. Clearly (a) implies (b) and (b) implies (c). Now suppose that (c) holds but X is not a P -space. Then there is a prime
ideal P in C(X) which is not a z-ideal (we recall that X is a P -space if and only if every prime ideal in C(X) is a z-ideal)
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and hence not maximal. Let M and M ′ be two maximal ideals in C(X) not containing P such that M + M ′ = C(X). Since P
is not maximal, then

⋂
Z [P ] contains at most one non-isolated point and hence by Proposition 1.5, P is an essential ideal.

So I = P ∩ M and K = P ∩ M ′ are two nonzero zP -ideals by Proposition 2.1. Moreover I � P and K � P imply that I and K
are rez-ideals. Now by part (a) of Lemma 3.3, since the prime ideal P is absolutely convex, then I + K = P ∩ M + P ∩ M ′ =
P ∩ (M + M ′) = P ∩ C(X) = P and P is not a rez-ideal by Proposition 2.5(a), a contradiction. �
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