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1. Preliminaries

Throughout this paper, we denote by C(X), the ring of all real-valued continuous functions on a completely regular
Hausdorff space X and for terminology and notations, the reader is referred to [2,5,6]. For every f € C(X), the intersection
of all maximal (minimal prime) ideals of C(X) containing f is denoted by M (Py). An ideal I in C(X) is called a z-ideal
(z°-ideal) if My C I (Pp C1I), Vf el. It is easy to see that My ={g e C(X): Z(f) CZ(g)} and Py ={ge C(X): intx Z(f) C
inty Z(g)}, see also [2,3]. Equivalently I is a z-ideal (z°-ideal) if f €I, g€ C(X) and Z(f) € Z(g) (intx Z(f) Cintx Z(g))
imply that g € I. Clearly My (Py) itself is a z-ideal (z°-ideal) for every f € C(X), which we call a basic z-ideal (z°-ideal).
Note that Py = C(X) if and only if intx Z(f) = . Since the sum and the intersection of z-ideals in C(X) is a z-ideal, then
for a given ideal I in C(X) the smallest z-ideal containing I and the greatest z-ideal contained in I always exist and in
the notation of Mason in [6], we denote these z-ideals by I, and I* respectively. The following proposition which is proved
in [2] characterizes the ideals I, and I* in term of basic z-ideals. This proposition also gives an elementwise characterization
for these ideals. For a different elementwise characterization, see [6].

Proposition 1.1. If I is an ideal in C(X), then I, = {g € C(X): g € My forsome f € I} = Zfe, Mysand I ={ge C(X): Mg C I} =
ZMngf-

An arbitrary intersection of z°-ideals is also a z°-ideal and hence the smallest z°-ideal I, containing a given ideal I
always exists. But the sum of two z°-ideals even in C(X) need not be a z°-ideal. A necessary and sufficient condition that
the sum of z°-ideals in C(X) be a z°-ideal is given by the following theorem due to B. de Pagter in 11.1 of [9] using different
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terminology. First we recall that a completely regular Hausdorff space X is an F-space (resp. quasi F-space) if its cozerosets
(resp. dense cozerosets) are C*-embedded. Equivalently, X is an F-space (resp. quasi F-space) if finitely generated ideals
(resp. finitely generated ideals containing a nondivisor of 0) of C(X) are principal. By 14.26 in [5], we have also that X is
an F-space if and only if every ideal in C(X) is absolutely convex. An ideal I in a partially ordered (lattice ordered) ring is
called convex (absolutely convex) if, whenever 0 < x <y (|x| <|y|) and y € [, then x € I. For more details and properties of
F-spaces and quasi F-spaces, see [4,5,9].

Theorem 1.2. The sum of two z°-ideals of C(X) is always a z°-ideal or all of C(X) if and only if X is a quasi F-space.

If I is a nonregular ideal (i.e., every member of I is a zerodivisor) in C(X), then I, = Zfel Py ={g e C(X):
g € Py for some f € I} and whenever X is a quasi F-space, then the greatest z°-ideal I° contained in I exists and
I° = prg Py={geC(X): Py I}, see [2].

In any commutative ring, it is well known that every minimal ideal in the class of prime ideals containing a z-ideal
is a z-ideal, see Theorem 1.1 in [7]. The following proposition which is proved in [2,8] by different ways, shows that the
converse is also true in C(X).

Proposition 1.3. An ideal I in C(X) is a z-ideal if and only if every prime ideal minimal over I is a z-ideal.

It follows from Proposition 1.3 that an ideal I in C(X) is a z-ideal if and only if +/T is a z-ideal. We have also I, = (1),
I = (/)%. The corresponding statement holds for z°-ideals in C(X) and for any nonregular ideal I in C(X), we have
I, = (v/)s and I° = (//T)°, see [2]. We also cite the following simple result which will be referred to in the sequel.

Proposition 1.4. Suppose that I is an ideal and P is a prime ideal in C(X). If I N P is a z-ideal (z°-ideal), then either I or P is a z-ideal
(z°-ideal). In particular if P and Q are prime ideals which are not in a chain and P N Q is a z-ideal (z°-ideal), then both P and Q are
z-ideals (z°-ideals).

A nonzero ideal in a commutative ring is said to be essential if it intersects every nonzero ideal nontrivially. The following
proposition which topologically characterizes essential ideals of C(X) is proved in [1].

Proposition 1.5. A nonzero ideal E in C(X) is an essential ideal if and only if () Z[E] = ﬂfeE Z(f) is nowhere dense (has an empty
interior).

One can easily see that every free ideal in C(X) is essential and a principal ideal (f) in C(X) is essential if and only if
inty Z(f) =0. It is also easy to see that every non-maximal prime ideal in C(X) is an essential ideal.

2. Relative z-ideals (z°-ideals) in C(X)

For every two ideals I C J in C(X), I is said to be a z,-ideal if Z(f) € Z(g), f €I and g € ] imply that g € I. In other
words, I is called a z,-ideal if Mg N J C I, Vf € I. Clearly every ideal I is a z,-ideal and every z-ideal in C(X) is a z,-ideal
for all ideals J containing I. We call an ideal I a relative z-ideal, or briefly a rez-ideal if there exists an ideal J in C(X)
such that IG J and I is a z,-ideal. Similarly an ideal I in C(X) is called a z?-ideal if IC J and intx Z(f) Cintx Z(g), f el
and g € J imply that g € I or equivalently if Py N J C I, Vf el. I is called a relative z°-ideal or briefly a rez°-ideal if there
exists an ideal J in C(X) such that I'G J and [ is a z‘l’-ideal. Clearly every zj—ideal in C(X) is a z,-ideal and every z°-ideal
in C(X) is a rez°-ideal.

According to the above definitions, the proof of the following proposition is evident. By this proposition, it turns out that
for every ideal J and every z-ideal (z°-ideal) K in C(X), JNK is a z,-ideal (zj’-ideal).

Proposition 2.1. Let I and ] be two ideals in C(X) and I C J.

(a) The following statements are equivalent:

(a1) lisaz,-ideal.

(@) IbNJ=1

(az) There exists a z-ideal K in C(X) suchthat KN J =1.
(b) The following statements are equivalent:

(by) Iisa zj -ideal.

(bp) IoNnJ=1

(b3) There exists a z°-ideal K in C(X) suchthat KN J =1.
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Whenever ] is a z-ideal, then every z -ideal I C | is also a z-ideal. In fact, if f € I, g € C(X) and Z(f) € Z(g), then
ge ] for ] is a z-ideal. Now since I is a z;-ideal, then g €1, i.e, I is a z-ideal. On the other hand in any ideal | there are
many z-ideals, for example if f € J, then Oz ={g € C(X): Z(f) Cintx Z(g)} is a z-ideal contained in J. The following
proposition shows the existence of z, -ideals in any given ideal J which are not z-ideals.

Proposition 2.2. Suppose that | is an ideal in C(X) which is not a z-ideal. Then there exists an ideal | ; J which is a z  -ideal but not
a z-ideal.

Proof. Since | is not a z-ideal, then there exist k € | and h € C(X) such that Z(k) € Z(h) and h ¢ J. Consider g € C(X),
where Z(g)NZ(h) =¥, gh# 0 and take I = MgN J. By Proposition 2.1, I is a z;-ideal and since 0 # gh e [, ke ] and k ¢ My,
then (0) #1 < J. Now it is enough to show that I is not a z-ideal. In fact we have g2k € I and Z(g?k) € Z(g2h) but gh ¢ I.
For otherwise if g2h € I, then k?h € | implies that (g2 +k*)h € J. But g2 +k? is a unit and hence h € J, a contradiction. O

Examples 2.3. (a) Every nonessential ideal in C(X) is a rez-ideal. If I is a nonessential ideal in C(X), then there exists an
ideal K in C(X) such that I N K = (0). If we let J =1+ K, obviously I G J. We show that I is a z,-ideal. Let f € I and
g € J such that Z(f) € Z(g). Hence g =i+k, where i eI, ke K and Z(f) C Z(i + k). Now we have Z(f2 +i2) C Z(k), so
X = Z(0) = Z(k(f? +i2)) C Z(k) which implies that k = 0. Therefore g =i €, i.e, I is a z,-ideal and hence I is a rez-ideal.
We note that every nonessential ideal in C(X) is not necessarily a z-ideal.

(b) If P and Q are prime ideals in C(X) such that P is not a z-ideal and Q is a z-ideal. Then by Proposition 2.1,
I=PNQ is a z,-ideal. Whenever P and Q are not in a chain, then by Proposition 1.4, I is not a z-ideal and hence I will
be a rez-ideal, for I # P. Similarly, if we consider Q as a prime z°-ideal not in a chain with P, then I will be a rez°-ideal.

(c) Finally we show that a principal ideal (f) in C(X) is a rez-ideal if and only if Ann(f) # (0) (intx Z(f) # @). If
intx Z(f) # @, then by Proposition 1.5, (f) is a nonessential ideal and by example (a), (f) is a rez-ideal. Conversely, suppose
there exists J 2 (f) such that (f) is a z;-ideal and suppose that Ann(f) = (0). By Proposition 2.1, we have My N | =
(HzNJ=(f). Take g € | — My, such g exists for otherwise | C My implies My N J = ] = (f) which contradicts (f) g J.
Therefore Z(f) ¢ Z(g) and hence there exists xo € Z(f) such that g(xp) # 0. Clearly gfiPe MysN J=(f) and consequently
there exists k € C(X) such that gf'/3 =kf. Now if x ¢ Z(f), we have g(x) = k(x) f2/3(x). But xo € Z(f) and intx Z(f) =
imply that there exists a net (x¢) in X\ Z(f) such that x, — Xo. But g(Xy) = k(x4) f2/3(xo) — 0 which contradicts g(xo) 0.
This means that intx Z(f) # @ or Ann(f) # (0).

By example (c) above, we have the following corollary. We recall that a space X is an almost P-space if every nonempty
zeroset (or every nonempty Gs-set) in X has a nonempty interior.

Corollary 2.4. Every principal ideal in C(X) is a rez-ideal if and only if X is an almost P-space.

The concepts “rez-ideal” (“rez°-ideal”) and “z-ideal” (“z°-ideal”) coincide for prime ideals of C(X). Moreover, if I is a
z,-ideal, then ] is contained in every non-z-ideal prime ideal minimal over I. This shows that whenever P is a prime ideal
minimal over [ which is not a z-ideal and I is a z,-ideal, then P is the greatest member of {J: I is a z;-ideal}. In this case,
P is the only prime ideal minimal over I which is not a z-ideal.

Proposition 2.5.

(a) Every prime rez-ideal in C(X) is a z-ideal.

(b) Suppose that P is a prime ideal in C(X) which is not a z-ideal and it is minimal over a z,-ideal I. Then ] C P. In case I is not a
z-ideal, then there exists at most one prime ideal P minimal over I such that I is a z,, -ideal.

(c) If Q is a semiprime (absolutely convex) ideal in C(X), then every z,, -ideal is also a semiprime (absolutely convex) ideal.

Proof. (a) If P is a prime rez-ideal, then there exists an ideal | in C(X) such that P g J and P, N J = P. This shows that
either J € P which implies that P = J, a contradiction or P, C P which implies that P = P, i.e., P is a z-ideal.

(b) Let P be a prime ideal minimal over I which is not a z-ideal. Since I, J =1 C P, then either , CPor JCP.I,C P
implies that P is a z-ideal by Proposition 1.3 which contradicts our hypothesis, hence ] € P. If P and Q are two prime
ideals minimal over I such that I is a z,-ideal and is a z, -ideal, then clearly P and Q are not z-ideals, for =1, NP =1,NQ
and I is not a z-ideal. Now by first half of this part, P € Q and Q < P imply that P = Q.

(c) Since I; N Q =1, then I is a semiprime (an absolutely convex) ideal. O

In the following proposition, we observe that for any semiprime ideal I, the collection {J: I is a z,-ideal} has a largest

member. We call an ideal I an almost z-ideal if in every representation of /I as an intersection of prime ideals, there exists
at least one prime z-ideal.
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Proposition 2.6.

(a) Every rez-ideal in C(X) is an almost z-ideal.

(b) For every semiprime ideal Q in C(X), there exists a greatestideal ] containing Q such that Q is a z,-ideal. Moreover, a semiprime
ideal is a rez-ideal if and only if it is an almost z-ideal.

(c) If I is a rez-ideal, then /1 is also a rez-ideal.

Proof. (a) If I is a rez-ideal, then there exists an ideal J g I such that I; N J = 1. Suppose that I is not an almost z-ideal,
then /1 = (Nges Pa, Where Py is a non-z-ideal prime ideal minimal over I, Yoo € S. Now by Proposition 2.5(b), J € Pq,
Vo € S and hence J € /1. But J = (/T);N J =1;N J =1 contradicts J ; I. Therefore I is an almost z-ideal.

(b) Let Q be a semiprime ideal, A be the collection of all non-z-ideals prime ideals minimal over Q and J =(")p., P.
Clearly Q € J, moreover Q, N J = Q, for Q; is the intersection of all prime z-ideals minimal over Q and hence Q, N J is
the intersection of all minimal prime ideals over Q. This implies that Q is a z,-ideal. Whenever K is an ideal containing
Q and Q is a z,-ideal, then K C P, VP € A, by Proposition 2.5(b), i.e.,, K € J. This means that ] is the greatest ideal such
that Q is a z;-ideal. The proof of the second part of (b) is evident by part (a).

(c) Since I is a rez-ideal, then I is an almost z-ideal by part (a). Therefore /T g (pea P = J, where A is the collection
of all non-z-ideals prime ideals minimal over I. Now (+/T); N J =1, N J = +/T implies that /T is a rez-ideal. O

Not only for semiprime ideals, but for every ideal I in C(X), where X is an F-space, there exists a greatest ideal ] such
that [ is a z,-ideal.

Proposition 2.7. If X is an F-space, then for every ideal I in C(X), the collection {]: I is a z,-ideal} has a greatest member.

Proof. We put J, ={f € C(X): MgN (f) €1, Vg eI} and show that ], is an ideal. First we prove that whenever
MgN(f) <1, then Mg N (|f]) € 1. To see this let h € Mg N (|f]), then Z(g) € Z(h) and there exists k € C(X) such
that h = k|f| and Z(g) € Z(h) = Z(kf). Since X is an F-space, then I is absolutely convex and so |h| = |kf| and
kf e Mg N (f) €1 imply that h eI, i.e, Mg N (|f]) € I. Next suppose that f1, fo € J, and g € I. Since X is an F-space,
then Mg N (f1 + f2) € Mg N (f1, f2) = Mg N (| f1]l + | f2]), see Theorem 14.25 in [5]. Now if h € Mg N (| f1| + | f2]), then
Z(g) S Z(h) and h =k(|f1|+|f2|) for some k € C(X). Thus Z(g) € Z(k| f1]) and Z(g) S Z(k| f2]), so k|f1| € Mg N (| f1]) and
k| f2] € Mg N (| f2]). On the other hand f1, f> € J, implies that Mg N (f1) S 1, MgN(f2) €1 and hence k| f1| e MgN (| f1]) €1,
ki f2l e MgN (1 f2]) €1, imply that h € I, i.e, MgN (| f1l+1f2]) = Mg N (f1+ f2) €1, 50 f1+ f2 € Jo. Now suppose that f € J,
and h € C(X). For all g €I, we have Mg N (fh) € Mg N (f) €I and hence fh € J,. Therefore J, is an ideal. Moreover we
have Mg N Jo C 1, Vgel, in fact I; N Jo = (U{Mg: g€I}) N Jo=U{MgN Jo: gel} S I This shows that I is a z,_-ideal.
Finally suppose that there exists an ideal K containing I such that I is a z,-ideal. Hence Mg N (f) CI;NK =1, Vgel and
Vf e K. Thus K C J, and this means that |, is the greatest member of {J: I is a z,-ideal}. O

It is evident that every ideal I in C(X) is a z;-ideal, but one may ask when is every subideal of a given ideal I a z,-ideal?
The following lemma and corollary show that such an ideal should be a z-ideal whose every member has an open zeroset.
As an example of such ideals, consider Cr(X) ={f € C(X): X\ Z(f)is finite}. Recall that a space X is a P-space if every
zeroset (Gs-set) in X is open or if every prime ideal in C(X) is a z-ideal, see [5, 4]].

Lemma 2.8. If f € C(X), then every subideal of the principal ideal (f) is a zf)-ideal if and only if Y = X \ Z(f) is a closed P-space.

Proof. If every subideal of (f) is a z(f)-ideal, then (f2) is a z(s)-ideal and hence (f2), N (f) = (f?), e, My N (f) = (f?).
But feMsN(f)= (f?) implies that f =kf? for some k € C(X). Hence f(1—kf) =0 means that Z(f)UZ(1 —kf) =X and
Z(f)NZ(1 —kf) =@ which imply that Z(f) is open, so Y is closed. Now suppose that g € C(Y) and g* is an extension of g
on X, say g*(x) =g(x), VxeY and g*(x) =1, Vx ¢ Y. Since (g*f) C (f), then (g*f) is a z()-ideal, i.e., Mg+ s N (f) = (g* ).
Thus g*mf € Mgy N (f)=(g*f), but f is a unit on Y, therefore g1/3 € (g) which implies that Z(g) is open and hence Y
is a P-space. Conversely suppose that Y is a closed P-space and I C (f). Assume that g € I and h € Mgz N (f), then there
exists k € C(X) such that h = fk and Z(g) C Z(h) = Z(fk). Thus Z(g|y) € Z(f|ykly) = Z(k|y) for f is a unit on Y. Since
Z(k|y) is open, then k|y is a multiple of g|y, i.e. t € C(X) exists, such that kly =t|yg|y. Now kf =tgf € I implies that
h=kf el, ie, Mg N (f) S I which means that I is a z(s)-ideal. O

Corollary 2.9. Let I be an ideal in C(X). Then every subideal of I is a z,-ideal if and only if Z(f) is open, V f € I.

Proof. If Z(f) is open, Vf €I, then I is a z-ideal and clearly every subideal of I is a z,-ideal. Conversely, if every subideal
of I is a z,-ideal, then for all f €1, (f5His a z,-ideal. Now by definition, (f?) is also a Z(f)-ideal and by first part of the
proof of Lemma 2.8, Z(f) is open. O
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We conclude this section with the following result. Part (f) of this result shows that for every two ideals I C ], there
exists the smallest z, -ideal containing I which we denote by I;,. By Proposition 2.1, I; N J is a z,-ideal containing I and if
K € ] is also a z,-ideal containing [, then K, N J = K and hence I;N J € K;N J = K. This means that I;; =1, N J. A similar
result may be stated for the smallest Z‘J’—ideal containing I.

Proposition 2.10. Let A, B, I, J, K and I, Vo € S be ideals in C(X).

a) If 1€ J C K and I is az,-ideal, then I is also a z, -ideal.

b) If I € J S K, lisaz,-ideal, and ] is a z, -ideal, then I is a z, -ideal.

¢) If V1< J and I is a z;-ideal, then I = /1. In particular, if I is a z /;-ideal, then I = /1.
d) If I € J and I is a z, -ideal, then Jlisa zﬁ-ideal.

(e) fAC J,BC K, Aisaz,-idealand B is a z, -ideal, then AN Bisa z
(f) Iflo € J and Iy is a z,-ideal, Vo € S, then Nyes Lo isalsoa z,-ideal.

(
(
(
(
-ideal.

Proof. The proof of parts (a), (b) and (c) are evident. For parts (d), (e) and (f), we have

WD n]=1nV]=V.nJ/]=yI,n]=VI,

(ANB),N(JNK)=A,NB,NJNK=(A,N])N(B,NK)=ANB,

ﬂug(ﬂla)ng(ﬂlw)m:ﬂuamn:ﬂlw 0

aesS aesS aesS aesS aesS
3. Sum of relative z-ideals (z°-ideals) in C(X)

We observed that if |  J are two ideals in C(X), then I, the smallest z, -ideal containing I always exists and it is equal
to I; N ] and is equal to the intersection of all z,-ideals containing [. In this section we want to investigate the existence
of I?J, the greatest z,-ideal contained in I for every two ideals I C J in C(X). Clearly, whenever the sum of every two
z,-ideals is a z,-ideal, then 1% exists and we will show in this section that the converse is also true. In Theorem 3.4, we
show that the sum of every two z,-ideals is a z,-ideal for all ideals J in C(X) if and only if X is an F-space. First we need
the following propositions and lemma.

Proposition 3.1. Let | be an ideal in C(X), then the following statements are equivalent.

(a) Forevery two z-ideals I and K in C(X), { + K)NJ=INnJ+ KN J.
(b) Sum of every two z, -ideals is a z, -ideal.
(c) For every subideal I of |, I/ exists and I*) = ZMm]g Msn J.

Proof. First we show that (a) and (b) are equivalent. If (a) holds and I and K are z,-ideals, then I +K=1,N ]+ KN ] =
(I + Kz) N J =+ K), N J which means that [ + K is a z,-ideal (note that (I + K); = I; + K by Proposition 3.1 in [6]).
Conversely, suppose (b) holds and I and K are z-ideals in C(X). Take f € (I+K)N J, then f = f1 + f,, where f1 €1, f, €K
and fe J.Thus f2=ffi+ ffaelNJ+KnNJ.Since INJ and KN J are z,-ideals by Proposition 2.1, then IN J + KN J
is also a z;-ideal by part (b). Hence f e MpNJCIN]J+ KN ], ie, I+K)nJ=1IN]+KnN J. Next we show that
(b) and (c) are equivalent. If (b) holds, since each My N J is a z,-ideal, then ZMfﬂjgl Mg N J is a z;-ideal contained
in I. Now suppose that T €1 and T is also a z;-ideal. If g T, then Mg N J €T <1 and therefore T C ZMfﬁ]gle nj.
This means that [%/ = ZMfm]g My N J. Conversely, suppose I?/ exists, VI C J and K and T are two z,-ideals. Hence
K+T=K% +T% C(K+T)? CK+T, which means that K+ T is a z,-ideal. O

We have a similar result for the sum of zj-ideals as follows.

Proposition 3.2. Suppose that X is a quasi F-space and | is an ideal in C(X), then the following statements are equivalent.

(a) Forevery two z°-ideals  and K in C(X), I+ K)N J=INnJ+ KN ].
(b) Sum of every two z‘j’ -ideals is a z‘J’—ideal.

(c) For every subideal I of ], I*] exists and I?] = Ypsct Pr0 .

Proof. We note that if X is a quasi F-space, then Py + Pg is a z°-ideal or all of C(X), Vf, g € C(X). Now using basic
z°-ideals instead of basic z-ideals in the proof of Proposition 3.1, the proof is similar to that of Proposition 3.1 step by
step. O
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In the following lemma, we show that whenever | is an absolutely convex ideal, then part (a) in Proposition 3.1 holds
for every two z-ideals (z,-ideals or semiprime ideals) I and K in C(X). By Proposition 3.1, this means that for an abso-
lutely convex ideal J, the sum of two z -ideals is a z,-ideal. Although part (b) of the following lemma will show that
the hypothesis of absolute convexity of | is needed, we can also give an easy example showing this hypothesis cannot be
omitted. To see this, take the principal ideal | = (i) in C(R), where i is the identity function in C(R). J is convex, by 5E
in [5]. Now consider two functions f, g € C(R) defined by f(x) =0, Vx<0, f(x) =x, Vx>0 and g(x) =0, Vx > 0, g(x) = x,
Vx < 0. Therefore (Mf+Mg)NJ#M¢NJ+MgNJfori=f+geMs+Mg)N]JbutigMgn ]+ MgnN J. In fact if
ieMfnJ+Mgn ], then i= f'i + g'i, where [0,00) = Z(g) € Z(g') and (—00,0]=Z(f) € Z(f'). Thus f'(x)+g'(x) =1,
Vx # 0 and hence f’+ g’ is a unit which contradicts f’(0) = 0= g’(0). Now by part (a) of Proposition 3.1, the sum of two
z,-ideals in C(R) is not necessarily a z,-ideal.

Lemma 3.3.

(a) Let J be an absolutely convex ideal and I and K be two z-ideals (or z, -ideals) in C(X), then I+ K)N J=1N ]+ KN ].
(b) If ] is a convex ideal in C(X) and for every two z-ideals I and K in C(X) we have (I+K)N J=1NJ+ KN J, then | is absolutely
convex.

Proof. (a) The proof resembles that of Lemma 3.1 in [10]. Let h € (I + K) N J. Then there is an f €I, g € K such that
h = f + g. Define the following two continuous functions:

0, xeZ(f)NZ(g), ) {0, xeZ(f)NZ(g),
s(x) =

=1 AL xez(hn 2, A XEZ(NHN ().

Since [t| < |h|, |s| < |h], h € ] and ] is absolutely convex, then s,t € J. On the other hand I and K are z-ideals (or
z,-ideals), Z(f) S Z(¢t), Z(g) S Z(s) and fel, ge K imply thattelN Jandse KN J. Thush=t+selnJ+KNJ and
hence I+ K)NJ=INJ+KnN]J.

(b) Using Theorem 5.3 in [5], it is enough to show that |f| € J, Vf e J. Since My_ s and Mgy s, are both z-
ideals, then by our hypothesis, (Ms s+ Mjs_jg) N J =MysysyNJ+Ms_jgy0 J, whence 2f = (f +[fD+ (f —|f]) €
(Myqip)+ Mg J. So f=s+t, where s,t € J, Z(f +|f]) € Z(s) and Z(f — |f]) € Z(6). But (f + |f)(f = 1) =0
implies that (f — |f|)s=0 and (f 4+ |f|)t =0. Now we have

LIS +H1F) = F(F+1FD) =s(F+IF) +e(f +1F1) =s(f +1F) =s(f = 1 fI+21f]) =2Ifls.
Thus | f(x)| + f(X) =2s(x), Vx ¢ Z(f) and since Z(f) C Z(s), then |f|+ f =2s,i.e, |f|+ f € J and hence |f|€ J. O

Now using preceding facts, we prove the main result of this section.

Theorem 3.4. The following statements are equivalent.

(a) X isan F-space.
(b) Forevery ideal | in C(X), the sum of every two z, -ideals is a z, -ideal.
(c) Foreveryideal ] in C(X), the sum of every two z;’ -ideals is a z‘]’ -ideal.

Proof. If X is an F-space, then every ideal J in C(X) is absolutely convex and hence by Lemma 3.3 and Proposition 3.1,
(a) implies (b). Now we suppose that (b) holds and show that X is an F-space. To prove this it is enough to show that
for every f € C(X), there exists k € C(X) such that f =k|f|, see Theorem 14.25 in [5]. Put J = (|f]), since M¢_jf| and
My are z-ideals, then by part (b) in Proposition 3.1, we have (Mg s +Mjs_js) N J=Mjsi5y 0 J+ Msg_j5 N J. Now
[fle Mygyf+Mys_g) N J implies that |f|=s+t, where s,t € ] =(If]), Z(f +|f]) € Z(s) and Z(f — | f]) € Z(t). Hence
LFICF=1fD=s(f = If)+t(f —|1fl)=—2t|f], so |f| — f =2t But t € ] = (|f]) implies that t = k| f| for some k € C(X),
therefore f =|f| —2k|f| = (1 — 2k)|f|. The proof of the equivalence of parts (a) and (c) is similar. O

Finally we show that if the sum of every two rez-ideals in C(X) is a rez-ideal, then X is a P-space.
Proposition 3.5. The following statements are equivalent.
(a) X isa P-space.
(b) Every ideal in C(X) is a rez-deal.

(c) Sum of every two rez-ideals is a rez-ideal.

Proof. Clearly (a) implies (b) and (b) implies (c). Now suppose that (c) holds but X is not a P-space. Then there is a prime
ideal P in C(X) which is not a z-ideal (we recall that X is a P-space if and only if every prime ideal in C(X) is a z-ideal)
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and hence not maximal. Let M and M’ be two maximal ideals in C(X) not containing P such that M + M’ = C(X). Since P
is not maximal, then (1) Z[P] contains at most one non-isolated point and hence by Proposition 1.5, P is an essential ideal.
So I=PNM and K=PNM are two nonzero z,-ideals by Proposition 2.1. Moreover [ g P and K g P imply that [ and K
are rez-ideals. Now by part (a) of Lemma 3.3, since the prime ideal P is absolutely convex, then [+ K=PNM+PNM =
PN(M+M)=PNC(X)=P and P is not a rez-ideal by Proposition 2.5(a), a contradiction. O
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