Relative z-ideals in $C(X)$

F. Azarpanah *, A. Taherifar
Department of Mathematics, Chamran University, Golestan, Ahvaz, Iran

ARTICLE INFO

Article history:

Received 4 February 2009
Accepted 4 February 2009

MSC:

54C40

Keywords:
Relative z-ideal (rez-ideal)
F-space
Almost P-space
Almost z-ideal
Relative z°-ideal (rez ${ }^{\circ}$-ideal)

Abstract

For every two ideals $I \subseteq J$ in $C(X)$, we call I a z_{J}-ideal if $Z(f) \subseteq Z(g), f \in I$ and $g \in J$ imply that $g \in I$. An ideal I is called a relative z-ideal, briefly a rez-ideal, if there exists an ideal J such that $I \varsubsetneqq J$ and I is a z_{J}-ideal. We have shown that for any ideal J in $C(X)$, the sum of every two z_{J}-ideals is a z_{J}-ideal if and only if X is an F-space. It is also shown that every principal ideal in $C(X)$ is a rez-ideal if and only if X is an almost P-space and the spaces X for which the sum of every two rez-ideals is a rez-ideal are characterized. Finally for a given ideal I in $C(X)$, the existence of greatest ideal J such that I to be a z_{J}-ideal and also for given two ideals $I \subseteq J$ in $C(X)$, a greatest z_{J}-ideal contained in I and the smallest z_{J}-ideal containing I are investigated.

(C) 2009 Elsevier B.V. All rights reserved.

1. Preliminaries

Throughout this paper, we denote by $C(X)$, the ring of all real-valued continuous functions on a completely regular Hausdorff space X and for terminology and notations, the reader is referred to [2,5,6]. For every $f \in C(X)$, the intersection of all maximal (minimal prime) ideals of $C(X)$ containing f is denoted by $M_{f}\left(P_{f}\right)$. An ideal I in $C(X)$ is called a z-ideal (z°-ideal) if $M_{f} \subseteq I\left(P_{f} \subseteq I\right), \forall f \in I$. It is easy to see that $M_{f}=\{g \in C(X): Z(f) \subseteq Z(g)\}$ and $P_{f}=\left\{g \in C(X)\right.$: int ${ }_{X} Z(f) \subseteq$ $\left.\operatorname{int}_{X} Z(g)\right\}$, see also [2,3]. Equivalently I is a z-ideal (z°-ideal) if $f \in I, g \in C(X)$ and $Z(f) \subseteq Z(g)$ (int $Z(f) \subseteq \operatorname{int}_{X} Z(g)$) imply that $g \in I$. Clearly $M_{f}\left(P_{f}\right)$ itself is a z-ideal (z°-ideal) for every $f \in C(X)$, which we call a basic z-ideal (z°-ideal). Note that $P_{f}=C(X)$ if and only if $\operatorname{int}_{X} Z(f)=\emptyset$. Since the sum and the intersection of z-ideals in $C(X)$ is a z-ideal, then for a given ideal I in $C(X)$ the smallest z-ideal containing I and the greatest z-ideal contained in I always exist and in the notation of Mason in [6], we denote these z-ideals by I_{z} and I^{z} respectively. The following proposition which is proved in [2] characterizes the ideals I_{z} and I^{z} in term of basic z-ideals. This proposition also gives an elementwise characterization for these ideals. For a different elementwise characterization, see [6].

Proposition 1.1. If I is an ideal in $C(X)$, then $I_{z}=\left\{g \in C(X): g \in M_{f}\right.$ for some $\left.f \in I\right\}=\sum_{f \in I} M_{f}$ and $I^{z}=\left\{g \in C(X): M_{g} \subseteq I\right\}=$ $\sum_{M_{f} \subseteq I} M_{f}$.

An arbitrary intersection of z°-ideals is also a z°-ideal and hence the smallest z°-ideal I_{\circ} containing a given ideal I always exists. But the sum of two z°-ideals even in $C(X)$ need not be a z°-ideal. A necessary and sufficient condition that the sum of z°-ideals in $C(X)$ be a z°-ideal is given by the following theorem due to B. de Pagter in 11.1 of [9] using different

[^0]terminology. First we recall that a completely regular Hausdorff space X is an F-space (resp. quasi F-space) if its cozerosets (resp. dense cozerosets) are C^{*}-embedded. Equivalently, X is an F-space (resp. quasi F-space) if finitely generated ideals (resp. finitely generated ideals containing a nondivisor of 0) of $C(X)$ are principal. By 14.26 in [5], we have also that X is an F-space if and only if every ideal in $C(X)$ is absolutely convex. An ideal I in a partially ordered (lattice ordered) ring is called convex (absolutely convex) if, whenever $0 \leqslant x \leqslant y(|x| \leqslant|y|)$ and $y \in I$, then $x \in I$. For more details and properties of F-spaces and quasi F-spaces, see $[4,5,9]$.

Theorem 1.2. The sum of two z°-ideals of $C(X)$ is always a z°-ideal or all of $C(X)$ if and only if X is a quasi F-space.

If I is a nonregular ideal (i.e., every member of I is a zerodivisor) in $C(X)$, then $I_{\circ}=\sum_{f \in I} P_{f}=\{g \in C(X)$: $g \in P_{f}$ for some $\left.f \in I\right\}$ and whenever X is a quasi F-space, then the greatest z°-ideal I° contained in I exists and $I^{\circ}=\sum_{P_{f} \subseteq I} P_{f}=\left\{g \in C(X): P_{g} \subseteq I\right\}$, see [2].

In any commutative ring, it is well known that every minimal ideal in the class of prime ideals containing a z-ideal is a z-ideal, see Theorem 1.1 in [7]. The following proposition which is proved in [2,8] by different ways, shows that the converse is also true in $C(X)$.

Proposition 1.3. An ideal I in $C(X)$ is a z-ideal if and only if every prime ideal minimal over I is a z-ideal.
It follows from Proposition 1.3 that an ideal I in $C(X)$ is a z-ideal if and only if \sqrt{I} is a z-ideal. We have also $I_{z}=(\sqrt{I})_{z}$, $I^{z}=(\sqrt{I})^{z}$. The corresponding statement holds for z°-ideals in $C(X)$ and for any nonregular ideal I in $C(X)$, we have $I_{\circ}=(\sqrt{I})$ 。 and $I^{\circ}=(\sqrt{I})^{\circ}$, see [2]. We also cite the following simple result which will be referred to in the sequel.

Proposition 1.4. Suppose that I is an ideal and P is a prime ideal in $C(X)$. If $I \cap P$ is a z-ideal (z°-ideal), then either I or P is a z-ideal (z°-ideal). In particular if P and Q are prime ideals which are not in a chain and $P \cap Q$ is a z-ideal (z°-ideal), then both P and Q are z-ideals (z°-ideals).

A nonzero ideal in a commutative ring is said to be essential if it intersects every nonzero ideal nontrivially. The following proposition which topologically characterizes essential ideals of $C(X)$ is proved in [1].

Proposition 1.5. A nonzero ideal E in $C(X)$ is an essential ideal if and only if $\bigcap Z[E]=\bigcap_{f \in E} Z(f)$ is nowhere dense (has an empty interior).

One can easily see that every free ideal in $C(X)$ is essential and a principal ideal (f) in $C(X)$ is essential if and only if $\operatorname{int}_{X} Z(f)=\emptyset$. It is also easy to see that every non-maximal prime ideal in $C(X)$ is an essential ideal.

2. Relative z-ideals (z°-ideals) in $C(X)$

For every two ideals $I \subseteq J$ in $C(X), I$ is said to be a z_{J}-ideal if $Z(f) \subseteq Z(g), f \in I$ and $g \in J$ imply that $g \in I$. In other words, I is called a z_{J}-ideal if $M_{f} \cap J \subseteq I, \forall f \in I$. Clearly every ideal I is a z_{1}-ideal and every z-ideal in $C(X)$ is a z_{J}-ideal for all ideals J containing I. We call an ideal I a relative z-ideal, or briefly a rez-ideal if there exists an ideal J in $C(X)$ such that $I \varsubsetneqq J$ and I is a z_{J}-ideal. Similarly an ideal I in $C(X)$ is called a z_{J}°-ideal if $I \subseteq J$ and int $X(f) \subseteq$ int $_{X} Z(g), f \in I$ and $g \in J$ imply that $g \in I$ or equivalently if $P_{f} \cap J \subseteq I, \forall f \in I$. I is called a relative z°-ideal or briefly a rez ${ }^{\circ}$-ideal if there exists an ideal J in $C(X)$ such that $I \varsubsetneqq J$ and I is a z_{J}°-ideal. Clearly every z_{J}°-ideal in $C(X)$ is a z_{J}-ideal and every z°-ideal in $C(X)$ is a $r e z^{\circ}$-ideal.

According to the above definitions, the proof of the following proposition is evident. By this proposition, it turns out that for every ideal J and every z-ideal (z°-ideal) K in $C(X), J \cap K$ is a z_{J}-ideal (z_{J}°-ideal).

Proposition 2.1. Let I and J be two ideals in $C(X)$ and $I \subseteq J$.
(a) The following statements are equivalent:
(a_{1}) I is a z_{J}-ideal.
$\left(\mathrm{a}_{2}\right) I_{z} \cap J=I$.
(a_{3}) There exists a z-ideal K in $C(X)$ such that $K \cap J=I$.
(b) The following statements are equivalent:
$\left(\mathrm{b}_{1}\right)$ I is a z_{J}°-ideal.
$\left(\mathrm{b}_{2}\right) I_{\circ} \cap J=I$.
$\left(\mathrm{b}_{3}\right)$ There exists a z°-ideal K in $C(X)$ such that $K \cap J=I$.

Whenever J is a z-ideal, then every z_{J}-ideal $I \subseteq J$ is also a z-ideal. In fact, if $f \in I, g \in C(X)$ and $Z(f) \subseteq Z(g)$, then $g \in J$ for J is a z-ideal. Now since I is a z_{J}-ideal, then $g \in I$, i.e., I is a z-ideal. On the other hand in any ideal J there are many z-ideals, for example if $f \in J$, then $O_{Z(f)}=\left\{g \in C(X): Z(f) \subseteq \operatorname{int}_{X} Z(g)\right\}$ is a z-ideal contained in J. The following proposition shows the existence of z_{J}-ideals in any given ideal J which are not z-ideals.

Proposition 2.2. Suppose that J is an ideal in $C(X)$ which is not a z-ideal. Then there exists an ideal $I \varsubsetneqq J$ which is a z_{J}-ideal but not a z-ideal.

Proof. Since J is not a z-ideal, then there exist $k \in J$ and $h \in C(X)$ such that $Z(k) \subseteq Z(h)$ and $h \notin J$. Consider $g \in C(X)$, where $Z(g) \cap Z(h)=\emptyset, g h \neq 0$ and take $I=M_{g} \cap J$. By Proposition 2.1, I is a z_{J}-ideal and since $0 \neq g h \in I, k \in J$ and $k \notin M_{g}$, then $(0) \neq I \varsubsetneqq J$. Now it is enough to show that I is not a z-ideal. In fact we have $g^{2} k \in I$ and $Z\left(g^{2} k\right) \subseteq Z\left(g^{2} h\right)$ but $g^{2} h \notin I$. For otherwise if $g^{2} h \in I$, then $k^{2} h \in J$ implies that $\left(g^{2}+k^{2}\right) h \in J$. But $g^{2}+k^{2}$ is a unit and hence $h \in J$, a contradiction.

Examples 2.3. (a) Every nonessential ideal in $C(X)$ is a rez-ideal. If I is a nonessential ideal in $C(X)$, then there exists an ideal K in $C(X)$ such that $I \cap K=(0)$. If we let $J=I+K$, obviously $I \varsubsetneqq J$. We show that I is a z_{J}-ideal. Let $f \in I$ and $g \in J$ such that $Z(f) \subseteq Z(g)$. Hence $g=i+k$, where $i \in I, k \in K$ and $Z(f) \subseteq Z(i+k)$. Now we have $Z\left(f^{2}+i^{2}\right) \subseteq Z(k)$, so $X=Z(0)=Z\left(k\left(f^{2}+i^{2}\right)\right) \subseteq Z(k)$ which implies that $k=0$. Therefore $g=i \in \bar{I}$, i.e., I is a z_{J}-ideal and hence I is a rez-ideal. We note that every nonessential ideal in $C(X)$ is not necessarily a z-ideal.
(b) If P and Q are prime ideals in $C(X)$ such that P is not a z-ideal and Q is a z-ideal. Then by Proposition 2.1, $I=P \cap Q$ is a z_{P}-ideal. Whenever P and Q are not in a chain, then by Proposition $1.4, I$ is not a z-ideal and hence I will be a rez-ideal, for $I \neq P$. Similarly, if we consider Q as a prime z°-ideal not in a chain with P, then I will be a rez-ideal.
(c) Finally we show that a principal ideal (f) in $C(X)$ is a rez-ideal if and only if $\operatorname{Ann}(f) \neq(0)\left(\operatorname{int}_{X} Z(f) \neq \emptyset\right)$. If $\operatorname{int}_{X} Z(f) \neq \emptyset$, then by Proposition $1.5,(f)$ is a nonessential ideal and by example (a), (f) is a rez-ideal. Conversely, suppose there exists $J \supsetneqq(f)$ such that (f) is a z_{J}-ideal and suppose that $\operatorname{Ann}(f)=(0)$. By Proposition 2.1, we have $M_{f} \cap J=$ $(f)_{z} \cap J=(f)$. Take $g \in J-M_{f}$, such g exists for otherwise $J \subseteq M_{f}$ implies $M_{f} \cap J=J=(f)$ which contradicts $(f) \varsubsetneqq J$. Therefore $Z(f) \nsubseteq Z(g)$ and hence there exists $x_{0} \in Z(f)$ such that $g\left(x_{0}\right) \neq 0$. Clearly $g f^{1 / 3} \in M_{f} \cap J=(f)$ and consequently there exists $k \in C(X)$ such that $g f^{1 / 3}=k f$. Now if $x \notin Z(f)$, we have $g(x)=k(x) f^{2 / 3}(x)$. But $x_{0} \in Z(f)$ and int $Z(f)=\emptyset$ imply that there exists a net $\left(x_{\alpha}\right)$ in $X \backslash Z(f)$ such that $x_{\alpha} \rightarrow x_{0}$. But $g\left(x_{\alpha}\right)=k\left(x_{\alpha}\right) f^{2 / 3}\left(x_{\alpha}\right) \rightarrow 0$ which contradicts $g\left(x_{0}\right) \neq 0$. This means that $\operatorname{int}_{X} Z(f) \neq \emptyset$ or $\operatorname{Ann}(f) \neq(0)$.

By example (c) above, we have the following corollary. We recall that a space X is an almost P-space if every nonempty zeroset (or every nonempty G_{δ}-set) in X has a nonempty interior.

Corollary 2.4. Every principal ideal in $C(X)$ is a rez-ideal if and only if X is an almost P-space.
The concepts "rez-ideal" ("rez ${ }^{\circ}$-ideal") and " z-ideal" (" z°-ideal") coincide for prime ideals of $C(X)$. Moreover, if I is a z_{J}-ideal, then J is contained in every non- z-ideal prime ideal minimal over I. This shows that whenever P is a prime ideal minimal over I which is not a z-ideal and I is a z_{P}-ideal, then P is the greatest member of $\left\{J: I\right.$ is a z_{J}-ideal $\}$. In this case, P is the only prime ideal minimal over I which is not a z-ideal.

Proposition 2.5.

(a) Every prime rez-ideal in $C(X)$ is a z-ideal.
(b) Suppose that P is a prime ideal in $C(X)$ which is not a z-ideal and it is minimal over a z_{J}-ideal I. Then $J \subseteq P$. In case I is not a z-ideal, then there exists at most one prime ideal P minimal over I such that I is a z_{P}-ideal.
(c) If Q is a semiprime (absolutely convex) ideal in $C(X)$, then every z_{Q}-ideal is also a semiprime (absolutely convex) ideal.

Proof. (a) If P is a prime rez-ideal, then there exists an ideal J in $C(X)$ such that $P \varsubsetneqq J$ and $P_{z} \cap J=P$. This shows that either $J \subseteq P$ which implies that $P=J$, a contradiction or $P_{z} \subseteq P$ which implies that $P=P_{z}$, i.e., P is a z-ideal.
(b) Let P be a prime ideal minimal over I which is not a z-ideal. Since $I_{z} \cap J=I \subseteq P$, then either $I_{z} \subseteq P$ or $J \subseteq P . I_{z} \subseteq P$ implies that P is a z-ideal by Proposition 1.3 which contradicts our hypothesis, hence $J \subseteq P$. If P and Q are two prime ideals minimal over I such that I is a z_{P}-ideal and is a z_{Q}-ideal, then clearly P and Q are not z-ideals, for $I=I_{z} \cap P=I_{z} \cap Q$ and I is not a z-ideal. Now by first half of this part, $P \subseteq Q$ and $Q \subseteq P$ imply that $P=Q$.
(c) Since $I_{z} \cap Q=I$, then I is a semiprime (an absolutely convex) ideal.

In the following proposition, we observe that for any semiprime ideal I, the collection $\left\{J: I\right.$ is a z_{J}-ideal $\}$ has a largest member. We call an ideal I an almost z-ideal if in every representation of \sqrt{I} as an intersection of prime ideals, there exists at least one prime z-ideal.

Proposition 2.6.

(a) Every rez-ideal in $C(X)$ is an almost z-ideal.
(b) For every semiprime ideal Q in $C(X)$, there exists a greatest ideal J containing Q such that Q is a z_{J}-ideal. Moreover, a semiprime ideal is a rez-ideal if and only if it is an almost z-ideal.
(c) If I is a rez-ideal, then \sqrt{I} is also a rez-ideal.

Proof. (a) If I is a rez-ideal, then there exists an ideal $J \supsetneqq I$ such that $I_{z} \cap J=I$. Suppose that I is not an almost z-ideal, then $\sqrt{I}=\bigcap_{\alpha \in S} P_{\alpha}$, where P_{α} is a non-z-ideal prime ideal minimal over $I, \forall \alpha \in S$. Now by Proposition 2.5(b), $J \subseteq P_{\alpha}$, $\forall \alpha \in S$ and hence $J \subseteq \sqrt{I}$. But $J=(\sqrt{I})_{z} \cap J=I_{z} \cap J=I$ contradicts $J \supsetneqq I$. Therefore I is an almost z-ideal.
(b) Let Q be a semiprime ideal, A be the collection of all non-z-ideals prime ideals minimal over Q and $J=\bigcap_{P \in A} P$. Clearly $Q \subseteq J$, moreover $Q_{z} \cap J=Q$, for Q_{z} is the intersection of all prime z-ideals minimal over Q and hence $Q_{z} \cap J$ is the intersection of all minimal prime ideals over Q. This implies that Q is a z_{J}-ideal. Whenever K is an ideal containing Q and Q is a z_{K}-ideal, then $K \subseteq P, \forall P \in A$, by Proposition 2.5(b), i.e., $K \subseteq J$. This means that J is the greatest ideal such that Q is a z_{J}-ideal. The proof of the second part of (b) is evident by part (a).
(c) Since I is a rez-ideal, then I is an almost z-ideal by part (a). Therefore $\sqrt{I} \not \bigcap_{P \in A} P=J$, where A is the collection of all non-z-ideals prime ideals minimal over I. Now $(\sqrt{I})_{z} \cap J=I_{z} \cap J=\sqrt{I}$ implies that \sqrt{I} is a rez-ideal.

Not only for semiprime ideals, but for every ideal I in $C(X)$, where X is an F-space, there exists a greatest ideal J such that I is a z_{J}-ideal.

Proposition 2.7. If X is an F-space, then for every ideal I in $C(X)$, the collection $\left\{J: I\right.$ is a z_{J}-ideal\} has a greatest member.
Proof. We put $J_{\circ}=\left\{f \in C(X): M_{g} \cap(f) \subseteq I, \forall g \in I\right\}$ and show that J_{\circ} is an ideal. First we prove that whenever $M_{g} \cap(f) \subseteq I$, then $M_{g} \cap(|f|) \subseteq I$. To see this let $h \in M_{g} \cap(|f|)$, then $Z(g) \subseteq Z(h)$ and there exists $k \in C(X)$ such that $h=k|f|$ and $Z(g) \subseteq Z(h)=Z(k f)$. Since X is an F-space, then I is absolutely convex and so $|h|=|k f|$ and $k f \in M_{g} \cap(f) \subseteq I$ imply that $h \in I$, i.e., $M_{g} \cap(|f|) \subseteq I$. Next suppose that $f_{1}, f_{2} \in J \circ$ and $g \in I$. Since X is an F-space, then $M_{g} \cap\left(f_{1}+f_{2}\right) \subseteq M_{g} \cap\left(f_{1}, f_{2}\right)=M_{g} \cap\left(\left|f_{1}\right|+\left|f_{2}\right|\right)$, see Theorem 14.25 in [5]. Now if $h \in M_{g} \cap\left(\left|f_{1}\right|+\left|f_{2}\right|\right)$, then $Z(g) \subseteq Z(h)$ and $h=k\left(\left|f_{1}\right|+\left|f_{2}\right|\right)$ for some $k \in C(X)$. Thus $Z(g) \subseteq Z\left(k\left|f_{1}\right|\right)$ and $Z(g) \subseteq Z\left(k\left|f_{2}\right|\right)$, so $k\left|f_{1}\right| \in M_{g} \cap\left(\left|f_{1}\right|\right)$ and $k\left|f_{2}\right| \in M_{g} \cap\left(\left|f_{2}\right|\right)$. On the other hand $f_{1}, f_{2} \in J$ 。implies that $M_{g} \cap\left(f_{1}\right) \subseteq I, M_{g} \cap\left(f_{2}\right) \subseteq I$ and hence $k\left|f_{1}\right| \in M_{g} \cap\left(\left|f_{1}\right|\right) \subseteq I$, $k\left|f_{2}\right| \in M_{g} \cap\left(\left|f_{2}\right|\right) \subseteq I$, imply that $h \in I$, i.e., $M_{g} \cap\left(\left|f_{1}\right|+\left|f_{2}\right|\right)=M_{g} \cap\left(f_{1}+f_{2}\right) \subseteq I$, so $f_{1}+f_{2} \in J_{\circ}$. Now suppose that $f \in J$ 。 and $h \in C(X)$. For all $g \in I$, we have $M_{g} \cap(f h) \subseteq M_{g} \cap(f) \subseteq I$ and hence $f h \in J_{0}$. Therefore J_{\circ} is an ideal. Moreover we have $M_{g} \cap J_{\circ} \subseteq I, \forall g \in I$, in fact $I_{z} \cap J_{\circ}=\left(\bigcup\left\{M_{g}: g \in I\right\}\right) \cap J_{\circ}=\bigcup\left\{M_{g} \cap J_{0}: g \in I\right\} \subseteq I$. This shows that I is a $z_{J_{0}}$-ideal. Finally suppose that there exists an ideal K containing I such that I is a z_{K}-ideal. Hence $M_{g} \cap(f) \subseteq I_{z} \cap K=I, \forall g \in I$ and $\forall f \in K$. Thus $K \subseteq J_{\circ}$ and this means that J_{\circ} is the greatest member of $\left\{J: I\right.$ is a z_{J}-ideal $\}$.

It is evident that every ideal I in $C(X)$ is a z_{I}-ideal, but one may ask when is every subideal of a given ideal I a z_{I}-ideal? The following lemma and corollary show that such an ideal should be a z-ideal whose every member has an open zeroset. As an example of such ideals, consider $C_{F}(X)=\{f \in C(X): X \backslash Z(f)$ is finite $\}$. Recall that a space X is a P-space if every zeroset (G_{δ}-set) in X is open or if every prime ideal in $C(X)$ is a z-ideal, see [5, 4J].

Lemma 2.8. If $f \in C(X)$, then every subideal of the principal ideal (f) is a $z_{(f)}$-ideal if and only if $Y=X \backslash Z(f)$ is a closed P-space.

Proof. If every subideal of (f) is a $z_{(f)}$-ideal, then $\left(f^{2}\right)$ is a $z_{(f)}$-ideal and hence $\left(f^{2}\right)_{z} \cap(f)=\left(f^{2}\right)$, i.e., $M_{f} \cap(f)=\left(f^{2}\right)$. But $f \in M_{f} \cap(f)=\left(f^{2}\right)$ implies that $f=k f^{2}$ for some $k \in C(X)$. Hence $f(1-k f)=0$ means that $Z(f) \cup Z(1-k f)=X$ and $Z(f) \cap Z(1-k f)=\emptyset$ which imply that $Z(f)$ is open, so Y is closed. Now suppose that $g \in C(Y)$ and g^{*} is an extension of g on X, say $g^{*}(x)=g(x), \forall x \in Y$ and $g^{*}(x)=1, \forall x \notin Y$. Since $\left(g^{*} f\right) \subseteq(f)$, then $\left(g^{*} f\right)$ is a $z_{(f)}$-ideal, i.e., $M_{g^{*} f} \cap(f)=\left(g^{*} f\right)$. Thus $g^{* 1 / 3} f \in M_{g^{*} f} \cap(f)=\left(g^{*} f\right)$, but f is a unit on Y, therefore $g^{1 / 3} \in(g)$ which implies that $Z(g)$ is open and hence Y is a P-space. Conversely suppose that Y is a closed P-space and $I \subseteq(f)$. Assume that $g \in I$ and $h \in M_{g} \cap(f)$, then there exists $k \in C(X)$ such that $h=f k$ and $Z(g) \subseteq Z(h)=Z(f k)$. Thus $Z\left(\left.g\right|_{Y}\right) \subseteq Z\left(\left.\left.f\right|_{Y} k\right|_{Y}\right)=Z\left(\left.k\right|_{Y}\right)$ for f is a unit on Y. Since $Z\left(\left.k\right|_{Y}\right)$ is open, then $\left.k\right|_{Y}$ is a multiple of $\left.g\right|_{Y}$, i.e., $t \in C(X)$ exists, such that $\left.k\right|_{Y}=\left.\left.t\right|_{Y} g\right|_{Y}$. Now $k f=t g f \in I$ implies that $h=k f \in I$, i.e., $M_{g} \cap(f) \subseteq I$ which means that I is a $z_{(f)}$-ideal.

Corollary 2.9. Let I be an ideal in $C(X)$. Then every subideal of I is a z_{I}-ideal if and only if $Z(f)$ is open, $\forall f \in I$.
Proof. If $Z(f)$ is open, $\forall f \in I$, then I is a z-ideal and clearly every subideal of I is a z_{I}-ideal. Conversely, if every subideal of I is a z_{1}-ideal, then for all $f \in I,\left(f^{2}\right)$ is a z_{1}-ideal. Now by definition, $\left(f^{2}\right)$ is also a $z_{(f)}$-ideal and by first part of the proof of Lemma 2.8, $Z(f)$ is open.

We conclude this section with the following result. Part (f) of this result shows that for every two ideals $I \subseteq J$, there exists the smallest z_{J}-ideal containing I which we denote by $I_{z_{J}}$. By Proposition 2.1, $I_{z} \cap J$ is a z_{J}-ideal containing I and if $K \subseteq J$ is also a z_{J}-ideal containing I, then $K_{z} \cap J=K$ and hence $I_{z} \cap J \subseteq K_{z} \cap J=K$. This means that $I_{z_{J}}=I_{z} \cap J$. A similar result may be stated for the smallest z_{J}°-ideal containing I.

Proposition 2.10. Let A, B, I, J, K and $I_{\alpha}, \forall \alpha \in S$ be ideals in $C(X)$.
(a) If $I \subseteq J \subseteq K$ and I is a z_{K}-ideal, then I is also a z_{J}-ideal.
(b) If $I \subseteq J \subseteq K$, I is a z_{J}-ideal, and J is a z_{K}-ideal, then I is a z_{K}-ideal.
(c) If $\sqrt{I} \subseteq J$ and I is a z_{J}-ideal, then $I=\sqrt{I}$. In particular, if I is a $z_{\sqrt{I}}$-ideal, then $I=\sqrt{I}$.
(d) If $I \subseteq J$ and I is a z_{J}-ideal, then \sqrt{I} is a $z_{\sqrt{J}}$-ideal.
(e) If $A \subseteq J, B \subseteq K, A$ is a z_{J}-ideal and B is a z_{K}-ideal, then $A \cap B$ is a $z_{J \cap K}$-ideal.
(f) If $I_{\alpha} \subseteq J$ and I_{α} is a z_{J}-ideal, $\forall \alpha \in S$, then $\bigcap_{\alpha \in S} I_{\alpha}$ is also a z_{J}-ideal.

Proof. The proof of parts (a), (b) and (c) are evident. For parts (d), (e) and (f), we have

$$
\begin{aligned}
& (\sqrt{I})_{z} \cap \sqrt{J}=I_{z} \cap \sqrt{J}=\sqrt{I_{z}} \cap \sqrt{J}=\sqrt{I_{z} \cap J}=\sqrt{I}, \\
& (A \cap B)_{z} \cap(J \cap K)=A_{z} \cap B_{z} \cap J \cap K=\left(A_{z} \cap J\right) \cap\left(B_{z} \cap K\right)=A \cap B, \\
& \bigcap_{\alpha \in S} I_{\alpha} \subseteq\left(\bigcap_{\alpha \in S} I_{\alpha}\right)_{z} \cap J \subseteq\left(\bigcap_{\alpha \in S} I_{\alpha z}\right) \cap J=\bigcap_{\alpha \in S}\left(I_{\alpha z} \cap J\right)=\bigcap_{\alpha \in S} I_{\alpha} .
\end{aligned}
$$

3. Sum of relative z-ideals (z°-ideals) in $C(X)$

We observed that if $I \subseteq J$ are two ideals in $C(X)$, then $I_{z_{J}}$, the smallest z_{J}-ideal containing I always exists and it is equal to $I_{z} \cap J$ and is equal to the intersection of all z_{J}-ideals containing I. In this section we want to investigate the existence of $I^{Z_{J}}$, the greatest z_{J}-ideal contained in I for every two ideals $I \subseteq J$ in $C(X)$. Clearly, whenever the sum of every two z_{J}-ideals is a z_{J}-ideal, then $I_{J}^{z_{J}}$ exists and we will show in this section that the converse is also true. In Theorem 3.4, we show that the sum of every two z_{J}-ideals is a z_{J}-ideal for all ideals J in $C(X)$ if and only if X is an F-space. First we need the following propositions and lemma.

Proposition 3.1. Let J be an ideal in $C(X)$, then the following statements are equivalent.
(a) For every two z-ideals I and K in $C(X),(I+K) \cap J=I \cap J+K \cap J$.
(b) Sum of every two z_{J}-ideals is a z_{J}-ideal.
(c) For every subideal I of $J, I^{Z_{J}}$ exists and $I^{Z_{J}}=\sum_{M_{f} \cap J \subseteq I} M_{f} \cap J$.

Proof. First we show that (a) and (b) are equivalent. If (a) holds and I and K are z_{J}-ideals, then $I+K=I_{z} \cap J+K_{z} \cap J=$ $\left(I_{z}+K_{z}\right) \cap J=(I+K)_{z} \cap J$ which means that $I+K$ is a z_{J}-ideal (note that $(I+K)_{z}=I_{z}+K_{z}$ by Proposition 3.1 in [6]). Conversely, suppose (b) holds and I and K are z-ideals in $C(X)$. Take $f \in(I+K) \cap J$, then $f=f_{1}+f_{2}$, where $f_{1} \in I, f_{2} \in K$ and $f \in J$. Thus $f^{2}=f f_{1}+f f_{2} \in I \cap J+K \cap J$. Since $I \cap J$ and $K \cap J$ are z_{J}-ideals by Proposition 2.1, then $I \cap J+K \cap J$ is also a z_{J}-ideal by part (b). Hence $f \in M_{f^{2}} \cap J \subseteq I \cap J+K \cap J$, i.e., $(I+K) \cap J=I \cap J+K \cap J$. Next we show that (b) and (c) are equivalent. If (b) holds, since each $M_{f} \cap J$ is a z_{J}-ideal, then $\sum_{M_{f} \cap J \subseteq I} M_{f} \cap J$ is a z_{J}-ideal contained in I. Now suppose that $T \subseteq I$ and T is also a z_{J}-ideal. If $g \in T$, then $M_{g} \cap J \subseteq T \subseteq I$ and therefore $T \subseteq \sum_{M_{f} \cap J \subseteq I} M_{f} \cap J$. This means that $I^{z_{J}}=\sum_{M_{f} \cap J \subseteq I} M_{f} \cap J$. Conversely, suppose $I^{z_{J}}$ exists, $\forall I \subseteq J$ and K and T are two z_{J}-ideals. Hence $K+T=K^{z_{J}}+T^{Z_{J}} \subseteq(K+T)^{Z_{J}} \subseteq K+T$, which means that $K+T$ is a z_{J}-ideal.

We have a similar result for the sum of z_{J}°-ideals as follows.
Proposition 3.2. Suppose that X is a quasi F-space and J is an ideal in $C(X)$, then the following statements are equivalent.
(a) For every two z°-ideals I and K in $C(X),(I+K) \cap J=I \cap J+K \cap J$.
(b) Sum of every two z_{J}°-ideals is a z_{J}°-ideal.
(c) For every subideal I of $J, I^{z_{J}^{\circ}}$ exists and $I_{J}^{z_{J}^{\circ}}=\sum_{P_{f} \cap J \subseteq I} P_{f} \cap J$.

Proof. We note that if X is a quasi F-space, then $P_{f}+P_{g}$ is a z°-ideal or all of $C(X), \forall f, g \in C(X)$. Now using basic z°-ideals instead of basic z-ideals in the proof of Proposition 3.1, the proof is similar to that of Proposition 3.1 step by step.

In the following lemma, we show that whenever J is an absolutely convex ideal, then part (a) in Proposition 3.1 holds for every two z-ideals (z_{J}-ideals or semiprime ideals) I and K in $C(X)$. By Proposition 3.1, this means that for an absolutely convex ideal J, the sum of two z_{J}-ideals is a z_{J}-ideal. Although part (b) of the following lemma will show that the hypothesis of absolute convexity of J is needed, we can also give an easy example showing this hypothesis cannot be omitted. To see this, take the principal ideal $J=(i)$ in $C(\mathbb{R})$, where i is the identity function in $C(\mathbb{R})$. J is convex, by 5 E in [5]. Now consider two functions $f, g \in C(\mathbb{R})$ defined by $f(x)=0, \forall x \leqslant 0, f(x)=x, \forall x \geqslant 0$ and $g(x)=0, \forall x \geqslant 0, g(x)=x$, $\forall x \leqslant 0$. Therefore $\left(M_{f}+M_{g}\right) \cap J \neq M_{f} \cap J+M_{g} \cap J$ for $i=f+g \in\left(M_{f}+M_{g}\right) \cap J$ but $i \notin M_{f} \cap J+M_{g} \cap J$. In fact if $i \in M_{f} \cap J+M_{g} \cap J$, then $i=f^{\prime} i+g^{\prime} i$, where $[0, \infty)=Z(g) \subseteq Z\left(g^{\prime}\right)$ and $(-\infty, 0]=Z(f) \subseteq Z\left(f^{\prime}\right)$. Thus $f^{\prime}(x)+g^{\prime}(x)=1$, $\forall x \neq 0$ and hence $f^{\prime}+g^{\prime}$ is a unit which contradicts $f^{\prime}(0)=0=g^{\prime}(0)$. Now by part (a) of Proposition 3.1, the sum of two z_{J}-ideals in $C(\mathbb{R})$ is not necessarily a z_{J}-ideal.

Lemma 3.3.

(a) Let J be an absolutely convex ideal and I and K be two z-ideals (or z_{J}-ideals) in $C(X)$, then $(I+K) \cap J=I \cap J+K \cap J$.
(b) If J is a convex ideal in $C(X)$ and for every two z-ideals I and K in $C(X)$ we have $(I+K) \cap J=I \cap J+K \cap J$, then J is absolutely convex.

Proof. (a) The proof resembles that of Lemma 3.1 in [10]. Let $h \in(I+K) \cap J$. Then there is an $f \in I, g \in K$ such that $h=f+g$. Define the following two continuous functions:

$$
t(x)=\left\{\begin{array}{ll}
0, & x \in Z(f) \cap Z(g), \\
\frac{h f^{2}}{f^{2}+g^{2}}, & x \notin Z(f) \cap Z(g),
\end{array} \quad s(x)= \begin{cases}0, & x \in Z(f) \cap Z(g), \\
\frac{h g^{2}}{f^{2}+g^{2}}, & x \notin Z(f) \cap Z(g) .\end{cases}\right.
$$

Since $|t| \leqslant|h|,|s| \leqslant|h|, h \in J$ and J is absolutely convex, then $s, t \in J$. On the other hand I and K are z-ideals (or z_{J}-ideals), $Z(f) \subseteq Z(t), Z(g) \subseteq Z(s)$ and $f \in I, g \in K$ imply that $t \in I \cap J$ and $s \in K \cap J$. Thus $h=t+s \in I \cap J+K \cap J$ and hence $(I+K) \cap J=I \cap J+K \cap J$.
(b) Using Theorem 5.3 in [5], it is enough to show that $|f| \in J, \forall f \in J$. Since $M_{f-|f|}$ and $M_{f+|f|}$ are both z ideals, then by our hypothesis, $\left(M_{f+|f|}+M_{f-|f|}\right) \cap J=M_{f+|f|} \cap J+M_{f-|f|} \cap J$, whence $2 f=(f+|f|)+(f-|f|) \in$ $\left(M_{f+|f|}+M_{f-|f|}\right) \cap J$. So $f=s+t$, where $s, t \in J, Z(f+|f|) \subseteq Z(s)$ and $Z(f-|f|) \subseteq Z(t)$. But $(f+|f|)(f-|f|)=0$ implies that $(f-|f|) s=0$ and $(f+|f|) t=0$. Now we have

$$
|f|(f+|f|)=f(f+|f|)=s(f+|f|)+t(f+|f|)=s(f+|f|)=s(f-|f|+2|f|)=2|f| s
$$

Thus $|f(x)|+f(x)=2 s(x), \forall x \notin Z(f)$ and since $Z(f) \subseteq Z(s)$, then $|f|+f=2 s$, i.e., $|f|+f \in J$ and hence $|f| \in J$.
Now using preceding facts, we prove the main result of this section.
Theorem 3.4. The following statements are equivalent.
(a) X is an F-space.
(b) For every ideal J in $C(X)$, the sum of every two z_{J}-ideals is a z_{J}-ideal.
(c) For every ideal J in $C(X)$, the sum of every two z_{J}°-ideals is a z_{J}°-ideal.

Proof. If X is an F-space, then every ideal J in $C(X)$ is absolutely convex and hence by Lemma 3.3 and Proposition 3.1, (a) implies (b). Now we suppose that (b) holds and show that X is an F-space. To prove this it is enough to show that for every $f \in C(X)$, there exists $k \in C(X)$ such that $f=k|f|$, see Theorem 14.25 in [5]. Put $J=(|f|)$, since $M_{f-|f|}$ and $M_{f+|f|}$ are z-ideals, then by part (b) in Proposition 3.1, we have $\left(M_{f+|f|}+M_{f-|f|}\right) \cap J=M_{f+|f|} \cap J+M_{f-|f|} \cap J$. Now $|f| \in\left(M_{f+|f|}+M_{f-|f|}\right) \cap J$ implies that $|f|=s+t$, where $s, t \in J=(|f|), Z(f+|f|) \subseteq Z(s)$ and $Z(f-|f|) \subseteq Z(t)$. Hence $|f|(f-|f|)=s(f-|f|)+t(f-|f|)=-2 t|f|$, so $|f|-f=2 t$. But $t \in J=(|f|)$ implies that $t=k|f|$ for some $k \in C(X)$, therefore $f=|f|-2 k|f|=(1-2 k)|f|$. The proof of the equivalence of parts (a) and (c) is similar.

Finally we show that if the sum of every two rez-ideals in $C(X)$ is a rez-ideal, then X is a P-space.
Proposition 3.5. The following statements are equivalent.
(a) X is a P-space.
(b) Every ideal in $C(X)$ is a rez-deal.
(c) Sum of every two rez-ideals is a rez-ideal.

Proof. Clearly (a) implies (b) and (b) implies (c). Now suppose that (c) holds but X is not a P-space. Then there is a prime ideal P in $C(X)$ which is not a z-ideal (we recall that X is a P-space if and only if every prime ideal in $C(X)$ is a z-ideal)
and hence not maximal. Let M and M^{\prime} be two maximal ideals in $C(X)$ not containing P such that $M+M^{\prime}=C(X)$. Since P is not maximal, then $\bigcap Z[P]$ contains at most one non-isolated point and hence by Proposition $1.5, P$ is an essential ideal. So $I=P \cap M$ and $K=P \cap M^{\prime}$ are two nonzero z_{P}-ideals by Proposition 2.1. Moreover $I \varsubsetneqq P$ and $K \varsubsetneqq P$ imply that I and K are rez-ideals. Now by part (a) of Lemma 3.3, since the prime ideal P is absolutely convex, then $I+K=P \cap M+P \cap M^{\prime}=$ $P \cap\left(M+M^{\prime}\right)=P \cap C(X)=P$ and P is not a rez-ideal by Proposition 2.5(a), a contradiction.

Acknowledgement

The authors would like to thank the referee for a careful reading of this article.

References

[1] F. Azarpanah, Intersection of essential ideals in $C(X)$, Proc. Amer. Math. Soc. 125 (1997) 2149-2154.
[2] F. Azarpanah, R. Mohamadian, \sqrt{z}-ideals and $\sqrt{z^{0}}$-ideals in $C(X)$, Acta Math. Sin. 23 (6) (2007) 989-996.
[3] F. Azarpanah, O.A.S. Karamzadeh, A. Rezai Aliabad, z°-ideals in $C(X)$, Fund. Math. 160 (1999) 15-25.
[4] F. Dashiell, A. Hager, M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. XXXII (3) (1980) 657-685.
[5] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer, 1976.
[6] G. Mason, Prime z-ideals of $C(X)$ and related rings, Canad. Math. Bull. 23 (4) (1980) 437-443.
[7] G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973) 280-297.
[8] M.A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996) 55-66.
[9] B. de Pagter, On z-ideals and d-ideals in Riesz spaces III, Indag. Math. (N.S.) 43 (1981) 409-422.
[10] D. Rudd, On two sum theorems for ideals of $C(X)$, Michigan Math. J. 17 (1970) 139-141.

[^0]: * Corresponding author.

 E-mail addresses: azarpanah@ipm.ir (F. Azarpanah), taherifarali@scu.ac.ir (A. Taherifar).

