ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Relative *z*-ideals in C(X)

F. Azarpanah*, A. Taherifar

Department of Mathematics, Chamran University, Golestan, Ahvaz, Iran

ARTICLE INFO

Article history: Received 4 February 2009 Accepted 4 February 2009

MSC: 54C40

Keywords: Relative z-ideal (rez-ideal) F-space Almost P-space Almost z-ideal Relative z°-ideal (rez°-ideal)

ABSTRACT

For every two ideals $I \subseteq J$ in C(X), we call I a z_J -ideal if $Z(f) \subseteq Z(g)$, $f \in I$ and $g \in J$ imply that $g \in I$. An ideal I is called a relative z-ideal, briefly a *rez*-ideal, if there exists an ideal J such that $I \subsetneq J$ and I is a z_J -ideal. We have shown that for any ideal J in C(X), the sum of every two z_J -ideals is a z_J -ideal if and only if X is an F-space. It is also shown that every principal ideal in C(X) is a *rez*-ideal if and only if X is an almost P-space and the spaces X for which the sum of every two *rez*-ideals is a *rez*-ideal are characterized. Finally for a given ideal I in C(X), the existence of greatest ideal J such that I to be a z_J -ideal and also for given two ideals $I \subseteq J$ in C(X), a greatest z_J -ideal contained in I and the smallest z_J -ideal containing I are investigated.

© 2009 Elsevier B.V. All rights reserved.

1. Preliminaries

Throughout this paper, we denote by C(X), the ring of all real-valued continuous functions on a completely regular Hausdorff space X and for terminology and notations, the reader is referred to [2,5,6]. For every $f \in C(X)$, the intersection of all maximal (minimal prime) ideals of C(X) containing f is denoted by $M_f(P_f)$. An ideal I in C(X) is called a z-ideal $(z^{\circ}-ideal)$ if $M_f \subseteq I$ ($P_f \subseteq I$), $\forall f \in I$. It is easy to see that $M_f = \{g \in C(X): Z(f) \subseteq Z(g)\}$ and $P_f = \{g \in C(X): int_X Z(f) \subseteq$ $int_X Z(g)\}$, see also [2,3]. Equivalently I is a z-ideal (z° -ideal) if $f \in I$, $g \in C(X)$ and $Z(f) \subseteq Z(g)$ ($int_X Z(f) \subseteq int_X Z(g)$) imply that $g \in I$. Clearly $M_f(P_f)$ itself is a z-ideal (z° -ideal) for every $f \in C(X)$, which we call a basic z-ideal (z° -ideal). Note that $P_f = C(X)$ if and only if $int_X Z(f) = \emptyset$. Since the sum and the intersection of z-ideals in C(X) is a z-ideal, then for a given ideal I in C(X) the smallest z-ideal containing I and the greatest z-ideal contained in I always exist and in the notation of Mason in [6], we denote these z-ideals by I_z and I^z respectively. The following proposition which is proved in [2] characterizes the ideals I_z and I^z in term of basic z-ideals. This proposition also gives an elementwise characterization for these ideals. For a different elementwise characterization, see [6].

Proposition 1.1. If *I* is an ideal in C(X), then $I_z = \{g \in C(X): g \in M_f \text{ for some } f \in I\} = \sum_{f \in I} M_f \text{ and } I^z = \{g \in C(X): M_g \subseteq I\} = \sum_{M_f \subseteq I} M_f$.

An arbitrary intersection of z° -ideals is also a z° -ideal and hence the smallest z° -ideal I_{\circ} containing a given ideal I always exists. But the sum of two z° -ideals even in C(X) need not be a z° -ideal. A necessary and sufficient condition that the sum of z° -ideals in C(X) be a z° -ideal is given by the following theorem due to B. de Pagter in 11.1 of [9] using different

* Corresponding author. E-mail addresses: azarpanah@ipm.ir (F. Azarpanah), taherifarali@scu.ac.ir (A. Taherifar).

^{0166-8641/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.topol.2009.02.002

terminology. First we recall that a completely regular Hausdorff space *X* is an *F*-space (resp. quasi *F*-space) if its cozerosets (resp. dense cozerosets) are *C**-embedded. Equivalently, *X* is an *F*-space (resp. quasi *F*-space) if finitely generated ideals (resp. finitely generated ideals containing a nondivisor of 0) of *C*(*X*) are principal. By 14.26 in [5], we have also that *X* is an *F*-space if and only if every ideal in *C*(*X*) is absolutely convex. An ideal *I* in a partially ordered (lattice ordered) ring is called convex (absolutely convex) if, whenever $0 \le x \le y$ ($|x| \le |y|$) and $y \in I$, then $x \in I$. For more details and properties of *F*-spaces and quasi *F*-spaces, see [4,5,9].

Theorem 1.2. The sum of two z° -ideals of C(X) is always a z° -ideal or all of C(X) if and only if X is a quasi F-space.

If *I* is a nonregular ideal (i.e., every member of *I* is a zerodivisor) in *C*(*X*), then $I_{\circ} = \sum_{f \in I} P_f = \{g \in C(X): g \in P_f \text{ for some } f \in I\}$ and whenever *X* is a quasi *F*-space, then the greatest z° -ideal I° contained in *I* exists and $I^{\circ} = \sum_{P_f \subseteq I} P_f = \{g \in C(X): P_g \subseteq I\}$, see [2].

In any commutative ring, it is well known that every minimal ideal in the class of prime ideals containing a *z*-ideal is a *z*-ideal, see Theorem 1.1 in [7]. The following proposition which is proved in [2,8] by different ways, shows that the converse is also true in C(X).

Proposition 1.3. An ideal I in C(X) is a z-ideal if and only if every prime ideal minimal over I is a z-ideal.

It follows from Proposition 1.3 that an ideal *I* in *C*(*X*) is a *z*-ideal if and only if \sqrt{I} is a *z*-ideal. We have also $I_z = (\sqrt{I})_z$, $I^z = (\sqrt{I})^z$. The corresponding statement holds for z° -ideals in *C*(*X*) and for any nonregular ideal *I* in *C*(*X*), we have $I_\circ = (\sqrt{I})_\circ$, and $I^\circ = (\sqrt{I})^\circ$, see [2]. We also cite the following simple result which will be referred to in the sequel.

Proposition 1.4. Suppose that *I* is an ideal and *P* is a prime ideal in C(X). If $I \cap P$ is a *z*-ideal (z° -ideal), then either *I* or *P* is a *z*-ideal (z° -ideal). In particular if *P* and *Q* are prime ideals which are not in a chain and $P \cap Q$ is a *z*-ideal (z° -ideal), then both *P* and *Q* are *z*-ideals (z° -ideals).

A nonzero ideal in a commutative ring is said to be essential if it intersects every nonzero ideal nontrivially. The following proposition which topologically characterizes essential ideals of C(X) is proved in [1].

Proposition 1.5. A nonzero ideal *E* in *C*(*X*) is an essential ideal if and only if $\bigcap Z[E] = \bigcap_{f \in E} Z(f)$ is nowhere dense (has an empty interior).

One can easily see that every free ideal in C(X) is essential and a principal ideal (f) in C(X) is essential if and only if $int_X Z(f) = \emptyset$. It is also easy to see that every non-maximal prime ideal in C(X) is an essential ideal.

2. Relative *z*-ideals (z° -ideals) in C(X)

For every two ideals $I \subseteq J$ in C(X), I is said to be a z_j -ideal if $Z(f) \subseteq Z(g)$, $f \in I$ and $g \in J$ imply that $g \in I$. In other words, I is called a z_j -ideal if $M_f \cap J \subseteq I$, $\forall f \in I$. Clearly every ideal I is a z_i -ideal and every z-ideal in C(X) is a z_j -ideal for all ideals J containing I. We call an ideal I a relative z-ideal, or briefly a *rez*-ideal if there exists an ideal J in C(X) such that $I \subsetneq J$ and I is a z_j -ideal. Similarly an ideal I in C(X) is called a z_j° -ideal if $I \subseteq J$ and $\operatorname{int}_X Z(f) \subseteq \operatorname{int}_X Z(g)$, $f \in I$ and $g \in J$ imply that $g \in I$ or equivalently if $P_f \cap J \subseteq I$, $\forall f \in I$. I is called a relative z° -ideal or briefly a *rez* \circ -ideal if there exists an ideal J in C(X) such that $I \subsetneq J$ and I is a z_j° -ideal. Clearly every z_j° -ideal in C(X) is a z_j -ideal and every z° -ideal if $I \subseteq I$.

According to the above definitions, the proof of the following proposition is evident. By this proposition, it turns out that for every ideal J and every z-ideal (z° -ideal) K in C(X), $J \cap K$ is a z_{1} -ideal (z°_{\circ} -ideal).

Proposition 2.1. *Let I* and *J* be two ideals in C(X) and $I \subseteq J$.

- (a) The following statements are equivalent:
 - (a_1) I is a z_1 -ideal.
 - (a_2) $I_z \cap J = I$.
 - (a₃) There exists a z-ideal K in C(X) such that $K \cap J = I$.
- (b) The following statements are equivalent:
 - (b₁) I is a z_1° -ideal.
 - (b₂) $I_{\circ} \cap J = I$.
 - (b₃) There exists a z° -ideal K in C(X) such that $K \cap J = I$.

Whenever *J* is a *z*-ideal, then every z_J -ideal $I \subseteq J$ is also a *z*-ideal. In fact, if $f \in I$, $g \in C(X)$ and $Z(f) \subseteq Z(g)$, then $g \in J$ for *J* is a *z*-ideal. Now since *I* is a z_J -ideal, then $g \in I$, i.e., *I* is a *z*-ideal. On the other hand in any ideal *J* there are many *z*-ideals, for example if $f \in J$, then $O_{Z(f)} = \{g \in C(X): Z(f) \subseteq int_X Z(g)\}$ is a *z*-ideal contained in *J*. The following proposition shows the existence of z_I -ideals in any given ideal *J* which are not *z*-ideals.

Proposition 2.2. Suppose that J is an ideal in C(X) which is not a z-ideal. Then there exists an ideal $I \subsetneq J$ which is a z_J -ideal but not a z-ideal.

Proof. Since *J* is not a *z*-ideal, then there exist $k \in J$ and $h \in C(X)$ such that $Z(k) \subseteq Z(h)$ and $h \notin J$. Consider $g \in C(X)$, where $Z(g) \cap Z(h) = \emptyset$, $gh \neq 0$ and take $I = M_g \cap J$. By Proposition 2.1, *I* is a z_J -ideal and since $0 \neq gh \in I$, $k \in J$ and $k \notin M_g$, then $(0) \neq I \subsetneq J$. Now it is enough to show that *I* is not a *z*-ideal. In fact we have $g^2k \in I$ and $Z(g^2k) \subseteq Z(g^2h)$ but $g^2h \notin I$. For otherwise if $g^2h \in I$, then $k^2h \in J$ implies that $(g^2 + k^2)h \in J$. But $g^2 + k^2$ is a unit and hence $h \in J$, a contradiction. \Box

Examples 2.3. (a) Every nonessential ideal in C(X) is a *rez*-ideal. If *I* is a nonessential ideal in C(X), then there exists an ideal *K* in C(X) such that $I \cap K = (0)$. If we let J = I + K, obviously $I \subsetneq J$. We show that *I* is a z_j -ideal. Let $f \in I$ and $g \in J$ such that $Z(f) \subseteq Z(g)$. Hence g = i + k, where $i \in I$, $k \in K$ and $Z(f) \subseteq Z(i + k)$. Now we have $Z(f^2 + i^2) \subseteq Z(k)$, so $X = Z(0) = Z(k(f^2 + i^2)) \subseteq Z(k)$ which implies that k = 0. Therefore $g = i \in I$, i.e., *I* is a z_j -ideal and hence *I* is a *rez*-ideal. We note that every nonessential ideal in C(X) is not necessarily a *z*-ideal.

(b) If *P* and *Q* are prime ideals in *C*(*X*) such that *P* is not a *z*-ideal and *Q* is a *z*-ideal. Then by Proposition 2.1, $I = P \cap Q$ is a z_p -ideal. Whenever *P* and *Q* are not in a chain, then by Proposition 1.4, *I* is not a *z*-ideal and hence *I* will be a *rez*-ideal, for $I \neq P$. Similarly, if we consider *Q* as a prime z° -ideal not in a chain with *P*, then *I* will be a *rez*°-ideal.

(c) Finally we show that a principal ideal (f) in C(X) is a *rez*-ideal if and only if $\operatorname{Ann}(f) \neq (0)$ ($\operatorname{int}_X Z(f) \neq \emptyset$). If $\operatorname{int}_X Z(f) \neq \emptyset$, then by Proposition 1.5, (f) is a nonessential ideal and by example (a), (f) is a *rez*-ideal. Conversely, suppose there exists $J \supseteq (f)$ such that (f) is a z_j -ideal and suppose that $\operatorname{Ann}(f) = (0)$. By Proposition 2.1, we have $M_f \cap J = (f)_Z \cap J = (f)$. Take $g \in J - M_f$, such g exists for otherwise $J \subseteq M_f$ implies $M_f \cap J = J = (f)$ which contradicts $(f) \subseteq J$. Therefore $Z(f) \notin Z(g)$ and hence there exists $x_0 \in Z(f)$ such that $g(x_0) \neq 0$. Clearly $gf^{1/3} \in M_f \cap J = (f)$ and consequently there exists $k \in C(X)$ such that $gf^{1/3} = kf$. Now if $x \notin Z(f)$, we have $g(x) = k(x_0)f^{2/3}(x_0) \to 0$ which contradicts $g(x_0) \neq 0$. This means that $\operatorname{int}_X Z(f) \neq \emptyset$ or $\operatorname{Ann}(f) \neq (0)$.

By example (c) above, we have the following corollary. We recall that a space X is an almost P-space if every nonempty zeroset (or every nonempty G_{δ} -set) in X has a nonempty interior.

Corollary 2.4. Every principal ideal in C(X) is a rez-ideal if and only if X is an almost P-space.

The concepts "*rez*-ideal" ("*rez*°-ideal") and "*z*-ideal" ("*z*°-ideal") coincide for prime ideals of C(X). Moreover, if *I* is a z_j -ideal, then *J* is contained in every non-*z*-ideal prime ideal minimal over *I*. This shows that whenever *P* is a prime ideal minimal over *I* which is not a *z*-ideal and *I* is a z_p -ideal, then *P* is the greatest member of {*J*: *I* is a z_j -ideal}. In this case, *P* is the only prime ideal minimal over *I* which is not a *z*-ideal.

Proposition 2.5.

- (a) Every prime rez-ideal in C(X) is a z-ideal.
- (b) Suppose that P is a prime ideal in C(X) which is not a z-ideal and it is minimal over a z_J -ideal I. Then $J \subseteq P$. In case I is not a z-ideal, then there exists at most one prime ideal P minimal over I such that I is a z_p -ideal.
- (c) If Q is a semiprime (absolutely convex) ideal in C(X), then every z_0 -ideal is also a semiprime (absolutely convex) ideal.

Proof. (a) If *P* is a prime *rez*-ideal, then there exists an ideal *J* in *C*(*X*) such that $P \subseteq J$ and $P_z \cap J = P$. This shows that either $J \subseteq P$ which implies that P = J, a contradiction or $P_z \subseteq P$ which implies that $P = P_z$, i.e., *P* is a *z*-ideal.

(b) Let *P* be a prime ideal minimal over *I* which is not a *z*-ideal. Since $I_z \cap J = I \subseteq P$, then either $I_z \subseteq P$ or $J \subseteq P$. $I_z \subseteq P$ implies that *P* is a *z*-ideal by Proposition 1.3 which contradicts our hypothesis, hence $J \subseteq P$. If *P* and *Q* are two prime ideals minimal over *I* such that *I* is a z_p -ideal and is a z_q -ideal, then clearly *P* and *Q* are not *z*-ideals, for $I = I_z \cap P = I_z \cap Q$ and *I* is not a *z*-ideal. Now by first half of this part, $P \subseteq Q$ and $Q \subseteq P$ imply that P = Q.

(c) Since $I_z \cap Q = I$, then *I* is a semiprime (an absolutely convex) ideal. \Box

In the following proposition, we observe that for any semiprime ideal *I*, the collection {*J*: *I* is a z_j -ideal} has a largest member. We call an ideal *I* an almost *z*-ideal if in every representation of \sqrt{I} as an intersection of prime ideals, there exists at least one prime *z*-ideal.

Proposition 2.6.

- (a) Every rez-ideal in C(X) is an almost z-ideal.
- (b) For every semiprime ideal Q in C(X), there exists a greatest ideal J containing Q such that Q is a z_J -ideal. Moreover, a semiprime ideal is a rez-ideal if and only if it is an almost z-ideal.
- (c) If I is a rez-ideal, then \sqrt{I} is also a rez-ideal.

Proof. (a) If *I* is a *rez*-ideal, then there exists an ideal $J \supseteq I$ such that $I_z \cap J = I$. Suppose that *I* is not an almost *z*-ideal, then $\sqrt{I} = \bigcap_{\alpha \in S} P_{\alpha}$, where P_{α} is a non-*z*-ideal prime ideal minimal over *I*, $\forall \alpha \in S$. Now by Proposition 2.5(b), $J \subseteq P_{\alpha}$, $\forall \alpha \in S$ and hence $J \subseteq \sqrt{I}$. But $J = (\sqrt{I})_z \cap J = I_z \cap J = I$ contradicts $J \supseteq I$. Therefore *I* is an almost *z*-ideal.

(b) Let Q be a semiprime ideal, A be the collection of all non-z-ideals prime ideals minimal over Q and $J = \bigcap_{P \in A} P$. Clearly $Q \subseteq J$, moreover $Q_z \cap J = Q$, for Q_z is the intersection of all prime z-ideals minimal over Q and hence $Q_z \cap J$ is the intersection of all minimal prime ideals over Q. This implies that Q is a z_J -ideal. Whenever K is an ideal containing Q and Q is a z_K -ideal, then $K \subseteq P$, $\forall P \in A$, by Proposition 2.5(b), i.e., $K \subseteq J$. This means that J is the greatest ideal such that Q is a z_J -ideal. The proof of the second part of (b) is evident by part (a).

(c) Since *I* is a *rez*-ideal, then *I* is an almost *z*-ideal by part (a). Therefore $\sqrt{I} \cong \bigcap_{P \in A} P = J$, where *A* is the collection of all non-*z*-ideals prime ideals minimal over *I*. Now $(\sqrt{I})_z \cap J = I_z \cap J = \sqrt{I}$ implies that \sqrt{I} is a *rez*-ideal. \Box

Not only for semiprime ideals, but for every ideal *I* in C(X), where *X* is an *F*-space, there exists a greatest ideal *J* such that *I* is a z_i -ideal.

Proposition 2.7. If X is an F-space, then for every ideal I in C(X), the collection $\{J: I \text{ is a } Z_J \text{ -ideal}\}$ has a greatest member.

Proof. We put $J_{\circ} = \{f \in C(X): M_g \cap (f) \subseteq I, \forall g \in I\}$ and show that J_{\circ} is an ideal. First we prove that whenever $M_g \cap (f) \subseteq I$, then $M_g \cap (|f|) \subseteq I$. To see this let $h \in M_g \cap (|f|)$, then $Z(g) \subseteq Z(h)$ and there exists $k \in C(X)$ such that h = k|f| and $Z(g) \subseteq Z(h) = Z(kf)$. Since X is an F-space, then I is absolutely convex and so |h| = |kf| and $kf \in M_g \cap (f) \subseteq I$ imply that $h \in I$, i.e., $M_g \cap (|f|) \subseteq I$. Next suppose that $f_1, f_2 \in J_{\circ}$ and $g \in I$. Since X is an F-space, then $M_g \cap (f_1 + f_2) \subseteq M_g \cap (f_1, f_2) = M_g \cap (|f_1| + |f_2|)$, see Theorem 14.25 in [5]. Now if $h \in M_g \cap (|f_1| + |f_2|)$, then $Z(g) \subseteq Z(h)$ and $h = k(|f_1| + |f_2|)$ for some $k \in C(X)$. Thus $Z(g) \subseteq Z(k|f_1|)$ and $Z(g) \subseteq Z(k|f_2|)$, so $k|f_1| \in M_g \cap (|f_1|)$ and $k|f_2| \in M_g \cap (|f_2|)$. On the other hand $f_1, f_2 \in J_{\circ}$ implies that $M_g \cap (f_1) \subseteq I, M_g \cap (f_2) \subseteq I$ and hence $k|f_1| \in M_g \cap (|f_1|) \subseteq I$, $k|f_2| \in M_g \cap (|f_2|) \subseteq I$, imply that $h \in I$, i.e., $M_g \cap (|f_1| + |f_2|) = M_g \cap (f_1 + f_2) \subseteq I$, so $f_1 + f_2 \in J_{\circ}$. Now suppose that $f \in J_{\circ}$ and $h \in C(X)$. For all $g \in I$, we have $M_g \cap (fh) \subseteq M_g \cap (f) \subseteq I$ and hence $fh \in J_{\circ}$. Therefore J_{\circ} is an ideal. Moreover we have $M_g \cap J_o \subseteq I$, $\forall g \in I$, in fact $I_z \cap J_o = (\bigcup \{M_g : g \in I\}) \cap J_o = \bigcup \{M_g \cap J_o : g \in I\} \subseteq I$. This shows that I is a Z_{I_o} -ideal. Finally suppose that there exists an ideal K containing I such that I is a Z_K -ideal. Hence $M_g \cap (f) \subseteq I_z \cap K = I, \forall g \in I$ and $\forall f \in K$. Thus $K \subseteq J_o$ and this means that J_o is the greatest member of $\{J: I \text{ is a } z_I \text{-ideal}\}$. \Box

It is evident that every ideal I in C(X) is a z_I -ideal, but one may ask when is every subideal of a given ideal I a z_I -ideal? The following lemma and corollary show that such an ideal should be a z-ideal whose every member has an open zeroset. As an example of such ideals, consider $C_F(X) = \{f \in C(X): X \setminus Z(f) \text{ is finite}\}$. Recall that a space X is a P-space if every zeroset (G_δ -set) in X is open or if every prime ideal in C(X) is a z-ideal, see [5, 4]].

Lemma 2.8. If $f \in C(X)$, then every subideal of the principal ideal (f) is a $z_{(f)}$ -ideal if and only if $Y = X \setminus Z(f)$ is a closed P-space.

Proof. If every subideal of (f) is a $z_{(f)}$ -ideal, then (f^2) is a $z_{(f)}$ -ideal and hence $(f^2)_z \cap (f) = (f^2)$, i.e., $M_f \cap (f) = (f^2)$. But $f \in M_f \cap (f) = (f^2)$ implies that $f = kf^2$ for some $k \in C(X)$. Hence f(1 - kf) = 0 means that $Z(f) \cup Z(1 - kf) = X$ and $Z(f) \cap Z(1 - kf) = \emptyset$ which imply that Z(f) is open, so Y is closed. Now suppose that $g \in C(Y)$ and g^* is an extension of g on X, say $g^*(x) = g(x)$, $\forall x \in Y$ and $g^*(x) = 1$, $\forall x \notin Y$. Since $(g^*f) \subseteq (f)$, then (g^*f) is a $z_{(f)}$ -ideal, i.e., $M_{g^*f} \cap (f) = (g^*f)$. Thus $g^{*1/3}f \in M_{g^*f} \cap (f) = (g^*f)$, but f is a unit on Y, therefore $g^{1/3} \in (g)$ which implies that Z(g) is open and hence Y is a P-space. Conversely suppose that Y is a closed P-space and $I \subseteq (f)$. Assume that $g \in I$ and $h \in M_g \cap (f)$, then there exists $k \in C(X)$ such that h = fk and $Z(g) \subseteq Z(h) = Z(fk)$. Thus $Z(g|_Y) \subseteq Z(f|_Yk|_Y) = Z(k|_Y)$ for f is a unit on Y. Since $Z(k|_Y)$ is open, then $k|_Y$ is a multiple of $g|_Y$, i.e., $t \in C(X)$ exists, such that $k|_Y = t|_Yg|_Y$. Now $kf = tgf \in I$ implies that $h = kf \in I$, i.e., $M_g \cap (f) \subseteq I$ which means that I is a $z_{(f)}$ -ideal. \Box

Corollary 2.9. Let I be an ideal in C(X). Then every subideal of I is a z_1 -ideal if and only if Z(f) is open, $\forall f \in I$.

Proof. If Z(f) is open, $\forall f \in I$, then *I* is a *z*-ideal and clearly every subideal of *I* is a *z*₁-ideal. Conversely, if every subideal of *I* is a *z*₁-ideal, then for all $f \in I$, (f^2) is a *z*₁-ideal. Now by definition, (f^2) is also a *z*_(*f*)-ideal and by first part of the proof of Lemma 2.8, Z(f) is open. \Box

We conclude this section with the following result. Part (f) of this result shows that for every two ideals $I \subseteq J$, there exists the smallest z_j -ideal containing I which we denote by I_{z_J} . By Proposition 2.1, $I_z \cap J$ is a z_j -ideal containing I and if $K \subseteq J$ is also a z_j -ideal containing I, then $K_z \cap J = K$ and hence $I_z \cap J \subseteq K_z \cap J = K$. This means that $I_{z_j} = I_z \cap J$. A similar result may be stated for the smallest z_j° -ideal containing I.

Proposition 2.10. Let A, B, I, J, K and I_{α} , $\forall \alpha \in S$ be ideals in C(X).

- (a) If $I \subseteq J \subseteq K$ and I is a z_{κ} -ideal, then I is also a z_{τ} -ideal.
- (b) If $I \subseteq J \subseteq K$, I is a z_I -ideal, and J is a z_K -ideal, then I is a z_K -ideal.
- (c) If $\sqrt{I} \subseteq J$ and I is a z_1 -ideal, then $I = \sqrt{I}$. In particular, if I is a $z_{\sqrt{I}}$ -ideal, then $I = \sqrt{I}$.
- (d) If $I \subseteq J$ and I is a z_1 -ideal, then \sqrt{I} is a z_{τ} -ideal.
- (e) If $A \subseteq J$, $B \subseteq K$, A is a z_1 -ideal and B is a z_K -ideal, then $A \cap B$ is a $z_{1 \cap K}$ -ideal.
- (f) If $I_{\alpha} \subseteq J$ and I_{α} is a z_{J} -ideal, $\forall \alpha \in S$, then $\bigcap_{\alpha \in S} I_{\alpha}$ is also a z_{J} -ideal.

Proof. The proof of parts (a), (b) and (c) are evident. For parts (d), (e) and (f), we have

$$(\sqrt{I})_{z} \cap \sqrt{J} = I_{z} \cap \sqrt{J} = \sqrt{I_{z}} \cap \sqrt{J} = \sqrt{I_{z} \cap J} = \sqrt{I},$$

$$(A \cap B)_{z} \cap (J \cap K) = A_{z} \cap B_{z} \cap J \cap K = (A_{z} \cap J) \cap (B_{z} \cap K) = A \cap B,$$

$$\bigcap_{\alpha \in S} I_{\alpha} \subseteq \left(\bigcap_{\alpha \in S} I_{\alpha}\right)_{z} \cap J \subseteq \left(\bigcap_{\alpha \in S} I_{\alpha z}\right) \cap J = \bigcap_{\alpha \in S} (I_{\alpha z} \cap J) = \bigcap_{\alpha \in S} I_{\alpha}.$$

3. Sum of relative *z*-ideals (z° -ideals) in C(X)

We observed that if $I \subseteq J$ are two ideals in C(X), then I_{z_J} , the smallest z_j -ideal containing I always exists and it is equal to $I_z \cap J$ and is equal to the intersection of all z_j -ideals containing I. In this section we want to investigate the existence of I^{z_J} , the greatest z_j -ideal contained in I for every two ideals $I \subseteq J$ in C(X). Clearly, whenever the sum of every two z_j -ideals is a z_j -ideal, then I^{z_j} exists and we will show in this section that the converse is also true. In Theorem 3.4, we show that the sum of every two z_j -ideals is a z_j -ideal is a z_j -ideal for all ideals J in C(X) if and only if X is an F-space. First we need the following propositions and lemma.

Proposition 3.1. Let J be an ideal in C(X), then the following statements are equivalent.

- (a) For every two *z*-ideals *I* and *K* in C(X), $(I + K) \cap J = I \cap J + K \cap J$.
- (b) Sum of every two z_1 -ideals is a z_1 -ideal.
- (c) For every subideal I of J, I^{z_J} exists and $I^{z_J} = \sum_{M_f \cap J \subseteq I} M_f \cap J$.

Proof. First we show that (a) and (b) are equivalent. If (a) holds and *I* and *K* are z_j -ideals, then $I + K = I_z \cap J + K_z \cap J = (I_z + K_z) \cap J = (I + K)_z \cap J$ which means that I + K is a z_j -ideal (note that $(I + K)_z = I_z + K_z$ by Proposition 3.1 in [6]). Conversely, suppose (b) holds and *I* and *K* are *z*-ideals in C(X). Take $f \in (I + K) \cap J$, then $f = f_1 + f_2$, where $f_1 \in I$, $f_2 \in K$ and $f \in J$. Thus $f^2 = ff_1 + ff_2 \in I \cap J + K \cap J$. Since $I \cap J$ and $K \cap J$ are z_j -ideals by Proposition 2.1, then $I \cap J + K \cap J$ is also a z_j -ideal by part (b). Hence $f \in M_{f^2} \cap J \subseteq I \cap J + K \cap J$, i.e., $(I + K) \cap J = I \cap J + K \cap J$. Next we show that (b) and (c) are equivalent. If (b) holds, since each $M_f \cap J$ is a z_j -ideal, then $\sum_{M_f \cap J \subseteq I} M_f \cap J$ is a z_j -ideal contained in *I*. Now suppose that $T \subseteq I$ and *T* is also a z_j -ideal. If $g \in T$, then $M_g \cap J \subseteq T \subseteq I$ and therefore $T \subseteq \sum_{M_f \cap J \subseteq I} M_f \cap J$. Conversely, suppose I^{z_j} exists, $\forall I \subseteq J$ and *K* and *T* are two z_j -ideals. Hence $K + T = K^{z_j} + T^{z_j} \subseteq (K + T)^{z_j} \subseteq K + T$, which means that K + T is a z_j -ideal. \Box

We have a similar result for the sum of z_1° -ideals as follows.

Proposition 3.2. Suppose that X is a quasi F-space and J is an ideal in C(X), then the following statements are equivalent.

- (a) For every two z° -ideals I and K in C(X), $(I + K) \cap J = I \cap J + K \cap J$.
- (b) Sum of every two z_1° -ideals is a z_1° -ideal.
- (c) For every subideal I of J, $I^{z_j^{\circ}}$ exists and $I^{z_j^{\circ}} = \sum_{P_f \cap J \subseteq I} P_f \cap J$.

Proof. We note that if *X* is a quasi *F*-space, then $P_f + P_g$ is a z° -ideal or all of C(X), $\forall f, g \in C(X)$. Now using basic z° -ideals instead of basic *z*-ideals in the proof of Proposition 3.1, the proof is similar to that of Proposition 3.1 step by step. \Box

In the following lemma, we show that whenever *J* is an absolutely convex ideal, then part (a) in Proposition 3.1 holds for every two *z*-ideals (z_j -ideals or semiprime ideals) *I* and *K* in *C*(*X*). By Proposition 3.1, this means that for an absolutely convex ideal *J*, the sum of two z_j -ideals is a z_j -ideal. Although part (b) of the following lemma will show that the hypothesis of absolute convexity of *J* is needed, we can also give an easy example showing this hypothesis cannot be omitted. To see this, take the principal ideal J = (i) in $C(\mathbb{R})$, where *i* is the identity function in $C(\mathbb{R})$. *J* is convex, by 5E in [5]. Now consider two functions $f, g \in C(\mathbb{R})$ defined by $f(x) = 0, \forall x \leq 0, f(x) = x, \forall x \geq 0$ and $g(x) = 0, \forall x \geq 0, g(x) = x,$ $\forall x \leq 0$. Therefore $(M_f + M_g) \cap J \neq M_f \cap J + M_g \cap J$ for $i = f + g \in (M_f + M_g) \cap J$ but $i \notin M_f \cap J + M_g \cap J$. In fact if $i \in M_f \cap J + M_g \cap J$, then i = f'i + g'i, where $[0, \infty) = Z(g) \subseteq Z(g')$ and $(-\infty, 0] = Z(f) \subseteq Z(f')$. Thus f'(x) + g'(x) = 1, $\forall x \neq 0$ and hence f' + g' is a unit which contradicts f'(0) = 0 = g'(0). Now by part (a) of Proposition 3.1, the sum of two z_j -ideals in $C(\mathbb{R})$ is not necessarily a z_j -ideal.

Lemma 3.3.

- (a) Let *J* be an absolutely convex ideal and *I* and *K* be two *z*-ideals (or z_J -ideals) in *C*(*X*), then $(I + K) \cap J = I \cap J + K \cap J$.
- (b) If J is a convex ideal in C(X) and for every two z-ideals I and K in C(X) we have $(I + K) \cap J = I \cap J + K \cap J$, then J is absolutely convex.

Proof. (a) The proof resembles that of Lemma 3.1 in [10]. Let $h \in (I + K) \cap J$. Then there is an $f \in I$, $g \in K$ such that h = f + g. Define the following two continuous functions:

$$t(x) = \begin{cases} 0, & x \in Z(f) \cap Z(g), \\ \frac{hf^2}{f^2 + g^2}, & x \notin Z(f) \cap Z(g), \end{cases} \quad s(x) = \begin{cases} 0, & x \in Z(f) \cap Z(g), \\ \frac{hg^2}{f^2 + g^2}, & x \notin Z(f) \cap Z(g). \end{cases}$$

Since $|t| \leq |h|$, $|s| \leq |h|$, $h \in J$ and J is absolutely convex, then $s, t \in J$. On the other hand I and K are z-ideals (or z_J -ideals), $Z(f) \subseteq Z(t)$, $Z(g) \subseteq Z(s)$ and $f \in I$, $g \in K$ imply that $t \in I \cap J$ and $s \in K \cap J$. Thus $h = t + s \in I \cap J + K \cap J$ and hence $(I + K) \cap J = I \cap J + K \cap J$.

(b) Using Theorem 5.3 in [5], it is enough to show that $|f| \in J$, $\forall f \in J$. Since $M_{f-|f|}$ and $M_{f+|f|}$ are both *z*-ideals, then by our hypothesis, $(M_{f+|f|} + M_{f-|f|}) \cap J = M_{f+|f|} \cap J + M_{f-|f|} \cap J$, whence $2f = (f + |f|) + (f - |f|) \in (M_{f+|f|} + M_{f-|f|}) \cap J$. So f = s + t, where $s, t \in J$, $Z(f + |f|) \subseteq Z(s)$ and $Z(f - |f|) \subseteq Z(t)$. But (f + |f|)(f - |f|) = 0 implies that (f - |f|)s = 0 and (f + |f|)t = 0. Now we have

$$|f|(f+|f|) = f(f+|f|) = s(f+|f|) + t(f+|f|) = s(f+|f|) = s(f-|f|+2|f|) = 2|f|s.$$

Thus |f(x)| + f(x) = 2s(x), $\forall x \notin Z(f)$ and since $Z(f) \subseteq Z(s)$, then |f| + f = 2s, i.e., $|f| + f \in J$ and hence $|f| \in J$. \Box

Now using preceding facts, we prove the main result of this section.

Theorem 3.4. The following statements are equivalent.

(a) X is an F-space.

(b) For every ideal J in C(X), the sum of every two z_1 -ideals is a z_1 -ideal.

(c) For every ideal J in C(X), the sum of every two z_1^{\diamond} -ideals is a z_1^{\diamond} -ideal.

Proof. If *X* is an *F*-space, then every ideal *J* in *C*(*X*) is absolutely convex and hence by Lemma 3.3 and Proposition 3.1, (a) implies (b). Now we suppose that (b) holds and show that *X* is an *F*-space. To prove this it is enough to show that for every $f \in C(X)$, there exists $k \in C(X)$ such that f = k|f|, see Theorem 14.25 in [5]. Put J = (|f|), since $M_{f-|f|}$ and $M_{f+|f|}$ are *z*-ideals, then by part (b) in Proposition 3.1, we have $(M_{f+|f|} + M_{f-|f|}) \cap J = M_{f+|f|} \cap J + M_{f-|f|} \cap J$. Now $|f| \in (M_{f+|f|} + M_{f-|f|}) \cap J$ implies that |f| = s + t, where $s, t \in J = (|f|), Z(f + |f|) \subseteq Z(s)$ and $Z(f - |f|) \subseteq Z(t)$. Hence |f|(f - |f|) = s(f - |f|) + t(f - |f|) = -2t|f|, so |f| - f = 2t. But $t \in J = (|f|)$ implies that t = k|f| for some $k \in C(X)$, therefore f = |f| - 2k|f| = (1 - 2k)|f|. The proof of the equivalence of parts (a) and (c) is similar. \Box

Finally we show that if the sum of every two rez-ideals in C(X) is a rez-ideal, then X is a P-space.

Proposition 3.5. The following statements are equivalent.

(a) X is a P-space.

- (b) Every ideal in C(X) is a rez-deal.
- (c) Sum of every two rez-ideals is a rez-ideal.

Proof. Clearly (a) implies (b) and (b) implies (c). Now suppose that (c) holds but X is not a P-space. Then there is a prime ideal P in C(X) which is not a z-ideal (we recall that X is a P-space if and only if every prime ideal in C(X) is a z-ideal)

and hence not maximal. Let *M* and *M'* be two maximal ideals in *C*(*X*) not containing *P* such that M + M' = C(X). Since *P* is not maximal, then $\bigcap Z[P]$ contains at most one non-isolated point and hence by Proposition 1.5, *P* is an essential ideal. So $I = P \cap M$ and $K = P \cap M'$ are two nonzero z_p -ideals by Proposition 2.1. Moreover $I \subsetneq P$ and $K \subsetneq P$ imply that *I* and *K* are *rez*-ideals. Now by part (a) of Lemma 3.3, since the prime ideal *P* is absolutely convex, then $I + K = P \cap M + P \cap M' = P \cap (M + M') = P \cap C(X) = P$ and *P* is not a *rez*-ideal by Proposition 2.5(a), a contradiction. \Box

Acknowledgement

The authors would like to thank the referee for a careful reading of this article.

References

- [1] F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997) 2149–2154.
- [2] F. Azarpanah, R. Mohamadian, \sqrt{z} -ideals and $\sqrt{z^{\circ}}$ -ideals in C(X), Acta Math. Sin. 23 (6) (2007) 989–996.
- [3] F. Azarpanah, O.A.S. Karamzadeh, A. Rezai Aliabad, z° -ideals in C(X), Fund. Math. 160 (1999) 15–25.
- [4] F. Dashiell, A. Hager, M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. XXXII (3) (1980) 657-685.
- [5] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer, 1976.
- [6] G. Mason, Prime z-ideals of C(X) and related rings, Canad. Math. Bull. 23 (4) (1980) 437-443.
- [7] G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973) 280-297.
- [8] M.A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996) 55-66.
- [9] B. de Pagter, On z-ideals and d-ideals in Riesz spaces III, Indag. Math. (N.S.) 43 (1981) 409-422.
- [10] D. Rudd, On two sum theorems for ideals of C(X), Michigan Math. J. 17 (1970) 139–141.