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Abstract—1In this paper, a necessary and sufficient condition for oscillation of a first-order delay
differential equation with impulses

() + ) piw(t—7) =0, t# ty,,
= (*)
z(t:)_m(tk):bkx(tk), k=1,2...

is established.
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1. INTRODUCTION

The theory of differential equations with impulses is emerging as an important area of investiga-
tion, since it is much richer than the corresponding theory of differential equations. Moreover,
such equations represent a natural framework for mathematical modeling of several real world
phenomena. There exists a well-developed oscillation theory of delay differential equations [1-3].
The theory of ordinary differential equations with impulses has also been developed extensively
over the past few years [4]. However, delay differential equations with impulses seem to have
rarely been considered with respect to the oscillation of their solutions or the stability of their
steady states [5,6].

It has been known (see [1,3]) that a necessary and sufficient condition for oscillation of all
solutions of the delay differential equation

n
Z(t)+ ) pix(t—m)=0 (1)
i=1
is that its characteristic equation
n
A+ pe =0 (2)

i=1
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has no real roots. In this paper, for the delay differential equation with impulses

I’(t)+Zp¢x(t—Ti) =0, t £ ty,
=1 3)

z(tf) —x(te) =bez(te), k=1,2,...,

we obtain as a necessary and sufficient condition for the oscillation of all its solutions that its
“characteristic equation”

n
F() 22+ pigse ™ =0 @
i=1
has no real roots, where £ and «; are constants defined by (5) below.
Consider equation (3), where p; > 0fori =1,2,...,n 0 <1y < <+ <7y, 0 < t; <

tg < oor Kt < vy, tlim tr =00, and by € R for k = 1,2,.... We assume that the following
—0Q
conditions (C) are satisfied.
(a) For the case of n = 1, there exists a positive integer m such that for 7 = 1,2,...,m;
k=1,2,...,

tkm+j = tj + le, and blcm+j = bj.

(b) For the case n > 1, the quotients 7;/7; are rational numbers for ¢ = 2,3,...,n, that is,
there exist positive integers ¢; and r; which are coprime such that

T_ %
1 Ty
and there exists a positive integer m such that for j =1,2,...,m; k=1,2,...,

tem+; =t + kT and bk:m+j = b;,

where T = 11 /r and 7 is the least common multiple of ry,7q,...,7,.

For ¢ > t;+ Ty, a function z : [0 —7,,00) — R is said to be a solution of (3), if it is left continuous
on [0 — 7, 00), and is differentiable on [0, c0)\{tx} and satisfies (3).

As is customary, we shall say that a nontrivial solution of (3) is nonoscillatory if it is eventually
positive or eventually negative, and otherwise it will be called oscillatory.

We define
(1+8f), aié%, fori=1,2,...,n, (5)
1 2

s

m
e2J]a+b), nt
k=1 k

where b = max{0,b}, 7, 7, and g; are defined in conditions (C). It is obvious that o; are
positive integers such that 7, = ;T for7=1,2,...,n.
2. MAIN RESULTS

Initially, we give some useful lemmas. The first lemma is an immediate conclusion from con-
ditions (C).

LEMMA 1. Assume that conditions (C) hold. Then, for any t > t1 + Tn,

II a+be)=¢ (6)
t—‘r,-_<_tk<t
and
H (1+b]) = n™. (7)

t—ri<tp <t
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LEMMA 2. Assume that z : [0 — 7n,00) — R is a positive function such that

z'(t) <0, t>o, t#tg, ®
z (tF) — z (te) = bz (), k=1,2,....
Then, for any ¢ < t, <t* < 00,
sty <z(t) [ @+ow, (9)
t.<tp<t*
zt)+ Y. bkt <z®) [] (+6), (10)
t.<te<t* te<tp<t™
and
. * + -1
,of 2(t) >z (t") II a+8)~. (11)
- = Lo <tp<t*

ProoOF. From (8), we know that z(t) is decreasing on every subinterval (tx,tgs:] of [0, 00).
Suppose that t;,t;41,...,% are all of the impulse points situated in [t.,t*), that is

te Stj <tj+1 << < t* <tr41-
Thus, we have

z(t) 2 z(t;) =(1+b) "z (t]),
z(t7) >z (1) = (L+ b)) 2 (),

z(tf,) >z(t)=1+b)""z (),

and
z () >z (t7).
Hence,
!
(i) z(t*) < z(ts) [T (X +be) =2(ts) [1 (14 b);
k=j ta<te<ts
(ii) fork=4,7+1,...,1,
k k
z(te) <z(t)[J@+b) <z)[[(+0]).
i=j i=j
Furthermore,
! k
)+ Y hat) <z)+ > of [J(+b))z(t)
b <tp<t* k=3 1=
1
=z (t.) [J @ +07)
k=j
=z(t.) ] (+38}).
te <t <t*

(i) For k=4,7+1,...,1,

! l
z(te) 22 [[a+o) 2@ [[ (1 +58)7
1=k i=k



26 A. ZHAO AND J. YAN

Thus,
) . . . -1
t‘értl;*:r(t) =min{z (t;),z (tj1),.. .z (@), z ()} > ) [[ (1+f)7.
<ty <t*
The proof of Lemma 2 is complete.

LEMMA 3. Assume that conditions (C) hold and z : [0 —7,,00) — R is a positive solution of (3).
Then, fori=1,2,...,n andt > o + (3/2)7;,

2n% ) 2
z(t—1) < z(t). 12
=)< () ot (12
PRrROOF. For a given s > 0 + 7, and 1 < ¢ < n, suppose that t;,¢;41,...,t; are all of the impulse

points situated in [s, s + (7;/2)), that is
.
s <t <tj+1<-~-<t,<s+51 <ty

Then, using Lemma 1 and Lemma 2, we have

s+(’r,:/2) t; tit1 8+(7‘1/2)
/ Z'(t)dt = / +/ - +/ z'(t) dt
s $ t; t

l
T
=z (s + 5) —a(s) - Zbkz (tx) (13)
k=j
< —xz(s) H (1+5f)
s<t <s+(1:/2)
and
3+(7't/2) T
/ z(t—m)dt>— inf z(t)
s 2 s—7i<t<s—(7:/2)
=2 2 k/o
S—TiStk<S-—(7TL'/2)
From (3) we have, for i =1,2,...,n,
z'(t) + piz {t — ;) <0, t > o, t # tg, (15)

z(tf) —z(te) =bez (te), k=12,....
Integrating both sides of (15) from s to s + (7;/2) and using (13) and (14), we obtain

o(s-2) <= I a+)™ [I  a+8)'as). (1)

PiTi
8—T; <t <s—(7i/2) s<tp<s+(7:/2)

For t > o + (3/2)7s, let s =t — (7;/2) and s = t, respectively, we get

II +8) I a+e)e(t-3)

(3r:/2)<tp<t—7; t— (1 /2)<tp <t

z(t—71) <
( 2 PiTi

and

z(t- %) <=2 I a+)™ [ @+6) 7 20

PiTi t—r <tp<t—(7:/2) t<te<t+(1:/2)
The desired inequality (12) follows by combining these two inequalities. The proof of Lemma 3
is complete.
Now we give our main theorem.
THEOREM. Assume that conditions (C) hold. Then the following statements are equivalent.

(a) Equation (3) has a nonoscillatory solution.
(b) The characteristic equation (4) has a real root.
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Proor. To prove (b)=-(a), assume that \g is a real root of (4) and define

z(t) = H (1 + by) e, for t > t;. (17)
1<tk <t

It is obvious that z(t) is left continuous on [t1,00) and is differentiable on (t; + 7,, 00)\{tx}.
Furthermore, for t > t1 + 7, and ¢ # tg,

n m
l‘l(t)%—Zpiz (t=7)= 2o H (1+bk)e’\°t +Zpi H (1+bk)e/\o(t—r,)
2=1

t1<ti <t =1 t1 <t <t—r,

= H (1 4 bg) et >\o+2pi H (14 b)"Le dom
i=1

ty <tp<t t—ri <t <t
T

= I a+bert | a+d pigmoeom

t1<ty <t i=1

=0,

and for tx > t; + .,
z (tF) — x (tr) = brz (ty) .

Thus, z(t) is a positive solution of (3).
To prove (a)=>(b), without loss of generality, assume that x(t) is an eventually positive solution
of (3). So there exists ¢ > t, + 7, such that z(t) > 0 for t > o — 7,,. Set

A={A>0: 2'(t) + Az(t) < 0 eventually for t # t;}.
From (3) and Lemma 2, we have

W) +p ] Q+be)tz(t) <0, fort>o+7, and t##.
-1 <tp <t

Thus, p;£~% = p; H (1+bx)" € A. Also from Lemma 3, we get
t—Ti<Stp <t

0=2z'(t) + pr (t—m7)
i=1

< @'(t) + [Zpi (
i=1

Therefore, 3, pi(2n*i/p;7;)? is an upper bound for A. Since A is nonempty and bounded, we
may set A\p = sup A.

Let A € A be given and define y on [0 — 7,,,00) by y(t) = z(t)e*. Then, there is a suitable
T\ € (0,00) such that

i

20\ 2 3
U ) z(t), fort>o+om, t#ty.
PiTi 2

y'(t) = (2'(t) + Az(t)) eM < 0, fort > 7, and ¢ # t.

On the other hand,
y(8) —y(tk) = bry (tx) . for tx > T

So by Lemma 2, we know

yt-m)>yt) JI @+b)t=emy),  fort> T+

t—Ti <tr <t
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Hence, for t > T + 7, and t # ty,

0= II?’(t) + Z":p,.’ﬂ (t — T.,;)
i=1

n
=z'(t) + Zpiy (t —7;) e~ At

i=1

n
>2/(t)+ 3 P oy(t)e

=1

=a'(t) + Zpif_"‘"e’\”z(t).

=1

(18)

This shows that Y, pi{~*€*™ € A, and hence, Y 1| p;£~*e*™ < Ao. Since A € A is arbitrary,
we conclude that "

S e <y

=1

Therefore, F(—Xg) = —Ag + Z:‘=1pi§"ale’\071' < 0. Noticing that F(+o00) = +oo, we know
that (4) has a real root. The proof of the theorem is complete.

REMARK. If conditions (C) hold, from the theorem we know that a necessary and sufficient
condition for oscillation of all solutions of (3) is that the characteristic equation (4) has no real
roots.

From the theorem and {2, Theorem 2.2.1], we can immediately obtain the following result.

COROLLARY 1. Assume that conditions (C) hold. Then each of the following conditions is
sufficient for the oscillation of all solutions of (3):

(2)

(b)

Similarly, from the theorem and in [2, Theorem 2.1.1], we immediately obtain the following
result.

COROLLARY 2. Assume that conditions (C) hold. Then,

i 1
(Srer) () <

is a sufficient condition for the existence of a nonoscillatory solution of (3).

Finally, consider the delay differential equation with impulses

z'(t) + pz(t — 1) = 0, t # tg,

o(tf) — z(te) = bz(ty), k=1,2,..., (20)
which is the special case of (3). Thus by the theorem, we obtain the following result.
COROLLARY 3. Assume that

p>0, >0, b>-1, t; >0, and ty=ty+ kT, fork=1,2,.... (21)

Then a necessary and sufficient condition for the existence of a nonoscillatory solution of (20) is

pre < b+ 1. (22)
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