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In this paper we consider a functional inequality of the form f(x; + x5, y; + y,)
< f(xy, y1) + f(x,, y,), for each (x;, y;)) € C, i =1, 2, where f:C - R and C is
some cone in R2. If the function f satisfies some conditions we obtain the general
solution. © 1996 Academic Press, Inc.

A function f: R — R is said to be additive if it satisfies the Cauchy
functional equation:

f(x+y)=f(x) +f(y), Vx,y€eR.

Under some smoothing restrictions (measurability or Baire property) the
only form of additive functions, as is well known, is that of cx.
The two-dimensional case of the Cauchy equation, i.e.,

f(xy + x5,y +92) =f(x,91) +f(x2,2),
Y(x1, 1), (%5, y,) €R?,

or similar ways have the solution f(x,y) = c,x + ¢,y.
We define locally (on C c R?) the subadditive function f, f: C — R iff:

FOxy + x5,y +32) <f(x,01) +f(x2,5,),
V(x1,1),(x2,5,) €C, (1)

where C is some cone in R?. For the definition of a cone in an arbitrary
vector space see [2]. Let us call the class of all such functions on C LS.

Our task in this paper is to “solve” functional inequality (1), i.e., to give
an explicit form of f &€ LS.

489

0022-247X /96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82674294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

490 SIMIC AND RADENOVIC

We begin with the following results:

ProrosiTION 1. Iff, € LSc, k=12,...,n, then

o fy +eyfy + o +e,f, =f€ LS, (2)

where C = N}_, C, and c,,c,,...,c, are arbitrary positive constants.

The proof follows immediately from the definition (1) of locally subaddi-
tive functions and the fact that the intersection of any family of cones is a
cone.

So, if f, are “solutions” of functional inequality (1), then we can call
their linear (positive) combination a “general solution” of (1).

PROPOSITION 2. If g(¢) is a convex function defined for t € (a, b) then:

x-g(%) =f(x,y) € LS.,

where C == {(x, y);a <y/x <b,x > 0} is a cone in R>.
Proof. According to the definition of a convex function g(z), ¢t € (a, b),
g(pr+aqs) <pg(r) +qg(s) (3)
for each r,s € (a, b) and each p,q > 0, p + g = 1, and since
(x1,91), (x2,¥,) €C

implies that (x; + x,,y; +y,) = (x;, y) + (x,,y,) € C+ C cC, we
have

Y1 +Y2)

F X,y +y,) = (x, +
F(xp + x5,y +32) = (x x2)g(x1+x2

X1 Y1 X, Y2
=(x1+x2)g( -+ _)
X, +x, x, X, +x, x,
< (x; +x,) . i + e %2
- 2 x1+x2g X, x1+x2g X,
=Xx,8 +x,8 yz)
= 7L N
! 1 X3

=f(x1,y1) +f(x2,52),
ie., f€ LS.
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Remark 1. Because 0 & C, it follows that subset C from Proposition 2
is not a cone, but it has all the properties of a cone for A # 0.

We can conclude that system of functions g,(¢) convex for ¢ € (a, b)
produces a system of subadditive functions f,(x, y) over C C R? (in nota-
tion, g(¢) 3 f(x, y)) so, according to Proposition 1, we obtain a solution of
(1) in the form:

n

f(x,9) = X c.ifi(x,y), ¢ >0,(x,y) €C.

i=1

Conversely to Proposition 2, we have the following:

PROPOSITION 2'.  If the function f € LS, where C is the same subset of
R? as in Proposition 2 and f(ax, ay) = af(x,y) for every a € R*, then
there exists the convex function ¢ such that

F(x ) =y¢(§).

Proof. The function ¢(y) = f(1, y) is convex. Indeed,

o5

=f(z+ 31+ 22)
<f(2, 2Y1) f(za 2)’2)
= 3f(Ly)) + 3f(1,y,)

e(y1) + o(¥2)
— 5

Now, for a = 1/x we obtain
pe) = A5 x 2] o1 2] = of 2).

i.e., f(x,y) = xo(y/x). This shows Proposition 2'.

Remark 2. A method for obtaining the functions from LS. is the
following: If sup., ,\(f(x +a,y +b) — f(x,y)) = g(a, b), then g € LS,
where f: C — R.
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Proof.  Since
g(ay + by, a, + by)

sup (f(x +a, +by,y +a,+by) —f(x,y))
(x,y)

sup (f(x +a, +by,y+a,+by)—f(x+by,y+by))
(x,y)

+(f(x+b1,y + b,) —f(x,y))

< sup (f(x+a, +b,y+a,+b,) —f(x+by,y+b,))
(x,y)
+ sup (f(x +by,y + by) _f(x7Y))
(x,y)

=g(ay,ay) +8(by,by),
then g € LS.
Another property of the subadditive function is the following:

ProrosiTION 3. If f € LS., then
f( XX, X yi) < X f(x3)
i=1  i=1 i=1

for (x;,y)eC,i=1,2,...,n.
This is easy to prove by induction on n, since from (x,,y,) € C, i =
1,2,...,n, it follows that

n

(in’ Zyi) =Y (x,y)€EC+C+ - +C
i=1 =1 - - =

i=1 .

cC+C+:-+Cc - -cCcC+CcC(C.

n—1

Propositions 2 and 3 are the source for obtaining all kinds of two-
parameter inequalities. We illustrate this with some examples.

ExAMPLE 1. Since In¢ 3 —xIn(y/x), x,y > 0, using Proposition 3,
and by putting x; = b, y, = a;b;, i = 1,2,..., n, we obtain the generalized

arithmetic—geometric inequality

Lihy

Y, a;b;
- i , a;,b, >0,

n

b
[Tap < [Zore
i=1 i1 b

i=1%i
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i.e., putting b,/(CF_ b)) =p;, i =1,2,...,n,

n

n n
(lip’ﬁ Z (ll-pl-, Vpl‘yai>0; Zpizl'
1 i=1 i=1

i=

ExaMPLE 2. Since

—x()—}) for r € (0,1)
"3 y x, ;x,y>0
x(—) forr € R\ [0,1]

X

putting in Proposition 3 x; = b/, y,=af, r=1/p,and 1 —r =1/q, we
obtain the generalized Hoelders inequality:

n n 1/p( n 1/q 1 1
Zaibig(Za{’) (Zbﬁ) , —+—-—=1p,qg>1,
i=1 i=1 p q

i=1
and
n n 1/p( n 1/q 1 1
Zaibiz(Za{’) ( b,»q) , —+—-—=1p<lorg<l.
i=1 i=1 i=1 14 q

ExampLE 3. Since: Insin ¢t 3 —x Insin(y/x), using Proposition 3 with
x;=1,i=1,2,...,n, we have

n 1 n
sinyigsin”(— 2 il y; € (0, 7).
i=1 noiq
For the n-dimensional case of locally subadditive functions we next give

PropoSITION 4. Function f(xy, x,,...,x,) if LS. if

fCxi+yux Yy, x, +9,) <f(x%0,000,%,) F f(Vi5 Y2545 V0)
(4)

for each (xy,x5,...,%,),(¥1, ¥2,...,¥,) € C CR" where C is a cone in R".
Function g(t), convex for t € (a, b), produces the locally subadditive function
f() on C CcR",

" Y, Bx;
f(xlaxz’“"xn) = ( Z Aixi)g(l—)a

n
i=1 -1 Ax;
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where

= X' | Bx;
C="{(x;,%3,...,%,): 2, A;x; >0,a < ——— < b},
i=1 i1 Ax;

and A;, B; are arbitrary constants, not all equal to zero.

Proof. This is similar to the one from Proposition 2. Since

(xl’xz"--axn)a (yl’yZa'--ayn) eC
imply that (x;, + y,, x, + y,,...,x, +y,) € C, by putting in (3)

o1 Aix; o1 Ay
P= Z?zlAi(xi-’_yi)’ 1" Z?:IAi(xi"'yz'),
l_le l—lByl
r= ——, §= ————
l—le l—lAyt

we obtain (4), i.e., that f e LS.

It is obvious that Propositions 1 and 3 could be easily translated on R".
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