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This paper derives conditions for the stationarity of a class of multiple 
autoregressive models with random coefftcients. The models considered include as 
special cases those previously discussed by Andel (Ann. Math. Statist. 42 (1971), 
755-759; Math. Operationsforsch. Statist, 1 (1976), 735-741). 

I. INTRODUCTION 

The statistical literature relating to time series modelling has been 
primarily concerned with linear models, and, in particular, the autoregressive 
moving average models, more recently extended to include exogenous 
variables. The theory for the estimation of such models is now essentially 
complete and interest has shifted to computationally efficient procedures for 
the estimation of such models, and procedures for order determination. 
Recent research has been directed towards models other than linear models, 
such as linear models with random coeflicients. 

This paper will be concerned with an examination of the second order 
properties of multiple autoregressions with random coefftcients. Conditions 
for second order stationarity have been derived by Andel [ 1 ] in the case of 
multiple autoregressions with constant coefficients, and by the same author 
for univariate autoregressions with random coefficients [2]. The class of 
models to be considered here will include both these models as special cases. 

Let (X(}, where t runs through the set of integers, or a subset of this set, be 
a sequence of (p X 1) random vectors. Let ,D~ =E(X,), and yij = 
E(Xi - pi)(Xj - ,u~)‘. Then {Xt} is said to be second order stationary if ,!+ is 
constant, and yi, depends on i and j only through the difference (j - i). In the 
remainder of this paper, when we refer to stationarity, we shall mean second 
order stationarity. 
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In what follows, the theory to be developed depends on the use of the 
Kronecker or tensor product of matrices, and the related properties. In 
particular, we shall constantly use the result that if A, B and C are three 
matrices for which the product ABC is defmed, then 

vec(ABC) = (C’ @A) vet B 

where by vet A we mean the vector formed from A by stacking the columns 
of A one on top of the other from left to right. For a proof of this property, 
and other related properties, see Neudecker [3]. 

2. STATIONARITY CONDITIONS FOR A RANDOM COEFFICIENT MODEL 

Let Xt be a p X 1 vector generated by a multiple autoregressive model of 
order n with random coetTicients, i.e., 

For model (2.1), the following assumptions are made. 

(i) {E,; f = 0, kl, *2,...} is a sequence of independent p x 1 random 
variables with mean zero and non-negative covariance matrix G. 

(ii) The p X p matrices /I(, i = l,..., u are constants. 
(iii) Letting B(t) = [BJt) ... Bl(f)], then {B(f); r = 0, *l, *2,...} is an 

independent sequence of p x np matrices with zero mean and E(B(t) @ 
WI) = CT- VW~ is also independent of {Ed}. 

(iv) There is no non-zero constant vector z such that z’X~ is purely 
linearly deterministic, i.e., is determined exactly as a linear function of 
{Xf-i, X,-Z,...j. It should be noted that conditions (in terms of {et] and 
{B(f)}) will be found for this assumption to hold, given assumptions (i j(iii), 
in the body of this paper. 

One problem concerning (2.1) is to determine whether or not it is possible 
to give the set {Ximn,..., X0} such a second order structure that the sequence 
{Xt, t = 1, 2,...} is a second order stationary sequence. This aspect has been 
considered by Andel [2] in the univariate case, and a generalisation is 
considered here. A second problem is to determine whether (2.1) represents a 
process {Xt} for which X( is measurable, with respect to the u-field 5 
generated by the set {Ed, et-i ,... } U {B(t), B(t - 1) ,... }, and stationary. The 
two problems are obviously related, and this relationship will be made cIear 
later in this paper. 
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Define the np x 1 random vector Yt by 

Y; = [x~+*-~,x~+*-~,...,x~l. 
Then the second order properties of {Xt} may be found from an examination 
of those of the sequence { Yt}, and vice versa. Equation (2.1) may be 
rewritten in terms of {Y,} by 

q = (M + D(l)) y+ 1 + vt, 

where the np x np matrix M is given by 

The (1, 1) block of M is the (n - 1)p x p null matrix, while the (1,2) block 
is the (n - 1)p x (n - 1)p identity. Letting L be the n X 1 vector with the 
only non-zero entry the nth, which is 1, D(t) = L @B(t), and qf = L @ ct. 

If Yt is measurable with respect to 5, then D(l) and vt will be 
independent of YtPS, s = 1,2 ,... . Thus, applying (2.2) and the assumptions of 
the model, 

and 

Letting Vij = E(Yi Y;), it follows that 

where J = LL’, and e = E(I)(f) @ D(l)). Thus, the {(n - l)p(np + 1 + 
[(k - 1)/p]) + k}th row of c, where [x] denotes the integer part of x, is the 
&h row of C, for k = l,..., p’, and all the other rows of c are zero. 

Equation (2.4) in turn gives, for r = 0, 1,2 ,..., 

vet Vtt = i (M C3 M + c)’ m(J C3 G) 
j=O 
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The following lemma establishes a simple condition for the stationarity of 
{Xt; t = 1, 2,...}: 

LEMMA 2.1. {X*; t = 1, 2,...} generated by (2.1), satisfying assumptions 
(i)-(iii) is stationary zy and o&y z$ VII = V,,O and ,a1 =,aO, where Vij = 
E( Yi Yj) and pi = E( Yi). 

ProoJ The necessity is obvious. To prove the sufficiency, we use 
induction. Suppose ,LL~ = P~-~, t = l,..., h: ZJ = l,..., t and Vt,tms = Vt-“,t-s-u, 
t = s + l,..., /z; a = l,..., t -s; s = 0 ,.*., k In the case h = I, these conditions 
reduce to p, = p,, and Vi, = V,,O. Using (2.2), we have 

=~[(~+~(~+l))y~+~~+,l 
= ME( y/J, since D(h + 1) is independent of Y,, , 

= MWh- *I, by induction hypothesis, 

=Ph 

and, for 1 < s < h, 

V h+l&+l =Jv/I+1G+1~ 

= ELCPf+ Nh + 111 Y,, + v,,+ AW + W + 111 Y/, + v/r+ ,I’15 

so that by (2.4) 

vet h+ l,h+ I = (A4 @ A4 + c) vet Vk,h + vec(J @ G) 

=(M@M+C)vec Vh-l,h-, 

+ vec(J @I G), by induction hypothesis, 

= vet Vhh 

as required. 
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Again using (2.4) we have 

vet VB, = (A4 @ A4 + C?) vet Voo + vec(J @ G). 

Hence, from the above lemma, it follows that {Xt; t = 1, 2,...} is stationary if 
and only if it is possible to find a non-negative matrix P’ satisfying 

vecV=(M@M+~)vecV+vec(J@G). CW 

This condition alone will sufftce, for ,B = 0 will always satisfy the equation 
,U = M& and, from the lemma, this condition is necessary. Note that the 
above condition is the necessary and sufficient condition even if the matrix 
(M 63 M + C?) has a unit eigenvalue. This point will be discussed more fully 
later. 

In order to determine the stationarity of the process {Xt; t = 0, + 1, +2,...} 
it will be necessary to obtain a development of Yf in terms of {v~, q,-i ,...} 
and {D(t), D(t - l),...}. Define the matrix product niEi Ak by 

~~iA~=AiAi+~>.*.~Aj, i< j, 

Iterating equation (2.2) r times, we obtain 

say. (2.7) 

where Rt,r = {nLzO [M + D(t - /c)]} Y,-,.-i. In what follows, it is important 
to keep in mind that the stationarity of X, involves the convergence of Wl,r 
and % as r increases. We now prove the following lemma which will be 
needed in several of the subsequent theorems. 

LEMMA 2.2. If the sum zJzO (M @ M + (?)j vec(J@ G) converges as 
r-+ a3, and l$ H is positive definite, where vet H = vet G + 
c~j?o(M@M+c)j vec(J@ G), then the matrix M has all its eigenvalues 
within the unit circle. 

Proo$ Let the matrix W be defined by 

vet W= F (M@M+ C?)jvec(J@ G). 
,s 
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Then W satisfies 

vet W=(M@M+c)vec W+vec(J@G) 

=(M@M)vec W+(C?vec W+vec(J@G)) 

= (M @ M) vet W + vec(J @ H), 

where vet H= C vet W + vet G, with H assumed to be positive definite. 
Then, 

W=MWM’+.J@H. 

Suppose A4 has an eigenvalue A with corresponding left eigenvector z. If 
z’ = [z; ,..., z;], each zi a p x I vector, then 

z’Wf=z’MWM’f+z’(J@H)~ 

=~A/‘z’WF+z;HQ 

Now, if z;H.T,, > 0, then IA I2 < 1, Suppose zkH.T,, = 0, i.e., Z~ = 0, since H is 
positive definite. But z is a left eigenvector of A4. Thus 

i.e., zk bn = Azi , zi +z~/I~-~=Az~+~, i= l,..., n- 1. 
If A # 0, since Z~ = 0, then zi = z2 = . . . = z+~ = z” = 0, i.e., z = 0. But 

z # 0, since z is a left eigenvector of M. Thus z” # 0 and z’(J @ H)F > 0, 
implying 1 A 1 < 1. 

The next lemma presents a partial examination of uniqueness. 

LEMMA 2.3. Zf the matrix (M @ M + C?) does not possess an eigenvalue 
equal to unity, and a stationary solution exists to Eq. (2.1), which is 
measurable with respect to 6, then this is the unique solution. 

ProoJ Suppose there are two such solutions to (2.1): We and z~. Let 
Wt = [w;+~-~w:+~-” ... w;], 2; = [z;+~-,,z;+*-~ .a. z;], u,= We--Z~ and 
Ut = Wt - Zt, If We and Z~ are both stationary and measurable with respect 
to 5, then so is Us, and Ut satisfies 

Ut = (M + D(t)) Ut- 1 

giving 

vet E(Ut Ui) = (M @ M + C?) vet E(Uf-, CJ- I). 
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Since (M @ M + (?) has no unit eigenvalues, J!?(U~- i IV;.- i) = 0 and Ut = 0, 
a.s., i.e., wt = z~, a.s. 

To establish necessary conditions for the stationarity of the process 
satisfying (2.1), we now prove the following theorem. 

THEOREM 2.1. Zn order that there exist a stationary solution to (2.1) 
measurable with respect to 5 and satisfying (i)-(iv), it is necessary that 
x;=o (A4c3A4+ C)j vec(J @ G) converge as r + m, and suJ.&ient that this 
occur with H positive definite where vecH=vecG+ 
c~J?o(M&14+ t?)j vec(.Z@ G).’ When (A4 @ A4 + c) does not have a 
unit eigenvalue, this latter condition is both necessary and suflcient, and 
there is a unique stationary solution. 

Proof We shall first show the necessity. If Xt solves Eq. (2.1), and is 
stationary, then ZZ(Yf Yi) = E(YtpS YtwS), s = + 1, k2 ,... . Let V= J?(Y~ Yi). 
Then vet H satisfies 

vet V= f’ (M@M+ c)jvec(J@ G) 
,TO 

+ (M@M+ @+‘vec V, r = 1, 2,.,.. 

Let Q0 =J@ G; Qj = MQjP ,M’ + E@(t) Qj- kD’(t)), j = 1,2 ,..., 4 = I’, 
and Rj = I’MR~-~A~ + E(D(t) R,-ID’(t)), j = 1, 2 ,.... It is clear that each of 
Qj, Rj, j = 0, 1, 2 ,... is non-negative definite. Also, 

V= + Qj+Rr+,, r=O, 1,2 ,.... 
,Tj 

Let z be any np x 1 fixed vector. Then 

z’ Vz = 1 z’Qjz + z’Rr+ , z. CW 
j=O 

Now, xJzo Qj is non-decreasing in r, and z’Vz is non-negative. Also, 
z is non-negative. Since (2.8) holds for r = 1,2,..., it follows that 

g;;;lQ. ]z is bounded above by z’ Vz, and is therefore convergent for every 
vector z. Thus zIzo Qj converges, as r + co, to a non-negative definite 
matrix. 

Consider now the case were (MB M + c) has no unit eigenvalues. Then 
by Lemma 2.3 the solution to 2.2 must be unique with Y, = n, + 

’ Of course, when G is positive definite and z= 0 (M @ M + c)j vec(J @ G) converges, H 
is necessarily positive definite, so that this convergence will be both necessary and suffkient 
for the existence of a stationary solution. 
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J?z,{x$:i [M+D(l-k)]} qfej, which follows from 2.7, and V=,5(YtYi) 
is given by vet V = z& (A4 @ A4 + C?)j vec(J @ G). 

Now, the matrix H = G + E@?(f) VP(l)) is obviously non-negative 
definite, for every non-negative definite V. Suppose V satisfies (2.6), i.e., V= 
,??( Yt Yj) where Yt satisfies (2,2), and assume H is nof positive definite. Then 
there is a non-trivial p x 1 vector z such that z’Hz = 0, i.e., 

and 

z’{E(&t&;) +E(B(c) Yt-l Y;-lB’(f))}z = 0 

E[Z’(&* + B(f) Yt- J]* = 0. 

Thus z’[c~ + B(C) Yt-i] = 0 a.s. But X( - x;= r piXtei = st + B(t) Ytm 1 so 
z’X, = x7=, z’/IJ- i a.s., implying that z’X~ is purely linearly deterministic, 
contradicting assumption (iv) for the model (2.1). Hence, in order that Xl 
solve Eq. (2.1) and be stationary, it is also necessary that H be positive 
definite so that condition (iv) is satisfied. Noting that vet H = vet G + 
,5@?(f) @ B(r)) vet V, this expression and the one for vet H stated in the 
theorem are seen to be equivalent. 

We now prove sufficiency. Suppose firstly that zJZO (A4 @ M + f?)j 
vec(J@ G) converges as P+ co. In this case, from Eq. (2.7), the term IVt,r 
converges in mean square, and so in probability, as r-+ co. Denoting this 
limit by IVt, it is then easy to see that Wt satisfies Eq. (2.2). If the np X np 
matrix U is given by vet U = xJzO (M @ M + @ vec(J@ G), then U = 
E( Wt Wi). Furthermore, if the matrix H = G + E@(f) UB’(f)) is positive 
definite, then U satisIies 

U=MUM’+J@H. (2.9) 

Let W{ = [w;+l-nw~+2pn .-a $1, where each ws is a p x 1 random vector. 
Suppose there is a p x 1 vector z such that z’!+, is perfectly linearly predic- 
table, i.e., z’i~~ is determined exactly by {PV-~, in-* ,... }. Now, since W, 
satisfies (2.2) 

The term z’s, + z’ JJ;=i Bi(f) PV~-~ cannot be determined solely by a 
knowledge of { ~~-i, wtPZ ,... }, since PV~ is measurable with respect to 6, and 
thus E( and B(f) are independent of {n~-~, PV-*,...}, unless z’&~ + 
z’ x;=i Bi(t) ivPi is a constant almost surely. Since its expected value is 
zero, we must have z’ xy=i Bi(f) wtmi + Z’C~ = 0 a.s. However, the variance 
of this term is z’Hz, and H is positive definite. Thus z = 0, and condition (iv) 
is satisfied. 
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We now prove the following corollary giving a simple sufficient condition 
for stationarity. 

COROLLARY 2.1. In order that there exist a unique stationary solution to 
(2.1), satisfying (i)-(iii), it is suflcient that all the eigenvalues of 
(A463 A4 + c) be less than unity is modulus. 

ProoJ (M @ A4 + c) may be represented in Jordan canonical form as 

(M@M+ C)=PAP-l, 

where A has the eigenvalues of (A4 @ A4 + c) along its main diagonal, and 
zeros elsewhere, unless (A4 @ M + c) has eigenvalues of multiplicity greater 
than one, in which case there may be several ones in the first upper diagonal. 

Now, 
(M@M+ C)j=PAjP-l 

and it is well known that if the diagonal elements of A are less than unity in 
modulus, then Aj converges to zero at a geometric rate and 

Furthermore, 

= (I - PAP-‘)-’ vec(J@ G) 

= (I-M@M- c)-‘vec(J@ G). 

Thus, using Lemmas 2.2, 2.3 and Theorem 2.1, it is seen that there exists a 
unique stationary solution to (2.2), given by 

One of the central requirements in the theory developed to date is the 
convergence, as r + co, of 

i (M@M+e)j 
j=O 

v=(J@G)=P (,toA’) P-‘vec(J@G), (2.10) 

where A is the Jordan canonical form of (M@ A4 + c). Even if 
(A4 @ A4 + c?) has eigenvalues greater than or equal to unity in modulus, this 
does not preclude the right-hand side from converging. Indeed, in this case, 
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the right-hand side converges if and only if vec(J@ G) is orthogonal to the 
rows of P-’ corresponding to those diagonal elements of L! which are greater 
than or equal to unity in modulus. It may, however, be impossible for this to 
occur. Such is the case for scalar models as is demonstrated in the following 
corollary. 

COROLLARY 2.2. In the scalar case, i.e., p = 1 in (2.1), with G # 0, in 
order that there exist a stationary solution to (2.1) measurable with respect 
to <, it is necessary and suflcient that (A4 @ A4 + C?) have all its eigen- 
values less than unity in modulus, 

ProoJ In view of Theorem 2.1 and Corollary 2.2, all that is needed to be 
shown is that the situation described below (2.10) does not occur. Suppose 
there is a left eigenvector of (MB M + c), which is orthogonal to 
vec(J @ G). Call this left eigenvector z’, and its eigenvalue L. Then z’ is a 
row of P-’ corresponding to a diagonal element A. Since z’ vec(J @ G) = 0, 
the last entry of z is zero, But then z’(M @ M + (?) = z’(M @ M), since c is 
null apart from its last row. However, the eigenvalues of M @ il4 are precisely 
all products of eigenvalues of M, taken two at a time, and, as such, are less 
than or equal to unity in modulus, since the eigenvalues of h4 are less than 
unity in modulus, by Lemma 2.2. Thus 12 ] < 1, and the corollary follows. 

Now, if a stationary solution exists which is measurable with respect to 
5, then the covariance matrix will satisfy 

vet V = (A4 @ M) vet V + vec(J @ H), (2.11) 

where H = E@(t) VP(t)) + G. In the case where Xt satisfies (2.1), and 
requirement (iv), we have seen that H is positive definite, and the matrices M 
and M@ it4 have all their eigenvalues within the unit circle. Thus 
(I- M @ M) is invertible. The matrix (I- M @ M))’ plays a prominent 
role in the calculation of the covariance structure of stationary constant 
parameter autoregressions. In this case, the only dependence on 
(Z - M@ M))’ is through p* of its columns, namely those columns 
corresponding to the p* elements of G in the vector vec(J@ G). Let A be the 
n*p* x pz matrix formed from these columns, i.e., the &h column of A is the 
{(n - 1) p(np + 1 + [(k - 1)/p]) + k}th column of (I- M@ w- ‘. As will 
be shown in the following theorem, the matrix YI plays a dual role in the 
stationarity of an autoregression with random parameters. 

THEORJZM 2.2. For the case where (A4 @ A4 + C?) does not huve a unit 
eigenvalue, there exists a stationary solution of (2.1), satisfying (i)-(iv), and 
measurable with respect to 6, ty and only if the matrix V given by 

vet V= (Z-kf@kf-- c))‘vec(J@ G) (2.12) 
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is positive deftnite. An equivalent condition is that the eigenvalues of M be 
less than unity in modulus, together with the condition that the matrix H, 
given by 

vecH=(Z-CA)-‘vecG 

be positive definite. The covariance matrix V is then given by 

WC V=AvecH. 

Prooj It has already been seen that Yf will be stationary if and only if 
the term xJzO (44 @ M + c)j vec(J @ G) converges as r + co, in which case 
V is obtained from 

vet V= ? (h4@44+ c)jvec(.Z@ G). 
,ei 

This satisfies the equation vet V = (M @ M + c) vet V + vec(J @ G), i.e., 

vet V= (Z-kf@M- c))‘vec(.Z@ G), 

the matrix (Z-M@ M - c) being invertible since it has no zero eigen- 
values. The condition on (Z - M @ M - c))’ vec(.Z @ G) is thus seen to be 
necessary and sufficient, since (Z - M 8 M - &’ vec(J@ G) is equal to 
,FzO (M @ M + e)j vec(.Z @ G) whenever it exists. 

To consider the equivalent condition in terms of the matrix H, suppose 
that V is positive definite. Then, from the definition of H given in Eq. (2.11) 
and from Theorem 2.1, H will also be positive definite and M will have all its 
eigenvalues within the unit circle by Lemma 2.2. Conversely, if H is positive 
definite, and M has all its eigenvalues within the unit circle, then V will also 
be positive definite, being the covariance matrix of a stationary 
autoregression with input covariance matrix H. To see this, we express V in 
an alternative form, and extend the approach used in Andel [ 1] in the case of 
constant parameter autoregressions. Since M is assumed to have all its eigen- 
values within the unit circle, we may write V in the form 

vet V=(Z-M@M)-‘vec(.Z@H)= 5 (hf@iW’vcc(.Z@H) 
i=O 

= ? (~8 @ Mi) vec(J @ H) 
,S 

and so 

V = 2 Mt(.Z@ H)(M)‘. 
i=O 
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Let 2’ = (z; . . . zk) where Z~ are all p x 1 vectors and z # 0. Then 

z’ vz z 2 z%fi(J @ H)(M’y z. 
i=O 

If Z~ # 0, then z’(J@ H)z = z~Hz~ > 0, and Z’VZ > 0. Suppose for some j, 
l<j<n-l,thatzj#Obutzj+,=...=zn=O.Then 

z’M=(()‘,z{ . ..q)‘...(y) 

and 

Then z’M+j(J @ H)(M)‘-j z = zj Hzj > 0 and z’ Vz > 0. Finally, we derive 
the alternate form of H. From (2.1 l), V satisfies 

vet V=(Z-M@M)-‘vec(J@H)=AvecH. 

Thus, 

Cvec V=CAvecH 

and 

so that 

vecH=vecG+CvecV=vecG+CAvecH 

vet H= (Z- CA)-‘vet G, (2.13) 

provided (I- CA) is invertible. To see this, suppose CA has a unit eigen- 
value, so that there is a non-trivial (p x 1) vector z such that 

z’CA = z’. 

Then, defining the n2p2 x 1 vector w by 

w’=z’C(Z-M@iq’, 

it follows that 

&dC(Z-M@M)-‘c=z’CAC=z’C. 

Thus 

w’qz-A4@M)-1=z’c(z-l14@M)-1= w’, 

i.e., 

w’(Z-M@M-C)=O. 
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Since (M @ A4 + c) has no eigenvalue equal to unity, w = 0 and so 

z’ = Z’CA = W’CA = 0, 

Thus C.4 does not possess a unit eigenvalue and (I- CX) is invertible. This 
completes the proof of the theorem. 

COROLLARY 2.3. In the case p = 1, there exists a unique stationary 
solution of (2.1), measurable with respect to 6, l$and only fA4 has all its 
eigenvalues less than unity in modulus and C vet V,+ < G, where 

vet VW = (I - M @ M)-’ vec(J @ G) = A vet G. 

ProoJ Since G and H are scalars, the condition that H be positive 
detinite is, from (2.13), equivalent to having CA < 1 or CAG < G. Let Wt = 
MWlel + v~, i.e., (2.2) with D(t) = 0, for all t, so that (2.1) represents, in 
this case, a constant coefficient autoregression. Letting VW = E( Wt W;), 

vet Vw=(I--M@M)-‘vec(J@G)=AvecG, 

so that the above condition becomes, since G is scalar, 

C vet VW < G. 

It should be noticed that these are the same conditions derived by 
Andel [2] for the stationarity of {Xt; t = 1, 2,...} generated by (2.1), for the 
case p = 1. Indeed, it follows from Lemma 2.1 that, in the case where 
(M @ M + c) does not have a unit eigenvalue, the conditions of Theorem 2.2 
are also the necessary and sufficient conditions for the stationarity of 
{Art; t = 1, 2,...]. 

3. THE CASE WHERE (A4 @ A4 + c) HAS A UNIT EIGENVALUE 

The results of Section 2 do not completely cover the case where 
(M @ M + C) has a unit eigenvalue. This is due to the possible lack of 
uniqueness of the solution, and the fact that (I- M@ M - c) is not inver- 
tible in this case. If the term x;zO (M @ M + c)j vec(J@ G) converges as 
r + co, there exists a solution to (2.1) which is stationary and measurable 
with respect to 5, regardless of the eigenvalues of (MB M + c). There 
may, however, be other stationary solutions if (M@ M + c) has a unit 
eigenvalue. 

It is nevertheless possible to construct an example for which Eq. (2.1) 
generates a process {Xt; t = 1, 2,...} which is stationary, satislies conditions 
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(i)-(iv), and for which (M@ M + c) has a unit eigenvalue. To illustrate this, 
let {Xt; t = 1,2,...} be generated by the model 

xt = (P + B(f)) X& 1 + &(, (3.1) 

where Xt and .q are (2 x 1) random vectors, /I = [i i], B(t) = [i $,I, st = [ :], 
E(JJ = E@(t)) = 0, E@?‘(t)) = 1, E(&) =g, ]bi < 1, and dt, P(t) are 
independent. 

Furthermore, let E(XO) = 0 and vet E(X,,X&) = [g/(1 - b*) 0 0 c]‘, where 
c > 0. Then vet G = g[ 1 0 0 O]‘, M = /? has all its eigenvalues inside the unit 
circle, and 

having eigenvalues 0, 0, b* and 1. Now, 

vet E(Xl Xi) = (A4 @ A4 + e) vet E(X,,Xk) + vec(J @ G) 

= [ gb*/(l - b*) 0 0 c]’ + [g 0 0 01’ 

= [g/(1 - b*) 0 0 c]’ = vet E(XoXA). 

Also, E(X,) = &5(X,) = 0 = E(X,,). Thus, by Lemma 2.1, {Xt ; t = 1, 2 ,... } is 
stationary. 
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