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1. Introduction

In this Letter we carry out a U -spin symmetry analysis for B−
decays into three light pseudoscalar mesons. Here the light pseu-
doscalar means one of the π− , π+ , K − or K + mesons. The
branching ratios and CP asymmetries, defined by ACP( f +) =
(Γ (B− → f −)−Γ (B+ → f +))/(Γ (B− → f −)+Γ (B+ → f +)), for
these decays have been measured experimentally although some of
them still have large error bars.

The CP asymmetries measured for the two �S = −1, B− →
K −π−π+ and B− → K −K −K + final states are [1]

ACP
(

K +π+π−) = +0.032 ± 0.008(stat) ± 0.004(syst)

± 0.007
(

J/ψ K +)
,

ACP
(

K +K +K −) = −0.043 ± 0.009(stat) ± 0.003(syst)

± 0.007
(

J/ψ K +)
, (1.1)

which are 2.8σ and 3.7σ away from zero, respectively. Re-
cently BaBar Collaboration also reported their measurement [2] of
ACP(K +K +K −) = −0.017+0.019

−0.014 ± 0.014 which is consistent with
the LHCb result within 1.1σ .

The other two �S = 0 CP asymmetries are given by [3]

ACP
(
π+π+π−) = +0.017 ± 0.021(stat) ± 0.009(syst)

± 0.007
(

J/ψ K +)
,

* Corresponding author.
E-mail addresses: xudong1104@gmail.com (D. Xu), lgn198741@126.com

(G.-N. Li), hexg@phys.ntu.edu.tw (X.-G. He).
0370-2693 © 2013 The Authors. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2013.12.040

Open access under CC BY license
ACP
(

K +π+π−) = −0.141 ± 0.040(stat) ± 0.018(syst)

± 0.007
(

J/ψ K +)
. (1.2)

The significances are 4.2σ and 3.0σ , respectively.
The branching ratios for these decays have also been measured

with [4]

Br
(
π−π−π+) = (15.2 ± 1.4) × 10−6,

Br
(
π−K −K +) = (5.0 ± 0.7) × 10−6,

Br
(

K −K −K +) = (34.0 ± 1.0) × 10−6,

Br
(

K −π−π+) = (51.0 ± 3.0) × 10−6. (1.3)

These charged 3-body B− → P P P decays can provide new in-
formation about the SM and for strong interaction which deter-
mine the hadronic matrix elements for B decays. Several analyses
based on flavor SU(3) symmetry both algebraic and diagrammatic
approaches without resonant contributions [5–8], and dynamic
models including resonant contributions [9–12] have been carried
out. Analysis based on U -spin symmetry has also been carried
out [13].

In general there is an amplitude A0 related to U = 0 state
composed of K − and π− which contributes to B− → K −π−π+
and B− → π−K −K + , but not to B− → K −K −K + and B− →
π−π−π+ . Naively, because of the boson particle nature of K −
and π− , the U = 0 combination formed from K − and π− is iden-
tically zero if the corresponding amplitude is a constant indepen-
dent of the kinematic or other dynamic variables of the K − and
π− states. This would lead to predictions away from experimen-
tal observation. Similar situation occurs in SU(3) analysis [6]. If A0
depends on the momentum carried by the particles involved, and
it is anti-symmetry under exchange of the momenta of the two
.
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negatively charged K − and π− , A0 need not to be zero and the
problem can be resolved. However, how the amplitudes depend
on the momenta is not known. In this Letter, we study how to
construct momentum independent amplitudes, momentum depen-
dent amplitudes by taking derivatives in the particle states, and
also U -spin violating amplitudes due to quark mass difference.

2. U -spin symmetry and the decay amplitudes

U -spin symmetry is a global SU(2) symmetry taking d and s
as the two elements in the fundamental representation, that is,
(qi) = (d, s) form a U -spin doublet in quark flavor space. The π−
and K − therefore transform as a doublet, (Mi) = (π−, K −). The
complex conjugate (Mi) = (Mi)

∗ = (π+, K +) can also be written
as a doublet with lower indices (M̃i) = εi j(M j)

∗ = (K +,−π+).
The B− is composed of a b-quark and a light u-quark and there-
fore B− is a U -spin singlet. Using notations familiar with spin
analysis, we can write the d, s, π− (π+), and K − (K +), states as

|d〉 = |1/2,+1/2〉, |s〉 = |1/2,−1/2〉,∣∣π−〉 = |1/2,+1/2〉π− ,
∣∣K −〉 = |1/2,−1/2〉K − ,∣∣K +〉 = |1/2,+1/2〉K + ,
∣∣π+〉 = −|1/2,−1/2〉π+ . (2.1)

In the SM the effective Hamiltonian Hq
eff responsible for B− de-

cays into three charged mesons is given by [14]

Hq
eff = 4G F√

2

[
V ub V ∗

uq(c1 O 1 + c2 O 2)

−
12∑

i=3

(
V ub V ∗

uqcuc
i + Vtb V ∗

tqctc
i

)
O i

]
, (2.2)

where q can be d or s. The coefficients c1,2 and c jk
i = c j

i − ck
i , with

j and k indicating the internal quark, are the Wilson Coefficients
(WC). The tree WCs are of order one with c1 = −0.31, and c2 =
1.15. The penguin WCs are much smaller with the largest one c6 to
be −0.05. These WCs have been evaluated by several groups [14].
V ij are the KM matrix elements. In the above the factor V cb V ∗

cq has
been eliminated using the unitarity property of the KM matrix.

The operators O i are given by

O 1 = (q̄iu j)V −A(ūib j)V −A,

O 2 = (q̄u)V −A(ūb)V −A,

O 3,5 = (q̄b)V −A

∑
q′

(
q̄′q′)

V ∓A,

O 4,6 = (q̄ib j)V −A

∑
q′

(
q̄′

jq
′
i

)
V ∓A,

O 7,9 = 3

2
(q̄b)V −A

∑
q′

eq′
(
q̄′q′)

V ±A,

O 8,10 = 3

2
(q̄ib j)V −A

∑
q′

eq′
(
q̄′

jq
′
i

)
V ±A,

O 11 = gs

16π2
q̄σμνGμν(1 + γ5)b,

O 12 = Q be

16π2
q̄σμν F μν(1 + γ5)b, (2.3)

where (āb)V −A = āγμ(1 − γ5)b, Gμν and F μν are the field
strengths of the gluon and photon, respectively.

For �S = −1 and �S = 0 B− decays, the quark q is s and d,
respectively. The effective Hamiltonian Hq has a simple U -spin
eff
structure for both the tree and penguin contributions and trans-
forms as components in a doublet. It annihilates B− state and
creates a final state |1/2,+1/2〉 for q = d (a |1/2,−1/2〉 state for
q = s).

At the hadron level, the decay amplitude can be generically
written as

A = 〈final state|Hq
eff

∣∣B−〉 = V ub V ∗
uq T (q) + Vtb V ∗

tq P (q), (2.4)

where T (q) contains contributions from the tree as well as pen-
guin due to charm and up quark loop corrections to the matrix
elements, while P (q) contains contributions purely from one loop
penguin contributions.

Since Hq
eff annihilates B− state and creates a U -spin final state

|1/2,+1/2〉 for q = d (a |1/2,−1/2〉 state for q = s), only those
final three meson states decayed from B− with correct U -spin
quantum numbers will be created. Therefore one needs to single
out appropriate |1/2,+1/2〉 and |1/2,−1/2〉 ones formed by the
three light meson in the final state to identify which combina-
tions are allowed. The final three charged mesons can form U -spin
eigen-states given in the following∣∣K −K −K +〉 = |1/2,−1/2〉K −|1/2,−1/2〉K −|1/2,+1/2〉K +

= |1,−1〉K − K −|1/2,+1/2〉K +

= 1√
3
|3/2,−1/2〉1 −

√
2

3
|1/2,−1/2〉1,∣∣π−π−π+〉 = −|1/2,+1/2〉π−|1/2,+1/2〉π−|1/2,−1/2〉π+

= −|1,+1〉π−π−|1/2,−1/2〉π+

= − 1√
3
|3/2,+1/2〉1 −

√
2

3
|1/2,+1/2〉1,∣∣K −π−π+〉 = −|1/2,−1/2〉K −|1/2,+1/2〉π−|1/2,−1/2〉π+

= −
(

1√
2
|1,0〉K −π− − 1√

2
|0,0〉K −π−

)
× |1/2,−1/2〉π+

= − 1√
3
|3/2,−1/2〉1 − 1√

6
|1/2,−1/2〉1

+ 1√
2
|1/2,−1/2〉0,∣∣π−K −K +〉 = |1/2,+1/2〉π−|1/2,−1/2〉K −|1/2,+1/2〉K +

=
(

1√
2
|1,0〉π− K − + 1√

2
|0,0〉π− K −

)
|1/2,+1/2〉K +

= 1√
3
|3/2,+1/2〉1 − 1√

6
|1/2,+1/2〉1

+ 1√
2
|1/2,+1/2〉0, (2.5)

where the sub-indices “0” and “1” indicate the U -spin formed by
the two negatively charged mesons.

From inspection of the above three charged meson final states
one clearly sees that there are indeed U -spin |1/2,+1/2〉 and
|1/2,−1/2〉 eigen-states and they will be the allowed final states.
Indicating the strength for the U = 0 and U = 1, formed by the
two negatively charged mesons, by AT

0 and AT
1 , one can write

the T amplitudes as [13]

T
(

K −(p1)K −(p2)K +(p3)
) = 2AT

1 (p1, p2, p3),

T
(
π−(p1)π

−(p2)π
+(p3)

) = 2AT
1 (p1, p2, p3),
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T
(

K −(p1)π
−(p2)π

+(p3)
) = AT

1 (p1, p2, p3) − AT
0 (p1, p2, p3),

T
(
π−(p1)K −(p2)K +(p3)

) = AT
1 (p1, p2, p3) − AT

0 (p1, p2, p3).

(2.6)

Here we have worked with the convention for the amplitudes,
involving two identical particles in the final states, that we sym-
metrize the amplitude first and then divide by a factor of 2 when
calculating the decay width.

In the above, we have explicitly written the AT
0,1 amplitudes as

functions of momentum pi of the final mesons. This is particularly
important for the AT

0 amplitude. This amplitude is from the U -spin
equal to 0 state formed by the two negatively charged mesons. This
is an anti-symmetric combination in exchanging of K − and π− .
Since they are bosons, if there is no momentum dependence, the
combination K −π− −π−K − is identically equal to zero and there-
fore AT

0 vanishes. For AT
1 amplitude, it is not necessary to be zero

even if there is no momentum dependent due to the fact that it is
from the symmetric combination of K − and π− . The above analy-
sis also applies to the penguin amplitudes A P

0,1.
If the amplitudes are indeed momentum independent, that is

only AT
0 = A P

0 = 0, one would have

A
(

K −K −K +) = 2
(

V ub V ∗
us AT

1 + Vtb V ∗
ts A P

1

)
,

A
(

K −π−π+) = V ub V ∗
us AT

1 + Vtb V ∗
ts A P

1 ,

A
(
π−π−π+) = 2

(
V ub V ∗

ud AT
1 + Vtb V ∗

td A P
1

)
,

A
(
π−K −K +) = V ub V ∗

ud AT
1 + Vtb V ∗

td A P
1 . (2.7)

These amplitudes predict [6]

Br
(
π−π−π+) = 2 Br

(
π−K −K +)

,

Br
(

K −K −K +) = 2 Br
(

K −π−π+)
,

ACP
(
π+π+π−) = ACP

(
π+K +K −)

,

ACP
(

K +K +K −) = ACP
(

K +π+π−)
. (2.8)

Defining �( P̄ P̄ P̄ ) = |A(P P P )|2 − | Ā( P̄ P̄ P̄ )|2 related to ACP , we
have

�
(

K +K +K −) = 4�
(

K +π+π−)
= −16 Im

(
V ub V ∗

us V ∗
tb Vts

)
Im

(
AT

1 A P∗
1

)
,

�
(
π+π+π−) = 4�

(
π+K +K −)

= −16 Im
(

V ub V ∗
ud V ∗

tb Vtd
)

Im
(

AT
1 A P∗

1

)
. (2.9)

Note that in order to have a non-zero � and therefore ACP , not
only Im(V ub V ∗

uq V ∗
tb Vtq) but also Im(AT

1 A P∗
1 ) needs to be non-zero.

In the SM, Im(V ub V ∗
uq V ∗

tb Vtq) is proportional to the Jarlskog pa-
rameter [15] J signifying CP violation and has been determined to
be non-zero [4]. The condition of a non-zero value for Im(AT

1 A P∗
1 )

requires the amplitudes AT ,P
1 determined by strong interaction dy-

namics to develop unequal final state interaction (FSI) phases for
the tree AT

1 and penguin A P
1 amplitudes. These phases cannot be

determined individually by just using U -spin symmetry. We will
allow the amplitudes AT ,P

1 to be complex whose phases are the
FSI phases and let them be determined by fitting data.

Using the relation Im(V ub V ∗
us V ∗

tb Vts) = − Im(V ub V ∗
ud V ∗

tb Vtd)

[15] and the relations (2.9), one then has the following predic-
tions

ACP(π
+K +K −)

ACP(K +π+π−)
= −Br(K −π−π+)

Br(π−K −K +)
,

ACP(π
+π+π−)

+ + − = − Br(K −K −K +)

− − + ,

ACP(K K K ) Br(π π π )
ACP(π
+K +K −)

ACP(K +K +K −)
= − Br(K −K −K +)

Br(π−K −K +)
,

ACP(π
+π+π−)

ACP(K +π+π−)
= − Br(K −π−π+)

Br(π−π−π+)
. (2.10)

The above relations do not agree with experimental data
shown earlier. Therefore, one needs to make modifications. One
of the possibilities to have a non-zero A0 is to have momen-
tum dependence for the amplitudes. With momentum dependence,
AT

0 (p1, p2, p3) can be non-zero, if it satisfies

AT
0 (p1, p2, p3) = −AT

0 (p2, p1, p3). (2.11)

For example, a term of the form c[(∂μK −(p1))π
−(p2) −

K −(p1)(∂
μπ−(p2))]∂μπ+(p3) is U -spin zero, but not zero. c is

a momentum independent constant. Such a term in the Lagrangian
gives an amplitude

c(p1 − p2) · p3, (2.12)

satisfying the requirement of Eq. (2.11).
In general, how the amplitudes depend on the momentum is

not known. It can come from contributions to the amplitude due to
exchange of particles (resonant contributions), and may also come
from derivatives on the particle fields in the initial and final states.
In the following we discuss how to construct non-resonant mo-
mentum dependent amplitude by taking derivatives on the meson
fields.

3. Lowest order momentum dependent amplitudes

Construction of momentum dependent amplitudes without res-
onant contributions can be done in a systematic way by num-
bers of derivatives taken. From Lorentz invariance requirement, the
derivatives will have even powers. The lowest order terms have
zero derivatives and the terms of next order have two powers in
derivatives. The construction is basically to use B− , Mi , Mi (or
equivalently M̃i ) with different powers of derivatives, and the ef-
fective Hamiltonian Hq

eff to form U -spin singlet. To this end we

denote the doublet formed by the effective Hamiltonian by Hi (or
equivalently Hi = εi j H j ). H1 = 1 and H2 = 1 represent �S = 0
and �S = −1 interactions, respectively. We will use Mi , Mi , Hi

and B− , plus derivatives as our building blocks.
For B− decays into three charged mesons, we need two Mi , and

one Mi . There is only one non-derivative U -spin singlet which can
be constructed. It is given by

a0
1Mi M

i M j H j B−, (3.1)

where a0
1 is a constant. In the above B− is going in and the light

charged mesons are going out.
Expanding the above, we obtain the momentum independent

decay amplitudes

T 0(K −(p1)K −(p2)K +(p3)
) = 2a0

1,

T 0(π−(p1)π
−(p2)π

+(p3)
) = 2a0

1,

T 0(K −(p1)π
−(p2)π

+(p3)
) = a0

1,

T 0(π−(p1)K −(p2)K +(p3)
) = a0

1. (3.2)

In the above, for the first two terms, the factor of 2 comes from
identical particle effect.

Note that there is no equivalent amplitude for A0 given ear-
lier. The construction of such a term comes from U -spin singlet
formed from two Mi . Without derivatives, the only singlet that can
be formed is
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ε i j Mi M j . (3.3)

It is identically equal to zero due to the boson particle nature of K
and π . This provides another way to understand why there is no
momentum independent A0 amplitude.

To have a non-zero contribution for A0 amplitude, we have
to include momentum dependent contributions. With derivatives,
it is possible to have U -spin singlet formed from two negatively
charged mesons. It is given by

ε i j Mi∂μM j . (3.4)

To construct Lorentz and U -spin invariant terms, one needs to
take another derivative on Mi or B− . We can have two types of
terms containing ε i j Mi∂μM j ,

(i) ε i j Mi(∂μM j)εkl M
k Hl(∂μB−)

,

(ii) ε i j Mi(∂μM j)εkl
(
∂μMk)Hl B−. (3.5)

With two derivatives, there are also other terms. One can ob-
tain them by taking appropriate derivatives from Eq. (3.1). They are
given by

(a) (∂μMi)Mi M j H j(∂μB−)
, (b) Mi

(
∂μMi)M j H j(∂μB−)

,

(c) Mi M
i(∂μM j)H j(∂μB−)

, (d) (∂μMi)
(
∂μMi)M j H j B−,

(e) Mi
(
∂μMi)(∂μM j

)
H j B−, (f) Mi

(
∂μMi)(∂μM j)H j B−.

(3.6)

Note that if the two derivatives are both taken on one field, ∂2Mi ,
∂2 Mi or ∂2 B− , using equations of motion, they do not produce
terms different than Eq. (3.1) in the U -spin limit.

The terms in Eq. (3.5) and Eq. (3.6) are not all independent
because

ε i jεkl = δi
kδ

j
l − δi

l δ
j

k . (3.7)

The two terms in Eq. (3.5) can be expressed as linear combinations
of the terms in Eq. (3.6)

(i) = (c) − (a), (ii) = (f) − (e). (3.8)

To emphasise the contributions for A0 amplitude, we use (i),
(ii), (b), ((a) + (c))/2, (d) and ((e) + (f))/2 as independent ones for
�S = −1 processes and label them as

(1)
(
∂μB−)

π+[(
∂μK −)

π− − K −(
∂μπ−)]

,

(2)
(
∂μB−)

K −[
K −(

∂μK +) + π−(
∂μπ+)]

,

(3)
(
∂μB−)[

K −(
∂μK −)

K +

+ 1

2

((
∂μ

(
K −)

π− + K −(
∂μπ−))

π+)]
,

(4) B−(
∂μπ+)[(

∂μK −)
π− − K −(

∂μπ−)]
,

(5) B−∂μK −[(
∂μK +)

K − + (
∂μπ+)

π−]
,

(6) B−
[(

∂μK −)
K −(

∂μK +)
+ 1

2

((
∂μK −)

π− + K −(
∂μπ−))

∂μπ+
]
. (3.9)

Replacing ∂μ by the corresponding momentum pμ , we express
the two derivative contributions to the decay amplitudes as

1

m2

(
α1(1) + α2(2) + α3(3) + α4(4) + α5(5) + α6(6)

)
. (3.10)
B

In the above, we have normalized the dimension of the coeffi-
cients αi so that they are dimensionless. Similarly, one can define
the amplitude P p for the penguin contribution. Similar expressions
also apply to the �S = 0 amplitudes.

Replacing ∂μ by momentum pμ in the above expressions, we
obtain the tree momentum dependent amplitude T p

T p(
K −(p1)K −(p2)K +(p3)

)
= 1

2m2
B

(
2α2 pB · p3 + α3 pB · (p1 + p2)

+ 2α5 p1 · p2 + α6(p1 + p2) · p3
)
,

T p(
K −(p1)π

−(p2)π
+(p3)

)
= 1

2m2
B

(
2α2 pB · p3 + α3 pB · (p1 + p2)

+ 2α5 p1 · p2 + α6(p1 + p2) · p3

+ 2
(
α1 pB · (p1 − p2) + α4(p1 − p2) · p3

))
,

T p(
π−(p1)π

−(p2)π
+(p3)

)
= 1

2m2
B

(
2α2 pB · p3 + α3 pB · (p1 + p2)

+ 2α5 p1 · p2 + α6(p1 + p2) · p3
)
,

T p(
π−(p1)K −(p2)K +(p3)

)
= 1

2m2
B

(
2α2 pB · p3 + α3 pB · (p1 + p2)

+ 2α5 p1 · p2 + α6(p1 + p2) · p3

+ 2
(
α1 pB · (p1 − p2) + α4(p1 − p2) · p3

))
. (3.11)

In the above, the terms α1,4 and α2,3,5,6 contribute to A0 and A1
respectively.

Note that in the U -spin symmetric limit, one has

T p(
K −(p1)K −(p2)K +(p3)

) = T p(
π−(p1)π

−(p2)π
+(p3)

)
,

T p(
K −(p1)π

−(p2)π
−(p3)

) = T p(
π−(p1)K −(p2)K +(p3)

)
.

(3.12)

Similarly, one can write down the penguin amplitude P p .
Neglecting the masses of K , and π , we have

T p(
K −(p1)K −(p2)K +(p3)

)
= T p(

π−(p1)π
−(p2)π

+(p3)
)

= 1

2m2
B

[
(s + t)(2α2 − α3 − 2α5 + α6) + 2m2

B(α3 + α5)
]
,

T p(
K −(p1)π

−(p2)π
+(p3)

)
= T p(

π−(p1)K −(p2)K +(p3)
)

= 1

4m2
B

[
(s + t)(2α2 − α3 − 2α5 + α6)

+ 2m2
B(α3 + α5) − 2(s − t)(α1 + α4)

]
, (3.13)

where s = (p2 + p3)
2 and t = (p1 + p3)

2.

4. Leading U -spin symmetry breaking contributions

U -spin symmetry is broken by quark mass difference which
will modify the decay amplitudes. We now study how to ob-
tain the leading amplitudes for U -spin violating amplitudes due
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to quark mass difference. The mass matrix for d and s quarks is
given by

(
χ i

j

) =
(

md 0
0 ms

)

= md + ms

2

(
1 0
0 1

)
+ md − ms

2

(
1 0
0 −1

)
. (4.1)

From the above, one sees that the mass matrix transforms as a lin-
ear combination of a U -spin singlet (the piece proportional to the
unit matrix) and a triplet (the piece proportional to σ3).

The construction of contributions due to quark masses can be
obtained by inserting χ at appropriate places in Eq. (3.1) and con-
tracting the indices appropriately. The piece proportional to unit
matrix will produce a decay amplitude proportional to the mo-
mentum independent U -spin amplitudes which can be absorbed
into the momentum independent part. Only the term proportional
to σ3 = (σ i

j ) term contains new information. We find two indepen-
dent terms

β1Miσ
i
j M j Mk Hk B−,

β2Mi M
i M jσ

j
k Hk B−. (4.2)

Expanding the above terms, we obtain the U -spin breaking con-
tributions to the decay amplitudes

T b(K −(p1)K −(p2)K +(p3)
) = −2β1 − 2β2,

T b(π−(p1)π
−(p2)π

+(p3)
) = 2β1 + 2β2,

T b(K −(p1)π
−(p2)π

+(p3)
) = β1 − β2,

T b(π−(p1)K −(p2)K +(p3)
) = −β1 + β2. (4.3)

We have

T b(K −K −K +) − T b(K −π−π+)
= T b(π−K −K +) − T b(π−π−π+)

. (4.4)

Note that the above U -spin breaking terms do not have break-
ing terms related to the A0 amplitude which should be there in
general [13]. This is because of the fact that to have a non-zero A0
amplitude, derivative terms must be involved as discussed earlier.
Including derivative terms, one can write two terms

(i) γ1∂μ(Mi)M jε
i j∂μ

(
Mk)σ l

k Hmεlm B−,

(ii) γ2∂μ(Mi)M jε
i j Mkσ l

k Hmεlm∂μB−. (4.5)

However, the above two terms are equivalent to each other, to first
order in light quark mass, because the relation

(i) + (ii) = ∂μ
(
∂μ(Mi)M jε

i j Mkσ l
k Hmεlm B−)

− ∂μ
(
∂μ(Mi)M jε

i j)Mkσ l
k Hmεlm B−. (4.6)

The first term in the above is a total derivative term which does
not play a role. The second term is proportional to (m2

K − m2
π )

which is one order higher in light quark mass expansion com-
pared to the leading terms proportional to βi and can be neglected.
Therefore (i) and (ii) are equivalent. Let us use (i) for discussion,
one obtains additional corrections T bp to T b with

T bp(
K −(p1)K −(p2)K +(p3)

) = 0,

T bp(
π−(p1)π

−(p2)π
+(p3)

) = 0,

T bp(
K −(p1)π

−(p2)π
+(p3)

) = γ1(p1 − p2) · pB ,

T bp(
π−(p1)K −(p2)K +(p3)

) = −γ1(p1 − p2) · pB . (4.7)
For consistence one should also now include terms of the form,
∂2Mi Mi M j H j B− , Mi∂

2Mi M j H j B− and Mi Mi∂2M j H j B− , because
∂2 K = m2

K K and ∂2π = m2
ππ (the difference in masses breaks

U -spin). These terms have been neglected in the U -spin limit.
When U -spin breaking is considered, they should be included.
However, when expanding these terms using equations of motion,
all resulting terms can be absorbed into terms proportional to βi .
We not need to write them again.

5. Conclusion and discussions

In the previous sections, we have studied construction of de-
cay amplitudes for B− to three charged light pseudoscalar mesons
from U -spin symmetry considerations. The construction discussed
has many things in common with flavor SU(3) symmetry analysis
for these decays. We conclude the Letter by making a comparison
with SU(3) construction of the decay amplitudes and summarize
the main numerical results.

Flavor SU(3) symmetry contains U -spin symmetry. Therefore
one expects that the same form of decay amplitudes will result
for the same initial and final particles. Indeed we find the corre-
sponding contributions of these two analyses.

The total decay amplitudes Tt and Pt can be written as

Tt = T 0 + T p + T b, Pt = P 0 + P p + P b. (5.1)

In the above, T b and P b include T bp and P bp also, respectively.
The constants in these amplitudes are in general complex which
are identified as the FSI phases. As mentioned earlier these phases
cannot be determined by using U -spin alone, but may be deter-
mined by fitting experimental data.

In the analysis of flavor SU(3) symmetry in Ref. [6], the ampli-
tudes were written as

Tt = T + T p + �T , Pt = P + P p + �P . (5.2)

Apart from the identical factor conventions difference here and
that used in Ref. [6], the roles of T 0, P 0 and T p and P p here are
played by T , P , T p and P p in Ref. [6], respectively. In Ref. [6], �T
and �P amplitudes look different than what have been defined
here, since �T (K −K −K +) is not equal to −�T (π−π−π+), and
�T (K −π−π+) is not equal to −�T (π− K −K +) as should be here
shown in Eqs. (4.3). However, if one shifts the definitions of T 0

and �T amplitudes as

T̃ 0(π−π−π+) = T̃ 0(K −K −K +)
= T 0(π−π−π+) + T b(π−π−π+)

,

T̃ 0(K −π−π+) = T̃ 0(π−K −K +)
= T 0(K −π−π+) + 1

2
T p(

π−π−π+)
,

�T̃
(

K −K −K +) = T b(K −K −K +) − T b(π−π−π+)
,

�T̃
(

K −π−π+) = T b(K −π−π+) − 1

2
T b(π−π−π+)

,

�T̃
(
π−K −K +) = T b(π−K −K +) − 1

2
T b(π−π−π+)

, (5.3)

the amplitudes T̃ and �T̃ are equivalent to T ′ and �T ′ defined in
Ref. [6]. In the above the factor 1/2 is due to different convention
of identical factor in amplitudes. The U -spin symmetry and SU(3)

symmetry for B− decays into three charged pseudoscalar mesons
are equivalent.

As far as obtaining the forms of decay amplitudes for B− de-
cays into three charged light pseudoscalar mesons is concerned,
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the U -spin symmetry analysis is considerably simpler than that of
the SU(3) symmetry analysis. However, SU(3) analysis can also ap-
ply to some of the final three pseudoscalar mesons to be neutral
ones and also include B0

d and Bs decay into three pseudoscalar
mesons.

The numerical fitting to data for B− decays into three light
pseudoscalar mesons will be the same in both approaches. We
summarize below the main conclusions regarding numerical anal-
ysis with data obtained in Ref. [6] in the U -spin language.

With just U -spin conserving momentum independent ampli-
tudes T 0 and P 0, one would obtain relations given in Eqs. (2.8) and
(2.10). The LHCb data shown in Section 1 obviously do not sup-
port the branching ratio relations given by Eqs. (2.8). The relations
for CP asymmetry ACP given in Eqs. (2.8) and (2.10) do not agree
with data either, except the ratio ACP(π

+π+π−)/ACP(K +K +K −).
The LHCb data ACP(π

+π+π−)/ACP(K +K +K −) = −2.7±0.9 agrees
with the predicted value [5] −2.2 ± 0.2 very well using Eqs. (2.10).
If experimental data at the LHCb will be further confirmed, one
needs to include contributions from beyond the U -spin conserving
momentum independent effects to explain the data. It may help if
we take the momentum dependent and U -spin breaking contribu-
tions in consideration.

Adding U -spin conserving momentum dependent amplitudes
T p and P p , the degeneracy between the amplitudes for
A(π−π−π+) and A(π−K −K +), and A(K −K −K +) and
A(K −π−π+) can be lifted by a new piece of contribution, the
term proportional to s−t in Eqs. (3.13). Because this new contribu-
tion does not interfere with the other contributions, if it enhances
the branching ratios of B− → K −π−π+ , it also enhances B− →
π−K −K + compared with B− → K −K −K + and B− → π−π−π+ ,
respectively. This does not help to improve fit to data which re-
quires enhancement of branching ratio for B− → K −π−π+ , but
reduction for B− → π−K −K + .

The experimental data can be explained by including U -spin
conserving T 0 and P 0, and U -spin breaking terms T b and P b if
these terms are sizable compared with T 0 and P 0. Without in-
cluding T p and P p terms, data can already be explained. One
may wonder what will happen if both momentum dependent and
U -spin breaking terms are included, such as whether one can have
small U -spin breaking contribution and/or have large T p and P p .
It has been shown in Ref. [6] that including both the momentum
dependent and U -spin breaking contributions, one still cannot ob-
tain small U -spin breaking amplitudes to explain data. However,
one can find solutions with sizable T p and P p compared with T 0

and P 0.
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