In this paper we investigate Szilard languages of IO-grammars. First we show, similar to the proof in Moriya [Information and Control 22 (1973), 139-162], that these languages are context-sensitive. It is known that there are context-free languages L such that no context-free grammar for L has a context-free Szilard language. Since a context-free language L is also an IO-language the question arises if there exists an IO-grammar for L with a context-free Szilard language.

To solve this problem we first provide an algorithm which transforms an IO-grammar into a simple normal form. Then it is possible to construct a context-free grammar generating the Szilard language of the normal form IO-grammar. Hence every IO-language has an IO-grammar with a context-free Szilard language.

1. Introduction

Szilard languages of phrase-structure grammars are investigated in the literature as a measure of derivational complexity of grammars (Moriya, 1973). In this paper we study the Szilard languages of IO-grammars, a type of grammar, which is an extension of context-free grammars but not a phrase-structure grammar.

For the notion of a macro grammar with inside-out mode of derivation, IO-grammar for short, and related concepts see Duske et al. (1977) or Fischer (1968). Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar, where $\Pi = \{\pi_1, \ldots, \pi_n\}$ is the set of productions. A term $F(x_1, \ldots, x_{\rho(F)})$ with $F \in \mathcal{F}$, x_i terms over $\Sigma, \mathcal{F}, \rho$ for $i \in [1: \rho(F)]$ is called a \textit{macro}, and the x_i's are called \textit{arguments of the macro}. In contrast to the convention in Fischer (1968), 0-ary macros, i.e. macros with $\rho(F) = 0$, are written in the form $F()$.

If a macro $F(x_1, \ldots, x_{\rho(F)})$ is a subterm of a term ϕ, it is called \textit{macro in ϕ}. A macro $F(x_1, \ldots, x_{\rho(F)})$ in ϕ with $x_i \in \Sigma^*$ for $i \in [1: \rho(F)]$ is called \textit{applicable}.

Let ϕ and ϕ' be terms over $\Sigma, \mathcal{F}, \rho, \phi'$ is \textit{directly derivable} from ϕ with respect to G_M iff there is an applicable macro $F(x_1, \ldots, x_{\rho(F)})$ in ϕ and a production $\pi_j : F(x_1, \ldots, x_{\rho(F)}) \rightarrow \theta$ in Π such that ϕ' is obtained from ϕ by application of π_j. This is written as $\phi \xrightarrow{\pi_j} \phi'$.
DEFINITION 1.1. Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar. For every $\pi \in \Pi^*$ a relation \Rightarrow^π on the set of terms over $\Sigma, \mathcal{F}, \rho$ is defined as follows:

1. Let $e \in \Pi^*$ be the empty word. Then $\phi \Rightarrow^e \phi'$ iff $\phi = \phi'$.
2. Let $\pi \in \Pi^*$ and $\pi_i \in \Pi$. Then $\phi \Rightarrow^\pi \phi'$ iff there is a ϕ'' with $\phi \Rightarrow^\pi \phi''$ and $\phi'' \Rightarrow^{\pi_i} \phi'$.

We will write $\phi \Rightarrow^* \phi'$ iff there is a $\pi \in \Pi^*$ with $\phi \Rightarrow^\pi \phi'$.

DEFINITION 1.2. Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar. Then $S\Sigma(G_M) = \{ \pi \mid S(\pi) \Rightarrow^\pi w, w \in \Sigma^*, \pi \in \Pi^* \}$ is called the Szilard language of G_M.

For an IO-grammar G_M a homomorphism $\psi: (\Sigma \cup \mathcal{F} \cup \mathcal{V} \cup \{(,), \})^* \rightarrow (\mathcal{F} \cup \{ [,] \})^*$ is defined by

$$
\psi(X) = \begin{cases}
[] & \text{if } X = (\\
] & \text{if } X =) \\
X & \text{if } X \in \mathcal{F} \\
e & \text{otherwise}
\end{cases}
$$

and a homomorphism $h: (\Sigma \cup \mathcal{F} \cup \mathcal{V} \cup \{(,), [,] \})^* \rightarrow \mathcal{F}^*$ is defined by

$$
h(X) = \begin{cases}
X & \text{if } X \in \mathcal{F} \\
e & \text{otherwise}.
\end{cases}
$$

The following two lemmas are given without proof.

LEMMA 1.1. Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar and $\phi = \xi_1 F(\sigma_1, ..., \sigma_{\rho(F)} \xi_2$ with $F \in \mathcal{F}$ and $\sigma_i \in \Sigma^*$ for $i \in [1 : \rho(F)]$ a term over $\Sigma, \mathcal{F}, \rho$. Then $\psi(\phi) = [] \psi(\xi_1) F[] \psi(\xi_2)$ with $h(\xi_i) = h(\psi(\xi_i))$ for $i = 1, 2$ holds.

LEMMA 1.2. Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar and ϕ a term over $\Sigma, \mathcal{F}, \rho$. If $\psi(\phi) = \eta_1 G[] \eta_2$ with $G \in \mathcal{F}$ holds, then ϕ has the form $\phi = \xi_1 G(\sigma_1, ..., \sigma_{\rho(G)} \xi_2$ with $\sigma_i \in \Sigma^*$ for $i \in [1 : \rho(G)]$ and $h(\eta_i) = h(\xi_i)$ for $i = 1, 2$.

2. Szilard Languages of IO-Grammars are Context-Sensitive

Let $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar with $\Pi = \{ \pi_1, ..., \pi_n \}$. We now specify a context-sensitive grammar $G_{CS} = (N, T, S', P)$, called the associated context-sensitive grammar of G_M. N and T are the following disjoint unions:

$$
N = \mathcal{F} \cup \{ F_a \mid F \in \mathcal{F} \} \cup \{ c_{\pi_i} \mid i \in [1 : n] \} \cup \{ e_{\pi_i} \mid i \in [1 : n] \}
\cup \{ L, R, \upharpoonleft, D, D', S', [,] \} \quad \text{and}
$$

$$
T = \Pi \cup \{ d \}.
$$
P consists of the following productions:

(1) $S' \rightarrow LS[] \uparrow R$

(2) If π_i is the production $F(x_1, \ldots, x_\rho(F)) \rightarrow \Theta_i$ in G_M, then $F[\uparrow] \rightarrow c_{\pi_i} F_a D' D'$ is in P for all $i \in [1: n]$.

(2a) $[\uparrow \rightarrow \uparrow[]$, $\uparrow[\rightarrow \uparrow]$ $F' \uparrow \rightarrow \uparrow F$ for all $F \in \mathcal{F}$

(3) $[c_{\pi_i} \rightarrow c_{\pi_i}[]]$

$F \rightarrow F$ for all $F \in \mathcal{F}$

(3a) $\rightarrow \rightarrow$ for all $F \in \mathcal{F}$

(4) $L \rightarrow L \rightarrow$ for all $i \in [1: n]$

(5) $\rightarrow [c_{\pi_i}]$

$F \rightarrow c_{\pi_i} F$ for all $i \in [1: n]$ and $F \in \mathcal{F}$

(6) $D[\rightarrow D$

$D \rightarrow]D$

$DF \rightarrow FD$ for all $F \in \mathcal{F}$

(7) $DDDDR \rightarrow \uparrow Rddd$

(8) If π_i is the production $F(x_1, \ldots, x_\rho(F)) \rightarrow \Theta_i$ in G_M, then $\rightarrow \psi(\Theta_i) D' D'$ is in P for all $i \in [1: n]$.

(8a) $D' D' D' \rightarrow DDDD$

(9) $L \uparrow R \rightarrow ddd$

Clearly G_{cs} is context-sensitive. The construction of G_{cs} for G_M is analog to the construction of a context-sensitive grammar for a phrase-structure grammar in Moriya (1973).

Let $S' \rightarrow LS[] \uparrow R = u_0 \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_m = w$ with $w \in T^*$ be a derivation according to G_{cs}. Let $j_0 < j_1 < \cdots < j_k$ be exactly those indices, such that u_{j_i} has the form

$$\pi L u \uparrow R \delta \quad \text{with} \quad \pi \in \Pi^*, \ \delta \in d^*, \ u \in (\mathcal{F} \cup \{[],]\}^*).$$

(2.1)

Obviously $j_0 = 0$ holds.

Now let $u_{j_i}, \ i \in [0: k]$, be given. There are two cases to consider:

(a) $u = e$. We can only apply production (9) to u_{j_i}, i.e. $u_{j_i} \xrightarrow{\pi d^* \delta} \pi d^* \delta = w$.

Thus $i = k$ and $j_k = m - 1$ holds.
DUSKE, PARCHMANN, AND SPECHT

(b) \(u \neq e \). First, only productions of type (2a) are applied, until a word of the form
\[
\pi L v_1 F[^1] v_2 R \delta \quad \text{with} \quad v_1, v_2 \in (\mathcal{F} \cup \{[,]\})*
\]
is derived. Then a production of type (2) is applied:

(I) \(u_{i+1} \overset{2a}{\Rightarrow} \pi L v_1 F[^1] v_2 R \delta = u_{i+n_1} \)

(II) \(u_{i+n_1} \Rightarrow (\pi L v_1 e \varepsilon_{q}^* F_a D' D' v_2 R \delta \)

Now only productions of type (3) may be applied:

(III) \(u_{i+n_1+1} \overset{3}{\Rightarrow} \pi L v_1 F_a D' D' v_2 R \delta = u_{i+n_2} \)

In this situation only a production of type (4) is applicable:

(IV) \(u_{i+n_2} \Rightarrow (\pi \varepsilon_{q} L v_1 F_a D' D' v_2 R \delta \)

By means of productions of type (5) the \(\varepsilon_{q} \) can be shifted to the left of \(F_a \):

(V) \(u_{i+n_2+1} \overset{5}{\Rightarrow} \pi \varepsilon_{q} L v_1 F_a \delta = u_{i+n_3} \)

Now only a production of type (8) is applicable. Then production (8a) is applied:

(VI) \(u_{i+n_3} \Rightarrow (\pi \psi(\Theta_q) D' D' D' v_2 R \delta \)

(VII) \(u_{i+n_3+1} \Rightarrow (\pi \varepsilon_{q} L v_1 F_a D' D' D' D' v_2 R \delta = u_{i+n_4} \)

By application of productions of type (6) the \(D's \) are shifted to the right:

(VIII) \(u_{i+n_4} \overset{6}{\Rightarrow} \pi \varepsilon_{q} L v_1 D' D' D' D' R \delta = u_{i+n_5} \)

Application of production (7) yields:

(IX) \(u_{i+n_5} \Rightarrow (\pi \varepsilon_{q} L v_1 \psi(\Theta_q) v_2 \delta = u_{i+n_6} \)

LEMMA 2.1. Let the situation of (2.1) be given. If \(u_{i_0} = \pi L u \uparrow R \delta \) with \(\pi = \pi_{r_1} \pi_{r_2} \cdots \pi_{r_t} \) holds, then we have:

1. \(i = q \)
2. In step \((\Pi_{i-1})\) the production \(F[^1] \rightarrow c_{r_1} F_a D' D' \) and in step \((\Pi_{i-1})\) the production \(\tilde{c}_{a r_1} F_a \rightarrow \psi(\Theta_{r_1}) D' D' \) have been applied for \(i \in [1 : t] \).
3. \(\delta \in \delta^* \) with \(| \delta | = 3q \).

Proof. For \(q = 0 \) we have \(u_{i_0} = L S[^1] \uparrow R \) and the assertions are true.

If the assertions hold for \(q - 1 \) then \(u_{i_{q-1}} \) is of the form \(u_{i_{q-1}} = \pi' L u' \uparrow R \delta' \) with \(\pi' = \pi_{r_1} \pi_{r_2} \cdots \pi_{r_{q-1}} \) and \(| \delta' | = 3(q - 1) \).

\(u_{i_q} \) is derived by application of productions according to \((I_{q-1}) - (IX_{q-1})\), hence the assertions are true for \(q \). Especially \(u_{i_k} = \pi_{r_1} \pi_{r_2} \cdots \pi_{r_k} L \uparrow R \delta_{k+1} \) with \(| \delta_{k+1} | = 3 \).

THEOREM 2.1. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar and \(G_{CS} \).
the associated context-sensitive grammar. Let situation (2.1) be given with
\[w = \pi_{r_1} \pi_{r_2} \cdots \pi_{r_k} d^{k(k+1)} \]. Then there exists a derivation according to \(G_M \) of the form

\[\phi_0 = S() \Rightarrow \phi_1 \Rightarrow \cdots \Rightarrow \phi_{k-1} \Rightarrow \phi_k \]

with \(\phi_k \in \Sigma^* \).

Proof. First it will be shown: There are terms \(\phi_0, \ldots, \phi_k \) over \(\Sigma, \mathcal{F}, \rho \) such that for \(q \in [0; k] \) with \(u_{j_q} = \pi_{r_1} \pi_{r_2} \cdots \pi_{r_q} L \psi(\phi_q) \uparrow R u_{j_q} \) there exists a derivation according to \(G_M \) of the form

\[\phi_0 = S() \Rightarrow \phi_1 \Rightarrow \cdots \Rightarrow \phi_q \quad \text{with} \quad \psi(\phi_q) = u^{(q)} \cdot \]

For \(q = 0 \) we have \(\phi_0 = S() \) and \(u_{j_0} = LS[] \uparrow R = L \psi(\phi_0) \uparrow R \). Assume \(\phi_0, \ldots, \phi_q \) have just been defined and assume that

\[u_{j_q} = \pi_{r_1} \cdots \pi_{r_q} L \psi(\phi_q) \uparrow R u_{j_q} \]

and

\[u_{j_{q+1}} = \pi_{r_1} \cdots \pi_{r_q} \pi_{r_{q+1}} L \psi(\phi_{q+1}) \uparrow R u_{j_{q+1}} \]

and \(\pi_{r_{q+1}} \) is the production \(F(x_1, \ldots, x_{\rho(F)}) \rightarrow \Theta_{q+1} \). In the derivation \(u_{j_q} \Rightarrow u_{j_{q+1}} \) the productions \(F(\cdot) \rightarrow c \pi_{r_q} F_a D'D' \) and \(c \pi_{r_q} F_a \rightarrow \psi(\Theta_{q+1}) D'D' \) have been applied according to Lemma 2.1. Thus, \(\psi(\phi_q) = \eta_1 \psi(\cdot) \eta_2 \) and by Lemma 1.2 \(\phi_q = \xi_1 F(\sigma_1, \ldots, \sigma_{\rho(F)}) \xi_2 \) with \(\sigma_i \in \Sigma^* \) for \(i \in [1; \rho(F)] \) and \(\psi(\xi_i) = \eta_i \) for \(i = 1, 2 \) holds. Hence, \(F(\sigma_1, \ldots, \sigma_{\rho(F)}) \) is an applicable macro in \(\phi_q \). The application of \(\pi_{r_{q+1}} \) yields a term \(\phi_{q+1} = \xi_1 \Theta_{q+1} \xi_2 \), where \(\Theta_{q+1} \) is obtained by substitution of \(x_i \) by \(\sigma_i \) in \(\Theta_{q+1} \) for \(i \in [1; \rho(F)] \). \(u^{(q+1)} \) has the form \(\eta_1 \psi(\Theta_{q+1}) \eta_2 = \eta_1 \psi(\Theta_{q+1}) \eta_2 = \psi(\phi_{q+1}) \).

In particular \(u_{j_{k-1}} = \pi_{r_1} \cdots \pi_{r_k} L u_{j_k} \uparrow R \), i.e. \(\psi(\phi_k) = e \), holds, thus \(\phi_k \in \Sigma^* \).

Conversely we have:

Theorem 2.2. Let \(\phi_0 = S() \Rightarrow \pi_{r_1} \pi_{r_2} \cdots \pi_{r_{k-1}} \pi_{r_k} \) be a derivation according to \(G_M \) with \(\phi_k \in \Sigma^n \). Then there exists a derivation

\[S' \Rightarrow LS[] \uparrow R = u_0 \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_m = w \]

according to \(G_{CS} \) with \(w = \pi_{r_1} \cdots \pi_{r_k} d^{k(k+1)} \).

Proof. First it will be shown: For \(q \in [0; k] \) there is a derivation \(S' \Rightarrow LS[] \uparrow R = u_{j_0} \Rightarrow u_{j_1} \Rightarrow \cdots \Rightarrow u_{j_q} \) according to \(G_{CS} \) with

\[u_{j_q} = \pi_{r_1} \cdots \pi_{r_q} L \psi(\phi_q) \uparrow R u_{j_q} \].

For \(q = 0 \) we have \(L \psi(\phi_0) \uparrow R = LS[] \uparrow R = u_{j_0} \). Let \(u_{j_q} = \pi_{r_1} \cdots \pi_{r_q} L \psi(\phi_q) \uparrow R u_{j_q} \) and let \(\pi_{r_{q+1}} \) be the production \(F(x_1, \ldots, x_{\rho(F)}) \rightarrow \Theta_{q+1} \).
\[\phi_q = \xi \mathcal{F}(\sigma_1, \ldots, \sigma_{p(\mathcal{F})}) \xi \] with \(\sigma_i \in \Sigma^* \) for \(i \in [1 : p(\mathcal{F})] \) and \(\phi_{q+1} = \xi \tilde{\Theta}_{q+1} \xi \) holds, where \(\tilde{\Theta}_{q+1} \) has the form specified in the proof of Theorem 2.1. According to Lemma 1.1 we have \(\psi(\phi_q) = \eta_1 \mathcal{F}(\) \eta_2 \) with \(\eta_i = \psi(\xi) \) for \(i = 1, 2 \). Hence we have

\[u_{j_k} \xrightarrow{\mathcal{F}[\]} \pi_{r_1} \cdots \pi_{r_k} \eta_1 \mathcal{F}(\) \eta_2 R^{\phi_q}. \]

Application of \(\mathcal{F}[\mathcal{F}] \rightarrow \pi_{r_1} \mathcal{F}_a D'D' \) necessarily leads to an application of \(\psi(\Theta_{q+1}) D'D' \) which finally yields an \(u_{j_{q+1}} \) of the form \(\pi_{r_1} \cdots \pi_{r_{q+1}} \eta_{t}\eta_{t+1} \mathcal{F}(\Theta_{q+1}) \eta_2 R^{\phi_{q+1}} \) with

\[\psi(\phi_{q+1}) = \eta_1 \psi(\tilde{\Theta}_{q+1}) \eta_2 = \eta_1 \psi(\Theta_{q+1}) \eta_2 \]

From \(u_{j_k} = \pi_{r_1} \cdots \pi_{r_k} \eta_{t}\eta_{t+1} \mathcal{F}(\phi_{q+1}) R^{\phi_{q+1}} \) and \(\psi(\phi_{q+1}) = e \) the theorem follows.

Corollary 2.1. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar. Then \(S_z(G_M) \) is context-sensitive.

Proof. Consider the homomorphism \(f: (\Pi \cup \{d\})^* \rightarrow \Pi^* \) with

\[f(a) = \begin{cases} a & \text{if } a \in \Pi \\ e & \text{if } a = d \end{cases} \]

We have \(S_z(G_M) = f(L(G_{CS})) \), and for all \(w \in L(G_{CS}) \) the following holds: \(|f(w)| \geq |w| \). Thus, \(S_z(G_M) \) is context-sensitive (cf. Ginsburg and Greibach, 1966).

3. L-Normal Form for IO-Grammars

First some notations will be defined. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar and \(\phi \) a term over \(\Sigma, \mathcal{F}, \rho \). An applicable macro \(\mathcal{F}(\sigma_1, \ldots, \sigma_{p(\mathcal{F})}) \) in \(\phi \) is called **leftmost applicable macro** or **LA-macro** for short if no applicable macro in \(\phi \) occurs to the left of it. The notations "directly left derivable" or "L-derivable" and "left derivation" are defined in an obvious way. We write \(\phi \Rightarrow \phi' \) if \(\phi' \) is derivable from \(\phi \) by application of \(\pi_i \) to the leftmost applicable macro in \(\phi \). The relation "\(\Rightarrow \)" for all \(\pi \in \Pi^* \) is analogue to the relation "\(\Rightarrow \)". We write \(\phi \Rightarrow \phi' \) if there is a \(\pi \in \Pi^* \) with \(\phi \Rightarrow_\pi \phi' \).

Definition 3.1. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar. Then \(S_z(G_M) = \{ \pi \mid S(\) \Rightarrow w, w \in \Sigma^*, \pi \in \Pi^* \} \) is called **leftmost Szilard language** of \(G_M \).

In the following the notation of "L-normal form" for IO-grammars will be defined. Then we will show that every derivation according to an IO-grammar in L-normal form is a left derivation.
DEFINITION 3.2. An IO-grammar \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) is called an IO-grammar in L-normal form, if for all \(\pi \in \Pi \) the following holds:

\(\pi \) is either of the form

(A) \(F(x_1, \ldots, x_{\rho(F)}) \rightarrow G(x_1, \ldots, x_{\rho(F)}, H(\sigma_1, \ldots, \sigma_{\rho(H)})) \) with \(x_i \in \mathcal{V} \) for \(i \in [1: \rho(F)] \) and \(\sigma_i \in (\Sigma \cup \mathcal{V})^* \) for \(i \in [1: \rho(H)] \) or

(B) \(F(x_1, \ldots, x_{\rho(F)}) \rightarrow t \) with \(x_i \in \mathcal{V} \) for \(i \in [1: \rho(F)] \) and \(t \in (\Sigma \cup \{x_1, \ldots, x_{\rho(F)}\})^* \).

THEOREM 3.1. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar in L-normal form. If \(S(\) \Rightarrow^* v \) holds with \(\pi \in \Pi^* \) and \(v \notin \Sigma^* \), then \(v \) has the form \(\xi F(r_1, \ldots, r_{\rho(F)}) \xi' \) with \(F \in \mathcal{F}, \tau_i \in \Sigma^* \) for \(i \in [1: \rho(F)] \), and \(\xi = F_1(w_1 \cdots w_{\rho(F)} \cdots F_k w_k) \) with \(F_j \in \mathcal{F}, \tau_j \in (\Sigma \cup \{\})^* \) for \(j \in [1: k] \) and \(k \geq 0 \).

Proof. The assertion holds for \(|\pi| = 0 \). Now, assume the induction hypothesis is true for all \(S(\) \Rightarrow^* v \) with \(|\pi| \leq m \). Let \(\pi' = \pi \tau_k \) with \(|\pi'| = m \) and \(\tau_k \in \Pi \). If \(S(\) \Rightarrow^* v, v \notin \Sigma^* \) holds, then there exists a \(v' \) with \(S(\) \Rightarrow^* v' \Rightarrow^* v \).

(1) Let \(\pi_k \) be of the form (A), then

\(v = \xi G(\tau_1, \ldots, \tau_{\rho(F)}, H(\sigma'_1, \ldots, \sigma'_{\rho(H)})) \xi' \),

where \(\sigma'_i \) is obtained by substitution of \(x_j \) by \(\tau_j \) in \(\sigma_i \) for \(i \in [1: \rho(H)] \) and \(j \in [1: \rho(F)] \).

(2) Let \(\pi_k \) be of the form (B), then

\(v = \xi v' \xi' \) with \(v' \in \Sigma^* \) and \(\xi \neq e \) (for otherwise \(\xi' = e \) and \(v \in \Sigma^* \)).

Hence \(k > 0 \) and \(v = \xi F_k(w_k \gamma) \xi' \in \Sigma^* \) with \(\xi' \in \{\}^* \) and \(\xi = F_1(w_1 \cdots F_{k-1}(w_{k-1}) \). Since \(v \) is a term over \(\Sigma, \mathcal{F}, \rho \), we have

\(F_k(w_k \gamma) = F_k(\kappa_1, \ldots, \kappa_{\rho(F)}) \) with \(\kappa_i \in \Sigma^* \).

COROLLARY 3.1. Let \(G_M \) be an IO-grammar in L-normal form. Then every sentential form according to \(G_M \) has at most one applicable macro, and every derivation according to \(G_M \) is a left derivation.

Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar. A term \(F(\sigma_1, \ldots, \sigma_{\rho(F)}) \) over \(\Sigma \cup \mathcal{V}, \mathcal{F}, \rho \) is called a \(\mathcal{V} \)-macro. A \(\mathcal{V} \)-macro \(F(\sigma_1, \ldots, \sigma_{\rho(F)}) \) with \(\sigma_i \in (\Sigma \cup \mathcal{V})^* \) is called applicable \(\mathcal{V} \)-macro. Let \(\phi \) be term over \(\Sigma \cup \mathcal{V}, \mathcal{F}, \rho \). An applicable \(\mathcal{V} \)-macro \(F(\sigma_1, \ldots, \sigma_{\rho(F)}) \) in \(\phi \) is called leftmost applicable \(\mathcal{V} \)-macro in \(\phi \), if no applicable \(\mathcal{V} \)-macro occurs to the left of it.

Remark. Let \(\phi = \xi \eta F(\sigma_1, \ldots, \sigma_{\rho(F)}) \xi_2 \) be a term over \(\Sigma \cup \mathcal{V}, \mathcal{F}, \rho \) and \(y \notin \Sigma \cup \mathcal{V} \cup \mathcal{F} \), then \(\phi' = \xi_1 y \xi_2 \) is a term over \(\Sigma \cup (\mathcal{V} \cup \{y\}), \mathcal{F}, \rho \). Given
an IO-grammar G_M, the following algorithm constructs an IO-grammar
G'_M in L-normal form, and $L(G_M) = L(G'_M)$ will be shown.

Algorithm 3.1.

Input. An IO-grammar $G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi)$ with $\Pi = \{\pi_1, ..., \pi_n\}$ and $\mathcal{V} = \{x_1, ..., x_k\}$.

Output. An IO-grammar G'_M in L-normal form with $L(G_M) = L(G'_M)$.

Method. A sequence $G^{(1,0)}, ..., G^{(1,r_1)}, ..., G^{(n,r_n)}$ of IO-
grammars with $r_i \geq 0$ for $i \in [1:n]$ and $G^{(i,i)} = (\Sigma, \mathcal{F}_i, \mathcal{V}, \rho_i, S, \Pi_i)$ will be constructed.

1. Let r be the maximal number of occurrences of \mathcal{V}-macros in the right
sides of productions of Π. Set $\mathcal{V} = \{x_1, ..., x_k, x_{k+1}, ..., x_{k+r}\}$, where $x_{k+1}, ..., x_{k+r}$
are new variables.

2. Set $G^{(1,0)} = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) = (\Sigma, \mathcal{F}_0, \mathcal{V}, \rho_0, S, \Pi_0)$.

3. Suppose we have constructed $G^{(i,0)}$. Now, construct a sequence
$G^{(i,1)}, ..., G^{(i,r_i)}$ of IO-grammars with $r_i \geq 0$ in the following way:

 If π_i is of the form (A) or (B), set $r_i = 0$ and $G^{(i+1,0)} = G^{(i,0)}$ and go to (5).

 If $\pi_i : F(x_1, ..., x_{\rho(F)}) \rightarrow \Theta_i$ is not of the form (A) or (B), set
$G^{(i,1)} = (\Sigma, \mathcal{F}_i, \mathcal{V}, \rho_i, S, \Pi_i)$ with $\mathcal{F}_i = \mathcal{F}_0 \cup \{H_0\}$, where H_0 is a new function
symbol, $\rho_0 \mid \mathcal{F}_0 = \rho_0$ and $\rho_0(H_0) = \rho(F) + 1$. ($\rho_1 \mid \mathcal{F}_0$ is the restriction of
ρ_1 to \mathcal{F}_0). $\Pi_0 = (\Pi_0 \{\pi_0\} \cup \{\pi_0, \pi_1\}$ with

 \[\pi_0 : F(x_1, ..., x_{\rho(F)}) \rightarrow H_0(x_1, ..., x_{\rho(F)}, A(\sigma_1, ..., \sigma_{\rho(A)}))\]

 and

 \[\pi_1 : H_0(x_1, ..., x_{\rho(F)}, A(\sigma_1, ..., \sigma_{\rho(A)})) \rightarrow \Theta_1,\]

 if $\Theta_1 = \xi_1 A(\sigma_1, ..., \sigma_{\rho(A)})$ holds and $A(\sigma_1, ..., \sigma_{\rho(A)})$ is the leftmost applicable
\mathcal{V}-macro in Θ_i.

4. Suppose we have constructed $G^{(i,j)}$ with

 \[\pi_i : H^{(i,j)}(x_1, ..., x_{\rho(F)}, ..., x_{\rho(F)+j}) \rightarrow \Theta_i\]

 The number of occurrences of \mathcal{V}-macros in Θ_i is $r_i - j$. If π_i is of the form
(A) or (B), set $r_i = j$ and $G^{(i+1,0)} = G^{(i,r_i)}$ and go to (5).

 If π_i is not of the form (A) or (B), set $G^{(i+1,j+1)} = (\Sigma, \mathcal{F}_i^{j+1}, \mathcal{V}, \rho_i^{j+1}, S, \Pi_i^{j+1})$
with $\mathcal{F}_i^{j+1} = \mathcal{F}_i \cup \{H_i^{j+1}\}$, where H_i^{j+1} is a new function symbol,
$\rho_i^{j+1} \mid \mathcal{F}_i^{j+1} = \rho_i^{j+1}$ and $\rho_i^{j+1}(H_i^{j+1}) = \rho_i(H_i) + 1 = \rho(F) + j + 1$. Construct Π_i^{j+1}
in the following way: First remove π_i from Π_i^{j+1} and then add the following two productions:
\[\pi_i^j: H_i^j(x_1, \ldots, x_{\rho(F)}, \ldots, x_{\rho(F)+j}) \rightarrow H_i^{j+1}(x_1, \ldots, x_{\rho(F)+j}, A^j(\sigma^j_1, \ldots, \sigma^j_{\rho(A)})) \]

and

\[\pi_i^{j+1}: H_i^{j+1}(x_1, \ldots, x_{\rho(F)+j+1}) \rightarrow \xi_i^j x_{\rho(F)+j+1} \xi_{i+1} = \Theta_i^{j+1}, \]

if \(\Theta_i^j = \xi_i^j A^j(\sigma^j_1, \ldots, \sigma^j_{\rho(A)}) \xi_{i+1}^j \) holds and \(A^j(\sigma^j_1, \ldots, \sigma^j_{\rho(A)}) \) is the leftmost applicable \(\mathcal{F} \)-macro in \(\Theta_i^j \).

The number of occurrences of \(\mathcal{F} \)-macros in \(\Theta_i^{j+1} \) is one less than in \(\Theta_i^j \).

Go to (4) with \(j := j + 1 \).

(5) If \(i = n \), set \(G'_M = G^{(n+1,0)} \). Halt. If \(i < n \), go to (3) with \(i := i + 1 \).

Obviously, \(G'_M \) is an IO-grammar in \(L \)-normal form. A similar normal form was derived in Duske et al. (1977) in a different manner. It remains to show that \(L(G_M) = L(G'_M) \) holds.

Lemma 3.1. Let \(G_M \) be an IO-grammar and \(S() \Rightarrow w \) a derivation according to \(G_M \) of a word \(w \in L(G_M) \). Then \(S() \Rightarrow^* w \) holds too.

Theorem 3.2. Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be an IO-grammar with \(\mathcal{V} = \{x_1, \ldots, x_q\} \). Let

\[\pi: F(x_1, \ldots, x_{\rho(F)}) \rightarrow \xi_1 A(\sigma_1, \ldots, \sigma_{\rho(A)}) \xi_2 = \Theta \]

be a production of \(\Pi \) with \(q > \rho(F) \), where \(A(\sigma_1, \ldots, \sigma_{\rho(A)}) \) is the leftmost applicable \(\mathcal{V} \)-macro in \(\Theta \). Let \(G_M = (\Sigma, \mathcal{F}, \mathcal{V}, \rho, S, \Pi) \) be the IO-grammar with \(\mathcal{F} = \mathcal{F} \cup \{H\} \), where \(H \) is a new function symbol, and \(\rho(H) = \rho(F) + 1 \) and \(\Pi = (\Pi \setminus \{\pi\}) \cup \{\pi_1, \pi_2\} \) with

\[\pi_1: F(x_1, \ldots, x_{\rho(F)}) \rightarrow H(x_1, \ldots, x_{\rho(F)}, A(\sigma_1, \ldots, \sigma_{\rho(A)})) \]

and

\[\pi_2: H(x_1, \ldots, x_{\rho(F)}, x_{\rho(F)+1}) \rightarrow \xi_1 x_{\rho(F)+1} \xi_2. \]

Then \(L(G_M) = L(G'_M) \) holds.

Proof. (a) \(L(G_M) \subseteq L(G'_M) \).

Let \(w \in L(G'_M) \) and let

\[S() = \phi_0 \rightarrow \phi_1 \rightarrow \phi_2 \rightarrow \cdots \rightarrow \phi_j \rightarrow \phi_{j+1} \rightarrow \cdots \rightarrow \phi_m = w \quad (3.1) \]

be a left derivation of \(w \) according to \(G_M \). If \(\pi \) is not applied, then (3.1) is a left derivation of \(w \) according to \(G_M \) too. If \(\pi_j = \pi \), then we have \(\phi_j = \gamma_j F(\eta_1, \ldots, \eta_{\rho(F)}) \gamma_2 \) with \(\eta_i \in \Sigma^* \) for \(i \in [1: \rho(F)] \) and \(\phi_{j+1} = \gamma_j \xi_j A(\sigma^j_1, \ldots, \sigma^j_{\rho(A)}) \xi_2 \gamma_2 \), where \(\xi_j, \xi_2, \sigma^j_i \) and \(\gamma_i \) for \(i \in [1: \rho(A)] \) are obtained by substitution of \(x_i \) by \(\eta_i \) in \(\Theta \).
$A(\sigma'_1, \ldots, \sigma'_{\rho(A)})$ is the leftmost applicable macro in ϕ_{j+1}. This implies the existence of a subsequence $\phi_{j+1} \Rightarrow \phi_{j+2} \cdots \Rightarrow \phi_k$ of (3.1) with $\phi_k = \gamma_1 \xi_1 \eta_2 \xi_2 \gamma_2$, $\eta \in \Sigma^s$ and $A(\sigma'_1, \ldots, \sigma'_{\rho(A)})$\Rightarrow \phi_{j+1} \Rightarrow \cdots \Rightarrow \phi_k$ of (3.1) with $\phi_k = \gamma_1 \xi_1 \eta_2 \xi_2 \gamma_2$, $\eta \in \Sigma^s$ and $A(\sigma'_1, \ldots, \sigma'_{\rho(A)})$. Then the following derivation is possible:

$$S() = \phi_0 \Rightarrow \phi_1 \Rightarrow \cdots \Rightarrow \phi_j \Rightarrow \gamma_1 H(\eta_1, \ldots, \eta_{\rho(f)}, A(\sigma'_1, \ldots, \sigma'_{\rho(A)})) \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \phi_m = w.$$ (3.2)

This is a left derivation by means of productions of $\Pi \cup \{\pi^1, \pi^2\}$. If π is not applied, then this derivation is a left derivation of w according to G_M. If π is applied, repeat the procedure.

(b) $L(G_M) \subseteq L(G_M)$.

Let $w \in L(G_M)$ and let

$$S() = \phi_0 \Rightarrow \phi_1 \Rightarrow \cdots \Rightarrow \phi_j \Rightarrow \gamma_1 H(\eta_1, \ldots, \eta_{\rho(f)}, A(\sigma'_1, \ldots, \sigma'_{\rho(A)})) \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \phi_m = w$$ (3.2)

be a left derivation of w according to G_M.

If only productions from $\Pi \setminus \{\pi\}$ are applied, then (3.2) is a left derivation of w according to G_M too. If ϕ_{k+1} is obtained from ϕ_k by application of π^2, then we have:

$$\phi_k = \gamma_1 H(\eta_1, \ldots, \eta_{\rho(f)}, \eta) \Rightarrow \gamma_1 \xi_1 \eta_2 \gamma_2 = \phi_{k+1}.$$ (3.2)

For this occurrence of H in ϕ_k the following holds: There is exactly one $j < k$, such that H is introduced by application of $\pi_j = \pi^1$ to ϕ_j, i.e.

$$\phi_j = \gamma_1 F(\eta_1, \ldots, \eta_{\rho(f)}) \Rightarrow \gamma_1 H(\eta_1, \ldots, \eta_{\rho(f)}, A(\sigma'_1, \ldots, \sigma'_{\rho(A)})) \Rightarrow \phi_{j+1}.$$ (3.2)

$A(\sigma'_1, \ldots, \sigma'_{\rho(A)})$ is the leftmost applicable macro in ϕ_{j+1}, and the following holds:

$$\phi_{j+1} = \gamma_1 H(\eta_1, \ldots, \eta_{\rho(f)}, A(\sigma'_1, \ldots, \sigma'_{\rho(A)})) \Rightarrow \gamma_1 \xi_1 H(\eta_1, \ldots, \eta_{\rho(f)}, \eta) \Rightarrow \phi_{k+1}.$$ (3.2)

Then the following derivation is possible:

$$S() = \phi_0 \Rightarrow \phi_1 \Rightarrow \cdots \Rightarrow \phi_j \Rightarrow \gamma_1 \xi_1 A(\sigma'_1, \ldots, \sigma'_{\rho(A)}) \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \phi_m = w.$$ (3.2)

This is a left derivation of w by means of productions from $\Pi \cup \{\pi\}$. If π^1, π^2 are not applied, then this derivation is a left derivation according to G_M. If π^1, π^2 are applied, repeat the procedure.
Corollary 3.3. Let G_M and G'_M be the IO-grammars from Algorithm 3.1. Then $L(G_M) = L(G'_M)$ holds.

Corollary 3.4. Let G_M be an IO-grammar. Then there exists an IO-grammar G'_M in L-normal form with $L(G_M) = L(G'_M)$.

4. Szilard Languages of IO-Grammars in L-Normal Form Are Context-Free

Let $G_M = (\Sigma, F, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar in L-normal form with $\Pi = \{\pi_1, \ldots, \pi_n\}$. The context-free grammar $G_{CF} = (\mathcal{F}, \Pi, S, P)$, where $P = \{p_1, \ldots, p_n\}$ with $p_i : F \to \pi_i H$, if

$$\pi_i : F(x_1, \ldots, x_{\rho(F)}) \to H(x_1, \ldots, x_{\rho(F)}, G(\sigma_1, \ldots, \sigma_{\rho(G)}))$$

or

$$p_i : F \to \pi_i, \quad \text{if} \quad \pi_i : F(x_1, \ldots, x_{\rho(F)}) \to t, \quad t \in (\Sigma \cup \{x_1, \ldots, x_{\rho(F)}\})^*,$$

is called the associated context-free grammar of G_M.

Theorem 4.1. Let $G_M = (\Sigma, F, \mathcal{V}, \rho, S, \Pi)$ be an IO-grammar in L-normal form and $G_{CF} = (\mathcal{F}, \Pi, S, P)$ the associated context-free grammar of G_M. Let

$$S(\) = \phi_0 \pi_1 \Rightarrow \phi_1 \pi_2 \Rightarrow \phi_2 \cdots \pi_k \Rightarrow \phi_k$$

be a derivation of ϕ_k according to G_M with $h(\phi_k) = F_1 \cdots F_q$, $q \geq 0$ and $k \geq 0$. Then there exists a left derivation

$$S = \alpha_0 p_1 \Rightarrow \alpha_1 p_2 \Rightarrow \alpha_2 \cdots p_k \Rightarrow \alpha_k$$

according to G_{CF} with $\alpha_k = \pi_{i_1} \cdots \pi_{i_k} F_1 \cdots F_q$.

Proof. The assertion is true for $k = 0$. Let

$$S(\) = \phi_0 \pi_{i_1} \Rightarrow \phi_1 \pi_{i_2} \Rightarrow \phi_2 \cdots \pi_{i_k} \Rightarrow \phi_k \pi_{i_{k+1}} \Rightarrow \phi_{k+1}$$

be a derivation according to G_M with $h(\phi_k) = F_1 \cdots F_q$, $q \geq 1$. From Theorem 3.1 it follows that:

$$h(\phi_{k+1}) = F_1 \cdots F_{q-1} G^1 G^2, \quad \text{if} \quad \pi_{i_{k+1}} \text{ is of type (A)}$$

or

$$h(\phi_{k+1}) = F_1 \cdots F_{q-1}, \quad \text{if} \quad \pi_{i_{k+1}} \text{ is of type (B)}.$$

By induction hypothesis there exists a left derivation

$$S = \alpha_0 p_{i_1} \Rightarrow \alpha_1 p_{i_2} \Rightarrow \alpha_2 \cdots p_i \Rightarrow \alpha_k.$$
according to G_{CF} with $\alpha_k = \pi_{i_1} \cdots \pi_{i_k} F^q \cdots F^1$. If $\pi_{i_{k+1}}$ is of type (A), $p_{i_{k+1}}$ has the form $F^q \rightarrow \pi_{i_{k+1}} G^2 G^1$. Hence the following left derivation

$$S = \alpha_0 p_{i_1} \Rightarrow \alpha_1 p_{i_2} \Rightarrow \alpha_2 \cdots p_{i_k} \Rightarrow \alpha_k p_{i_{k+1}} \Rightarrow \alpha_{k+1}$$

according to G_{CF} exists with $\alpha_{k+1} = \pi_{i_1} \cdots \pi_{i_k} \pi_{i_{k+1}} G^2 G^1 F^{q-1} \cdots F^1$. If $\pi_{i_{k+1}}$ is of type (B), the reasoning is similar. On the converse we have

Theorem 4.2. G_M and G_{CF} are defined as in Theorem 4.1. Let

$$S = \alpha_0 p_{i_1} \Rightarrow \alpha_1 p_{i_2} \Rightarrow \alpha_2 \cdots p_{i_k} \Rightarrow \alpha_k$$

be a derivation according to G_{CF}. Then $\alpha_k = \pi_{i_1} \cdots \pi_{i_k} F^q \cdots F^1$, $q > 0$ holds, and there exists a derivation

$$S(\) = \phi_0 \pi_{i_1} \Rightarrow \phi_1 \pi_{i_2} \Rightarrow \phi_2 \cdots \pi_{i_k} \Rightarrow \phi_k$$

according to G_M with $h(\phi_k) = F^1 \cdots F^q$.

Proof. The assertion holds for $k = 0$. Let

$$S = \alpha_0 p_{i_1} \Rightarrow \alpha_1 p_{i_2} \Rightarrow \alpha_2 \cdots p_{i_k} \Rightarrow \alpha_k$$

be a left derivation according to G_{CF}. From the induction hypothesis we have $\alpha_k = \pi_{i_1} \cdots \pi_{i_k} F^q \cdots F^1$, and there exists a derivation

$$S(\) = \phi_0 \pi_{i_1} \Rightarrow \phi_1 \pi_{i_2} \Rightarrow \phi_2 \cdots \pi_{i_k} \Rightarrow \phi_k$$

according to G_M with $h(\phi_k) = F^1 \cdots F^q$. If $p_{i_{k+1}}$ is the production $F^q \rightarrow \pi_{i_{k+1}} G^2 G^1$, then $\alpha_{k+1} = \pi_{i_1} \cdots \pi_{i_k} \pi_{i_{k+1}} G^2 G^1 F^{q-1} \cdots F^1$. $\pi_{i_{k+1}}$ is the production

$$F^q(x_1, \ldots, x_{\rho(p_1)}) \rightarrow G^1(x_1, \ldots, x_{\rho(p)}) , G^2(\tau_1, \ldots, \tau_{\rho(G^2)})).$$

By Theorem 3.1 $\pi_{i_{k+1}}$ is applicable to ϕ_k, i.e., there exists the derivation

$$S(\) = \phi_0 \pi_{i_1} \Rightarrow \phi_1 \pi_{i_2} \Rightarrow \phi_2 \cdots \pi_{i_k} \Rightarrow \phi_k \pi_{i_{k+1}} \Rightarrow \phi_{k+1}$$

according to G_M with $h(\phi_{k+1}) = F^1 \cdots F^{q-1} G^1 G^2$. In case $p_{i_{k+1}}$ is of the form $F^q \rightarrow \pi_{i_{k+1}}$, the proof is similar.

Now, it follows immediately:

Corollary 4.1. Let G_M be an IO-grammar in L-normal form and G_{CF} the associated context-free grammar. Then $L(G_{CF}) = Sz(G_M)$ holds.

By Corollary 3.4 each IO-language is generated by an IO-grammar in L-normal form, hence
Corollary 4.2. For each IO-language L there exists an IO-grammar G_M with $L = L(G_M)$, such that $Sz(G_M)$ is context-free.

It is well known that there exists a context-free language, such that every context-free grammar generating this language has a non-context-free Szilard language. Since every context-free language is an IO-language, we can state however:

Corollary 4.3. For every context-free language L there exists an IO-grammar G_M with $L = L(G_M)$, such that $Sz(G_M)$ is context-free.

Thus an IO-macro-derivation mechanism for context-free languages yields the existence of simpler Szilard languages.

Remark. In Duske et al. (1977) a context free grammar G_{CF} was assigned to an arbitrary IO-grammar G_M in such a manner that for each production from G_M there is exactly one production in G_{CF}, and the left derivations according to G_M are in a 1-1-correspondence to the left derivations according to G_{CF}. This implies $Sz_L(G_M) = Sz_L(G_{CF})$.

Hence $Sz_L(G_M)$ is context-free for an arbitrary IO-grammar G_M.

Acknowledgment

The authors are grateful to the referee for his detailed and constructive comments.

Received: July 8, 1977; Revised: September 14, 1978

References