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ABSTRACT 

The definitions and lattice hierarchy previously established for tiling regions with 
individual polyominoes are extended to finite sets of polyominoes. The problem of 
tiling the infinite plane with replicas of  a finite set of polyominoes is proved to be 
logically equivalent to Wang's "domino problem," which is known to be algorithmically 
undecidable. Several different ways of extending the notion of rep-tility f rom single 
polyominoes to sets of polyominoes are discussed. Some related results of  Ikeno 
regarding tiling with polyiamonds (shapes composed of  equilateral triangles) are 
mentioned. 

I .  INTRODUCTION 

In a previous article, entitled "Tiling with Polyominoes" [1] a lattice of 
tiling capabilities for polyominoes was established, based on the sub- 
regions of the plane which can or cannot be covered with replicas of an 
individual polyomino. The ability of a polyomino to tile an enlarged 
version of itself (the "rep-tile" property) was also fitted into this hierarchy. 
The discussion was not definitive in that several positions in the lattice 
were not proved to have separate existence, nor could they be shown to be 
logically equivalent to other positions in the lattice for which characteristic 
examples were given. 

In the present article, we achieve the following results: 

(a) The definitions of tiling capability, including rep-tility, are general- 
ized from o n e  polyomino to an arbitrary finite set of polyominoes. 

* This research was supported in part  by the Air Force Office of Scientific Research 
under Grant  No. AFOSR-68-1555-A. 
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(b) The lattice hierarchy developed for the tiling capabilities of indi- 
vidual polyominoes is shown to hold for sets of polyominoes. 

(c) For sets of polyominoes, it is possible to show the independent 
existence of each position in the lattice, except for exhibiting a rep-tile 
set which will not tile a rectangle. In fact, sets with at most two members 
suffice for the characteristic examples. 

(d) The problem of tiling the infinite plane with a specified finite set of 
polyominoes is shown to be logically equivalent to Hao Wang's "domino 
problem" [2] involving tiling with sets of MacMahon squares [3] and, 
hence, is logically undecidable. 

(e) Specifically, it is shown that the set of all (finite) MacMahon sets is 
tile-isomorphic to a subset of the set of all (finite) polyomino sets; and, 
conversely, that the set of all (finite) polyomino sets is tile-isomorphic 
(by a different isomorphism) to a subset of the set of all (finite) MacMahon 
sets. 

(f) Some results obtained by Ikeno on tiling with polyiamonds (shapes 
made up of equilateral triangle) are mentioned. 

2. THE TILING ABILITY OF SETS 

Let S be a finite set of polyomino shapes. We say that a region R can 
be tiled by S if replicas of the members of S can be used to tile R. Here we 
require all the replicas of all the members of S to be to the same scale 
(i.e., to have the same sized unit square), but we allow arbitrary rotation, 
reflection, and translation of the replicas, and arbitrary quantities of 
each shape in S (including none of certain shapes), in building any region 
geometrically similar to the specified region R. 

It is clear that if a set S tiles a quadrant it surely tiles a half plane, and 
a for t io r i  it tiles the full plane. Similarly all the other lattice relationships 
described in "Tiling with Polyominoes" involving subregions of the plane 
hold for tiling with sets of polyominoes. 

We may further define a set S of polyominoes to have the weak rep-tile 
property if every member of S, regarded as a region, can be tiled by the 
set S. We say that S has the strong rep-tile property if the regions corre- 
sponding to members of S can all be tiled to a common scale by members 
of S. It is only when the strong rep-tile property holds that the analogy 
with ordinary rep-tiles is properly maintained, in the sense that the 
rep-tilic subdivision can be iterated an arbitrary number of times. That is, 
if only the weak rep-tile property holds, there may be a shape A in S 
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which requires B and C in its first rep-tilic subdivision, where B and C 
do not have rep-tilic subdivisions to a common scale, in which case the 
rep-tilic subdivision of A cannot be iterated. For this reason we will mean 
the strong rep-tile property whenever we say that a set S has the rep-file 
property. 

If a set S divides (i.e., tiles) a rectangle, this rectangle can be used to 
tile a square, and this square can be used to tile each of  the polyomino 
members of S. It  is also easy to show that the proof  that the rep-file 
property implies quadrant tiling carries over from the case of individual 
shapes to the case of tiling with sets. Hence, we can reintroduce the 
lattice diagram from [1] in Figure 1 as the filing hierarchy for sets of 
polyominoes. The two non-trivial implications are that bent strip implies 
strip, and that rep-tile implies quadrant. However, the proofs given in [1] 
carry over in both cases without need of new ideas. On the other hand, 

RECTANGLE 

/ I HALF STR'P 
STRONG REP-TILE/~ I 

/ T / ~ R A N T -  end-STRIP 

T HALF PLANE 

~ l  NOTHIENG 
FIGURE 1. The lattice of tiling capabilities for sets of polyominoes. 

the weak rep-tile property need not  imply quadrant filing, since the proof  
utilizes the possibility of repeated iteration of the rep-tilic subdivision 
process. 

In Figure 2a, we see an example of a rep-tilic set of polyominoes. This 
example is non-trivial in that neither polyomino possesses the rep-filic 
property by itself. However, this set can also tile a rectangle, as can every 
rep-tilic set found thus far. It should also be mentioned that no explicit 
example has yet been found of a set of polyominoes which possesses the 
weak rep-tile property but not the strong rep-tile property. If such a set 
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exists, it is not even evident that it can tile the plane! Hence the position 
of the weak rep-tile property in Figure 1. 

R- t 
FIGURE 2a. A rep-tilic set consisting of two hexominoes. 

In Figure 2b, we see a rep-tilic set consisting of  two pentominoes, 
neither of which by itself is rep-tilic. Since they tile the 10 • 10 square 
as shown, five such squares can be used to make a replica of either of 
them, enlarged by a factor of 10 in each dimension. The reader is invited 
to investigate which pairs of pentominoes can be used to tile rectangles. 

m 

I 

FIGURE 2b. A set of two pentominoes which tiles a square. 

In Figure 3, we see an example of  the phenomenon of  tiling capability 
depending on the distinction between uniform and non-uniform scale. 
The set of 3 hexominoes tiles a rectangle, and is thus strongly rep-tilic. 
However, two of them tile the third! This set of 2 is not even weakly 
rep-tilic, however, because the first rep-tilic subdivisions of these figures 
would require unequal "unit squares." 
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H 

F~CURE 3. A set of three hexominoes which tiles a rectangle, where two of them 
can tile the third. The set of two is not rep-tilic. 

3. CHARACTERISTIC EXAMPLES 

In  [1], no  characteristic examples o f  individual polyominoes  were 
given for  the levels "Half-Plane,"  "Quadran t , "  "Quadrant -and-Str ip ,"  
and "Half -St r ip"  in the hierarchy (Figure 1) nor  for  the "rep-tile" position. 
Using t w o  polyominoes  in the set, characteristic examples will now be 
given for the Half-Plane, the Quadrant ,  the Quadrant-and-Str ip and the 
Half-Strip. 
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FI6URE 4. A characteristic example for the Half-Plane. 
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(a) The Half-Plane. In Figure 4, we see a pair of polyominoes which 
can be used to tile ithe: half-plane, as shown. On the other hand, it is 
quickly verified that this set will tile neither the quadrant nor the strip 
because of the way the shapes are notched. 

FIGURE 5. 
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A characteristic example for the Quadrant. 

(b) The Quadrant. In Figure 5, a tiling for the quadrant, using two 
polyominoes, is exhibited. Since it is easily shown that the notches prevent 
the formation of a strip, this example is characteristic for the quadrant. 

(c) Quadrant-and-Strip. In both Figure 6 and Figure 7, examples are 
presented in which a set of two polyominoes can tile both a quadrant 
and a strip. (In fact, a single polyomino suffices for the strip construction 
in both cases.) 
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FIGURE 6. The dog-and-trough characteristic example for the Quadrant-and-Strip. 
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F[GURE 7. The U-pentomino and chair hexomino example for the Quadrant-and-Strip. 

For  the example  in Figure 6, it is ra ther  easy to verify tha t  no bent  
strip construct ion is possible, so that  this example  is characteristic for  
the Quadrant -and-St r ip  case. I t  is believed that  the example in Figure 7 
is also characteristic,  bu t  the p r o o f  that  it cannot  tile a bent  strip has not  
been worked  out  in sufficient detail. 

(d) The Half-Strip. In  Figure 8, we see a Ha l t -~ tnp  composed  of  one 
U-pentomino and an infinite repetit ion of  fork:hexominoes .  The inability 
of  this set to do a rectangle is obvious,  since it cannot  possibly turn a 
third corner.  
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FIGURE 8. A characteristic example for the Half-Strip. 

In  [1], a certain hexomino  was shown to  tile the width-16 half-strip, 
wi thout  any  result as to whether  it can tile any  rectangle. An even better 
example  is the hep tomino  in Figure 9, which  tiles the infinite width-6 :half- 
strip in only one way, and  thus cannot  t i le any 6-wide rectangle! Still, it 
has not  been shown that  this hep tomino  (or any  other po lyomino  known 
to tile a half-strip) cannot  tile any rectangle. 

I LJ I I i I i ~  I I t I I LJ i f I U I I 

I tl IILltI  ,,, , ,  , 
: H I I ,  irrlllrlL,  ' , ,  I I i I L I  t i I I I I L i  I I 1 

R i l l  I I W I / I I I F i ' I  ~ i  r ] l  I I 

FIGURE 9. A half-strip tiling with one heptomino shape. 
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4. WANG'S PROBLEM AND MACMAHON SQUARES 

In [3], Major MacMahon explored the rectangles and other patterns 
which could be made with squares having colors assigned to the four 
edges, with the requirement that adjacent squares must have a common 
color on their common border. Pictorially, MacMahon cut the square 
into four triangles by its diagonals, and colored these triangles rather than 
merely the edges. Thus, in Figure 10, we see an arrangement of the 
24 tricolor MacMahon squares (distinct under the symmetries of D4) 
arranged into a 4 x 6 rectangle with a white border. 

| | | | | | . , l i  ijj'. .:., J ji,.,, j 

FIGURE 10. The The 24 distinct tricolor MacMahon squares in a 4 • 6 rectangle. 

H. Wang considered the problem of filling the infinite plane with 
replicas of a finite set of MacMahon squares with the requirement that 
adjacent edges have like color, and where only translation (not rotation 
or reflection) is allowed in using a replica of a permitted square. Wang 
showed [2] that the general question of whether a specified set of squares 
can tile the plane is algorithmically undecidable. We will now show that 
the question of whether an arbitrary finite set of polyominoes tiles the 
plane (allowing any specified group of symmetries such as rotational or 
dihedral symmetries, in addition to translations) is equivalent to Wang's 
problem, and hence also algorithmically undecidable. 

The finite collections of polyominoes form a denumerable set, and can 
easily be placed in explicit one-to-one correspondence with the positive 
integers, Moreover, i t i s  possible to give a rule whereby each cell in every 
distinct orientation of each polyornino in the nth set of polyominoes is 
assigned a separate positive integer r from 1 to R,,, where R,, is the 
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number of"cel l  types" in the nth set. The reader is encouraged to formulate 
specific rules for these assignments, and to list the first ten or fifteen sets 
with their cell numberings. 

The statement that the general problem of  tiling the plane with sets 
of  polyominoes is algorithmically undecidable means that there is no 
computable function f(n, a, b) whose value is: 

(i) 0 for all integer pairs (a, b) if the n-th set of  polyominoes cannot be 
used to tile the plane; 

(ii) the "cell type number" r to be used at position (a, b) of the plane, 
in a specific tiling of the plane with the n-th set of polyominoes. 

First, suppose we are given a set of polyominoes. We then generate all 
the orientations (symmetries) of these figures which we intend to allow 
in tiling the plane. We then turn all the squares in this enlarged set of 
polyominoes into MacMahon squares, as follows: All outer edges of the 
polyominoes receive the color "0."  Each interior edge in the entire set 
receives a unique "color," 1, 2, 3, 4 .... which i s the  color of that edge in 
each of the two squares it connects. We now disconnect the polyominoes 
into unrotatable MacMahon squares. Note that, if we ever try to use a 
square, we are forced by the coloring to complete the polyomino it came 
from! Thus, the problem of  tiling with sets of  polyominoes has been 
mapped isomorphically into the problem of tiling with sets of (unrotatable) 
MacMahon squares. 

The generation of  MacMahon squares from polyominoes is indicated 
in Figure 11. 

DE] NN D 
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FIGURE 11. From polyominoes to MacMahon squares. 

In the other direction, suppose we are given a set of  N MacMahon 
squares, involving a total of m edge colors. Then we fabricate N polyo- 
minoes by the following modification of  (r q - 6 ) •  (r-4-6) squares, 
where r = 1 q- [log2 rn]. In Figure 12, we see the format for the large 
polyominoes. The grooves at the corners are designed to  prevent rotations 
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FIGURE 12. 
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Format for the large polyominoes corresponding to MacMahon squares. 

and reflections. That is, as soon as one of the large polyominoes is placed, 
it forces the orientations of all the others to line up. Each edge color of 
the MacMahon squares is represented by a binary number < 2 r, and the 
binary digits of  this number are used to modify the portion of length r 
along the corresponding edge of the large polyomino. A 0-digit leaves the 
edge alone, while a 1-digit makes a one-square modification, outward 
along the top or right, inward along the left or bottom. Thus, the sets of  
MacMahon squares are mapped isomorphically into sets of  polyominoes, 
insofar as tiling the plane is concerned. 

An example of the conversion of MacMahon squares into polyom_inoes 
is shown in Figure 13. 

F I G U R E  1 3 .  From MacMahon squares to polyominoes. 
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5. TILING WITH POLYIAMONDS 

Some analogous problems for tiling with figures made up of equal 
equilateral triangles (called "polyiamonds") have been considered by 
Nobuichi Ikeno of the Electrical Communication Laboratory, Nippon 
Telegraph and Telephone Corporation (private communication), who 
obtained the tiling hierarchy shown in Figure 14. 

Going as far as the heptiamonds, Ikeno found individual shapes which 
furnish characteristic examples for every level in the hierarchy of Figure 14, 
with only the following four exceptions: "itself, . . . .  sextant," "one-third 
plane," and "half plane." 

I Itself a Parallelogram 

I Itself 

t Triangle I /~ 

| 
I I"~ I ! 

/z_ I ~o~,, s.te~ I I0~176 Se~ s.lp I ~- -  

Sextant 1 Strip I s,.o 
Sextant 

L~ ..io I~  - 

I ~1 Half- plane 

I P,an. ] 
& 

I "at"in~ I 

FIGURE 14. Ikeno's tiling hierarchy for polyiamonds. 

6. THE REGULAR REP-TILE PROPERTY 

A collection of shapes may be said to have the regular rep-tile property 
with index k if the replication of each shape requires exactly k copies of 
each distinct shape. An example with index 1, involving four distinct 
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l~oum~ 15. A regular rep-tile set of index 1. 
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hexomino shapes, is shown in Figure 15. This example appears in [4], 
where it is attributed to M. J. Povah of Blackburn, England. Two other 
examples of  regular rep-tile sets of  index 1 are also given in [4], one 
involving four octominoes and the other involving four "tetrabolos" (a 
tetrabolo being a figure composed  of four isosceles right triangles). 
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