South African plant extracts in combating potentially pathogenic oral microorganisms

C.J. Henley-Smitha, N. Lalla, F. Bothab
aDepartment of Plant Sciences, University of Pretoria, Pretoria 0002, South Africa
bDepartment of Community Chemistry, Private Bag 1266, University of Pretoria, Pretoria 0001, South Africa

★ Awarded the Van Staden prize for best paper by a MSc student.

Dental plaque is a complex bacterial biofilm community, and under certain circumstances, this complex microbial community can cause major dental diseases such as caries and periodontitis. The quest for natural products, to replace currently used synthetic prepared products for the prevention of dental caries and periodontal disease, is becoming increasingly popular. This study investigated the effects and antimicrobial activity of four plants: Barleria albostellata, Dichrostachys cinerea, Sample 3 (Heteropyxidaceae), and Dodonaea viscosa against Actinomyces israelii, Prevotella intermedia, Streptococcus mutans and Candida albicans. Sample 3 exhibited the lowest minimum inhibitory concentrations (MICs) ranging from 0.65 to 3.9 mg/ml against the bacteria. The anti-adherence capabilities of the samples were determined using the cytokine, interleukin-8 (IL-8). Scanning electron microscopy images enabled visual evaluation of the anti-adherence effect. The cytotoxicity of the extracts was also determined. During cytotoxicity and anti-adherence evaluation, it was found that Sample 3 had a 50% inhibitory concentration (IC50) of 127.1 µg/ml and had the second best anti-adherence properties reducing IL-8 levels by 84%. B. albostellata and D. viscosa had IC50 values of 56.99 and 66.11 µg/ml and reduced IL-8 levels by 90.5% and 73% respectively. D. cinerea was found to be relatively non-toxic with an IC50 value of 231.9 µg/ml which reduced IL-8 levels by 92%. The activity-guided fractionation of Sample 3 for the identification of active compounds was done. Four compounds were isolated and are being investigated. Synergistic effects of the selected samples with essential oils as well as a possible formulation for oral care products are currently being analysed.

Increased nutrient inputs to remnant lowland restiad mires in an agricultural landscape: Impacts on capillaroid root growth, biomass production and decomposition processes

T. Hodgesa, A. Robertsona, J. Rapsonb, L. Schipperb, B. Clarksonc
aEcology Group, Institute of Natural Resources, Massey University, Palmerston North, New Zealand
bEarth and Ocean Sciences Department, University of Waikato, Hamilton, New Zealand
cLandcare Research, Hamilton, New Zealand

Montane restiad sloping fens have formed on poorly drained surfaces and seepages on clay-rich tephas at high altitudes along the axial ranges of the North Island of New Zealand. Similar vegetation communities exist on raised bogs formed on colluvial deposits in the southern lowland plains of New Zealand during the Holocene. Peat formation is thought largely due to the formation of decay resistant capillaroid roots by the restiad Empodisma minus, in response to the low nutrient substrates. We measured biomass pools and short-term decomposition dynamics at a sloping fen and raised bog, to determine the role of litter chemistry, substrate chemistry and hydrology on the short-term decomposition dynamics of above and belowground litter pools. As expected, mass loss of shoot, rhizome and capillaroid root litters was lower in the restiad than graminoid species at each site. Internal mire gradients were not reflected in rates of mass loss at either site. Contrary to expectation we found higher biomass and foliar nutrient levels and lower secondary carbon compounds levels in the litters of a restiad and graminoid species in the raised bog than fen, with mass losses being significantly higher in the bog site. The source of higher foliar nutrient levels is likely anthropogenic (aerial fertiliser application in surrounding agricultural land; historical mire drainage), stimulating high primary productivity and faster decomposition at the bog site. The long-term implications of these alterations to internal nutrient cycling, capillaroid root growth and carbon sequestration will be explored.

doi:10.1016/j.sajb.2010.02.021

A review of Pteronia species used in traditional medicine in South Africa

aDepartment of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
bDepartment of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
cDepartment of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa

Pteronia L. is a genus of 70 species of woody shrublets occurring mainly in southern Africa. Published and unpublished ethnobotanical information exists for nine of the species. The uses of these species in traditional medicine are poorly recorded or have remained scientifically unknown. In addition, some unpublished vernacular names have been recorded during this study. Hutchinson and Phillips revised this genus in 1917 and grouped the species into four sections. The nine ethnobotanically important species were placed in four sections: Incanae (P. incana and P. cinerea), Papillatae (P. lucilliodes and P. divaricata), Ciliatae (P. camphorata, P. stricta, P. onobromoides and P. adenocarpa) and Glabratae.

doi:10.1016/j.sajb.2010.02.022
(P. succulenta). A study of the leaf anatomy showed the presence of either numerous internal oil glands or a single secretory duct adjacent to the phloem of the vascular tissue of the midrib. Certain species have external secretory and non-secretory trichomes that are present on both surfaces of the leaves. The distribution of trichomes agrees quite well with the existing sectional classification system. The essential oil of selected species were distilled and analysed by gas chromatography–mass spectrometry (GC–MS). Myrcene and sabine are often the main compounds. Anti-microbial studies give scientific support for most of the recorded medicinal uses. Methanol and dichloromethane extracts and essential oils were more active than aqueous extracts. A review of the ethnobotany and leaf anatomy of the nine species will be presented, together with a summary of the essential oil chemistry and antimicrobial activity of P. onobromoides, P. camphorata, P. divaricata and P. incana.

Pursuing imazapyr herbicide tolerance in sugarcane: Screening plants produced in vitro through somaclonal variation and mutagenesis

A.C. Kocha,b, S. Ramgareeb, S.J. Snymana,b, M.P. Wattleb, R.S. Rutherfordb

aSouth African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa
bSchool of Biological and Conservation Sciences, University of KwaZulu-Natal, Durban 4300, South Africa

Herbicide tolerance is a highly desirable trait in commercial sugarcane. This study explored a strategy for the production of imazapyr-tolerant sugarcane. A protocol for the production of imazapyr-tolerant sugarcane lines through \textit{in vitro} somaclonal variation and induced mutagenesis of somatic embryogenic cultures of the N12 sugarcane cultivar was developed. The chemical mutagen ethyl methanesulfonate (EMS) was used to induce a single target-site mutation in the acetolactate synthase gene, and tolerance of regenerated plantlets was tested using the herbicide Arsenal (250 g/ha, 0.042 M imazapyr) and \textit{in vitro} screening conditions (LD\textsubscript{20}=0.042 M, LD\textsubscript{50}=0.083 M imazapyr in the medium) for 6–10 week-old somatic embryogenic calli, and the screening treatment for aclimatized \textit{in vitro} control plantlets (spraying with Arsenal). As the culture conditions included 2,4-dichloro-phenoyacetic acid alone did not cause a significant production of somaclones, the mutagenic agent was deemed essential to increase the chance of producing herbicide tolerant plantlets. The EMS and imazapyr treatments were then applied in combination and calli were exposed to increasing levels (0.042–0.16 M) of imazapyr. Plantlet yield decreased and regeneration time increased with increasing stringency of EMS and imazapyr regimes compared with the untreated control. For all treatments, callus mass, number of green and abnormal (albino and visual chimaeric) plantlets, and biomass of aclimatized plantlets were recorded. Amplified fragment length polymorphism analyses were performed on plants surviving exposure to EMS or imazapyr. Profiles were compared with plants derived from the standard tissue culture protocol and field grown N12 plants to determine how each treatment affected the number of polymorphic bands. At present, putative-tolerant plants, which have been exposed to either EMS or a combination of EMS and imazapyr, are being aclimatized after which they will be sprayed with Arsenal (102 g a.i./ha; 0.39 M) to confirm their tolerance.

Assessing the floristic importance of proposed conservation areas in North-West Province in the context of the western Central Bushveld Bioregion

S. Kurzwega, S.J. Siebertb, S.S. Cilliersb, K. Kellnera

aSchool of Environmental Science and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
bA.P. Goossens Herbarium, School of Environmental Science and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

South Africa is one of the world’s megadiverse countries harbouring over 21000 plant species with 60% endemism. Much of this rich biodiversity is increasingly under threat due to the development needs of a developing country. As a result South Africa has made a commitment for conservation and the sustainable use of biodiversity by ratifying the Convention on Biological Diversity in 1995. Biodiversity planning has become a key focus area that aims at identifying diversity hotspots and priority areas for conservation within and outside of formally protected areas. These are identified by the quantification of indicator taxa (e.g. rarity and endemism) and their distribution patterns. The conservation status in North-West Province is low, with only about 3% of its area set aside for conservation. Proposals have been drafted for park expansion to increase this percentage based on the availability of land and linking existing conservation areas. Thus, the aim of this study was to assess the floristic importance of two proposed high priority conservation areas in the context of the western Central Bushveld Bioregion. Plant species data collected from the two study sites was integrated with existing collection data from the PRECIS database (National Herbarium Pretoria (PRE) Computerized Information System) for the 50 quarter degree grids of the western Central Bushveld Bioregion. The data was subjected to ordination with Primer at different taxonomic levels to demarcate broad floristic patterns, which were correlated with environmental data using ArcView. Important plant taxa were identified and quantified in order to demarcate Important Plant Areas for the western Central Bushveld Bioregion and to determine whether these overlap with the proposed priority conservation areas.