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Abstract

Historians of science have long considered the concept of the “research school” as a potent analytical construct
for understanding the development of taboratory sciences. Unfortunately, their definitions fall short in the case
of mathematics. Here, a definition offathematicatesearch school” is proposed in the context of a case study
of algebraic work associated with the University of €go’s Department of Mathematics from the University’s
founding in 1892 through 1945.
0 2003 Elsevier Inc. All rights reserved.

Sommario

Gli storici della scienza si sono serviti per molto tempo del concetto di “scuola di ricerca” come strumento
analitico nel contesto delle scienze sperimentali. Sfortunatamente, le loro definizioni non sono in gran parte
applicabili nel caso della matematica. In questo lavoro si propone una definizione di “scuola di negeca
matica” la quale viene poi esaminata nel contesto di uno studio dei lavori algebrici prodotti dal Dipartimento di
Matematica dell’Universita di Chicago tra il 1892 e il 1945.
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E.H. Moore’s early work in algebra

The University of Chicago opened in 1892 as an institution of higher education devoted to under-
graduate and graduate education for young men and women as well as to the production of original
research and the training of future researchers. Reflective of changes in American higher education,
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especially in the closing quarter of the 19th century, the new, adequately and privately endowed university
sought, from its founding, a faculty capable of realizing these institutional goals. In mathematics, the first
faculty—what we might call members of the first generation of research mathematicians on American
shores—consisted of one American—Eliakim Hastings Moore—and two Germans—Oskar Bolza and
Heinrich MaschkdParshall and Rowe, 1994, 279-294]

The American, Eliakim Hastings Moore, had earned a doctoral degree at Yale College for an original,
if ultimately unexciting, thesis om-dimensional geometry in which he extended some theorems of
the English mathematicians William Kingdon Clifford and Arthur Cayley. Moore had then journeyed
first to Gottingen for a summer of language training and then to Berlin for a year of exposure to the
mathematics of giants such as Karl Weierstral3 and Leopold Kronecker. When the University of Chicago
was putting together its faculty, Moore was teaching at nearby Northwestern University and eagerly
accepted the call to a professorship and acting headship of Chicago’s new Department of Mathematics.
Almost immediately, his research interests shifted from geometry to algebra, a move spurred most likely
by Chicago’s evolving, algebraically oriented, mathematical environment.

In Chicago’s first Winter Term of operation in 1893, Bolza taught a graduate-level course on the
theory of permutation groups based on the classic work of Joseph Serret, Camille Jordan, and especially
Eugen Netto, while Maschke continued his research in the theory of finite linear darshall and
Rowe, 1994, 372-375Moreover, the Department’s Mathematical Club, its weekly series of research-
oriented workshops, had a decidedly algebraic focus in the University’s firsfyaeshall and Rowe,

1994, Table 9.1]In this algebraic atmosphere and in light of what the emergent American mathematical
community would soon recognize as Moore’s uncanny ability to capitalize on hot research topics,
Moore, too, moved into the theory of finite groups and immediately began proving new results. Perhaps
his most notable early result and the work that may be said to mark the beginning of a tradition in
algebra at Chicago was his contribution to the Chicago Mathematical Congress held in conjunction with
the World’s Columbian Exposition in August of 1893. Entitled “A Doubly-Infinite System of Simple
Groups,” Moore’s Congress paper reflected the abstract point of view then increasingly characteristic of
trendsetting German mathematics, namely, the methodology of identifying and classifying mathematical
objects. In Moore’s case, the objects were finite simple groups, and he discovered an entirely new class
[Moore, 1896]

At the time of Moore’s discovery, there were four known classes of finite simple groups in addition to
the cyclic groups of prime order and the alternating groups,, for m > 4. One of these four was the
class of groups now denotd&5L,, (p) of order

(p" =Dp" Hp" Tt =Dp" - (p*=Dp
5 ;
where(p,m) # (2, 2), (3,2) andé = gcd(p — 1, m). In his 1870 bookraité des substitutionslordan
had done quite a bit of work on this class of finite groups of substitutions over the primé& figld, and
Moore picked up on that work, focusing on the special case f2.*

One problem Moore encountered, however, was that a group of order 360 that he had discovered
in 1892 [Moore, 1892] as well as a group of order 504 discovered in the spring of 1893 by his
countryman, Frank Nelso@ole [1893] failed to fit into any of the six known categories. Moore soon
recognized that these groups fit into a new class of what he tedwoelly-infinite or two-parameter

1 Compare the discussion of this workRarshall and Rowe [1994, 324—325, 377—378]
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groups of ordep™(p?" —1)/8, for (p,n) # (2, 1), (3,1), and he showed that, in fact, all of these new
groups—what would today be denot®&SL,(p")—are simple? Before establishing this main result,
however, Moore needed to come to terms with the underlying fields wfitelements. This led him

to an unexpected field-theoretic theorem, namely, “[e]very existent figidl is the abstract form of a
Galois field,GF[p"], wheres = p"” [Moore, 1896, 211} Thus, in his efforts to identify and classify

finite simple groups, Moore also characterized finite fields in a new and provocative way. What might
be called Moore’s structural approach to the algebraic questions raised in his Congress paper became
even more pronounced after 1901 when he also embraced the axiomatic point of view he encountered in
David Hilbert's ground-breakingrundlagen der Geometrigdilbert, 1899]* An abstract and structural
approach came to characterize much of the algebraic work that issued from the University of Chicago
over the course of the first five decades of the 20th century.

Moore’s first student, Leonard E. Dickson

The first student to be influenced by Moore’s new algebraic ideas was Leonard Eugene Dickson.
Dickson had come to the University of Chicago in 1894 to pursue graduate studies under Moore and
in 1896 earned one of the two mathematics Ph.D.'s awarded that year, the program’s first dottorates.
Dickson'’s thesis, entitled “The Analytic Representation of Substitutions on a Power of a Prime Number
of Letters with a Discussion of the Linear Group,” followed directly on the work Moore had done in his
Congress paper in 189Bickson, 1897] Dickson focused structurally on the finite fieléls= GF[p"],
for p a prime andn € Z*, that Moore had worked with. Dickson considered a polynongiaX) of
degreek < p" (with coefficients inF) and defined an associated mappihgFF — F, &€ — ¢ (&) to be
a substitution quantic S@; p"] of degreek on p” letters, provided it was bijective. The first part of his
dissertation then aimed at a “complete determination of all quantics up to as high a degree as practicable
which are suitable to represent substitutiongpbdmetters”[Dickson, 1897, 66 or 652hlthough complete
results were given only for degreés< 7 with partial results given for degrees 7 and[Parshall and
Rowe, 1994, 379]

The second part of the thesis took up the general linear g@up(F), where, as in part one,

F = GF[p"]. Jordan had already studied these groups for the finite fieldsGF[p] andm arbitrary in

his Traité, but, in the spirit of Moore’s move from singly to doubly infinite finite simple groups, Dickson
sought to generalize Jordan’s structural work to fields withelementgDickson, 1897, 67 or 653)
Dickson established that M3L,, (F) was a group, calculated its order, and explored its composition se-

2 Note that Moore’s group of order 360 is the doubly infinite group witl 3, n = 2, andé = 2, while Cole’s group of
order 504 is the doubly infinite group with=2,n =3, ands = 1.

3 Here, Moore used the traditional definition of a Galois field: given an indetermikiateake an irreducible monic
polynomial f(X) € Z,[X] of degreen over the prime fieldZ, = Z/pZ. Then the Galois fieldsF[p"] is the collection of
p" equivalence classes @f,[ X1/(f(X)). CompareParshall and Rowe [1994, 378]

4 On the foundational work that issued from Chicago, in particular, and from the United States, in genePalrsted!

[2003].

5 The other Ph.D. that year went to Bolza’s student, John Irwin Hutchinson, for a thesis in elliptic function theory. Hutchinson
followed his Chicago Ph.D. with a job at Cornell where he remained until his death in 1935. On Dickson’s early work at Chicago,
compareParshall and Rowe [1994, 379-381]

6 Moore had dealt with the cagearbitrary but finite andn = 2.
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ries. This led him to one of the main results in his dissertation, nameélydénotes the center &L, (F),

thenSL,, (F)/Z is simple providedm, n, p) # (2,1, 2) or (2, 1, 3). “Dickson’s theorem thus generalized

his adviser’s research of 1893 tidply-infinite systems of simple groups (in the three parameigrs,

and p),” at the same time that it exploited Moore’s structural approach to algebraic queRenshall

and Rowe, 1994, 380-381}loreover, Dickson’s analysis also uncovered a previously unknown class of

finite simple groups, the grouf®L,, (F)/Z for m > 3 andn > 1 [Dickson, 1897, 128-138 or 714—724]
Dickson followed his doctorate with a year-long foreign study tour that took him first to Leipzig,

where Sophus Lie was lecturing on his formidable theory of transformation groups, and then to Paris and

the grand master, Camille Jordan. Following teaching positions at the University of California, Berkeley

and at the University of Texas, Dickson returned to Chicago as an Assistant Professor in 1900. The

following year, an expanded version of his doctoral dissertation appeared as thd_lmaak, Groups

with an Exposition of the Galois Field Thegmynder the imprint of the distinguished German publishing

house of B.G. Teubner Verld®ickson, 1901]" and Dickson saw his first student successfully through

to the Ph.D? In all, Dickson supervised the doctoral work of some 67 students during his 39-year career

at Chicago, and this process began just as Moore’s active research interests were shifting from algebra to

questions of a more foundational nature. In a very real sense, the algebraic mantle at Chicago passed in

the early years of the 20th century from Moore to his student and now colleague, Dickson. Moreover, the

approach as well as the kinds of mathematical objects Moore had pursued continued to characterize the

algebraic work coming out of Chicago.

Algebra at the University of Chicago in the opening decades of the 20th century

The imprint of an emergent Chicago style of algebra may be detected in that first decade of the 20th
century not only in Dickson’s work but also in the work of at least one notable visitor to the Chicago
department. During the 1904-1905 academic year, the young Scot mathematician-in-training, Joseph
Henry Maclagan Wedderburn, brought his Carnegie fellowship to the University of Chicago to pursue
his algebraic studies. Interestingly, by 1904, and as a result undoubtedly of Moore’s successes and of
Dickson’s auspicious entry onto the mathematical scene with his book on linear groups, Wedderburn
chose to follow his study trip to Germany and the Universities of Leipzig and Berlin with a year-long stay
in Chicago. In Leipzig, he encountered the work of Friedrich Engel, in Berlin that of Georg Frobenius,
and in Chicago that of Moore and Dicksfirarshall, 1983; 1985Wedderburn’s choices suggest that the
algebraic research coming out of Chicago was viewed as state-of-the-art.

The 1904-1905 academic year was another very active one in Chicago. Moore was heavily involved
in his new interest in foundational questions and had been working on the problem of determining a
suitable set of axioms for a group. Dickson had also been seduced by this foundational work, focusing on
sets of axioms for fields and for linear associative algebras, while he continued his researches on linear
groups. Wedderburn came into direct contact with both of these mathematicians, and their approach
fundamentally influenced his own subsequent mathematical choices and difBetishall, 2003]

7 On this work and its publication history, sBarshall [1991]

8 Dickson’s first student, Thomas Putnam, earned the degree for a dissertation “Concerning the Linear Fractional Group on
Three Variables with Coefficients in the Galois Field of Orgér” He went on to positions at the University of California,
Berkeley.
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By January of 1905, Wedderburn and Dickson were in a friendly but intense competition to answer the
question “is every finite division algebra a field?” Reminiscent of Moore’s abstract characterization of
finite fields as Galois fields in his 1893 Chicago Congress paper, the question was at the same time
structural and concerned with abstract algebraic objects. Although Dickson’s work suggests that he
thought the answer to the question was “no,” Wedderburn had proved the theorem in the affirmative
by March of 1909Wedderburn, 1905&nd, in so doing, had unwittingly embarked on a career devoted
to understanding the structure of linear associative algebras and related algebraid®@ajsbtl, 1983]

Wedderburn returned to the University of Edinburgh in the summer of 1905 to take up a position as
Lecturer in Mathematics and to continue work toward his doctoral degree. The main piece of research
that he submitted for that credential in 1908 was his ground-breaking paper of 1907, “On Hypercomplex
Numbers”[Wedderburn, 1907Wedderburn had completed an early draft of this work while in Chicago
in 1904-1905Parshall, 1985, 313-314and it bore the clear imprint of the emerging Chicago style
of algebra. Wedderburn’s predecessors—mathematicians such as Theodor Molien, Georg Frobenius, and
Elie Cartan—had worked with linear associative algebras over algebraically closed fields of characteristic
zero, and their techniques had hinged on properties of that underlying field. Wedderburn, however, took
a more general approach, working primarily over arbitrary fields, and developed new, substantially field-
independent techniques. Moreover, he sought the underlying structure of linear associative algebras, how
they were put together, so to speak. Exploiting the elegant technique of decomposing his algebras using
idempotent elements, Wedderburn proved, among other results, thad H finite-dimensional algebra
over a fieldF, then:

e if Aissimple, it can be expressed as the tensor product of a division algebra and a full matrix algebra
over F [Wedderburn, 1907, 99]

e if A is semisimple, then it is the direct sum of simple algeljvdsdderburn, 1907, 99hnd

e the so-called Wedderburn Principal Theorem, namely, i the maximal nilpotent ideal (sadical)
of A, thenA contains a subalgebi#@isomorphic toA/N, providedF is a field of characteristic zero
[Wedderburn, 1907, 105]

As he acknowledged in the printed version of his 1907 paper, “the greater part of Sections 1, 2, 4-6 was
read in the Mathematical Seminar of the University of Chicago early in 1905, and owe much to Professor
Moore’s helpful criticism”[Wedderburn, 1907, 78]

Meanwhile, back in Chicago, Wedderburn's contemporary, Dickson, continued to produce volumi-
nously on the theory of both linear groups and algebras. By 1914, he had paused briefly to take stock of
what had been the rapid development of the theory of algebras, publishing a terse, 73-page book enti-
tled Linear AlgebragDickson, 1914] There, he aimed to bring together some of the key results in the
field, but, as one of his biographers noted, it was more than somewhat ironic that Dickson “presented the
Cartan theory of linear associative algebras rather than the Wedderburn theory,” although he “stated the
results of the latter theory in his closing chapter without prog#gdbert, 1955, 333] The very messy
Cartan theory of the late 1890s concerned itself with the structure of the entire algebra—including its
nilpotent part—whereas the very elegant theory Wedderburn had developed hinged on factoring out that

9 Wedderburn did not give the Principal Theorem in this generalit}étderburn [1907]in particular, he considered only
the special case whew/ N is a division algebra, and he made no explicit restrictions on the characteristic of the underlying
field F.
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aberrant nilpotent part and concentrating on the well-behaved semisimpl|Eqatiall, 1985, 335Why

Dickson made this choice is unclear, but he would rectify this tactical error some nine years later. In the
meantime, the 1910s found him consumed by number theory, and he published his massive three-volume
History of the Theory of Numbetsetween 1919 and 194Bickson, 1919-1923]In some sense, his
interests in algebras and in number theory coalesced in another of his ground-breaking works, the 1923
book on theArithmetics of AlgebragDickson, 1923] which came out in a greatly expanded German-
language edition in 192[Dickson, 1927] This treatise—unlike the 1914 tract on linear algebras—not
only highlighted the Wedderburn structure theory but also solidified Dickson’s international reputation
[Fenster, 1998]

The third generation of Chicago-connected algebraists

As Della Fenster has shown in her extensive studies both of Dickson’s mathematics and of
his mathematical persona, Dickson was a highly effective, if idiosyncratic, role model for budding
mathematicianfFenster, 1997]He imparted to them his sense not only of what areas merited attention—
primarily the theory of algebras and later the related theories of rings and division rings—but also of
the kinds of questions that should be asked—primarily structural questions aimed at understanding the
objects’ internal organization and construction. Moreover, he presented to them, through his own personal
example, an image of the driven researcher guided by the highest possible standards.

Among Dickson’s students in algebra (as opposed to number theory), Olive C. Hazlett earned her
doctorate in 1915 for a classification of all (not necessarily associative) nilpotent algebras with four
or fewer basis elements ovél that drew directly from Wedderburn's 1907 wofkenster, 1994,

174). Hazlett, who eventually secured a position at the University of lllinois in 1925, represented an
interesting feature of Dickson’s training of future researchers, namely, the encouragement of women in
research-level mathematics. In fact, 18 of his 67 Ph.D. students were women, making Dickson personally
responsible for slightly more than 8% of all women Ph.D.s in mathematics in the United States between
1900 and 194(0Fenster, 1994, 166Although Hazlett did not find herself in a position conducive to the
training of future researchers, she did continue successfully with her own research, lecturing on her new
results on the arithmetic of a general associative algebra at the International Congress of Mathematicians
in Toronto in 1924[Hazlett, 1928]and publishing some 17 papers despite a career plagued by mental
breakdowngFenster, 1994, 179]

Another Dickson student, C.C. MacDuffee, finished his Ph.D. in 1921 and immediately went to
Princeton, where Wedderburn was continuing his work on the theory of algebras and engaging in research
and teaching on the theory of matrices. By 1924, MacDuffee had moved on to the Ohio State University
and nine years later had authored the widely read textbblod, Theory of MatriceMacDuffee, 1933]
which presented that theory as it had developed in the hands of both the Americans and the Europeans.
Wedderburn himself followed one year later with his olectures on Matrice$Wedderburn, 1934]
MacDuffee continued his efforts at codifying the “new” algebra after his move to the University of
Wisconsin in 1935. In 1940, he publishéd Introduction to Abstract Algebraaimed at beginning
graduate students in American classrooms. In his preface, he explicitly linked his undertaking to the
philosophy he had imbued at Chicago. “The phenomenal development in algebra which has occurred
in recent years,” he wrote, “has been largely the result of a changed point of view toward the subject,
the displacement of formalism by generalization and abstraction. The maxim so often emphasized by
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the late E.H. Moore that the existence of parallel theories indicates an underlying unifying theory has
been thoroughly vindicated in modern algebra. Number theory, group theory, and formal algebra have
been unified and abstracted to produce what is now known as abstract alfdéac®uffee, 1940, v]In
presenting that abstract algebra to his American audience, MacDuffee moved from finite groups to rings
and fields to matrices before bringing his book to a triumphal close with one of the main achievements
of his mentors, Dickson and Wedderburn, the theory of linear associative algdtaeBuffee, 1940,
251-296]

The most famous third-generation student directed by Dickson, however, was A. Adrian Albert. Albert
earned his master’s degree in 1927 for a thesis in which he showed that any central division algebra of
dimension 16 over its base field (of characteristic zero) is a crossed product dfyeleravent on the
next year to earn his Ph.D. for more work on division algebras. As Della Fenster noted in her doctoral
thesis, Albert’s early research “had its origins in the work of both Dickson and Wedderfitenster,

1994, 185}-in the case of Dickson, work presented in the 1906 paper in which he defined the concept
of a cyclic algebrdDickson, 1913] and, in the case of Wedderburn, the 1907 paper “On Hypercomplex
Numbers”’[Wedderburn, 1907]as well as later work in 1921 on cyclic algebras pefWedderburn,

1921] This intellectual lineage—as well as the fact that Albert immediately followed his doctoral
work with a year-long stay in Princeton “attracted by that great master of associative algebra theory,”
WedderburrfJacobson, 1974, 1076}further exemplifies the mathematical and intellectual continuity of
Chicago’s program in algebra.

The questions Albert examined were timely. In the structure theorems he presented in his 1907 paper,
Wedderburn had effectively shown that the study of finite-dimensional semisimple algebras reduces to
that of division algebras. Thus, the search for division algebras and, in general, the classification of them
became a focal point of the new theory of algebras. As early as 1905 in his competition with Wedderburn
over the finite division algebra theorem, Dickson had been interested in division algebras, and this
interest only intensified in light of Wedderburn’s revolutionary structural results. In 1906, Dickson had
defined a new class of algebras, so-catigdic algebras, which have dimensiaf over the base field
[Dickson, 1914] These contain a maximal subfield that is cyclic oFerthat is, the maximal subfield is
a Galois field with cyclic Galois groug of ordern. Moreover, Dickson noted that the class of cyclic
algebras contained division algebras. In 1914, Wedderburn established a critical sufficient condition for
a cyclic algebra to be a division algeledderburn, 1914} and by 1921, he had extended this work
to central division algebras, that is, division algebras with center equal to the basdWeliterburn,

1921] Wedderburn showed that every central division algebra of dimension 9 over the base field is
cyclic, and he proved that Dickson’s cyclic algebras were actually special cases of what would come to
be called Abelian crossed products. Dickson then showed in 1926 that Abelian crossed products could
be generalized even further to crossed products based on any (that is, not necessarily Abelian) Galois
field extension and, in so doing, generated yet another new class of division alfieickeson, 1926]

Albert’s result thus extended Wedderburn’s 1921 theorem to the next case, dimenglaodison, 1974,
1078-1079]

10 See[Albert, 1929] Albert later refined this result. IAlbert [1932] he admitted that his original proof was unnecessarily
complicated and gave a simpler proof of the result. Finallyliert [1934] he proved the result in its full generality, noting
first that the result actually holds for any infinite field (characterigti) and then handling the characteristic 2 case.

11 MacDuffee included anxgosition of some of this work on cyclic algebrashacDuffee [1940, 273—-277hgain taking
the opportunity to highlight the work of his mentors, Dickson and Wedderburn.
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Just like Dickson’s student, Albert, one of Wedderburn’s students, Nathan Jacobson, also became
caught up in the quest to understand cyclic and crossed product algebras. In 1909, Wedderburn had left
his native Scotland to spend the rest of his academic career at Princeton University, where, as noted
above, he continued the work on the theory of algebras he had begun at Chicago and where he embarked
on related work in matrix theory. Although circumstances ultimately resulted in his having only three
doctoral students, one of those, Jacobson, not only continued in his adviser's mathematical footsteps but
also completed, in a very real sense, the structure theory that Wedderburn had been so instrumental in
establishindParshall, 1992]

Jacobson earned his Princeton Ph.D. in 1934, six years after Albert, for a thesis on “Non-commutative
Polynomials and Cyclic Algebras[Jacobson, 1934]Wedderburn had suggested the topic to him,
motivated by the question “Do there exist non-crossed product central division algeflas@bson,
1989a, 1:2] Although his research did not yield an answer to this original question, he did come up with
some new results on cyclic algebras.

It was also during the course of his doctoral studies at Princeton that Jacobson became aware of
Wedderburn's 1924 paper on “Algebras Which Do Not Possess a Finite Ha¢ésiderburn, 1924]

a paper which, according to Jacobson, “was one of those that inspired my later work on the structure
theory of rings”[Jacobson, 1989b, 2T hat later work was also informed generally by Emmy Noether’s
ring-theoretic researches of the 1920s and 1930s and more particularly by Emil Artin’s extension in 1927
of Wedderburn’s structure theory to rings satisfying the descending chain condition for righ{Ahtials

1927] In a series of papers in 1945, Jacobson succeeded in taking this further by laying the groundwork
for a structure theory of rings without finiteness conditigd@cobson, 1945a, 1945b, 1945c, 1945d]
(Recall that in his 1907 paper, Wedderburn always worked with algebras that were finite-dimensional
over their base field.) In particular, Jacobson defined what came to be called the Jacobson radical of aring,
a structure in an arbitrary ring in some sense analogous to the maximal nilpotent ideal Wedderburn had
worked with in a finite-dimensional algebra. I.N. Herstein, a later Chicago ring theorist fundamentally
influenced by Wedderburn’s research and his approach to the theory of algebras, described the import of
the Jacobson radical with characteristic clarity. “In order to study a general ring,” he wrote, “we want
to slice out of the ring a certain piece—the so-called radical—in such a way that we do not slice out
too much, so that the piece being cut away is capable of description yet at the same time we do not
want to cut out too little, so that the object resulting after the excision is also capable of description”
[Herstein, 1968, 9]Jacobson’s analysis of his radical thus did for the new structure theory of rings
what Wedderburn’s isolation of the maximal nilpotent ideal did for the structure theory of algebras
[Jacobson, 1945bPacobson provided a complete exposition of these and other results in 1956 in his
highly influential book Structure of RinggJacobson, 1956]

Jacobson ultimately transplanted to Yale University the brand of algebraic inquiry that his adviser,
Wedderburn, had imbued at Chicago, although, as noted, in a form enhanced further by the ideas of
Emmy Noether. Many of his students, the fourth generation, worked on the theories of various kinds of
algebras—both associative and nonassociative—and in ring theory and went on to do influentf&l work.

As for Albert, he followed his first postdoctoral year with Wedderburn in Princeton by two years as
an Instructor at Columbia. He then returned to a position at Chicago in 1931 and remained there for
the rest of his life. His work continued to center on the theory of algebras. In 1931, he came within a

12 seeJacobson [1989a, 1:xipr the complete list of Jacobson’s students and their dissertation topics.
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hair's breadth of winning the biggest prize in the fipAddbert, 1931] namely, determining the complete
classification of all rational division algebras, that is, division algelrasich that the centdr of D is a

finite (Galois) extension af). Yet another classification theorem, it had also captured the interest of the
German mathematicians, Richard Brauer, Helmut Hasse, and Emmy Noether, and they just edged Albert
out of the result® Although stung by this incident, Albert went on to publish his influential treatise,
Structure of AlgebragAlbert, 1939] before his interests—Ilike those of his contemporary, Jacobson—
moved from associative to nonassociative algebras. Still, Albert remained in some sense obsessed for the
rest of his career with the crossed product algebras he had studied in his earliest work, convinced that,
in fact, everycentral division algebra is a crossed product algebra. He was ultimately unable to prove
this, and in 1972, just months before his death, the Israeli mathematician, Shimshon Amitsur, found a
counterexampl@Amitsur, 1972]

Like Jacobson at Yale, Albert conveyed, during a forty-year career at Chicago, his brand of algebra
to a number of students who perpetuated and develogédijtread from coast to coast, these fourth-
generation students from the 1940s and early 1950s continued their research primarily in ring theory and
in the theory of nonassociative algebras, wrote textbooks, and trained their own students well into the
1990s.

Defining amathematical research school

This overview of Chicago-connected algebraic results now raises the question, was there something
that could properly be called a Chicago school of algebra? Mathematicians tend to use the term school
loosely. One often hears the set of Ph.D. students of mathemaficiaho happens to be located at
institution Y referred to as X’s school” or the Y school,” but exactly what analytic value does this
highly informal notion of a school have in trying to assess meaningfully the real intellectual and social
connections between mathematicians or the complex development of mathematical theories?

That the word “school,” which has often been invoked in the history of mathematics, has been
understood in a loose sense is indicated by the pervasive usage of the word in quotation marks. For
example, Uta Merzbach referred to “[t]he ‘Noether school™erzbach [1983, 168ind understood this
to mean “those who collaborated with [Noether] in attempting to make algebra the tool and foundation
of all of mathematics.. during the last decade of her life.” Michael Scanlon used “standards of work
and approaches . developed with the American community of research mathematicians” to “identify
an American ‘school’ of foundational studies in at least the period 1900-1&R&inlon, 1991, 982]

Other instances of schools—in an ill-, un-, or underdefined, intuitive sense—in the historical literature
on mathematics include the Peano sch@nnedy, 1980, 84—89 and 181he Warsaw schodDuda,

1996] and numerous examples throughf@tattan-Guinness, 1994, 2; 1791-179%here the term is

used to indicate everything from simply “the students of a mentor” to “the students of a mentor who
shared a common approach” to “those limited geographically who came to share a common approach”
to “those who work within a certain tradition” ta .. Grattan-Guinness did write briefly but explicitly

13 seeAlbert/Hasse [1932for an account of how the result followed quickly from work Albert had communicated to
Hasse. Unfortunately, Albert’s letteritially went astray, and Brauer, Hasse, and Noether published their independent work
[Brauer/Hasse/Noether, 1932hus making no mention of Albert’s results.

14 seeBlock et al. [1993, L:xxxvii—xxxviii]for the full list of Albert’s students and their dissertation topics.
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about schools in the mathematical contextGrattan-Guinness [1997, 755-75There, he argued that

“only occasionally can one point toschoolin the strict sense, with a leader (not necessarily beloved)
and geographical centre, a specified programme of work (maybe not only in mathematics), settled means
of diffusing or even publishing, and a strong sense of bonding among its menj@eastan-Guinness,

1997, 755-756]This variety of “understood” meanings suggests that some attempt at an actual definition
that would not only fit what historians of mathematics think of as a school but also serve to analyze new
historical contexts might be warrant&d.

Historians of science also use the word school, but, for them, a school is almost exclusively something
associated with the laboratory sciences, so mathematics falls outside their purview. Still, historians of
science—largely unlike writers on the history of mathematics—have at least tried to provide a definition
of school as an analytical construct for evaluating and understanding the past. A consideration of some
of their definitions sheds light on how these definitions might be adapted to the mathematical context.

In what has become a classic study in the history of science, the British historian of science,
J.B. Morrell, considered the notion mdsearch schools his 1972 analysis of the 19th-century chemists
Justus Liebig and Thomas Thomdaforrell, 1972]. In Morrell's words, the concept of a research school
“centred on laboratories in which ambitious disciples devotedly served an apprenticeship and afterwards
produced knowledge under the aegis of a revered master of res@eliaiéll, 1972, 1] This conception
was thus clearly shaped by the image of the crowded laboratory in which students and professor worked
shoulder-to-shoulder on some experiment or program of experiments conceived of and orchestrated by
the seemingly all-knowing director. Morrell then proceeded to lay out seven criteria for a research school.
First, there had to be a leader who guided a program that was too big for him to deal with alone. Second,
there had to be manpower “for the creation, maintenance, and expansion of a research group”; that is,
“there had to be a regular supply of motivated students who were keen to apprentice themselves to a
recognized or emerging master of his subjgbtorrell, 1972, 4] Third, the area of inquiry needed to be
such that “a set of relatively simple, fast, and reliable experimental techniques could be steadily applied
by both brilliant and ordinary students to the solution of significant problems” and in so doing generate
a body of knowledge that in some sense became the “property” of the §vtarpell, 1972, 5] Fourth,
there had to be publications “to convert private work into public knowledge and fivtaatell, 1972, 5]

Fifth, the leader had to have sufficient institutional power to ensure that his research goals could be
realized. Sixth, the leader also needed to be charismatic in order to attract sufficient numbers of disciples.
And finally, seventh, the leader required sufficient institutional support to assure that the laboratory could
run from day to day and year to yegorrell, 1972, 6—7] Clearly geared toward types of science that
require significant space, relatively large numbers of collaborators, material infrastructure other than
blackboards, chalk, and books, and a fixed physical location, Morrell's seven criteria for a research school
do not apply particularly well to the case of mathematics.

Another historian of science, Gerald Geison, drew from Morrell's work at the same time that he was
guided by his own research on the 19th-century Cambridge physiologist, Michael Foster, in coming up
with another definition of research school. In his 1981 article entitled “Scientific Change, Emerging
Specialties, and Research Schools,” Geison defined a research school as “a small group of mature
scientists pursuing a reasonably coherent programme of research side-by-side with advanced students
in the same institutional context and engaging in direct, continuous social and intellectual interaction”

15 This, of course, is a different issue from understanding how historical actors, who actually employed the word school in a
particular historical context, conceived of the term. Compare Albert Lewis’s article in the present isBst®né Mathematica
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[Geison, 1981, 23]JFor Geison, then, even more so perhaps than for Morrell, the interaction of individuals

in close physical proximity was critical to the existence of a research school. He did offer at least one
caveat to his conception of research school as a unit of historical analysis, however. He noted that “it
might be necessary to acknowledge the existence of spatially dispersed research schools, or at least to
recognize and take account of the extent to which the members of a research school may extend its
geographic scope by moving elsewhej@eison, 1981, 35]The precise definition aside, Geison argued

that as an analytical tool in the history of science, the notion of a research school has the potential to
“enrich our understanding of emerging specialties” and to “refine our efforts to specify the conditions
under which innovative science is most likely to be dof@eison, 1981, 36]

While historians of science have continued to debate and refine the concept of the researct school,
very little, if any, of this discussion and debate has focused on examples presented by mathematics. This
then raises the question, what might an appropriate definition foathematicaresearch school look
like?

First of all, while mathematics has a critical sociological component, it lends itself much more
naturally and easily than do the experimental sciences to the individual investigator or to small groups of
two or three investigators in collaboratidhlt is not done in the context of the expensive infrastructure
of the laboratory; it does not require the interaction of individuialslose physical proximitycentral to
Geison’s definition of a research school; it is linked less by geography and more by the interaction of
individuals through ideas.

Still, mathematics does share certain characteristics with the laboratory sciences. This interaction
of individuals through ideas centers on means of communication, which are key to the experimental
sciences as well. Mathematicians, like experimentalists, communicate informally at the blackboard, by
letter, through attendance at meetings, and, in the modern era, by telephone, fax, e-mail, and the Internet.
They also communicate with each other formally through publications, which establish not only priority
but also reputation. Journals and books serve as the permanent record of the ever-evolving body of
mathematical knowledge, while textbooks, in particular, establish priority of place for knowledge that
should be common knowledge.

Mathematics also resembles the experimental sciences in that it is learned through a kind of
apprenticeship; the graduate student, working in association with an adviser both inside and outside
the graduate classroom, is generally guided into a mathematical area and toward a particular problem or
set of problems. Through this apprenticeship, the student learns not only an explicit body of knowledge
from the adviser in a particular pedagogic context but also a set of values and other intangibles that go on
to guide the student’s choices of mathematical problems and areas as well as to shape the student’s sense
of mathematical taste. The absorption of these sorts of intangibles—"tacit knowledge,” to use Michael
Polanyi's phras¢Polanyi, 1958}-represents just as key an aspect of the mathematical apprenticeship as
it does of the laboratory apprenticeship with its acquired sense, for example, of bench craftsifanship.
Unlike in the laboratory context, however, the problem or set of problems tackled by the student may not

16 See, for example, the essays@eison and Holmes [1993John Servos opened this volume with an introduction to
“Research Schools and Their Historig¢Servos, 1993]The notes in his chapter, as well as in the others in the volume, provide
a good overview of the literature on the concept of the research school. As Servos rdfmatids,[1990]also has a valuable
bibliography containing literature on the topic.

17 A notable example of a large and concerted group effort in mathematics, however, was (and is) the classification of the
finite simple groups. This, however, seems to be the exception rather than the rule in mathematics.
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have any direct bearing on some immediate and focused research problem of the adviser. In mathematics,
perhaps more so than in the experimental sciences at least as Morrell characterized them, the student is
less a skilled helper and more an evolving, independent researcher. The student most often leaves the
adviser’s institutional context to pursue research elsewhere and, in so doing, may transplant mathematical
ideas and values.

Putting together these characteristics of mathematics and its practice thus suggests the following
components of at least a first approximation of a meaningful definition wlathematicalresearch
school. First, a mathematical research school initially requires a leader, who actively pursues research
in a particular area of mathematics. That leader may be charismatic, that is, s’lhe may have a personal
magic that arouses loyalty or enthusiasm like Morrell’s laboratory directors, but this would not seem to
be a necessary condition for a leader of a mathematical research school. Rather, the “magic” of the latter
leader's mathematical work and ideas may be the more critical factor. Second, that leader advocates a
fundamental idea or approach to some set of inherently related research interests or research interests
that become related by virtue of the idea or approach. Third, the leader trains students and, in so doing,
imbues them with a sense not only of the validity and fruitfulness of the approach but also of the “right”
way to go about asking and answering questions; explicit and tacit knowledge are conveyed through the
education process. Those students then go forth and pursue research according to that approach so that
the ideas and approach may naturally extend beyond the leader’s original institutional setting. In this
process, the original leader may pass from the scene but may be replaced by another like-minded leader
or leaders who train students appreciative of and actively engaged in research informed by the approach,
and so on. The passing from the scene of the original leader and/or the multiplication of geographical loci
of instruction may mark, moreover, the transition from a mathematical research school to a mathematical
specialty or subdisciplin€. Fourth, the publication of the research not only represents recognition of the
research done but also comes to reflect the external validation of the approach. This external validation
may result in the extension of the ideas and approach by other researchers nationally and internationally.
According to this definition, the mathematical research school is thus a vehicle for the formation of new
research specialties and, hence, is an analytical tool for understanding at least one way that mathematics
develops over time.

There are a few things to note about this proposed definition, however. First, it differs from the naive
notion of “X’s school” as “the Ph.D. students &f’ by requiring four specific criteria to be met. In other
words, what might be considered the space of mathematical research schools is four-dimé&hEheral.
must be a leader and students (as in the naive notion), but the leader and the students also need actively to
embrace and extend a common method or approach. In the naive sense of school, simply being a student
of X does not necessarily mean having a sense of any common approach that should beXpusagd,;
never have had this sense to impart; and “studentX ofiay not have actually been Ph.D. students of
X. Without the sense of common approach, moreover, the criterion of external validation of an approach

18 compareOlesko [1993]on the role of pedagogy in imparting both tacit and explict knowledge and thus in the process of
school formation.

19 The present definition concerns primarily the becoming dmllieing of a mathematical search school. Interesting
questions for further thought and consiaéon are: What constitutes the end of a mathematical research school? Given a
particular mathematical research school how does, or does, it evolve into a mathematical specialty or subdiscipline?

20 This definition is intended as a first approximation. Subsequent scholars may feel the need to add to or further refine the
criteria specified here.
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via publication also fails to be mét.Second, by proposing a definition farathematical research school

here, the intention is not merely to enlarge or narrow the size of the space of “mathematical research
schools” relative to previous conceptions—whether explicit or implicit—of the phrase, but rather to
specify what seem to be four natural and critical analytical dimensions in the hope of establishing a basis
for common historical and historiographical interpretation. With this understanding of the definition of a
mathematical research school, consider now the case of algebra at the University of Chicago from 1892
to roughly 1945.

A Chicago school of algebra?

Chicago had a recognized leader in E.H. Moore, an energetic although not particularly charismatic
person, who was interested in the 1890s in what soon became hot, algebraic ideas stemming from the
theory of finite simple groups and who approached his research from an enticing, structural—and after
1901, axiomatic—point of view. Moore supervised the doctoral research of Leonard Dickson, who took
up not only Moore’s general area of research but also his sense of what questions to ask. Moore and
Dickson both fundamentally influenced the mathematical approach and the area of interest of the visiting
Scot graduate student, Joseph H.M. Wedderburn. Wedderburn at Princeton and Dickson at Chicago
continued to pursue research questions about the structure of algebras and later of related objects,
division algebras, while Moore moved out of algebra and into function theory. Although neither the
“hard-bitten” DicksoR? nor the withdrawn and solitary Wedderburn was particularly charismatic, both
did research recognized as exciting and seminal. They disseminated this work widely in journals such
as theAnnals of Mathematicand theTransactions of the American Mathematical Societyddition
to foreign journals such as tldeurnal of the London Mathematical Societyd Crelle’sJournal fir die
reine und angewandte Mathemat#énd gained for their ideas recognition both at home and abroad.

In Germany, for example, Helmut Hasse explicitly recognized these concerted American efforts in the
theory of algebras. Writing in English in tHEransactions of the American Mathematical Society
paper dated in 1931, he acknowledged that “[tlhe theory of linear algebras has been greatly extended
through the work of American mathematiciarigfasse, 1932, 171He went on to note, however, that
“[o]f late, German mathematicians have become active in this theory” and suggested that the German
“results do not seem to be as well known in America as they should be on account of their importance”
[Hasse, 1932, 17#F From his vantage point in Germany, then, Hasse saw in the United States of the
late 1920s and early 1930s a research dynamic involving a group of mathematicians actively exchanging
and building results in a particular area of interest, and many of these mathematicians, such as Dickson,

21 consider, for example, the “Noether school” mentioned abovealschool by the defition propogd here, but not by the
naive definition. People in the Noether school were part of Noether's circle rather than those who earned their Ph.D.'s under her,
but Noether was a leader with convinced followers. Together, they pursued a common approach, and through their publications,
others came to recognize theirs as a new and valuable approach. (It was this latter point that went underanalyzed in Merzbach’s
characterization.) Thé&Noether school” is also not a school by Morrell's defion, since Noether never had institutional
power and had only marginal institutional support. Relative tthematics, then, the naive dsgfion is underéfined, whereas
Morrell's definition is overdefined.

22 saunders Mac Lane characterized Dickson in this way in an interview with Della Fenster on 5-6 March, 19%hs$ere
[1994, 154]

23 These passages are from the introduction to Hasse’s paper, which is quoted at greater [Bagth 1999, 232]
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Wedderburn, and Albert (to whose work Hasse’s paper was largely addressed), had deep connections to
Chicago?*

American mathematicians-to-be, students desirous of advanced training in algebra, recognized this
as well. They were thus attracted to the classrooms of Dickson, Wedderburn, and, eventually, Albert
and Jacobson and were brought to the research level in the theory of algebras—both associative and
nonassociative—as well as in the theory of division algebras and in ring theory. Nor were these
Americans and their students deaf to Hasse’s cautions against insularity, cautions reflective of a sense of
the existence of an overly intercommunicating mathematical research school. They freely incorporated
into their approach the latest ideas of mathematicians such as Emmy Noether and Emil Artin and passed
that evolving approach on to their students, who dispersed throughout the country. The result was new and
recognized research specializations in ring theory and the theory of nonassociative algebras characterized
by the quest for the objects’ underlying structure.

At this point, three things seem clear. First, the definitions of “research school” to be found in the
literature on the history of science are inadequate for mathematics. Second, it seems possible to define the
concept in the mathematical context in such a way to provide a useful analytical tool for understanding at
least one type of historical development within mathematics, the development of new research specialties.
And, third, at least by the definition proposed here, thesisa Chicago school of algebra between 1892
and 1945.
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