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Abstract

The theory of concept lattices (i.e. hierarchical structures of concepts in the sense of Port-Royal
school) is approached from the point of view of fuzzy logic. The notions of partial order, lattice
order, and formal concept are generalized for fuzzy setting. Presented is a theorem characterizing
the hierarchical structure of formal fuzzy concepts arising in a given formal fuzzy context. Also,
as an application of the present approach, Dedekind–MacNeille completion of a partial fuzzy
order is described. The approach and results provide foundations for formal concept analysis of
vague data—the propositions “object x has attribute y”, which form the input data to formal
concept analysis, are now allowed to have also intermediate truth values, meeting reality better.
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1. Introduction

The notion of partial and lattice order goes back to 19th century investigations in
logic [15]. The origins are in the study of hierarchy of concepts, i.e. the relation of
being a subconcept of a superconcept. This view on order has been pursued lately by
Wille et al. in the study of concepts in the sense of Port–Royal [1] (so-called formal
concepts) and the corresponding hierarchical structures (so-called concept lattices) [7]
as a part of a program of “restructuring lattice theory” [16] (restructuring means shifting
lattice theory closer to its original motivations). Note also that concept lattices have
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found several real-world applications in data analysis (so-called formal concept analysis,
see [7]).

Recent years brought thorough investigations in fuzzy logic in the so-called narrow
sense (see e.g. [9,10]). Recall that the main distinguishing feature of fuzzy logic is
that it allows propositions to have also intermediate truth values, not just full truth (1)
or full falsity (0), i.e. fuzzy logic denies the principle of bivalence. Thus, for instance,
the truth value of “Ivan is young” can be 0.9. Fuzzy logic seems to be an appropriate
tool for reasoning in the presence of vagueness.

The aim of the present paper is to investigate Port–Royal concepts, their order, and
partial order in general from the point of view of fuzzy logic. Our main motivation is
that, from the point of view of fuzzy approach, the assumption of bivalence of concepts
and their hierarchy is, especially in the context of empirical concepts, unrealistic. Taking
the above-mentioned concept “young” as an example, there are surely individuals that
are not fully young nor fully old (not young), Ivan being one of them. In this sense,
the concept “young” is a typical example of a fuzzy concept. Also, the hope is that
taking into account the vagueness phenomenon and modeling vagueness adequately
should improve the application capabilities of formal concept analysis.

The paper is organized as follows. Section 2 surveys preliminaries. In Section 3, the
notions of a formal fuzzy concept and fuzzy order are introduced, and some properties
of fuzzy order are investigated. Section 4 presents the main result, the generalization of
the so-called main theorem of concept lattices characterizing the hierarchical structure
of formal fuzzy concepts. In the classical (i.e. bivalent) case, the well-known Dedekind–
MacNeille completion of a partially ordered set is a particular concept lattice (that one
induced by the partial order). As an application, Section 5 describes the Dedekind–
MacNeille completion in fuzzy setting.

2. Preliminaries

First, we recall some basic facts about concept lattices. Let I be a binary rela-
tion between the sets X and Y . For A⊆X and B⊆Y put A↑ = {y∈Y | 〈x; y〉 ∈ I
for each x∈A} and B↓ = {x∈X | 〈x; y〉 ∈ I for each y∈B}. The pair 〈↑; ↓〉 of
thus deLned mappings ↑ : 2X → 2Y and ↓ : 2Y → 2X is called a polarity induced by
I . Each polarity satisLes the axioms of a Galois connection between X and Y and,
conversely, each Galois connection between X and Y is a polarity [12]. The class
B(X; Y; I) = {〈A; B〉 ∈ 2X × 2Y |A↑ =B; B↓ =A} of all Lxed points of 〈↑; ↓〉
equipped with binary relation 6 deLned by 〈A1; B1〉6〈A2; B2〉 iM A1 ⊆A2 (or, equiv-
alently, B2 ⊆B1) forms thus a complete lattice. The following interpretation is crucial
for our purpose: Let X and Y denote a set of objects and a set of (object) attributes, re-
spectively, let 〈x; y〉 ∈ I mean that object x has the attribute y. Then 〈A; B〉 ∈B(X; Y; I)
means that B is the set of all attributes common to all objects from A and A is the set
of all objects sharing all the attributes from B. The triple 〈X; Y; I〉 is called a formal
context, each 〈A; B〉 ∈B(X; Y; I) is called a formal concept (in the respective context),
and B(X; Y; I) is called a concept lattice [16]. Note that the above interpretation takes
its inspiration in the Port–Royal logic (see [1]), A and B play the role of the extent
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(i.e. the set of covered objects) and of the intent (i.e. the set of covered attributes) of
the concept 〈A; B〉.

Except for the general case, there are well-known examples of concept lattices. We
will need the following one: If X =Y and I is a partial order, then 〈A; B〉 ∈B(X; Y; I)
iM 〈A; B〉 is a cut; and B(X; Y; I) is the Dedekind–MacNeille completion of I [11].

Next, we recall some basic notions of fuzzy logic. The crucial point is to choose
an appropriate structure of truth values. As it follows from the investigations in fuzzy
logic [8–10], a general one is that of a complete residuated lattice.

De�nition 1. A residuated lattice is an algebra L= 〈L;∧;∨;⊗;→; 0; 1〉 such that

(1) 〈L;∧;∨; 0; 1〉 is a lattice with the least element 0 and the greatest element 1,
(2) 〈L;⊗; 1〉 is a commutative monoid,
(3) ⊗;→ form an adjoint pair, i.e.

x ⊗ y 6 z iM x 6 y → z (1)

holds for all x; y; z ∈L.

Residuated lattice L is called complete if 〈L;∧;∨〉 is a complete lattice.

⊗ and → are called multiplication and residuum, respectively. Multiplication is
isotone, residuum is isotone in the Lrst and antitone in the second argument (w.r.t.
lattice order 6). For further properties of residuated lattices we refer to [8].

Several important algebras are special residuated lattices: Boolean algebras (alge-
braic counterpart of classical logic), Heyting algebras (intuitionistic logic), BL-algebras
(logic of continuous t-norms), MV-algebras ( Lukasiewicz logic), Girard monoids
(linear logic) and others (see e.g. [9,10] for further information and references).

The most studied and applied set of truth values is the real interval [0,1] with
a∧ b= min(a; b), a∨ b= max(a; b), and with three important pairs of adjoint opera-
tions: the  Lukasiewicz one (a⊗L b= max(a + b − 1; 0), a→L b= min(1 − a + b; 1)),
GPodel one (a⊗G b= min(a; b), a→G b= 1 if a6b and = b else), and product one
(a⊗P b= a · b; a→P b= 1 if a6b and = b=a else). More generally, if ⊗ is a continuous
t-norm (i.e. a continuous operation making 〈[0; 1];⊗; 1;6〉 an ordered monoid, see [9])
then putting x→ =y = sup{z | x⊗ z6y}, 〈[0; 1];min;max;⊗;→; 0; 1〉 is a complete
residuated lattice—so-called t-norm algebra determined by ⊗. Each continuous t-norm
is an ordered sum of ⊗L;⊗G, and ⊗P, see e.g. [9]. Another important set of truth values
is the set {a0 = 0; a1; : : : ; an = 1} (a0¡ · · ·¡an) with ⊗ given by ak ⊗ al = amax(k+l−n;0)

and the corresponding → given by ak → al = amin(n−k+l; n). A special case of the latter
algebras is the Boolean algebra 2 of classical logic with the support 2 = {0; 1}. It may
be easily veriLed that the only residuated lattice on {0; 1} is given by the classical
conjunction operation ∧, i.e. a∧ b= 1 iM a= 1 and b= 1; and by the classical impli-
cation operation →, i.e. a→ b= 0 iM a= 1 and b= 0. Note that each of the preceding
residuated lattices is complete.

In what follows, we assume that all residuated lattices under consideration are
complete. Elements of residuated lattices are interpreted as truth degrees, 0 and 1
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representing (full) falsity and (full) truth. Multiplication ⊗ and residuum → are in-
tended for modeling of the conjunction and implication, respectively. Supremum (

∨
)

and inLmum (
∧

) are intended for modeling of general and existential quantiLer, respec-
tively. A syntactico-semantically complete Lrst-order logic with semantics deLned over
complete residuated lattices can be found in [10], for logics complete w.r.t. semantics
deLned over various special residuated lattices see [9].

Analogously to the bivalent case, one can start developing a naive set theory with
truth values in an (appropriately chosen) complete residuated lattice L (the classical
bivalent case being a special case for L= 2). We recall the basic notions. An L-set (or
fuzzy set, if L is obvious or not important) [17,8] A in a universe set X is any map
A :X →L; A(x) being interpreted as the truth degree of the fact “x belongs to A”. By LX

we denote the set of all L-sets in X . The concept of an L-relation is deLned obviously;
we will use both preLx and inLx notation (thus, the truth degrees to which elements
x and y are related by an L-relation R are denoted by R(x; y) or (xRy)). Operations
on L extend pointwise to LX , e.g. (A∨B)(x) =A(x) ∨B(x) for A; B∈LX . Following
common usage, we write A∪B instead of A∨B, etc. Given A; B∈LX , the subsethood
degree [8] S(A; B) of A in B is deLned by S(A; B) =

∧
x∈X A(x) →B(x). We write

A⊆B if S(A; B) = 1. Analogously, the equality degree (A≈B) of A and B is deLned
by (A≈B) =

∧
x∈X (A(x) ↔B(x)). It is immediate that (A≈B) = S(A; B) ∧

S(B; A). For A∈LX and a∈L, the set aA= {x∈X |A(x)¿a} is called the a-cut of A.
For x∈X and a∈L, {a=x} is the L-set in X deLned by {a=x}(x) = a and {a=x}(y) = 0
for y �= x.

3. Formal fuzzy concepts and fuzzy order

We are going to deLne the notions of a formal concept and order from the point of
view of fuzzy logic so that the classical bivalent (notions) become a special cases for
L= 2. Our aim is to prepare necessary notions and facts to obtain the fuzzy version of
the main theorem of concept lattices (which will be the subject of the next section). In
the bivalent case, a set on which an order is deLned is equipped by equality relation.
The equality relation is explicitly used in the axiom of antisymmetry (if x6y and y6x
then x =y). An appropriate generalization to the underlying logic with truth values in a
complete residuated lattice is to deLne an L-order on a set equipped with an L-valued
equality.

A binary L-relation ≈ on X is called an L-equality if it satisLes (x≈ x) = 1 (re-
Qexivity), (x≈y) = (y≈ x) (symmetry), (x≈y) ⊗ (y≈ z)6(x≈ z) (transitivity), and
(x≈y) = 1 implies x =y. Binary L-relations satisfying reQexivity, symmetry, and tran-
sitivity are called L-equivalences or L-similarities. Note that 2-equality on X is pre-
cisely the usual equality (identity) idX (i.e. idX (x; y) = 1 for x =y and idX (x; y) = 0
for x �=y). Therefore, the notion of L-equality is a natural generalization of the clas-
sical (bivalent) notion. For an L-set A in X and an L-equality ≈ on X we de-
Lne the L-set C≈(A) by C≈(A)(x) =

∨
x′∈X A(x′) ⊗ (x′ ≈ x). It is easy to see that

C≈(A) is the smallest (w.r.t. ⊆) L-set in X that is compatible with ≈ and
contains A.
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Example 2. The equality degree ≈ is an L-equality on LX , for any X .

We say that a binary L-relation R between X and Y is compatible w.r.t. ≈X and
≈Y if R(x1; y1) ⊗ (x1 ≈X x2) ⊗ (x2 ≈Y y2)6R(y1; y2) for any xi ∈X; yi ∈Y (i = 1; 2). By
L〈X;≈X 〉×〈Y;≈Y 〉 we denote the set of all L-relations between X and Y compatible w.r.t.
≈X and ≈Y . Analogously, A∈LX is compatible w.r.t. ≈X if A(x1) ⊗ (x1 ≈X x2)6A(x2).
Note that LX =L〈X;idX 〉. An L-set A∈L〈X;≈〉 is called an ≈-singleton if there is some
x0 ∈X such that A(x) = (x0 ≈ x) for any x∈X . Clearly, an ≈-singleton is the least
L-set A compatible w.r.t. ≈ such that A(x0) = 1. For L= 2, singletons coincide with
one-elements sets.

De�nition 3. An L-order on a set X with an L-equality relation ≈ is a binary
L-relation 4 which is compatible w.r.t. ≈ and satisLes

x 4 x = 1 (reQexivity);

(x 4 y) ∧ (y 4 x)6 x ≈ y (antisymmetry);

(x 4 y) ⊗ (y 4 z)6 x 4 z (transitivity):

If 4 is an L-order on a set X with an L-equality ≈, we call the pair X=
〈〈X;≈〉;4〉 an L-ordered set.

Remark. (1) Clearly, if L= 2, the notion of L-order coincides with the usual notion
of (partial) order.

(2) For a similar approach to fuzzy order (however, with a diMerent formulation of
antisymmetry) see [5].

We say that L-ordered sets 〈〈X;≈X 〉;4X 〉 and 〈〈Y;≈Y 〉;4Y 〉 are isomorphic if there
is a bijective mapping h :X →Y such that (x≈X x′) = (h(x) ≈Y h(x′)) and (x4X x′) =
(h(x)4Y h(x′)) holds for all x; x′ ∈X .

Lemma 4. In an L-ordered set 〈〈X;≈〉;4〉 we have (x4y) ∧ (y4 x) = (x≈y).

Proof. The “6” part of the equality is the antisymmetry condition. The “¿” part fol-
lows from compatibility of 4: (x≈y) = (x4 x) ⊗ (x≈y)6(x4y), and similarly
(x≈y)6(y4 x), whence the conclusion follows.

Lemma 5. If X= 〈〈X;≈X 〉;4X 〉 and Y= 〈〈Y;≈Y 〉;4Y 〉 are L-ordered sets and h :X →Y
is a mapping satisfying (x4X x′) = (h(x)4Y h(x′)) then X and Y are isomorphic.

Proof. By Lemma 4, (h(x) ≈Y h(x′)) = ((h(x)4Y h(x′)) ∧ (h(x′)4Y h(x))) = (x4X x′) ∧
(x′ 4X x) = (x≈X x′), verifying the remaining condition of the deLnition of isomorphic
L-ordered sets.
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Example 6. (1) For any set X �= ∅ and any subset ∅ �=M ⊆LX , 〈〈M;≈〉;S〉 is an
L-ordered set. Indeed, reQexivity and antisymmetry is trivial. Transitivity: S(A; B) ⊗
S(B; C)6S(A; C) holds iM S(A; B) ⊗ S(B; C)6A(x) →C(x) is true for each x∈X which
is equivalent to A(x) ⊗ S(A; B) ⊗ S(B; C)6C(x) which is true since A(x) ⊗ S(A; B) ⊗
S(B; C)6A(x) ⊗(A(x) →B(x)) ⊗ (B(x) →C(x))6C(x). Compatibility i.e. S(A; B) ⊗
(A≈A′) ⊗ (B≈B′)6S(A′; B′) can be veriLed analogously.

(2) For a residuated lattice L deLne ≈ and 4 by (x≈y) := (x→y) ∧ (y→ x) and
(x4y) := x→y. Then 〈〈L;≈〉;4〉 is an L-ordered set. Note that (x≈y) = 1 implies
x =y since x→y = 1 iM x6y.

We are going to introduce the notion of polarity in many-valued setting. Let X and
Y be sets with L-equalities ≈X and ≈Y , respectively; I be an L-relation between X
and Y which is compatible w.r.t. ≈X and ≈Y . For A∈LX and B∈LY let A↑ ∈LY and
B↓ ∈LY be deLned by

A↑(y) =
∧
x∈X

A(x) → I(x; y) (2)

and

B↓(x) =
∧
y∈Y

B(y) → I(x; y): (3)

Clearly, A↑(y) is the truth degree to which “for each x from A, x and y are in I”,
and similarly for B↓(x). Thus, (2) and (3) are natural generalizations of the classical
case. We call the thus deLned pair 〈↑; ↓〉 of mappings ↑ :LX →LY and ↓ :LY →LX an
L-polarity induced by I (and denote it also by 〈↑I ; ↓I 〉). The one-to-one relationship
between polarities and Galois connections [12] generalizes as follows: Let ≈X and ≈Y

be L-equalities on X and Y , respectively. An L-Galois connection between 〈X;≈X 〉 and
〈Y;≈Y 〉 is a pair 〈↑; ↓〉 of mappings ↑ :L〈X;≈X 〉 →L〈Y;≈Y 〉; ↓ :L〈Y;≈Y 〉 →L〈X;≈X 〉 satisfying

S(A1; A2) 6 S(A↑
2 ; A

↑
1); (4)

S(B1; B2) 6 S(B↑
2 ; B

↑
1 ); (5)

A ⊆ A↑↓; (6)

B ⊆ B↓↑ (7)

for any A; A1; A2 ∈LX ; B; B1; B2 ∈LY . For the following proposition see [3]:

Proposition 7. Let I ∈L〈X;≈X 〉×〈Y;≈Y 〉; 〈↑; ↓〉 be an L-Galois connection between 〈X;≈X 〉
and 〈Y;≈Y 〉. Denote by I〈↑ ;↓〉 the binary L-relation I〈↑ ;↓〉 ∈LX×Y de:ned for x∈X;
y∈Y by I〈↑ ;↓〉(x; y) = {1=x}↑(y) (or, equivalently, = {1=y}↓(x)). Then 〈↑I ;↓I 〉 is an
L-Galois connection between 〈X;≈X 〉 and 〈Y;≈Y 〉; I〈↑ ;↓〉 is compatible w.r.t. ≈X and
≈Y ; and we have

〈↑;↓ 〉 = 〈↑I〈↑;↓〉 ; ↓I〈↑;↓〉 〉 and I = I〈↑I ;↓I 〉:
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Note that, in fact, Proposition 7 is proved for ≈X = idX and ≈Y = idY in [3]. The
extension to the case of arbitrary L-equalities is an easy exercise.

We are now able to present the basic notions of concept lattices in fuzzy setting.
A formal L-context is a triple 〈X; Y; I〉 where I is an L-relation between the set X
and Y (elements of X and Y are called objects and attributes, respectively). For the
L-polarity ↑; ↓ induced by I , denote B(X; Y; I) = {〈A; B〉 ∈LX ×LY } the set of all Lxed
points of 〈↑;↓ 〉; and call B(X; Y; I) the corresponding L-concept lattice. Note that the
thus deLned notions are direct interpretations of the Port–Royal deLnition of concept
in fuzzy setting. Doing so, the extent A of an L-concept 〈A; B〉 is a fuzzy set and
may thus contain objects to diMerent truth degrees, meeting the intuition about fuzzi-
ness (vagueness) of concepts. Our aim is to investigate the (hierarchical) structure
of B(X; Y; I). Let 〈A1; B1〉; 〈A2; B2〉 ∈B(X; Y; I). By (4) we get S(A1; A2)6S(A↑

2 ; A
↑
1)

and S(A2; A1)6S(A↑
1 ; A

↑
2). Therefore, since A↑

i =Bi (i = 1; 2), we have S(A1; A2)6
S(B2; B1) and S(A2; A1)6S(B1; B2), whence (A1 ≈A2)6(B1 ≈B2). Analogously, S(B1;
B2)6S(A2; A1), S(B2; B1)6S(A1; A2), and (B1 ≈B2)6(A1 ≈A2). We thus conclude
S(A1; A2) = S(B2; B1), and S(A2; A1) = S(B1; B2), and (A1 ≈A2) = (B1 ≈B2).
Therefore, putting (〈A1; B1〉≈〈A2; B2〉) = (A1 ≈A2) (or, equivalently, = (B1 ≈B2)) and
(〈A1; B1〉4〈A2; B2〉) = S(A1; A2) (or, equivalently, =S(B2; B1)), Example 6 (1)
implies that 〈〈B(X; Y; I);≈〉;4〉 is an L-ordered set.

An L-order 4 on 〈X;≈〉 is a binary L-relation between 〈X;≈〉 and 〈X;≈〉. Therefore,
4 induces an L-Galois connection 〈↑4 ; ↓4〉 between 〈X;≈〉 and 〈X;≈〉. Clearly, for an
L-set A in X , A↑4 (A↓4) can be verbally described as the L-set of elements which are
greater (smaller) than all elements of A. Therefore, we call A↑4 and A↓4 the upper
cone and the lower cone of A, respectively. For L= 2, we get the usual notions of
upper and lower cone. Thus, following the common usage in the theory of ordered
sets, we denote A↑4 by U (A) and A↓4 by L(A), and write UL(A) instead of U (L(A))
etc. We now introduce the notion of an inLmum and supremum in an L-ordered set,
and the notion of an completely lattice L-ordered set.

De�nition 8. For an L-ordered set 〈〈X; ≈ 〉;4〉 and A∈LX we deLne the L-sets
inf (A) and sup(A) in X by

(inf (A))(x) = (L(A))(x) ∧ (UL(A))(x);

(sup(A))(x) = (U (A))(x) ∧ (LU (A))(x):

inf (A) and sup(A) are called the in:mum and supremum of A, respectively.

Remark. The notions of inLmum and supremum are generalizations of the classical
notions. Indeed, if L= 2, (inf (A))(x) is the truth value of the fact that x belongs to
both the lower cone of A and the upper cone of the lower cone of A, i.e. x is the
greatest lower bound of A; similarly for sup(A).

Lemma 9. Let 〈〈X;≈〉;4〉 be an L-ordered set, A∈LX . If (inf (A))(x) = 1 and
(inf (A))(y) = 1 then x =y (and similarly for sup(A)).
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Proof. (inf (A))(x)=1 and (inf (A))(y)=1 implies (L(A))(x)=1, (L(A))(y)= 1,
(UL(A))(x) = 1, (UL(A))(y) = 1. Since (UL(A))(y) =

∧
z∈X (L(A))(z)→ (z4y) = 1 we

have (x4y) = 1 → (x4y) = (L(A))(x) → (x4y) = 1. In a similar way, we get
y4 x = 1, therefore, by antisymmetry, 1 = (x4y) ∧ (y4x)6x≈y. Since ≈ is an
L-equality, we have x =y.

De�nition 10. An L-ordered set 〈〈X;≈〉;4〉 is said to be completely lattice L-ordered
if for any A∈LX both sup(A) and inf (A) are ≈-singletons.

Remark. Lemma 9 and DeLnition 10 imply that in a completely lattice L-ordered set
X, supremum sup(A) of A∈LX is uniquely determined by the element x∈X such that
1sup(A) = {x} (i.e. (sup(A))(x) = 1).

Checking that an L-ordered set is completely lattice L-ordered may be simpliLed:

Lemma 11. For an L-ordered set X and A∈LX we have: inf (A) is a ≈-singleton
i= there is some x∈X such that (inf (A))(x) = 1. The same is true for
suprema.

Proof. Obviously, we have to show that if (inf (A))(x) = 1 for some x∈X then
inf (A) is a ≈-singleton, i.e. (inf (A))(x′) = (x≈ x′) for all x′ ∈X . First, we show
(inf (A))(x′)¿(x≈ x′): we have to show that (x≈ x′)6(L(A))(x′) and (x≈ x′)6
(UL(A))(x′). We show only the Lrst inequality, the second one is analogous.
By the deLnition of L, (x≈ x′)6(L(A))(x′) holds iM (x≈ x′)6A(y) → (x′ 4y) for
any y∈X which is true iM (x≈ x′) ⊗A(y)6(x′ 4y). Since (L(A))(x) = 1, we have
(x≈ x′) ⊗A(y) = (x≈ x′) ⊗A(y) ⊗ (L(A))(x)6(x ≈ x′) ⊗ A(y) ⊗ (A(y) → (x4y)) 6
(x≈ x′) ⊗ (x4y)6(x′ 4y), verifying the required inequality.

Second, we show (inf (A))(x′)6(x≈ x′). As 〈L; U 〉 forms a Galois connection be-
tween complete lattices 〈LX ;⊆〉 and 〈LX ;⊆〉, we have L=LUL, see [12, 3, Remark].
We thus have

(inf (A))(x′) = (L(A))(x′) ∧ (UL(A))(x′)

= (LUL(A))(x′) ∧ (UL(A))(x′)

=
∧
y∈X

((UL(A))(y) → (x′ 4 y)) ∧
∧
y∈X

((L(A))(y) → (y 4 x′))

6 ((UL(A))(x) → (x′ 4 x)) ∧ ((L(A))(x) → (x 4 x′))

= (1 → (x′ 4 x)) ∧ (1 → (x 4 x′))

= (x′ 4 x) ∧ (x 4 x′) = (x ≈ x′):

The case of suprema is dual.

The following assertion generalizes the well-known fact that “inLmum of a larger
subset is smaller” and “supremum of a larger subset is bigger”.
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Lemma 12. For an L-ordered set L; A; B∈LX , and x; y∈X we have

S(A; B) ⊗ (inf (A))(x) ⊗ (inf (B))(y)6 (y 4 x);

S(A; B) ⊗ (sup(A))(x) ⊗ (sup(B))(y)6 (x 4 y):

Proof. We have

S(A; B) ⊗ (inf (A))(x) ⊗ (inf (B))(y)

6 S(L(B); L(A)) ⊗ (inf (A))(x) ⊗ (inf (B))(y)

6 (L(B)(y) → L(A)(y)) ⊗ (inf (A))(x) ⊗ (L(B))(y)

6 L(A)(y) ⊗ (inf (A))(x) 6 (L(A))(y) ⊗ (UL(A))(x)

6 (L(A))(y) ⊗
∧
x′∈X

((L(A))(x′) → (x′ 4 x))

6 (L(A)(y)) ⊗ (L(A)(y) → (y 4 x)) 6 (y 4 x)

proving the Lrst inequality. The second one is dual.

Note that for an L-order 4 ; 14 (the one-cut of 4 , i.e. 14= {〈x; y〉 ∈X × X |
(x4y) = 1}) is a binary relation on X . 〈x; y〉 ∈ 14 means that the fact that x is less or
equal to y is “fully true”. The basic properties of the “fully true”-part of an L-order
are the subject of the following theorem.

Theorem 13. For an L-ordered set X= 〈〈X; ≈ 〉; 4 〉, the relation 14 is an order on
X . Moreover, if X is completely lattice L-ordered then 14 is a lattice order on X .

Proof. Denote ⊆ = 14 . ReQexivity of ⊆ follows from reQexivity of 4 . Anti-
symmetry of ⊆: x⊆y and y⊆ x implies (x4y) = 1 and (y4 x) = 1. Antisymme-
try of 4 thus yields (x≈y) = 1. Since ≈ is an L-equality, we conclude x =y. If
x⊆y and y⊆ z, then (x4y) = 1 and (y4 z) = 1, therefore 1 = (x4y) ⊗ (y4 z)6
(x4 z), whence (x4 z) = 1, i.e. x⊆ z, by transitivity of 4 .

Let X be completely lattice L-ordered and let A be a subset of X ; denote by
A′ the L-set in X corresponding to A, i.e. A′(x) = 1 for x∈A and A′(x) = 0 for
x =∈A. We show that there exists a supremum

∧
A of A in 〈X; ⊆ 〉 (the case of inL-

mum is dual). Since X is completely lattice L-ordered, sup(C≈(A′)) is a ≈ -single-
ton in 〈X; ≈ 〉. Denote by x∗ the element of X such that (sup(C≈(A′)))(x∗) = 1.
Since (sup(C≈(A′)))(x∗) = (U (C≈(A′)))(x∗) ∧ (LU (C≈(A′)))(x∗) we have both
(U (C≈(A′)))(x∗) = 1 and (LU (C≈(A′)))(x∗) = 1. From the former we have∧

x∈X (C≈(A′))(x) → (x4 x∗) = 1, i.e. (C≈(A′))(x)6(x4 x∗) by adjointness.
Since A′(x)6(C≈(A′))(x) for any x∈X , we further conclude (x4 x∗) = 1 for any
x∈X such that A′(x) = 1 (i.e. x∈A). Therefore, x∗ belongs to the upper cone (w.r.t.
⊆ ) of A. In a similar way, using U (C≈(A)) =U (A) (this equality can be easily es-
tablished), we can show that (LU (C≈(A′)))(x∗) = 1 implies that x∗ belongs to the
lower cone of the upper cone (cones w.r.t. ⊆ ) of A. Thus, x∗ is the supremum of A
w.r.t. ⊆ .
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Remark. (1) Theorem 13 has the following consequence: if X is a completely lat-
tice L-ordered set, we may speak about the inLmum (supremum) of a (crisp) subset
A of X w.r.t. 14. Unless otherwise speciLed, we adopt the following conventions to
be used in what follows: whenever the context avoids possible confusion with the
symbols related to the order on L (the structure of truth values), 14 will be denoted
by 6; inLmum (supremum) of A⊆X will be denoted by

∧
A(
∨

A) or any obvi-
ous modiLcation of this notation. Due to the proof of Theorem 13, we have that
for A⊆X it holds 1inf (C≈(A′)) = {∧A} and 1sup(C≈(A′)) = {∨A} where A′ is the
L-set in X corresponding to A (i.e. A′(x) = 1 for x∈A and A′(x) = 0 for x =∈A).
Therefore, in a sense, the inLma of crisp subsets of X w.r.t. to 4 and w.r.t. to
6 (i.e. 14) are consistent.

(2) Note, however, that a completely lattice L-ordered set X= 〈〈X; ≈ 〉; 4 〉 is
in general not determined by 14. Indeed, consider the following example: Let L be
the GPodel algebra on [0; 1] (i.e. a⊗ b= min(a; b)), let X = {x; y}. Consider the
bivalent order 6= {〈x; x〉; 〈x; y〉; 〈y; y〉} on X . Then X1 = 〈〈X1; ≈1〉; 41〉 and
X2 = 〈〈X2; ≈2〉; 42〉 deLned by (x41 x) = 1; (x41 y) = 1; (y41 x) = 0:6; (y41 y) = 1;
(x42 x) = 1; (x42 y) = 1; (y42 x) = 0:8; (y42 y) = 1; and (u≈i v) = min((u4i v);
(v4iu)) (for u; v∈X; i = 1; 2), are two diMerent completely lattice L-ordered sets such
that 6 equals both 141 and 142 .

4. The structure of fuzzy concept lattices

Recall that for an L-set A in U and a∈L; a⊗A and a→A denote the L-sets such
that (a⊗A)(u) = a⊗A(u) and (a→A)(u) = a→A(u), respectively.

If M is an L-set in Y and each y∈Y is an L-set in X , we deLne the L-sets
⋂
M

and
⋃
M in X by

(⋂
M
)

(x) =
∧
A∈Y

M(A) → A(x);

(⋃
M
)

(x) =
∨
A∈Y

M(A) ⊗ A(x):

Clearly,
⋂
M and

⋃
M are generalizations of an intersection and a union of a sys-

tem of sets, respectively. For an L-set M in B(X; Y; I), we put
⋂

X M=
⋂

prX (M);⋃
X M=

⋃
prX (M);

⋂
Y M=

⋂
prY (M);

⋃
Y M=

⋃
prY (M), where prX (M) is an

L-set in the set {A∈LX |A=A↑↓} of all extents of B(X; Y; I) deLned by (prXM)(A) =
M(A; A↑) and, similarly, prY (M) is an L-set in the set {B∈LY |B=B↑↓} of all intents
of B(X; Y; I) deLned by (prYM)(B) =M(B↓; B). Thus,

⋂
X M is the “intersection of

all extents from M” etc.
Let X be a completely lattice L-ordered set, L′ ⊆L. A subset K ⊆X is called

L′-inLmally dense in X (L′-supremally dense in X) if for each x∈X there is some
A∈L′X such that A(y) = 0 for all y =∈K and (inf (A))(x) = 1 ((sup(A))(x) = 1).
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Remark. (1) Note that by Remark 3, K is {0; 1}-inLmally dense ({0; 1}-supremally
dense) in X if for each x∈X there is some K ′ ⊆K such that x =

∧
K ′ (x =

∨
K ′).

Here,
∧

(
∨

) refers to the inLmum (supremum) w.r.t. 6, i.e. w.r.t. the one-cut of 4 .
(2) For L= 2 (the classical (bivalent) case), the above notions coincide with the

usual notions of inLmal and supremal density.

We are ready to present the main result characterizing the hierarchical structure of
B(X; Y; I).

Theorem 14. Let 〈X; Y; I〉 be an L-context. (1) 〈〈B(X; Y; I); ≈〉; 4〉 is completely lat-
tice L-ordered set in which in:ma and suprema can be described as follows: for an
L-set M in B(X; Y; I) we have

1 inf (M) =



〈⋂

X

M;

(⋂
X

M

)↑〉


=



〈(⋃

Y

M

)↓
;

(⋃
Y

M

)↓↑〉
 ; (8)

1 sup(M) =



〈(⋂

Y

M

)↓
;
⋂
Y

M

〉


=



〈(⋃

X

M

)↑↓
;

(⋃
X

M

)↑〉
 : (9)

(2) Moreover, a completely lattice L-ordered set V= 〈〈V; ≈〉; 4〉 is isomorphic to
〈〈B(X; Y; I); ≈〉; 4〉 i= there are mappings � :X × L→V;  :Y × L→V , such that
�(X ×L) is {0; 1}-supremally dense in V;  (Y ×L) is {0; 1}-in:mally dense in V, and
((a⊗ b) → I(x; y)) = (�(x; a)4  (y; b)) for all x∈X; y∈Y; a; b∈L. In particular, V
is isomorphic to B(V; V; 4).

Proof. For brevity, we write also B instead of B(X; Y; I).
Part 1: From Example 6, we know that 〈〈B(X; Y; I); ≈〉;4〉 is an L-ordered set. We

therefore have to show that inf (M) and sup(M) are ≈ -singletons and that (8) and
(9) hold for any L-set M in B(X; Y; I). We proceed only for suprema, the case of
inLma is symmetric. First, we show (9). To this end, denote 〈A∗; B∗〉 = 〈(⋃X M)↑↓;
(
⋃

X M)↑〉. We start by proving B∗ =
⋂

Y M, i.e. we have to prove

∧
x∈X




 ∨

〈A;B〉∈B
M(A; B) ⊗ A(x)


→ I(x; y)




=
∧

〈A;B〉∈B
(M(A; B) → B(y)) (10)
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for any y∈Y . The “6” part of (10) holds iM
∧

x∈X ((
∨

〈A;B〉∈B M(A; B) ⊗A(x))→
I(x; y))6M(A; B) →B(y) is true for any 〈A; B〉 ∈B which holds iM M(A; B) ⊗∧

x∈X ((
∨

〈A;B〉 ∈B M(A; B) ⊗A(x)) → I(x; y))6B(y). The last inequality is true since

M(A; B) ⊗
∧
x∈X




 ∨

〈A;B〉∈B
M(A; B) ⊗ A(x)


→ I(x; y)




6M(A; B) ⊗
∧
x∈X

((M(A; B) ⊗ A(x)) → I(x; y))

6
∧
x∈X

(M(A; B) ⊗ (M(A; B) → (A(x) → I(x; y)))

6
∧
x∈X

A(x) → I(x; y) = B(y):

The “¿” part of (10) holds iM
∧

〈A;B〉∈B (M(A; B) →B(y))6(
∨

〈A;B〉∈B M(A; B)
⊗A(x)) → I(x; y) is valid for each x∈X which holds iM (

∨
〈A;B〉∈B M(A; B) ⊗A(x))

⊗ ∧
〈A;B〉∈B (M(A; B) →B(y))6I(x; y) which is true. Indeed,


 ∨

〈A;B〉∈B
M(A; B) ⊗ A(x)


⊗

∧
〈A;B〉∈B

(M(A; B) → B(y))

=
∨

〈A;B〉∈B
(M(A; B) ⊗ A(x) ⊗

∧
〈A;B〉∈B

(M(A; B) → B(y)))

6
∨

〈A;B〉∈B
(A(x) ⊗M(A; B) ⊗ (M(A; B) → B(y)))

6
∨

〈A;B〉∈B
(A(x) ⊗ B(y)) 6 I(x; y);

the last inequality being true by adjunction and the fact that 〈A; B〉 ∈B(X; Y; I). There-
fore, (10) is established. Obviously, to prove (9) it is now suScient to check 1sup(M) =
{〈A∗; B∗〉}. That is, we have to show (U (M))(A∗; B∗) ∧ (LU (M))(A∗; B∗) = 1, i.e.
(U (M))(A∗; B∗) = 1 and (LU (M))(A∗; B∗) = 1. We show (U (M))(A∗; B∗) = 1.
By deLnition of U , we have to show that for any 〈A; B〉 ∈B(X; Y; I) we have
16M(A; B) → (〈A; B〉4 〈A∗; B∗〉), i.e. 16M(A; B) → S(A; A∗) which is equivalent
to M(A; B)6S(A; A∗). The last inequality holds iM M(A; B)6A(x) →A∗(x) holds for
each x∈X , i.e. iM M(A; B) ⊗A(x)6A∗(x) which is true by deLnition of 〈A∗; B∗〉. We
established (U (M))(A∗; B∗) = 1. We show (LU (M))(A∗; B∗) = 1: By deLnition
of L we have to show 16(U (M))(A; B) → (〈A∗; B∗〉4 〈A; B〉), i.e. (U (M))(A; B)6
(〈A∗; B∗〉4 〈A; B〉) for any 〈A; B〉 ∈B(X; Y; I). Since (〈A∗; B∗〉4 〈A; B〉) = S(B; B∗),
we have to prove (U (M))(A; B)6B(y) →B∗(y), i.e. B(y) ⊗ (U (M))(A; B)6B∗(y)
for each y∈Y . As B∗ =

⋂
Y M, we have to show B(y) ⊗ (U (M))(A; B)6∧

〈A′ ; B′〉∈B(X;Y; I〉M(A′; B′) →B′(y), which holds iM for each 〈A′; B′〉 ∈B(X; Y; I) we
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have M(A′; B′) ⊗ B(y) ⊗ (U (M))(A; B)6→B′(y) which is true since

M(A′; B′) ⊗ B(y) ⊗ (U (M))(A; B)

= M(A′; B′) ⊗ B(y) ⊗

 ∧

〈A′′ ;B′′〉∈B
M(A′′; B′′) → (〈A′′; B′′〉 4 〈A; B〉)




= M(A′; B′) ⊗ B(y) ⊗

 ∧

〈A′′ ;B′′〉∈B
M(A′′; B′′) → S(B; B′′)




6M(A′; B′) ⊗ B(y) ⊗ (M(A′; B′) → S(B; B′))

6 B(y) ⊗ S(B; B′) 6 B′(y):

We proved (LU (M))(A∗; B∗) = 1.
It remains to show that sup(M) is a ≈-singleton in B(X; Y; I). This fact, however,

follows by Lemma 11.
Part 2: Let B(X; Y; I) and V be isomorphic. We show the existence of �;  with the

desired properties. It suSces to show the existence for V=B(X; Y; I) because for the
general case V ∼= B(X; Y; I) one can take � ◦’ :X × L→V;  ◦’ :Y × L→V , where
’ is the isomorphism of B(X; Y; I) onto V. Let then � :X × L→B(X; Y; I);  :Y ×
L→B(X; Y; I) be deLned by

�(x; a) = 〈{a=x}↑↓; {a=x}↑〉;
 (y; b) = 〈{b=y}↓; {b=y}↓↑〉

for every x∈X; y∈Y; a; b∈L. Since for each 〈A; B〉 ∈B(X; Y; I) it holds A=⋃
x∈X {A(x)=x}, and B=

⋃
y∈Y {B(y)=y}, it follows from (8) and (9) that �(X ×L) and

 (Y × L) are {0; 1}-supremally dense and {0; 1}-inLmally dense in B(X; Y; I),
respectively. We show that ((a⊗ b) → I(x; y)) = (�(x; a)4  (y; b)) is true for any
a; b∈L; x∈X , and y∈Y : the equality easily follows by observing that (�(x; a)4
 (y; b))=S({a=x}↑↓; {b=y}↓) = S({b=y}; {a=x}↑) = b→(a→I(x; y))=(a⊗b)→I(x; y).

Conversely, let � and  with the above properties exist. We prove the assertion
by showing that there are mappings ’ :B(X; Y; I) →V;  :V →B(X; Y; I), such that
’ ◦  = idB(X;Y; I);  ◦’= idV , and (〈A1; B1〉4 〈A2; B2〉) = (’(A1; B1)4’(A2; B2)).
Then ’ is a bijection and, by Lemma 5, B(X; Y; I) and V are isomorphic. We will
need the following claims.

Claim A. �(x;
∨

j∈J aj) =
∨

j∈J �(x; aj);  (y;
∨

j∈J aj) =
∧

j∈J  (y; aj) for each
x∈X; y∈Y; {aj | j ∈ J} ⊆L, i.e. �(x; ) :L→V are complete lattice

∨
-morphisms

and  (y; ) :L→V are dual complete lattice
∧

-morphisms.

Proof. The {0; 1}-inLmal density of  (Y × L) implies that �(x;
∨

j∈J aj) =∧
〈y; b〉∈M  (y; b) for some M ⊆Y × L. Hence, �(x;

∨
j∈J aj)6 (y; b) which implies

1 = (�(x;
∨

j∈J aj)4  (y; b)) = ((
∨

j∈J aj) ⊗ b) → I(x; y), whence (
∨

j∈J aj) ⊗ b6
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I(x; y), for each 〈y; b〉 ∈M . From aj ⊗ b6(
∨

j∈J aj) ⊗ b we have aj ⊗ b6I(x; y), i.e.
�(x; aj)6 (y; b) for every j ∈ J . This implies

∨
j∈J �(x; aj)6

∧
〈y; b〉∈M  (y; b) =

�(x;
∨

j∈J aj).
Conversely, the {0; 1}-inLmal density of  (Y × L) again implies the existence of

some M ⊆Y × L such that
∨

j∈J �(x; aj) =
∧

〈y; b〉∈M  (y; b). That means that for each
j ∈ J; 〈y; b〉 ∈M we have �(x; aj)6 (y; b), i.e. aj ⊗ b6I(x; y). This implies∨

j∈J (aj ⊗ b)6I(x; y) and, by
∨

j∈J (aj ⊗ b) = (
∨

j∈J aj) ⊗ b, furthermore (
∨

j∈J aj)
⊗ b6I(x; y), i.e. �(x;

∨
j∈J aj)6 (y; b) for each 〈y; b〉 ∈M , thus �(x;

∨
j∈J aj)6∧

〈y; b〉∈M  (y; b) =
∨

j∈J �(x; aj), proving �(x;
∨

j∈J aj) =
∨

j∈J �(x; aj).
 (y;

∨
j∈J aj) =

∧
j∈J  (y; aj) may be proved analogously using the {0; 1}-

supremal density of �(X × L).

Claim B. For any A⊆V and u∈V we have
∧

v∈A (u4 v) = (u4 (
∧

v∈A v)) and∧
v∈A (v4 u) = ((

∨
v∈A v)4 u).

Proof. Consider the crisp L-set A′ in V corresponding to A (i.e. A′(v) = 1 if v∈A
and A′(v) = 0 otherwise). We show

∧
v∈A (u4 v) = (u4

∧
v∈A v). Denote v∗

=
∧

v∈A v. Since
∧

in the previous formula is derived from inf in V, we have
(inf (A′))(v∗) = ((L(A′))(v∗)) ∧ ((UL(A′))(v∗)) = 1, therefore also (UL(A′))(v∗) = 1.
We have (L(A′))(u) =

∧
u′∈V A′(u′) → (u4 u′) =

∧
v∈A (u4 v). On the

other hand, (LUL(A′))(u) =
∧

u′∈V (UL(A′))(u′) → (u4 u′)6(UL(A′))(v∗) → (u4 v∗)
= (u4v∗) = (u4

∧
v∈A v). Applying L(A′) =LUL(A′) we get

∧
v∈A (u4 v)6

(u4
∧

v∈A v). Conversely, (u4
∧

v∈A v)6
∧

v∈A(u4 v) holds iM (u4
∧

v∈A v)6(u4 v)
for any v∈A which is true since (u4

∧
v∈A v) = (u4

∧
v∈A v) ⊗ (

∧
v∈A v4 v)6(u4 v),

by transitivity of 4 .
The second equality, i.e.

∧
v∈A (v4 u) = ((

∨
v∈A v)4 u) can be proved analogously:

put v∗ =
∨

v∈A v; one has (sup(A′))(v∗) = 1, and so also (LU (A′))(v∗) = 1;
one can verify (U (A′))(u) =

∧
v∈A (v4 u) and (ULU (A′))(u)6(

∨
v∈A v4 u); using

U (A′) =ULU (A′) we get
∧

v∈A (v4 u)6(
∨

v∈A v4 u); conversely, we have (
∨

v∈A v
4 u) = (v4

∨
v∈A v) ⊗ (

∨
v∈A v4 u)6(v4 u) for any v∈A yielding (

∨
v∈A v4 u)6∧

v∈A (v4 u).

Claim C. (a→ b)6(�(x; a)4 �(x; b)) for every x∈X and a; b∈L.

Proof. From the {0; 1}-inLmal density of  (Y × L) it follows that �(x; b) =∧
�(x; b)6 (y; b′)  (y; b′). Therefore, we have to show (a→ b)6(�(x; a)4

(
∧

�(x; b)6 (y; b′)  (y; b′))). Putting A= { (y; b′) | �(x; b)6 (y; b′)}. Claim B yields
(�(x; a)4 (

∧
�(x; b)6 (y; b′)  (y; b′))) =

∧
�(x; b)6 (y; b′)(�(x; a)4 ( (y; b′))).

To prove (a→ b)6(�(x; a)4 �(x; b)) we therefore have to show (a→ b)6∧
�(x; b)6 (y; b′) (�(x; a)4  (y; b′)), i.e. we have to show that (a→ b)6(�(x; a)4  (y; b′))

is true for any y and b′ such that �(x; b)6 (y; b′). By assumption, (�(x; a)4  (y; b′))
= (a⊗ b′) → I(x; y). If �(x; b)6 (y; b′) then using the assumption we get 1 =
�(x; b) →  (y; b′) = (b⊗ b′) → I(x; y), i.e. b⊗ b′6I(x; y). We therefore have a→
b6(�(x; a)4  (y; b′)) iM a→ b6(a⊗ b′) → I(x; y) iM (we now use (a⊗ b′) → I(x; y)
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= a→ (b′ → I(x; y)) and adjointness) a⊗ (a→ b) ⊗ b′6I(x; y) which is true since
a⊗ (a→ b) ⊗ b′6b⊗ b′ and b⊗ b′6I(x; y) (by the above observation).

Claim D. I(x; y) =
∨

�(x; a)6 (y; b) a⊗ b.

Proof. The inequality I(x; y)¿
∨

�(x;a)6 (y;b) a⊗ b follows immediately. For a=
I(x; y); b= 1 we have a⊗ b= I(x; y) ⊗ 16I(x; y), hence �(x; I(x; y))6 (y; 1), thus
the equality holds.

DeLne the mapping ’ :B(X; Y; I) →V by

’(A; B) =
∨
x∈X

�(x; A(x)) (11)

for each 〈A; B〉 ∈B(X; Y; I).
We prove the existence of an inverse mapping  of ’. DeLne  :V →B(X; Y; I) by

 (v) = 〈A; B〉; where A(x) =
∨

�(x;a)6v

a; B(y) =
∨

 (y;b)¿v

b (12)

for each v∈V , and every x∈X; y∈Y . First, we show that for each v∈V;  (v) is a
Lxed point of B(X; Y; I), i.e. A↑ =B and B↓ =A. We show only B↓ =A, the second
case may be proved symmetrically. By Claim D we have

B↓(x) =
∧
y∈Y

B(y) → I(x; y) =
∧
y∈Y


 ∧

 (y;b)¿v

b →
∨

�(x;a)6 (y;b)

a ⊗ b


 :

We show A(x)6B↓(x). We have∨
�(x;a)6v

a ⊗
∧

 (y;b)¿v

b6
∨

�(x;a)6v6 (y;b)

a ⊗ b6
∨

�(x;a)6 (y;b)

a ⊗ b;

i.e.

A(x) =
∨

�(x;a)6v

a6
∧

 (y;b)¿v

b →
∨

�(x;a)6 (y;b)

a ⊗ b

holds for each y∈Y , hence also

A(x) =
∨

�(x;a)6v

a6
∧
y∈Y


 ∧

 (y;b)¿v

b →
∨

�(x;a)6 (y;b)

a ⊗ b


 = B↓(x);

holds. We now show the equality A(x) =B↓(x) as follows. Suppose there is an a∈L
such that for each y∈Y it holds

a6
∨

 (y;b)¿v

b → I(x; y) (13)
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(i.e. a is a lower bound) and show that a6
∨

�(x;a′)6v a′ =A(x) (i.e. A(x) is the inLmum,
i.e. B↓(x)). Eq. (13) holds iM

a ⊗
∨

 (y;b)¿v

b6 I(x; y);

i.e. by a⊗ ∨
 (y; b)¿v b=

∨
 (y; b)¿v (a⊗ b) we get that for each b such that  (y; b)

¿v it holds a⊗ b6I(x; y). The last fact implies that for each b such that  (y; b)¿v
it holds �(x; a)6 (y; b) which holds for each y∈Y . From the {0; 1}-inLmal density
of  (Y × L) it follows that v=

∧
v6 (y; b)  (y; b), and hence �(x; a)6v which implies

a6
∨

�(x;a′)6v a′ =A(x). We have proved A=B↓.
Next, we show that ’ ◦  = idB(X;Y;I) and  ◦’= idV . For each v∈V we have by

Claim A and the {0; 1}-supremal density of �(X × L)

 ◦ ’(v) = ’(A; B) =
∨
x∈X

�(x; A(x))

=
∨
x∈X

�


x;

∨
�(x;a)6v

a


 =

∨
x∈X

∨
�(x;a)6v

�(x; a)

=
∨

�(x;a)6u

�(x; a) = v;

i.e.  ◦’(v) = v. Consider now ’ ◦  (A; B) for 〈A; B〉 ∈B(X; Y; I). First, we show∨
x∈X

�(x; A(x)) =
∧
y∈Y

 (y; B(y)): (14)

The inequality
∨

x∈X �(x; A(x))6
∧

y∈Y  (y; B(y)) is inferred from the fact that for
every x∈X; y∈Y we have �(x; A(x))6 (y; B(y)) which follows from Claim D as
here: �(x; A(x))6 (y; B(y)) holds iM A(x) ⊗B(y)6I(x; y) iM A(x)6B(y) → I(x; y)
which holds because of A(x) =

∧
y′∈Y (B(y′) → I(x; y))6B(y) → I(x; y). To get equal-

ity (14), denote v=’(A; B) =
∨

x∈X �(x; A(x)). We show that
∧

y∈Y  (y; B(y)) = v.
From the {0; 1}-inLmal density of  (Y ×L) we have clearly v=

∧
 (y; b)¿v  (y; b).

We show that for each y; b such that  (y; b)¿v it holds b6B(y). Indeed, if
 (y; b)¿v then clearly  (y; b)¿�(x; A(x)) for all x∈X . If b6B(y) is not the case then
consider b∨B(y). For each x∈X we have  (y; b)¿�(x; A(x)),  (y; B(y))¿�(x; A(x)),
hence, by Claim A,  (y; b∨B(y)) =  (y; b) ∧  (y; B(y))¿�(x; A(x)). This implies
A(x) ⊗B(y)6A(x) ⊗ (b∨B(y))6I(x; y), i.e. b∨B(y)6A(x) → I(x; y) for each x∈X ,
i.e. b∨B(y)6

∧
x∈X A(x) → I(x; y) =B(y), i.e. b6B(y), a contradiction. Further-

more, from b6B(y) it follows by Claim A that  (y; B(y))6 (y; b). Thus, from
v6 (y; b) it follows  (y; B(y))6 (y; b). We conclude

v =
∨
x∈X

�(x; A(x)) 6
∧
y∈Y

 (y; B(y)) 6
∧

 (y;b)¿v

 (y; b) = v;
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i.e (14) holds. We therefore have

’ ◦  (A; B) =  


∧

y∈Y

 (y; B(y))




=

〈

〈
x;

∨
�(x;a)6

∧
y∈Y  (y;B(y))

a

〉∣∣∣∣∣∣∣ x ∈ X


 ;



〈
y;

∨
 (y;b)¿

∧
y∈Y  (y;B(y))

b

〉∣∣∣∣∣∣∣y ∈ Y



〉

:

As ’ ◦  (A; B) ∈B(X; Y; I), it suSces to show that∨
�(x;a)6

∧
y∈Y  (y;B(y))

a = A(x):

From (14) we have �(x; A(x))6
∧

y∈Y  (y; B(y)) and therefore∨
�(x;a)6

∧
y∈Y  (y;B(y))

a¿ A(x):

Conversely, if �(x; a)6
∧

y∈Y  (y; B(y)), then �(x; a)6 (y; B(y)) for each y∈Y ,
i.e. a⊗B(y)6I(x; y), which yields a6B(y) → I(x; y), for each y∈Y , and hence a6∧

y∈Y B(y) → I(x; y) =A(x) which implies
∨

�(x; a)6
∧

y∈Y  (y;B(y)) a6A(x). We have

proved ’ ◦  (A; B) = 〈A; B〉.
It now suSces to show that (〈A1; B1〉4 〈A2; B2〉) = (’(A1; B1)4’(A2; B2)) for any

〈A1; B1〉, 〈A2; B2〉 ∈B(X; Y; I). We prove this fact by showing (a) (〈A1; B1〉4 〈A2; B2〉)
6(’(A1; B1)4’(A2; B2)) and (b) (u4 v)6( (u)4  (v)) (for any u; v∈V ).

(a) By deLnitions, we have to prove S(A1; B1)6(
∨

x∈X �(x; A1(x))4
∨

x∈X �(x;
A2(x))). Denote v∗ =

∨
x∈X �(x; A2(x)). The {0; 1}-inLmal density of  (Y ×L) yields

v∗ =
∧

v∗6 (y; b)  (y; b). Therefore, we have to show S(A1; B1)6(
∨

x∈X �(x; A1(x))4∧
v∗6 (y; b)  (y; b)). Since, by Claim B, we have (

∨
x∈X �(x; A1(x))4

∧
v∗6 (y; b)

 (y; b)) =
∧

x∈X

∧
v∗6 (y; b)(�(x; A1(x))4  (y; b)), we have to show that S(A1; A2)6

(�(x; A1(x))4  (y; b)) holds for any x∈X , y∈Y , b∈L such that v∗6 (y; b). Since
(�(x; A1(x))4  (y; b)) = (A1(x) ⊗ b) → I(x; y)), we have to show that S(A1; A2)6(A1(x)
⊗ b) → I(x; y)), i.e. (b⊗A1(x)) ⊗ S(A1; A2)6I(x; y)). Since (b⊗A1(x)) ⊗ S(A1; A2)
= b⊗A1(x) ⊗ ∧

x∈X (A1(x) →A2(x))6b⊗A1(x) ⊗ (A1(x) →A2(x))6b⊗A2(x) it is
now suScient to prove b⊗A2(x)6I(x; y)). However, since

∨
x∈X �(x; A2(x))6 (y; b),

thus also �(x; A2(x))6 (y; b), we have 1 = (�(x; A2(x))4  (y; b)) = b⊗A2(x)→
I(x; y) from which the required inequality b⊗A2(x)6I(x; y) directly follows.

(b) Denote  (u) = 〈Au; Bu〉 and  (v) = 〈Av; Bv〉. We have to show (u4 v)6
S(Au; Av), i.e. (u4 v)6

∧
x∈X Au(x) →Av(x) which holds iM for each x∈X we have

Au(x) ⊗ (u4 v)6Av(x). By deLnition of  we thus have to show (
∨

�(x; a)6u a) ⊗ (u4 v)



294 R. B+elohl,avek / Annals of Pure and Applied Logic 128 (2004) 277–298

6
∨

�(x; b)6v b, i.e.
∨

�(x; a)6u(a⊗ (u4 v))6
∨

�(x; b)6v b which holds iM (a⊗ (u4 v))6∨
�(x; b)6v b for each a∈L such that �(x; a)6u. The last inequality certainly holds pro-

vided �(x; a⊗ (u4 v))6v which we are now going to prove: Lrst, we show �(x; a⊗
(u4 v))6�(x; (�(x; a)4 v)). �(x; a)6u yields (u4 v)6(�(x; a)4 v), and so a⊗ (u4 v)
6a⊗ (�(x; a)4 v). By Claim C, we therefore have 1 = a⊗ (u4 v) → a⊗ (�(x; a)4 v)
6(�(x; a⊗ (u4 v))4 �(x; a⊗ (�(x; a)4 v))), hence �(x; a⊗ (u4 v))6�(x; a⊗ (�(x; a)
4 v)). Now, the {0; 1}-inLmal density of  (Y ×L) implies that v=

∧
v6 (y; b)

 (y; b). Therefore, to show �(x; a⊗ (u4 v))6v it is suScient to show that �(x; a⊗ (�(x;
a)4 v))6 (y; b) for any y and b such that v6 (y; b). The required inequality is
equivalent to (�(x; a⊗ (�(x; a)4 v))4  (y; b)) = 1 which is equivalent (using (�(x; a
⊗ (�(x; a)4 v))4  (y; b)) = (a⊗ b⊗ (�(x; a)4 v)) → I(x; y)) to (a⊗ b⊗ (�(x; a)4 v))
→ I(x; y) = 1, i.e. to (�(x; a)4 v)6(a⊗ b) → I(x; y). However, the last inequality is
true: v6 (y; b) implies (�(x; a)4 v)6(�(x; a)4  (y; b)) = (a⊗ b) → I(x; y).

We proved that 〈〈B(X; Y; I);≈〉;4〉 and V are isomorphic.
To complete the proof we show that any completely lattice L-ordered set V is iso-

morphic to B(V; V; 4). By what we just veriLed, it is enough to show that there
are mappings � :V ×L→V and  :V ×L→V with the required properties. For a∈L
and x∈V , let �(x; a) be the (unique) element x∗ ∈V such that (sup({a=x}))(x∗) = 1;
 (x; a) be the (unique) element x∗ ∈V such that (inf ({a=x}))(x∗) = 1. Since �(x; 1) = x
and  (x; 1) = x, we have �(V; L) =V and  (V; L) =V , therefore �(V; L) =V
and  (V; L) =V are {0; 1}-supremally dense and {0; 1}-inLmally dense in V. We show
((a⊗ b) → (x4y)) = (�(x; a)4  (y; b)) by proving both of the inequalities.

“6”: Denote x∗ = �(x; a), y∗ =  (y; b). We have to show ((a⊗ b) → (x4y))
6(x∗ 4y∗). By deLnition, (sup({a=x}))(x∗) = 1 and (inf ({b=y}))(y∗) = 1. One
easily veriLes that U ({a=x})(x′) = a→ (x4 x′). Therefore, (LU ({a=x}))(x∗) =∧

x′∈X ((a→ (x4 x′)) → (x∗ 4 x′))6(a→ (x4y)) → (x∗ 4y). Since, by deLnition of
sup, (LU ({a=x}))(x∗) = 1, we conclude (a→ (x4y))6(x∗ 4y). Similarly, 1 =
(UL({b=y}))(y∗) =

∧
x′∈X ((b→ (x′ 4y)) → (x′ 4y∗))6(b → (x∗ 4 y)) → (x∗ 4 y∗),

thus (b→ (x∗ 4y))6(x∗ 4y∗). We thus have

(a ⊗ b) → (x 4 y) = b → (a → (x 4 y))

6 b → (x∗ 4 y) 6 (x∗ 4 y∗):

“¿”: (x∗ 4y∗)6(a⊗ b) → (x4y) iM a⊗ b⊗ (x∗ 4y∗)6(x4y). Now, (inf ({b=y}))
(y∗) = 1 and (sup({a=x}))(x∗) = 1 yield (L({b=y}))(y∗) = b→ (y∗ 4y) = 1 and
(U ({a=x}))(x∗) = a→ (x∗ 4 x) = 1, respectively. Therefore

a ⊗ b ⊗ (x∗ 4 y∗)

= a ⊗ (a → (x 4 x∗)) ⊗ (x∗ 4 y∗) ⊗ b ⊗ (b → (y∗ 4 y))

6 (x 4 x∗) ⊗ (x∗ 4 y∗) ⊗ (y∗ 4 y) 6 (x 4 y)

proving the inequality.
The proof of Theorem 14 is complete.
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Remark (historical development of Theorem 14). It was BirkhoM (see e.g. [6]) who
observed that for any (bivalent) relation I between X and Y , B(X; Y; I) is a complete
lattice. The characterization of B(X; Y; I) for special cases (I is a quasiorder or an order)
has been pursued by Banaschewski [2] and Schmidt [14]. The general case when I is
an arbitrary binary relation is due to Wille [16]. Theorem 14 is a further improvement
of these results. A moment inspection shows that Wille’s theorem is a special case
of Theorem 14 for L= 2 (i.e. for L being the two-element Boolean algebra): The
description of inLma and suprema is the same in Theorem 14 and in [16]. As to part
(2) of Theorem 14, if L= 2 then the conditions may be equivalently reformulated to
“: : :iM there are mappings � :X →V ,  :Y →V , such that �(X ) is supremally dense in
V,  (Y ) is inLmally dense in V, and 〈x; y〉 ∈ I iM �(x; a)6 (y; b) : : :” which are the
conditions of [16].

Theorem 13 implies that B(X; Y; I), equipped with 14, is a complete lattice. The
lattice structure of B(X; Y; I) is characterizes by the following theorem.

Theorem 15. (1) 〈B(X; Y; I); 14〉 is complete lattice where in:ma and suprema for
any M ⊆ B(X; Y; I) are described by (8) and (9).

(2) Moreover, a complete lattice V= 〈V;6〉 is isomorphic to 〈B(X; Y; I); 14〉 i=
there are mappings � :X ×L→V ,  :Y ×L→V , such that �(X ×L) is supremally
dense in V,  (Y ×L) is in:mally dense in V, and a⊗ b6I(x; y) i= �(x; a)6 (y; b)
for all x∈X , y∈Y , a; b∈L.

Proof. Part 1 follows immediately from Theorem 13 and from Theorem 14(1).
Part 2: Consider any B(X; Y; I) and a complete lattice V. If B(X; Y; I) and V are iso-

morphic as lattices then the order 6 of V can clearly be (in an obvious way) extended
to an L-order 4 on V in such a way that B(X; Y; I) and 〈〈V;≈〉; 4 〉 are isomorphic as
L-ordered sets (here, ≈ on V is uniquely determined by (u≈ v) = (u4 v) ∧ (v4 u), see
Lemma 4). Part 2 of Theorem 14 then yields the mappings � and  which satisfy the
density conditions and ((a⊗ b) → I(x; y)) = (�(x; a)4  (y; b)). The required condition
a⊗ b6I(x; y) iM �(x; a)6 (y; b) now follows from ((a⊗ b) → I(x; y))
= (�(x; a)4  (y; b)). Conversely, if � and  satisfying the conditions of part (2) of
Theorem 15 exist, then the order preserving bijections ’ :B(X; Y; I) →V and  :V →
B(X; Y; I) can be constructed as in the proof of Theorem 14 (one just needs to go
through the respective parts of the proof of Theorem 14).

Remark. Note that the characterization of the lattice structure of B(X; Y; I) contained
in Theorem 15 has been obtained independently in [13] (the author uses so-called
L-fuzzy-algebra for the structure of truth values; however, L-fuzzy-algebras are com-
plete residuated lattices) and [4] (where a more general case of so-called LK -concept
lattices is considered).

5. Dedekind–MacNeille completion

Let X= 〈〈X; ≈X 〉;4X 〉 and Y= 〈〈Y; ≈Y〉;4Y〉 be L-ordered sets. A mapping g :X →Y
is called an embedding of X into Y if g is injective, (x4X x′) = (g(x)4Y
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g(x′)), and (x≈X x′) = (g(x) ≈Y g(x′)) for every x; x′ ∈X . Therefore, the image of X
under g is a “copy” of X. We say that an embedding g :X →Y preserves inLma
(suprema) if for any M ∈LX and x∈X we have (L(M))(x) = (L(g(M)))(g(x)) and
(UL(M))(x) = (UL(g(M)))(g(x)) ((U (M))(x) = (U (g(M)))(g(x)) and (LU (M))(x)
= (LU (g(M)))(g(x))) where g(M) ∈LY is deLned by (g(M))(y) =M (x) if y = g(x)
and (g(M))(y) = 0 otherwise. Clearly, the preservation of inLma (supre-
ma) implies that (inf (M))(x) = inf (g(M))(g(x)) ((sup(A))(x) = sup(g(A))(g(x))).

For an L-ordered set X and x∈X we put (x] := L({1=x}) and [x) := U ({1=x}).
Therefore, ((x])(y) = (y4 x) and ([x))(y) = (x4y) for each y∈X .

The above introduced notions generalize the well-known notions from the theory of
ordered sets. Our aim in the following is a fundamental construction in the theory of
ordered sets, so-called Dedekind–MacNeille completion (or completion by cuts). The
objective is to describe a most economic completion of an ordered set which preserves
inLma and suprema, i.e. to describe “the least” completely lattice ordered set to which
the original ordered set can be embedded in such a way that the embedding preserves
inLma and suprema. For the bivalent case, the completion by cuts has been for the Lrst
time exploited by Dedekind by the construction of real numbers from rational numbers.
The construction has been generalized for arbitrary ordered sets by McNeille [11]. As
it is well-known, the completion by cuts of a (classically) ordered set 〈X;6〉 is (up
to an isomorphism) the concept lattice B(X; X;6). The following theorem describes
the completion of an L-ordered set (the classical completion being a special case for
L= 2).

Theorem 16 (Dedekind–MacNeille completion for L-order). Let X be an L-ordered
set. Then g : x �→ 〈(x]; [x)〉 is an embedding of X into a completely L-ordered set
B(X; X; 4) which preserves in:ma and suprema. Moreover, if f is an embedding of
X into a completely lattice L-ordered set Y which preserves in:ma and suprema then
there is an embedding h of B(X; X; 4) into Y such that f = g ◦ h.

Proof. Note that by Theorem 14, B(X; X; 4) is a completely lattice L-ordered set.
Furthermore, g is correctly deLned since (x]↑ = [x) and [x)↓ = (x], i.e. 〈(x]; [x)〉 ∈
B(X; X; 4): We verify only (x]↑ = [x), the second equality is symmetric. On
the one hand, (x]↑(y) =

∧
z∈X ((x](z) → (z4y))6(x](x) → (x4y) = (x4y) = [x)(y).

On the other hand, [x)(y)6(x]↑(y) holds iM [x)(y)6(x](z) → (z4y), i.e. (x](z) ⊗
[x)(y)6(z4y) for any z ∈X . However, this is true since (x](z) ⊗[x)(y) =
(z4 x) ⊗ (x4y)6(z4y), by transitivity of 4 .

We show that g is an embedding of X into B(X; X; 4). To this end it is clearly
suScient to show that (x4y) = (g(x)4 g(y)). We prove both of the required inequal-
ities:

“6”: As (g(x)4 g(y)) = S((x]; (y]), the inequality holds iM (x4y)6(x](z) →
(y](z) which is equivalent to (x](z) ⊗ (x4y)6(y](z), i.e. (z4 x) ⊗ (x4y)6(z4y)
which holds by transitivity of 4 .

“¿”: The inequality holds iM
∧

z∈X ((x](z) → (y](z))6(x4y) which is true since∧
z∈X ((x](z) → (y](z))6(x](x) → (y](x) = 1 → (x4y) = (x4y).
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We now have to prove that g preserves inLma and suprema. Due to the symmetry
of both of the cases we proceed only for inLma. We have to show (L(M))(x) =
(L(g(M)))(g(x)) and (UL(M))(x) = (UL(g(M)))(g(x)) for any M ∈LX .

(L(M))(x) = (L(g(M)))(g(x)): We have (L(g(M)))(g(x)) = (L(g(M)))((x]; [x))
=

∧
〈A;B〉∈B(X;X;4)(g(M))(A; B) → (〈(x]; [x)〉4 〈A; B〉) =

∧
y∈X (g(M))((y]; [y))

→ (〈(x]; [x)〉4 〈(y]; [y)〉) =
∧

y∈X M (y) → S((x]; (y]) =
∧

y∈X M (y) →(x4y)
= (L(M))(x).

(UL(M))(x) = (UL(g(M)))(g(x)): On the one hand, (UL(g(M)))(g(x)) =
(UL(g(M)))((x]; [x)) =

∧
〈A;B〉∈B(X;X;4)(L(g(M)))(A; B) → (〈A; B〉4 〈(x]; [x)〉) =∧

〈A;B〉∈B(X;X;4)(L(g(M)))(A; B) → S(A; (x]) 6
∧

〈(y];[y)〉∈B(X;X;4)(L(g(M)))((y]; [y))
→ S((y]; (x]) =

∧
y∈Y (L(M))(y) → (y4 x) = (UL(M))(x).

On the other hand, we have (UL(M))(x)6(UL(g(M)))(g(x)) iM for each 〈A; B〉 ∈
B(X; X; 4) we have (L(g(M)))(A; B) ⊗ (UL(M))(x)6S(A; (x]) which holds (since
S(A; (x]) =

∧
y∈Y A(y) → (y4 x)) iM for each y∈Y we have A(y) ⊗ (L(g(M)))(A; B)

⊗(UL(M))(x)6(y4 x). Since A(y) ⊗ (L(g(M)))(A; B) ⊗ (UL(M))(x) =A(y) ⊗
(L(g(M)))(A; B)⊗ ∧u∈X ((L(M)) (u)→(u4x))6A (y) ⊗ (L(g(M))) (A; B) ⊗ ((L(M))
(y)→(y4 x)), it suSces to show that A(y) ⊗ (L(g(M)))(A; B)6(L(M))(y): To this
end, observe that (A) A(y) = S((y]; A): on the one hand, S((y]; A)6(y](y) →A(y) =
A(y); on the other hand, A(y)6S((y]; A) iM for each z ∈X we have (y](z) ⊗A(y)6
A(z), i.e. (z4y) ⊗A(y)6A(z); using A=A↑↓ we obtain that the last inequality holds iM
(z4y)⊗A(y)⊗A↑(x)6(z4 x) for any x∈X which holds since (z4y) ⊗A(y)
⊗A↑(x)6(z4y) ⊗A(y) ⊗ (A(y) → (y4 x))6(z4y) ⊗ (y4 x)6(z4 x). Now, A(y) ⊗
(L(g(M)))(A; B)6(L(M))(y) is true iM A(y) ⊗M (z) ⊗ (L(g(M)))(A; B)6(y4 z) holds
for each z ∈Z . However, the last inequality is true: A(y) ⊗M (z) ⊗ (L(g(M)))(A; B)6
A(y) ⊗M (z) ⊗ (M (z) → S(A; (z]))6A(y) ⊗ S(A; (z]) = S((y]; A) ⊗ S(A; (z])6S((y];
(z]) = (y4 z), using (A) and the fact that x �→ 〈(x]; [x)〉 is an embedding. Thus,
g preserves inLma and suprema.

Let now f be an embedding of X into Y which preserves inLma and suprema.
DeLne the mapping h :B(X; X; 4) →Y as follows: for 〈A; B〉 ∈B(X; X; 4) let h(A; B)
be the (unique) element of Y such that (sup(f(A)))(h(A; B)) = 1. We have to prove
that (1) f = g ◦ h and (2) h is an embedding.

(1) Take any x∈X . Observe that (sup((x]))(x) = 1: we have (U ((x]))(x) =∧
y∈X (x](y) → (y4 x) =

∧
y∈X (y4 x) → (y4 x) = 1. Furthermore, (LU ((x]))(x) = 1

iM (U ((x]))(y)6(x4y) for any y∈X which is true since (U ((x]))(y) =∧
z∈X (x](z) → (z4y)6(x](x) → (x4y) = (x4y). Therefore, (sup((x]))(x) = 1.

Since f preserves suprema, we get 1=(sup((x]))(x) = (sup(f((x])))(f(x)) which
means that (g ◦ h)(x) = h((x]; [x)) =f(x).

(2) Take 〈A1; B1〉, 〈A2; B2〉 ∈B(X; X; 4), denote y1 = h(A1; B1), y2 = h(A2; B2). We
have to show (〈A1; B1〉4 〈A2; B2〉) = (y1 4y2), i.e. S(A1; A2) = (y1 4y2).

On the one hand, since S(A1; A2) = S(f(A1); f(A2)), Lemma 12 implies S(A1; A2)
= S(f(A1); f(A2)) ⊗ (sup(f(A1)))(y1) ⊗ (sup(f(A2)))(y2)6(y1 4y2).

On the other hand, by S(A1; A2) = S(f(A1); f(A2)), we have to show (y1 4y2)6
S(f(A1); f(A2)). (sup(f(A1)))(y1) = 1 implies (U (f(A1)))(y1) = 1 from which
one easily gets that (f(A1))(y)6(y4y1) for any y∈X , i.e. in particular (f(A1))(f(x))
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6(f(x)4y1). Now, (y1 4y2)6S(f(A1); f(A2)) holds iM for each x∈X we have
(f(A1))(f(x)) ⊗ (y1 4y2)6(f(A2))(f(x)). Since (f(A1))(f(x)) ⊗ (y1 4y2)6(f(x)
4y1) ⊗ (y1 4y2)6(f(x)4y2), it is suScient to show that (f(x)4y2)6(f(A2))(f
(x)) for any x∈X . Moreover, since 〈A2; B2〉 ∈B(X; Y; I) and since f preserves suprema,
we have (f(A2))(f(x)) = (f(LU (A2)))(f(x)) =LU (f(A2))(f(x)). We thus have to
prove (f(x)4y2)6(LU (f(A2)))(f(x)): we have (f(x)4y2)6(LU (f(A2)))(f(x))
iM (f(x)4y2) ⊗ (U (f(A2)))(f(x))6(f(x)4y) for any y∈Y which holds since
(f(x)4y2) ⊗ (U (f(A2)))(f(x)) = (f(x)4y2) ⊗ (ULU (f(A2)))(f(x))6(f(x)4y2) ⊗
((UL(f(A2)))(y2) → (y2 4y)) = (f(x)4y2) ⊗ (y2 4y)6(f(x)4y).
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