
A

s
e
e

t
v
e
©

K

1

(
v
s
1
1
t
s
l

t
f
p
u
i
o
t
i
f
h

0
d

Journal of Neuroscience Methods 162 (2007) 8–13

PsychoPy—Psychophysics software in Python

Jonathan W. Peirce ∗
Nottingham Visual Neuroscience, School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Received 14 September 2006; received in revised form 13 November 2006; accepted 30 November 2006

bstract

The vast majority of studies into visual processing are conducted using computer display technology. The current paper describes a new free
uite of software tools designed to make this task easier, using the latest advances in hardware and software. PsychoPy is a platform-independent
xperimental control system written in the Python interpreted language using entirely free libraries. PsychoPy scripts are designed to be extremely
asy to read and write, while retaining complete power for the user to customize the stimuli and environment.
Tools are provided within the package to allow everything from stimulus presentation and response collection (from a wide range of devices)
o simple data analysis such as psychometric function fitting. Most importantly, PsychoPy is highly extensible and the whole system can evolve
ia user contributions. If a user wants to add support for a particular stimulus, analysis or hardware device they can look at the code for existing
xamples, modify them and submit the modifications back into the package so that the whole community benefits.
 2006 Elsevier B.V.

ion

2

2

M
t
i
w
r
c
i

i
i
M
f
t
w
(

Open access under CC BY license.
eywords: Psychophysics; Software; Stimulus presentation; Psychometric; Vis

. Introduction

Since the 1980s computers and cathode-ray-tube displays
CRTs) have been used extensively, almost ubiquitously, in
isual and cognitive neuroscience experiments. Despite the
patial and temporal limitations of the displays (Bach et al.,
997) and assorted other potential problems (Bach, 1997; Pelli,
997a,b; Wolf and Deubel, 1997) the variety of stimuli that
hey can generate with relatively little effort has made them the
timulus presentation method of choice for most neuroscience
aboratories.

This paper describes PsychoPy, a new suite of software tools
o make it easier to build simple visual and auditory stimuli
or neuroscience experiments. The goal of the project was to
roduce a package that was entirely free, as easy as possible to
se, and based on relatively inexpensive (and preferably vendor-
ndependent) hardware. The result is a set of tools built on top
f the Python programming language that makes calls directly
o OpenGL graphics libraries. These tools are fully platform-
ndependent (for the major operating systems) and can interface

reely and simply with an extremely wide range of additional
ardware.

∗ Tel.: +44 115 8467176.
E-mail address: jon@peirce.org.uk.

v
i
t
p
f
g

165-0270 © 2006 Elsevier B.V.
oi:10.1016/j.jneumeth.2006.11.017

Open access under CC BY license.
. Methods and materials

.1. Hardware

PsychoPy has been developed predominantly on the
icrosoft Windows® XP platform but has been extensively

ested on Mac OS X (10.3 and 10.4) and has been used in exper-
ments on both platforms. The necessary Python libraries on
hich it is based are also available on Linux and some users have

eported success on that platform although it has received less
omplete testing as yet. The package is highly portable because
t uses a minimal amount of compiled (e.g. C-based) code.

One of the minimum requirements for PsychoPy is a graph-
cs card that supports OpenGL drivers and multitexturing. This
ncludes almost every graphics card made by nVidia, ATI and

atrox since the late 1990s, although on the Microsoft plat-
orm the user may need to download additional drivers from
he graphics card vendor rather than using the ones installed
ith Windows®. For experiments using a few simple stimuli

such as a pair of Gabor patches and a fixation point) basic
ersions of these cards or motherboards with built-in graph-
cs processors are likely to suffice. For experiments that need

o draw a large number of stimuli (such as random dot dis-
lays or global form patterns) a more powerful graphics card, a
ast CPU, and plenty of memory can all result in performance
ains.

mailto:jon@peirce.org.uk
dx.doi.org/10.1016/j.jneumeth.2006.11.017
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

scienc

2

(
o
1
a
s
c
e
t
s
u

M
g
c
c
f
o
fi
a
c
t
h
i
p
e

a
P
i
f
i
b
c
f
s
t

2

P
g
r
t
s
a
s
b
l
v
u
f
c
m

m
t

i
f
t
m
t
s
(
s
v
o
u
p
t
o
o
p
a
c
l
o
s
s
i
w
i

o
t
a
b
c
s
q
n
i
e
d

3

3

s
a
b
k
i
o
i

J.W. Peirce / Journal of Neuro

.2. Python

Many neuroscience labs around the world are using Matlab®

The MathWorks Inc., Massachusetts, USA) for the generation
f experimental stimuli via Psychtoolbox (Brainard, 1997; Pelli,
997a,b) and for data analysis. This has the advantages of being
relatively platform-independent language with a fairly simple

yntax and numerous high-level libraries. Matlab® does have
ertain downsides however. It is expensive and, as a propri-
tary software solution, comes without source code which leaves
he science community heavily reliant on its customer support
ervices. This downside has been clearest in the company’s
nwillingness at times to support the Apple platform.

The goals in using Python are similar to those in using
atlab®. They are both high-level, extensible, interpreted lan-

uages, but there are several key differences. Python has a much
leaner syntax, making code easier to read and debug. It is
ompletely open source and continuously developed on all plat-
orms, each of which has its own strong user base. When bugs
r incompatibilities are found they are generally very quickly
xed and, because the full source code is available, users can
ctually debug or change Python themselves (if they are suffi-
iently competent programmers). Another major advantage to
he developer (rather than necessarily the user) is that Python
as a large set of libraries already built, including a complete
nterface to OpenGL calls. These greatly reduce the need for
latform-specific C-code. Indeed, PsychoPy is written almost
ntirely in native Python code.

The main downsides of Python, at least for the casual user,
re that installation can require more effort. When a user installs
ython for the purposes of neuroscience experiments they typ-

cally need to install around 10 auxiliary libraries to handle the
unctions such as data handling and plotting, stimulus draw-
ng, hardware interfaces, etc., where many of these might have
een included in a single Matlab® installation. There is also, of
ourse, a time investment in learning a new syntax. Speaking
or myself, I certainly felt that the advantages of the improved
yntax and absence of license fees warranted the investment of
hat time.

.3. The use of OpenGL

Historically, interpreted languages such as Matlab® and
ython have not been fast enough to perform computations and
enerate stimuli on-the-fly in real time. As a result people have
esorted to pre-computing stimulus movies or by manipulating
he computer’s color look-up table (CLUT) to create dynamic
timuli such as drifting gratings. Even compiled languages such
s C/C++ were previously unable to generate moving stimuli
uch as a drifting Gabor patch (a sinusoidal grating drifting
ehind a Gaussian-enveloped window) in real-time. The prob-
em is that for a patch with, say, 256 × 256 pixels the intensity
alue must be calculated for over 65,000 pixels in the stim-

lus on every frame and then the entire array has to be sent
rom the main computer memory to the frame buffer. Since most
omputers were too slow to perform the calculations and trans-
it the data to the graphics card within the requisite 10 ms,

p
t
P
c

e Methods 162 (2007) 8–13 9

ovies of these stimuli had to be pre-computed to perform
he task.

Several advances have meant that this problem is no longer an
ssue. The central processing unit (CPU) obviously runs much
aster than it used to, and the speed with which data is transferred
o the graphics card memory is also vastly improved, but an even

ore important development for generation of these stimuli is
hat of hardware-accelerated graphics. Most graphics cards on
tandard personal computers now have independent processors
the graphics processing unit or GPU) which, through libraries
uch as OpenGL or Microsoft’s DirectX®, are able to perform
ery fast matrix mathematical functions, without using the CPU
r the data bus that connects it to the graphics card. PsychoPy
ses this fact and preloads the graphics card with component
atterns such as sinusoids and Gaussian envelopes at the start of
he experiment. Then, when a stimulus is needed at a particular
rientation, phase and position, the GPU is able to do the work
f identifying how these components need to be combined (e.g.
utting the sinusoid behind the Gaussian window, orienting it
nd calculating the changes needed in the frame buffer). This
an generally be performed for several hundred stimuli in much
ess time than one computer frame and with very little impact
n the CPU. As a result the CPU is left to handle other tasks
uch as communicating with hardware and waiting for events
uch as subject responses or MR scanner triggers. The draw-
ng processes also require very few commands to be issued,
hich means that the overhead of using an interpreted language

s diminished.
The concept can easily be extended to encompass second

rder stimuli such as contrast-modulated noise stimuli where
hree component matrices (a carrier, an envelope and a mask)
re combined in one operation by the graphics card. Similarly,
y using OpenGL’s notion of alpha channels (transparency) we
an trivially overlay multiple semi-transparent gratings to create
timuli such as plaids. As a result of these processes being so
uick and executed with minimal input from the CPU, a large
umber of stimuli can be rendered, so that stimuli such as mov-
ng random dot displays can be generated in real-time and can
ven be generated using more complex elements like Gabors or
ifference-of-Gaussian patches.

. Results

.1. What PsychoPy provides

The primary functions of PsychoPy were designed to handle
timulus display and timing. They allow the user to gener-
te a window (or full-screen presentation) and provide some
asic stimuli to use within that window (e.g. random-dot-
inematograms, drifting grating stimuli, text, photographic
mages). In addition to the stimuli provided (or modifications
f them), the user can generate entirely new stimuli by issu-
ng OpenGL commands directly to the window, or combine

re-packaged stimuli with their own commands. In addition to
he visual presentation, for which it was originally designed,
sychoPy is able to present stereo auditory stimuli using the
omputer sound card. Responses can easily be gathered via the

10 J.W. Peirce / Journal of Neuroscience Methods 162 (2007) 8–13

F ol to
w

k
b

a
i
s
(
v
c
g
a
i
t
t
a
t
t
c
p
f
P

c
c
o
a
u

a
p
u
s
s
t
t
s
h
s
s

a
r
(
r
t
c
f
g

ig. 1. The MoniterCenter application provides the experimenter with a handy to
ith a PR650, and to store information and notes from previous calibrations.

eyboard and mouse, by standard devices such as joysticks, or
y more elaborate hardware via the serial or parallel ports.

PsychoPy also provides a graphical-user-interface (GUI)
pplication called MonitorCenter to manage calibration of mon-
tors and store information from previous calibrations. The user
imply inputs the dimensions of the monitor and its distance
using the GUI) allowing PsychoPy to convert units between
arious coordinate systems such as degrees of visual angle,
entimeters or pixels. In addition MonitorCenter also stores
amma-correction parameters for the monitor, which are then
pplied automatically during experimental scripts. Furthermore,
f a Spectrascan PR650 is connected to the serial port Moni-
orCenter can also perform a fully automated calibration at the
ouch of a button. This calibration will measure the luminance at
series of intensity levels and fit the optimum gamma-function

o each gun. The PR650 will also measure the intensity spec-
rum for each gun to allow transformations between various
olor spaces. The result is that experimental scripts can sim-
ly request an image, for example, of a 2◦ width, with spatial
requency of 3c/◦ with an isoluminant red/green chromaticity.
sychoPy will perform all the necessary spatial and chromatic

alculations for the user. Although other packages, such as Psy-

hToolbox, may provide scripts that help the user with these sorts
f manipulations, none has such a simple automated approach
llowing the user to refer to their stimuli directly in real-world
nits (Fig. 1).

3

i
e

provide information about their monitor to perform fully automated calibrations

To aid in experimental control a number of functions are
lso provided to deal with common designs such as staircase
rocedures or methods of constant stimuli. For example, the
ser can create a ‘handler’ for a staircase procedure with various
ettings such as the desired step size(s) and start point for the
taircase. On each trial the handler will automatically provide
he next intensity level for the stimulus in the staircase based on
he previous response of the participant (for complete example of
uch an experiment see Tutorial 1 on the project website). These
andlers can also help to store information about the experiment,
uch as stimulus parameters, the pseudo-random order of the
timuli, etc.

Finally, a series of functions are provided to aid in data
nalysis, such as fitting of curves and the use of statistical
esampling methods. For example, the following example script
Code Snippet 1) takes a list of intensity values and the mean
esponses at those intensities. The PsychoPy class FitWeibull
hen fits a psychometric function to the data. From this we
an retrieve the parameters of the fit, request the value of the
unction at some given intensity values, or the inverse at some
iven response value(s).

.2. Ease of use
The syntax of the Python language and the PsychoPy library
s remarkably easy to understand, especially to anyone with
xperience in object-oriented languages. As an example, Code

scienc

S
c

l
M
o
t
a
t
c
i
c
r
i
u
b
n
i
i
n
t
u
t
(
d
M
a

3

n
i
p
m
s
f

c
s
s

f
s
m
p
n
h
b
a
t
c
d
a
d
s
f
o
n
d
g
C
f

a
i
w
v
d

3

a
e
R
R
D
w

J.W. Peirce / Journal of Neuro

nippet 2 generates a window in which it draws a Gabor of 50%
ontrast whose grating drifts at a rate of 3 Hz.

As with any language the particular syntax takes time to
earn but Python has numerous advantages over Matlab®.

ost notable is the fact that it was built from scratch as an
bject-oriented language. For the developer this makes it easier
o use and reuse code. For the user, the code remains readable
nd it becomes extremely easy to identify what functions apply
o what types of object. In Code Snippet 2 a clock object is
reated, which has the method getTime() associated with
t. Under the object-oriented programming model the user can
reate as many clock objects as they choose each of which can
eturn its own (different) time. Another advantage to Python
s the ability to name the arguments given to a function with
nused arguments being given some default value. In the code
elow the Window object has numerous additional arguments
ot shown here (to control the color of the window, whether
t appears full screen, etc.) but these were not needed in this
nstance. The argument naming feature means that we didn’t
eed to specify all the arguments in their correct order up to
he argument that we did actually wish to use (in this case
nits = “deg”). There are many additional features to

he language, like the ability to concatenate strings directly
“Hell” + “o” = “Hello”) or the wide range of available
ata types, but these are beyond the scope of the current paper.
any additional demo programs including screenshots are

vailable on the project website (www.PsychoPy.org).

.3. Temporal accuracy and speed

The timing precision is one of the most critical issues for a
euroscience experiment. As you might expect from a platform-
ndependent package, the timing precision of PsychoPy is at least
artly dependent on the system clock on which it is running. On
ost computers this is accurate to the order of microseconds and

hould have sub-millisecond precision on any modern machine
or the purpose of measuring user responses.
For the purposes of synchronizing to a video display, Psy-
hoPy uses a double-buffered display method and the buffer
wapping is synchronized to the vertical blank period of the
creen, provided that the graphics card in question supports that

l
I
i
d

e Methods 162 (2007) 8–13 11

unction (most do). This means that all drawing commands are
ent to a hidden copy of the screen and then, when given the com-
and to update, the hidden copy swaps with the currently dis-

layed screen image. When synchronized to the vertical blank,
o other commands will be executed until this screen flipping
as occurred. Provided that all drawing to the hidden buffer can
e completed within the time between vertical blanks (11.7 ms at
refresh rate of 85 Hz) this method provides an extremely robust

iming mechanism. The question of whether or not all drawing
ommands are completed within the necessary time is depen-
ent on the complexity of drawing, the speed of the computer,
nd its graphics card, but typically the drawing of several hun-
red moderately complex stimuli is possible. For random-dot
timuli, thousands of simple elements can be rendered within a
rame (up to 3500 could be drawn without dropping any frames
n a test system with an AMD Athlon 3000+, 512 MB RAM,
Vidia GeForceFX 5500). Around 80 Gabor stimuli can be
rawn with an updated position/phase/orientation within a sin-
le frame. Many more can be drawn if their position is constant.
ritically, PsychoPy will optionally test for and report dropped

rames throughout the experiment.
For occasions where even more (or more complex) stimuli

re necessary, C/C++ extensions can be added to the package to
ncrease the speed of the rendering. For precise synchronization
ith external hardware, the parallel port and serial port provide
ery fast methods for sending TTL pulses and characters or other
ata.

.4. Hardware extensions

PsychoPy has very simple methods to access the parallel
nd serial ports where available, making interfaces for hardware
asy to build. It already provides support for Bits++ (Cambridge
esearch Systems, Cambridge, UK), Spectrascan PR650 (Photo
esearch, California, USA), fORP MRI response box (Current
esigns Inc., Philadelphia, USA) but should be able to interface
ith almost anything that uses serial or parallel ports or emu-
ates a computer device such as mouse, keyboard or joystick.
n fact, since Python is extensible in C, it should be capable of
nterfacing with any piece of hardware for which the user has a
river.

http://www.psychopy.org/

12 J.W. Peirce / Journal of Neuroscience Methods 162 (2007) 8–13

Table 1
A summary table of features for several frequently used software packages

F

c
8
g
t
b
D
e
m
(
c
m
o
w

t
t
t
t
t
i
a
f
t
r
c
p

3

t

r
r

a
t
t
a
p
b

4

b
d
t
p
W
s
h
p
(
f
s
c

w
a
s
t
o

or further details see main text.

To provide the experimenter with greater range of stimulus
ontrasts than are available using standard graphics cards (with
or 10 bit digital–analogue-converters, DACs), PsychoPy inte-
rates with the Bits++ hardware. The Bits++ unit sits between
he digital video output of the video card and provides a 14-
it VGA signal out to the monitor. This system provides 14-bit
ACS whose outputs are set via lookup-tables that be changed
ffortlessly every frame (or even within a frame). In its standard
ode a lookup table inside the Bits++ unit contains 256 values

corresponding to the output values from the monitor) which
orrespond to any choice of 14-bit values to be passed to the
onitor.1 The system is independent of computer platform or

f any particular software library and is relatively inexpensive
ay to produce stimuli with very precise contrast values.
Other devices such as the SpectraScan PR650 can be con-

rolled by the serial port of the computer (or via a USB adaptor
hat mimics a serial port, where none are available). This is
he means by which, for instance, the MonitorCenter instructs
he PR650 to make a measurement during automated calibra-
ions and the means by which it retrieves the luminance and/or
ntensity spectrum after that measurement. The serial port is
lso one means by which PsychoPy scripts can receive input
rom the fORP MRI response box allowing the recording of
riggers from magnetic resonance imaging (MRI) hardware and
esponses from MR-compatible button-boxes. The fORP system
an simply emulate keyboard presses via the USB port if a serial
ort is unavailable.
.5. Mechanisms for support

Support for the software is primarily maintained through
he website at http://www.psychopy.org. The site is wiki-based,

1 Bits++ has additional modes which can present more than 256 concur-
ent RGB values, but which sacrifice colour information (Mono++) or screen
esolution (Colour++).

1
l
a
n
a

i
A

llowing users themselves to directly edit the pages and con-
ribute to or correct documentation. There is also a mailing list
hrough which the users can get support from the original author
nd also provide support for peers. PsychoPy’s code itself is sim-
le, transparent and included with the software so that it too can
e modified and improved by the users themselves.

. Discussion

The ideal software package for visual neuroscience should
e based on free libraries, open-source (so that the scientist can
etermine exactly what is happening behind the scenes), simple
o use, capable of generating stimuli on-the-fly (rather than from
re-computed movies), and be platform independent (at least for
indows®, Macintosh, and Linux environments). The package

hould also be readily extensible, to handle new technologies and
ardware as they are available. Although a number of stimulus
resentation packages are already available to neuroscientists
for example, see the list compiled by Strasburger, 2005), none
ulfilled all of the above criteria at the time of writing. Table 1
hows a comparison of the features of three such packages in
urrent use and development.

Presentation® (Neurobehavioural Systems Inc,
ww.neurobs.com) is a commercial package that is avail-

ble strictly on Windows®, is not free and comes without
ource code. It is also not designed to construct stimuli itself but
o render movies and images that have been pre-made in some
ther package. Of the free software, Psychtoolbox (Brainard,
997; Pelli, 1997a,b) is the most mature, being used by a very
arge number of labs worldwide. While Psychtoolbox has been
n invaluable tool to many vision scientists (and cognitive
euroscientists) it is built on top of Matlab®, which is expensive

nd comes without source code.

One package with a similar ethos and underlying mechan-
cs to PsychoPy is The Vision Egg (www.visionegg.org) by
ndrew Straw. This library, designed originally to study the

http://www.psychopy.org/
http://www.neurobs.com/
http://www.visionegg.org/

scienc

v
o
a
o
t
r
s
b
s
e
p
a
s
o
o
n
i
t
p
d
i

w
p
f
t
p
a
o

A

a
a
P
(

M
T
N

R

B

B

B
P

P
numbers into movies. Spat Vis 1997b;10:437–42.

Strasburger, H. Software for visual psychophysics, 2005, http://www.hans.
strasburger.de/psy soft.html.

Wolf W, Deubel H. P31 phosphor persistence at photopic mean luminance level.
J.W. Peirce / Journal of Neuro

isual system of the fly is a very powerful package built on top
f Python and OpenGL. For a good programmer, Vision Egg
chieves its goals very well, providing a powerful and highly
ptimized system for visual stimulus presentation and interac-
ions with hardware (including the ability to run experiments
emotely across a network). Straw does, however, adhere very
trongly to an object-oriented model of programming which can
e harder for relatively inexperienced programmers, like most
cientists, to understand. For instance, the temporal control of
xperiments in Vision Egg is predominantly though the use of
resentation loops, whereby the user sets an object to run for
given length of time, attaches stimuli to it, attaches it to a

creen and then tells it to ‘go’. In contrast PsychoPy uses object-
riented programming only where objects make intuitive sense
utside the realms of a programming language. For instance, the
otion that stimuli or windows are types of object is quite intu-
tive. For controlling the way in which stimuli appear during a
rial, on the other hand, PsychoPy allows the user to create a sim-
le sequence of events (e.g. draw fixation point, wait for 200 ms,
raw stimulus, wait for key press, etc.), which is hopefully more
ntuitive than a presentation object to which events are attached.

PsychoPy aims to provide scientists with an easy and intuitive
ay to generate experimental control programs, combining the
ower and freedom of Python/OpenGL with the ease of use
ound in PsychToolbox. It already contains a wide variety of

ools allowing everything from the generation of stimuli and
resentation protocols to the logging and analysis of data. With
growing community and continued active development it will
nly get better.
e Methods 162 (2007) 8–13 13

cknowledgements

Many thanks to Ben Webb for help with destructive testing
nd to the Python community for writing the various libraries
nd code on which PsychoPy is built. The development of
sychoPy has partly been funded by a BBSRC project grant
BB/C50289X/1) held by JWP.

Windows® and DirectX® are registered trademarks of
icrosoft Corporation. Matlab® is a registered trademark of

he MathWorks, Inc. Presentation® is a registered trademark of
eurobehavioural Systems, Inc.

eferences

ach M. A note on luminance calibration of raster-scan cathode-ray tubes:
temporal resolution, ripple, and accuracy. Spat Vis 1997;10:485–9.

ach M, Meigen T, Strasburger H. Raster-scan cathode-ray tubes for vision
research—limits of resolution in space, time and intensity, and some solu-
tions. Spat Vis 1997;10:403–14.

rainard DH. The psychophysics toolbox. Spat Vis 1997;10:433–6.
elli DG. Pixel independence: measuring spatial interactions on a crt display.

Spat Vis 1997a;10:443–6.
elli DG. The videotoolbox software for visual psychophysics: transforming
Spat Vis 1997;10:323–33.

http://www.hans.strasburger.de/psy_soft.html

	PsychoPy-Psychophysics software in Python
	Introduction
	Methods and materials
	Hardware
	Python
	The use of OpenGL

	Results
	What PsychoPy provides
	Ease of use
	Temporal accuracy and speed
	Hardware extensions
	Mechanisms for support

	Discussion
	Acknowledgements
	References

