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Abstract

We consider the problem of finding a solution d (and not necessarily square) system of
equations, i.e., we consider systems of nonlinear e s and want to find a solution that belongs to a
certain feasible set. To this end, we Marquardt-type algorithms that differ in the way
they compute their search directions. lves a strictly convex minimization problem at each
iteration, whereas the second stem of linear equations in each step. Both methods
are shown to converge loca n error bound assumption that is much weaker than the
standard nonsingularity co can be globalized in an easy way. Some numerical results
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In this
equations

F(x)=0, xeX, (1)

ve consider the problem of finding a solution of the constrained system of nonlinear
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where X C R” is a nonempty, closed and convex set and F: (¢ — R” is a given mapping defined
on an open neighbourhood @ of the set X. Note that the dimensions » and m do not necessarily
coincide. We denote by X* the set of solutions to (1).

The solution of an unconstrained square system of nonlinear equations, where X =R"” and n=m
in (1), is a classical problem in mathematics for which many well-known solution
Newton’s method, quasi-Newton methods, Gauss—Newton methods, Levenberg— ardt methods
etc., are available, see, e.g., [20,5,15] for three standard books on this subject.

however, has not been the subject of intense research. In fact, the
aware of the recent papers [10,16,13,14,19,23,22,1,21] that deal wit
constrained) systems of equations. Most of these papers describe al
and local fast convergence properties under a
solution.

The nonsingularity assumption implies that the solution is
Levenberg—Marquardt-type algorithms that are locally quadra
sumption that, in particular, allows the solution set to b
the nonsingularity assumption by an error bound
[24] that deals with unconstrained equations only.
for the unconstrained case.

, We present some
t under a weaker as-
1que? To this end, we replace
motivated by the recent paper
me subsequent related results

On the other hand, the possibility of dea i i equations is very important. In fact,
systems of nonlinear equations arising in sev re often constrained. For example, in
chemical equilibrium systems (see, e.g., [17,18 variables correspond to the concentration of
certain elements that are naturally re, in many economic equilibrium problems,
the mapping F' is not defined eve ., [7]) so that one is urged to impose suitable
constraints on the variables en have a good guess regarding the area where
they expect their solutio S owledge can then easily be incorporated by adding

is as follows: Section 2 describes a constrained Levenberg—
n of problem (1). It is shown that this method has some nice

e main disadvantage of this method is that it has to solve rela-
s at each iteration, namely (strictly convex) quadratic programs in
set X is polyhedral, and convex minimization problems in the general

il this drawback, we present a variant of the constrained Levenberg—Marquardt
3 (called the projected Levenberg—Marquardt method) that solves only a system
of linear ons per iteration. This method is shown to have essentially the same local (and
global) conv€rgence properties as the method of Section 2. Numerical results for this method are
presented in Section 4. We conclude the paper with some remarks in Section 5.

The notation used in this paper is standard: The Euclidean norm is denoted by || - ||, Bs(x) :=
{yeR"|||y — x|| <0} is the closed ball centered at x with radius 6 > 0, dist(y,X™) := inf{||y —
x|| |x € X*} denotes the distance from a point y to the solution set X*, and Py(x) is the projection
of a point x € R” onto the feasible set X.
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2. Constrained Levenberg—Marquardt method

This section describes and investigates a constrained Levenberg—Marquardt method for the solution
of the constrained system of nonlinear equations (1). The algorithm and the assumptions will be
given in detail in Section 2.1. The convergence of the distance from the iterates fo the solution
set will be discussed in Section 2.2, while Section 2.3 considers the local behavi
themselves. A globalized version of the Levenberg—Marquardt method is give

2.1. Algorithm and assumptions

For solving (1) we consider the related optimization problem

min f(x) st xeX, (2)

where

[ = [|FE)|?
denotes the natural merit function corresponding to
for this (not necessarily square) system of equati
x¥ + d*, where d* is a solution of the linearized

Gauss—Newton-type method
uence {x*} by setting x**! :=

min f*(d) st. ¥ +dex (3)
with the objective function
[Hd) = |FO5) + Hid|?,
where matrix H, € R™*" is an appro not necessarily existing) Jacobian F’(x"). How-
ever, since we allow the ) to be nonunique and nonisolated, we replace
subproblem (3) by a reg ‘
4)
) (5)

(S.0) Cho8se x°€ X, u >0, and set k := 0.

(S.1) If F(x*)=0, STOP.

(S.2) Choose H; € R™", set w; := u||[F(x*)||>, and compute d* as the solution of (4).
(S.3) Set x**! :=xk +d*, k< k+ 1, and go to (S.1).

Note that the algorithm is well-defined and that all iterates x* belong to the feasible set X. To
establish our (local) convergence results for Algorithm 2.1, we need the following assumptions.
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Assumption 2.2. The solution set X* of problem (1) is nonempty. For some solution x* € X*, there
exist constants 6 > 0, ¢; > 0, ¢, > 0 and L > 0 such that the following inequalities hold:

e dist(e, X*) < |[F(x)|| VxeBs(x")NX, (6)

|F(x) — F(xX*) — Hi(x — x| < eallx = 25> Ve xF € Bs(x*) N X, (7)

[FG) = FO)ll < Lix = yll - Vx, y € Bs(x™) N X.

Assumption (6) is a local error bound condition and known to b e more
standard nonsingularity of the Jacobian F’(x*) in the case where thi i S a square
matrix (i.e., if F is differentiable and n=m). For example, this local error bou dition is satisfied
when F is affine and X is polyhedral. To see this, let F(x + a and x | Bx < b} with
appropriate matrices 4, B and vectors a,b. Due to Hoffman’s
exists 7 > 0 such that

tdist(x, X*) < ||F(x)|| + ||Px(x)]]-

If x € Bs(x*)NX for some x* € X*, then Py(x)= esWo tdist(x, X*) < ||F(x)||, which
implies condition (6).
Furthermore, assumption (7) may be vie
requirement on the choice of matrix Hj. For 1s condition is satisfied with the choice
Hy := F'(x") if F is continuously g i ' being locally Lipschitzian.
Finally, assumption (8) only say i 1pschitzian in a neighbourhood of the solution
x*. Of course, this condition 4

is are always the constants from Assumption 2.2.
gorithm 2.1 is locally quadratically convergent in the sense that the
the solution set X* goes down to zero with a quadratic rate. In order

(a) ||d¥|| < cs dist(x*, X*),
(b) |F(*) + Hyd"|| < ca dist(xk, X *)2.

Proof. (a) Let ¥ € X* denote the closest solution to x* so that

[[x* — % || = dist(x*, X™*). (10)
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Since d* is the global minimum of subproblem (4) and x* +d* € X holds for the vector d* := 7% —x*,
we have

0k(d*) < 0% (d") = 05 — x). (11)

Furthermore, since x* € B;»(x*) by assumption, we obtain

7 = 2] < 7 = ¥+ ¥ = 1) < [ =]+ ok ) <0

so that X* € B5(x*) N .X. Moreover, the definition of z; in Algorithm 2.1 toge i and (10)
gives

s = uFEO|P = pet dist(rF, X7)? = pef [ — 1.
Using (10), (11), (12) and (7), we obtain from the definition of thé®func

1 1
ld*]* < — 0%(d*) < — 0*(F =)
13 M
1 _ _
=Ewwh+mw—ﬁW+mW—x

1 _ _

= —||[F(x*) = F(&) — Hi(x* — )|
l,[ k T
1 _ i,

< — 3k — F [ + o — P
Mk

2
22k — 2
He

N

Therefore, statement (a
(b) The definition Qf

(13)
On the other (5Fand (7), we have
IFGF) = F@E) = HGx" = 37 + el 7 = )17
ot - 2 (14)

I = pllFGF) = FE)|? < pl?|lx -2
we obtain (13) and (14) that
IFG) + Hed®|[* < 0%(d") < St = 3" + gl — 32
< el = FY* Lt -7
= (c3 + uL?)[x* — 5%
Hence statement (b) holds with ¢4 := \/m O



326 C. Kanzow et al. | Journal of Computational and Applied Mathematics 173 (2005) 321-343

The next result is a major step in verifying local quadratic convergence of the distance function.

Lemma 2.4. Assume that both x*~' and x* belong to the ball Bsp(x*) for each k € N. Then there
is a constant c¢s > 0 such that

dist(x*, X*) < es dist(x* !, X*)?
for each ke N.

Proof. Since x*,x*~1 € B;»(x*) and x* =x*~! + d*~!, we obtain from (7
IFGE +d D = |FGEY) + Hemd® |

<|FE Y = FH +d" Y + Hed* | < e dF1)1

Using the error bound assumption (6) and Lemma 2.3, we t

o1 dist(F, X ) < IFGH)| = [FGH! 4+ a5 )

re obtain

S FGH) + Head ™ + 2| d gl

a 2.4 is satisfied if the starting point x° in
on set X*. Let

The next result shows that the
Algorithm 2.1 is chosen sufficient

: { )
7 1= min

2(1 + 2¢ (15)

ting point x° €X used in Algorithm 2.1 belongs to the ball
). Then all iterates x* generated by Algorithm 2.1 belong to the

Lemma 2.5. Assume th
B,(x*), where r is
ball B(s/z(x*).

n on k. We start with k&=0. By assumption, we have x° € B,.(x*). Since
r < 0/2 L (x*). Now let k > 0 be arbitrarily given and assume that x’ € Bs(x*)
to show that x*! belongs to Bs;(x*), first note that

I +a* — x| < = )]+ e

= "7+ =2l < T = (T

k k
< = x|+ D lld' <7+ e ) dist(x!, X7,
1=0 1=0
where the last inequality follows from Lemma 2.3. Since Lemma 2.4 implies

dist(x’, X*) < esdist(x’ L, X*)Y? I=1,...,k
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we have

dist(x!, X*) < es dist(x' ™', X*)? < esc? dist(x/ 72, X %)

1__ . 1 I__ . !
<escroooc; Ndist(x®, XY =3 ' dist(x?, X*)?

SCZ l||x x*HZ/ <621—1},2’
for all /=0,...,k. Using r < 1/(2¢5), we therefore get
k k
||xk+1—x*\|<r—|—032c§ —r—i—C3chs
1=0 =0
k 1 201 0o
Sr—i—cyZ(Z) Sr—l—cyZ

=0

where the last inequality follows from definition

We now obtain the following quadratic cguver

(15). Then the sequence {dist(x*,X*)} con-

with starting point x° € B.(x*), w
’ roach the solution set X* locally quadratically.

verges to zero quadratically,

The aim of t i#is to investigate the local behaviour of the sequence {x*} generated
nd, we also assume throughout this subsection that the conditions in
ed. Moreover, the constants ¢ and ¢;, i =1,...,5 will be those from the
s, i.e., from Assumption 2.2 and Lemmas 2.3-2.5.

sequence itself. In this subsection, we will see that this sequence converges to a solution of
(1), and that the rate of convergence is also locally quadratic.
We start by showing that the sequence is convergent.

Theorem 2.7. Let Assumption 2.2 be satisfied and {x*} be a sequence generated by Algorithm 2.1
with starting point x° € B.(x*), where r is defined by (15). Then the sequence {x*} converges to a
solution x of (1) belonging to the ball Bs;(x*).
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Proof. Since the entire sequence {x} remains in the closed ball Bs;(x*) by Lemma 2.5, every limit
point of this sequence belongs to this set, too. Hence it remains to show that the sequence {x*}
converges. To this end, we first note that, for any positive integers £ and m such that k > m, we
have

" = = e = < =

= 72+ a7 =2+ ] < R = R

k—1 00
<D llal <) lla')l
I=m I=m
Now, as in proof of Lemma 2.5, we have
. I_1 ol I_
d'|| < c3dist(x!, X*) < sz ' <er(3) T < esr(R)

where the first inequality follows from Lemma 2.3
Consequently, we get [|x* — x"|| < c3r 370, (3)
sequence and hence convergent. [J

ality follows from » < 1/(2c¢s).
This means {x*} is a Cauchy

In order to prove that the sequence {x*}
preparatory results.

quadratically, we need some further

Lemma 2.8. Let x° € B.(x*) and {
constant cg > 0 such that di

e generated by Algorithm 2.1. Then there is a
or all k € N sufficiently large.

Proof. In view of The

large. Letting x**!

la*]| =

ist(x* T, X*) < § dist(x*, X*) for all k€N sufficiently
e closest solution to x**!, we then obtain

k+1|| _ ka“rl _xk+1||

tF LX) = dist(rF, X)) — 5 dist(rF, X ) = § dist(x, X)

Lemma 2.9. % ¢t x° € B.(x*) and {x*} be a sequence generated by Algorithm 2.1. Then there is a
constant ¢; > 0 such that ||d**'|| < c7||d*||* for all k € N sufficiently large.

Proof. In view of Lemmas 2.3, 2.4, and 2.8, we have
|d* ] < e3 dist(F LX) < eses dist(x¥, X ) < esescp|d¥|?

for all k € N sufficiently large. Setting ¢; := c3csc? gives the desired result. [
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We next show that the length of the search direction d* is eventually in the same order as the
distance from the current iterate x* to the limit point X of the sequence {x*}.

Lemma 2.10. Let x° € B.(x*) and {x*} be a sequence generated by Algorithm 2.1 and converging
to x. Then there exist constants cg > 0 and co9 > 0 such that

cs|lx* — 7| < [la*]| < eolx* — 7|
for all k € N sufficiently large.

Proof. The right inequality holds with ¢¢ := ¢3 since Lemma 2.3 i
ld*|| < c3dist(x¥, X*) < e3|]xF — %]

for all £ € N. In order to verify the left inequality, let k € N
applies and c;||d*|| < 1 holds. Without loss of generality, we
holds. We can then apply Lemma 2.9 successively to obtain

ld 21 < elld™ P < (3)Perlld)
I < elld P < (3) er|ld”]

I < elld PP < (5)%

iently large So that Lemma 2.9
g that (4" < Jfla”]

Le., [|[d*] < (3Y|d¥| for all j =

we therefore get

1—1
< 1 k+j
< fim Yy fla|
=0
=3 ] < udkuz ( ) 2|,
j=0

Setting cg := % gives the desired result. [J

As a consequence of the previous lemmas, we now obtain our main local convergence result of
this subsection.
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Theorem 2.11. Let Assumption 2.2 be satisfied and {x*} be a sequence generated by Algorithm
2.1 with starting point x° € B.(x*) and limit point . Then the sequence {x*} converges locally
quadratically to X.

Proof. Using Lemmas 2.9 and 2.10, we immediately obtain

es|l T = 3| < ] < eqlld P < eresllxt — F)P
for all k€N sufficiently large. This shows that {x*} converges locally qu al the limit
point x. [J
2.4. Globalized method

So far, we have presented only a local version of the constrained Levenbe
Although this is the main emphasis of this paper, we also
globalized version of Algorithm 2.1. The globalization given

rquardt method.
completeness, a
ple and might not be

the nice local properties of Algorithm 2.1. Throug , we assume that the mapping
F is continuously differentiable.

The globalized Levenberg—Marquardt method ple descent condition for the
function ||F(x)||: If a full Levenberg—Marq ient decrease of this merit function,
we accept this point as the new iterate. Oth i 0 a projected gradient step, see, e.g.,
Bertsekas [3] for more details on projected . Formally, the globalized method looks as
follows. (Recall that we define f

(16)

Theorem 2.13. Let {x*} be a sequence generated by Algorithm 2.12. Then any accumulation point
of this sequence is a stationary point of (2). Moreover, if an accumulation point x* of the sequence
{x*} is a solution of (1) and Assumption 2.2 is satisfied at this point, then the entire sequence
{x*} converges to x*, the rate of convergence is locally quadratic, and the sequence {dist(x*, X*)}
also converges locally quadratically.
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Based on our previous results, the proof can be carried out in exactly the same way as that of
Theorem 3.1 in [24]. We therefore skip the details here.

3. Projected Levenberg—Marquardt method

tion problem. This method is shown to have the same convergence
Marquardt method of Algorithm 2.1.
The organization of this section is similar to the previous one.

Section 3.2. Section 3.3 deals with the local behaviour of th
a simple globalization strategy for the modified Levenberg—

3.1. Algorithm and assumptions

ns¥(1). In the previous section, we
ates a sequence {x*} by

We consider again the constrained system of nj@inear eq
presented a constrained Levenberg—Marqu e that

SH=xk4+db k=o0,1,...,
where d* is the solution of the co

min0%(d) st. x+d

ained optim problem

. Note that, whenever the projection can be carried out efficiently (like in
case), this method needs a significantly less amount of work per iteration since
of the function 0% ensures that d¥; is a global minimum of this function if and
=0, i.e., if and only if d%, is the unique solution of the system of linear equations

(H{ He — D )dy = —H! F(x"). (17)
Specifically we consider the following algorithm.
Algorithm 3.1 (Projected Levenberg—Marquardt Method: Local Version).

(S.0) Choose x° € X, > 0, and set k := 0.
(S.1) If F(x*)=0, STOP.
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(S.2) Choose H; € R™<" set w; := u||[F(x*)||?>, and compute d¥, as the solution of (17).
(S.3) Set Xt := Py(x* +dY)), k < k+1, and go to (S.1).

Note that the algorithm is well-defined since the coefficient matrix in (17) is always symmetric
positive definite. Furthermore, all iterates x* belong to the feasible set X.
The following assumption is supposed to hold throughout this section.

Assumption 3.2. The solution set X* of problem (1) is nonempty. For somg s
exists constants ¢ > 0, k1 > 0, k; > 0 and L > 0 such that the followin

Ky dist(x, X*) < ||F(x)|]  Vx € B.(x™), (18)
IF() = FO*) = Hix = x")]| < walr — |2 (19)
[FG) = FO)Il < Lix =yl Vx, y € Bo(x™). (20)
We tacitly assume that the constant ¢ > 0 in Ass 21 n sufficiently small so that the
mapping F is defined in the entire ball B,(x*). N iS4 s possible since F is assumed

to be defined on an open set (’ containing the fe

Apart from this, the only difference bet
assume that conditions (18)—(20) hold in the
that the corresponding conditions (6)—(8) hold
slight modification is that we so
that may lie outside X.

Without the restriction og - more restrictive than the corresponding condition
(6). Whenever there exis (x)=0 and x € X, (18) may fail even if F' is affine

, whereas before it was only assumed
intersection Bs(x*) N X. The reason for this
conditions (18)—(20) to the vector x* + d¥,

nd X={x|-1<x<1L-1<x<0}, @1

the"Constrained equation F(x) =0, x € X, is the lower half of the unit circle.
(rcos0,rsin0) with » >0, we have |[F(x)| = |r — 1|. It is easy to see that
| when x is an interior point of X. Therefore (18) holds on the interior of

dist(x,X*) 0 for any x such that » =1 and 0 < 0 < 7. On the other hand, when x* = (0, —1)T,
which is also a boundary point of X, (18) is satisfied for sufficiently small ¢ > 0.

3.2. Local convergence of distance function

This subsection deals with the behaviour of the sequence {dist(x*,X*)}. The analysis is similar
to that of Section 2.2, and many of our results can be found in the related paper [24] that deals
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with the convergence properties of a Levenberg—Marquardt method for the solution of unconstrained
systems of equations. We therefore skip some of the proofs here.

Lemma 3.3. There exist constants i3 > 0 and 14 > 0 such that the following inequalities hold for
each x* € B.y(x*):

(@) ||d% | < xs dist(xF, X*),
(b) [[F(x*) + Hyd%|| < rq dist(xF, X*)2.

Proof. The proof is similar to Lemma 2.3 and may also be found in

We next state the counterpart of Lemma 2.4. Note, however, tlfat th x4 d’{]_l is
no longer equal to the next iterate x* in the method consi assumption in
the following result is somewhat different from the assu B the correSponding result in
Lemma 2.4.

Lemma 3.4. Assume that both x*=' and x*=' +
Then there is a constant ks > 0 such that dist(x

ball B.»(x*) for each k e N.
,X*)? for each k € N.

iy dist(x*, X*) =

(22)
where the las i om (18) together with our assumption that x*~! +d’{,‘1 € Byp(x™).
Now, using (1 L x4 @t € B,p(x*), we have

[F(* ) + Hidy |
) = FO! i) + Himdy | < ol (23)

Using (2 and Lemma 3.3, we obtain

ey dist(x, X ") < [FGE) + Himdg |+ walldg P
< Ky dist(x* "1 X*)? 4+ K2K§ dist(x*~!, X*)?
= (k4 + K2%3 ) dist(x* !, X )%

This completes the proof by setting xs := (k4 + K23 )/K1. [
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The next result is the counterpart of Lemma 2.5 and states that the assumptions in Lemma 3.4
are satisfied if the starting point x° is chosen sufficiently close to the solution set. Let

e 1
‘= mi _— . 24
r mm{2(l—|—2k3)’2rc5} (24)

Lemma 3.5. Assume that the starting point x° € X used in Algorithm 3.1 bel
where x* denotes a solution of (1) satisfying Assumption 3.2 and r is de
=14 d'{]_l € B;p(x*) holds for all k € N.

o (/@Wull B.(x"),

. Th L

Proof. The proof is by induction on k. We start with £ = 1. By asSimpt1
Since r < ¢/2, this implies x° € B,(x*). Furthermore, we obtaj

e have x° € B.(x*).

Ix* +dy = x| < [lx” = x|+ [ldy ]| <7+ lldy |
< r+ K dist(x?, X*) <

Since (1 + x3)r < ¢/2, it follows that x° + d?, € .
Now let £ > 1 be arbitrarily given and assume + ! €Byp(x™) forall I=1,... k.
We have to show that x* and x*+d%, belon
obtain x* = Py(x¥~! + d’{fl)EBa/z(x*) from
I — x| = [[Px "+ !

To see that x* + d¥, € B,j(x*), first

I +df — x| < |

k k
x| D lldy ] <7ty dist(x!, X,
=0 =0

wher¢ Jluality follows from Lemma 3.3. Using Lemma 3.4, the induction can then be
complete owing the arguments in the proof of Lemma 2.5. [

We are now able to state our main local convergence result of this subsection. It is an immediate
consequence of Lemmas 3.4 and 3.5.

Theorem 3.6. Let Assumption 3.2 be satisfied and {x*} be a sequence generated by Algorithm 3.1
with starting point x° € B.(x*), where r is defined by (24). Then the sequence {dist(x*,X*)} con-
verges to zero locally quadratically.
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3.3. Local convergence of iterates

This subsection deals with the local behaviour of the sequence {x*} itself. In order to investigate
its behaviour, we suppose that Assumption 3.2 holds throughout this subsection. Our first result
states that the sequence {x*} generated by Algorithm 3.1 is convergent.

Theorem 3.7. Let Assumption 3.2 be satisfied and {x*} be a sequence generat, ithm 3.1
with starting point x° € B.(x*), where r is defined by (24). Then the sequen erges, to a
solution x of (1) belonging to the ball B,/ (x™).

Proof. Similar to the proof of Theorem 2.7, we verify that {x*} is deed, for
any integers k and m such that £ > m, we have

[ — )| = IPr !+ ) — P
e e e
= [Py (X2 + dp?) = Py (x| +
< W2 a4 [la|

< 2 =2+ 1l

k—1
<> ldyll <
I=m

The rest of the proof is

hat o eorem 2.7. O

is a modification of that of Lemma 2.8. First note that Theorem 3.6 implies

that 1 dist(x*,x*) for all k € N sufficiently large. Let X! be the closest solution to
xh , X*)=|]x**t! —7**1||. Then we obtain from the nonexpansiveness of the projection
operator

G| = K" + dfy — 5" = [|Px (" + dfy) — Px ()
— ||xk+1 _ka > ||)Ek+1 _ka _ ”xk+1 _‘fk+1||
> dist(x¥, X*) — dist(x* ', X*) > dist(x*, X*) — L dist(x*, X*) = 1 dist(x*, X*)

for all £ € N large enough. [
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The next result shows that the length of the unconstrained search direction d%, goes down to zero
locally quadratically.

Lemma 3.9. Let x° € B.(x*) and {x*} be a sequence generated by Algorithm 3.1. Then there is a
constant 17 > 0 such that ||d%™|| < x7||d% || for all k €N sufficiently large.

Proof. Lemmas 3.3, 3.4, and 3.8 immediately imply
% < rey dist(F LX) < raies dist(xF, X ) < reaiesel ||dt ||

for all £ € N sufficiently large. The desired result then follows by setti

We next state the counterpart of Lemma 2.10 that relates the lengtl¥ of the distance from

the iterates x* to their limit point x.

Lemma 3.10. Let x° € B.(x*) and {x*} be a sequence genera w ; 3.1 and converging
to x. Then there exist constants k3 > 0 and k9 > 0 that

sl — 7| < Jldy || < reolx* — 3|
for all k € N sufficiently large.
3. We will show the left inequality.

Lemma 3.9 (instead of Lemma 2.9), we can
iently large (but fixed) index k € N:

Proof. Lemma 3.3(a) yields the right ineq
Following the proof of Lemma 2.10 and exp
show that the following inequality #glds for some

k+j j
lag” 1l < (3) 14
Furthermore, the nonexpa

Ix* —x | Py

1on operator yields
ko k=1 _ gkti—1
X —dy |

k+lH —

*!, we therefore obtain from the continuity of the norm
-1
= lim [x* — x| < lim ) [|d*H||
=00 [—00 £ 5
]:

< || hmz( ) =t ||Z( ) =21t

Since this holds for an arbitrary (sufficiently large) k£ € N, we obtain the desired result by setting
=1/2. O
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Using Lemmas 3.9 and 3.10, we get the following local convergence result for the iterates x* in
exactly the same way as in the proof of the corresponding Theorem 2.11.

Theorem 3.11. Let Assumption 3.2 be satisfied and {x*} be a sequence generated by Algorithm 3.1
with starting point x° € B,(x*) and limit point x. Then the sequence {x*} converges Igcally quadrat-
ically to x.

Hence it turns out that the projected Levenberg—Marquardt method of Al
tially the same local convergence properties as the constrained Levenb
Algorithm 2.1.

3.4. Globalized method

aiccted Levenberg—Marquardt
, rojected gradient step
1de a sufficient decrease for
one discussed in Section 2.4.
¢ the algorithm as follows.

Although we are mainly interested in the local behaviour
method, we can globalize this method in a simple way by
whenever the full projected Levenberg—Marquardt s
|IF(x)|. The globalization strategy is therefore v
Assuming that F is continuously differentiable,

Algorithm 3.12 (Projected Levenberg—Mar : alized Version).
(S.0) Choose x°c X, u>0, B,a, y€(0,1),
(S.1) If F(x*)=0, STOP.

(S.2) Choose Hj € R™ " set 1y
(S.3) If

[F(Px(x* +df))|

then set x/*! := Pa(x* <+ k+1, and go to (S.1); otherwise go to (S.4).
(S.4) Compute a i ax{f’|/=0,1,2,...} such that

FEO (1) — x),
(x")]. Set x**! :=x¥(#), k < k + 1, and go to (S.1).

|[F(x)|1%, ompute d¥, as the solution of (17).

(25)

as the advantage of having simpler subproblems than Algorithm 2.12. However,
ealized only if the projections onto the feasible set X can be computed in a

holds for Algorithm 3.12. We skip the details here.

4. Numerical results

We have implemented Algorithm 3.12 in MATLAB and tested it on a number of examples
from different areas. The implementation differs slightly from the description of Algorithm 3.12.
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Specifically, Algorithm 3.12 considers two types of steps only, namely Levenberg—Marquardt and
projected gradient steps, whereas our implementation uses the following three types of steps:

e LM-step (Levenberg—Marquardt step): This is used when the descent condition (25) is satisfied,
i.e., (S.3) is carried out.
e LS-step (line search step): This step occurs if condition (25) is not satisfied but th,

rch direction

sk = Py(x* +d*) — x* is a descent direction for f in the sense that V f(x* |s¥||7 for
some constants p > 0 and p > 1. We then use an Armijo-type line search along the
direction s*.

e PG-step (projected gradient step): If neither an LM-step nor an LS-s ply a
projected gradient step as described in (S.4) of Algorithm 3.12.

of Algorithm 3.12.
The parameters used for our test runs are f=0.9, ¢ =10"%,

Levenberg—Marquardt parameter, we initially take py := % -1

i1 i= min{ gy, |F(*1)|?}, which is motivated

we always take H := F'(x*) since all our test ex

direction d¥, from the linear system (17) is do

could be replaced by an equivalent linear

d then use the update
rgence analysis. Furthermore,
The computation of the search
ctorization. Alternatively, (17)
m which then could be solved by
inally, we terminate the iteration if

Tables 1 and 2 give the result stems of equations. All these systems have
some bound constraints. For cass test examples come from chemical equilibrium

problems have some no ‘ . Other examples are obtained from complementarity
problems

arting point from the literature (filled with zero Lagrange multipliers).
able 1 contain the name of the test problem (together with a hint to the literature

ple, the number of iterations, the number of LM-, LS- and PG-steps, the number of
function evaluations as well as the final value of the merit function f. Table 2 has a similar structure
except that the first column gives the value of a parameter for the particular problem (we use all
three different parameters given in [9]).

Table 3 states the results obtained for some underdetermined systems taken from [4]. The columns
have a similar meaning to those of Table 1 except that we added one more column that gives the
dimension m of the corresponding (nonsquare) system.
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Table 1
Numerical results for different test problems (square systems)

Test problem, source n iter LM/LS/PG F-eval. f(x)
Himmelblau function, [9, 14.1.1] 2 8 8/0/0
Equilibrium combustion, [9, 14.1.2] 5 10 6/4/0
Bullard—Biegler system, [9, 14.1.3] 2 11 9/2/0
Ferraris—Tronconi system, [9, 14.1.4] 2 3 3/0/0
Brown’s almost lin. syst., [9, 14.1.5] 5 10 10/0/0
Robot kinematics system, [9, 14.1.6] 8 5 5/0/0
Circuit design problem, [9, 14.1.7] 9 — —/—/—
Chem. equil. system, [18, system 1] 11 15 13/1/1
Chem. equil. system, [18, system 2] 5 — ——/—
Combust. system (Lean case), [17] 10
Combust. system (Rich case), [17] 10
Kojima—Shindo problem, [7] 4
Josephy problem, [7] 4
Mathiesen problem, [7] 4
Hock—Schittkowski 34, [11] 16
Hock—Schittkowski 35, [11] 8
Hock—Schittkowski 66, [11] 16 34e —11
Hock—Schittkowski 76, [11] 14 7.1e — 11
Table 2
Numerical results for test problem 14.1.9
AH n F-eval. f(x)
—50,000 4 28e — 15
—35,958 4 29¢ — 17
—35,510 4 23e — 17
Table 3
Numerical results ermined systems from [4]
n m iter LM/LS/PG F-eval. f(x)
100 50 3 3/0/0 4 1.3e — 11
200 100 6 6/0/0 7 1.8¢ — 14
300 150 13 13/0/0 14 7.8 — 29
4, Problem 4] 100 50 11 11/0/0 12 1.2e — 11
Quadratic systeh, [4, Problem 4] 200 100 26 26/0/0 27 5.0e — 12
Quadratic system, [4, Problem 4] 300 150 72 72/0/0 73 2.6e — 15

Finally, Tables 4-6 contain numerical results for some parameter-dependent problems where
the starting point of a problem is equal to the solution of the previous problem, i.e., we ap-
ply Algorithm 3.12 in the framework of a path-following method. Note, however, that the
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Table 4
Numerical results for test problem 14.1.8 from [9] (CSTR)
R n iter LM/LS/PG F-eval. f(x)
0.995 2 8 8/0/0
0.990 2 9 9/0/0
0.985 2 9 9/0/0
0.980 2 10 10/0/0
0.975 2 11 11/0/0
0.970 2 12 12/0/0
0.965 2 13 13/0/0
0.960 2 15 15/0/0
0.955 2 18 18/0/0
0.950 2 24 24/0/0 1.5¢ — 10
0.945 2 — ——/— —
0.940 2 — ——/— —
0.935 2 — ——/— —
Table 5
Numerical results for Chandrasekhar H-equation, se
c n iter / F-eval. f(x)
0.5 100 5 4.1e — 11
0.6 100 4 5 23e—11
0.7 100 S5 /0/0 6 1.3e — 10
0.8 9/0/0 10 5.1le—11
0.9 3/92/0 383 1.6e — 10
0.99 97/1/1 102 1.7¢ — 10
Table 6
ilibrium problem (propane), see [6]
iter LM/LS/PG F-eval. f(x)
14 14/0/0 15 1.0e — 10
11 7/2/2 177 1.6e — 10
2 2/0/0 3 6.4e — 13
. 2 2/0/0 3 3.0e — 15
34 10 2 2/0/0 3 l.le—15
3.5 10 2 2/0/0 3 29e — 15
3.6 10 2 2/0/0 3 l.4e — 15
3.7 10 2 2/0/0 3 22e¢ — 15
3.8 10 2 2/0/0 3 1.9¢ — 15
3.9 10 2 2/0/0 3 23e —15
4.0 10 2 2/0/0 3 28¢ — 15
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dependence of these problems on the corresponding parameters might be nonsmooth, e.g., the num-
ber of (known) solutions in the example given in Table 4 varies significantly with the values of
parameters.

Interestingly, our method is also able to solve the counterexample from (21) which does not
satisfy the local error bound assumption (18) at the solution point x* := (—1,0) (gecall also that

this example has a connected solution set, hence the above x* is not locally uni or example,
taking starting points like (—2,0), (—2,1) or (—3,1), our method terminates wj ,0) after
one or two iterations only.

To summarize the results shown in the tables, we were able to solve ems
without any difficulties. Only in a few cases, we were not able to olution
(the same is true for the method of [1], which has also been tested, ples used
here). This is typically due to the fact that the step size gets too small (exc the circuit design

ary point). For
some examples, we also needed a relatively large number of aluations (at least compared
to the number of iterations), but this is mainly due to the size reduction factor
fp was chosen equal to 0.9 (both for LS- and PG-s malfer value of f typically
reduces the number of function evaluations, but j er of iterations. For example,
applying our method with = 0.5 to the three Hock—Schittkowski 66 and
Hock—Schittkowski 76, it takes 15, 70 and 57 i ectively, but only 49, 136 and 161
function evaluations, cf. Table 1.

Of course, the behaviour of our method
quardt parameter. However, since we have to dates of the form g = O(||F(x¥)||?) in order

to be consistent with our theory, somewhat restricted. In fact, the entire be-
haviour of our algorithm does not we use modified updates of the form py;.q :=
min{ gy, u||F(x*+1)[|?} for sq ., taking 1=0.1 does not change a single iteration
number for any of the te

We close this sectio comments in order to compare our method with those from
[1,13,22]. To this e ant to stress that these three methods can be applied to nonlinear
systems of equation anstraints only, whereas our method is much more general and
allows conve Ore, our method can also be applied to nonsquare problems like

those from T . Thi t possible for the methods developed in [1,13,22]. Furthermore, the
i all methods from [1,13,22] is based on a nonsingularity assumption

On the offier hand, the main focus of this paper is on the local convergence behaviour, and
the globalization has been included only for the sake of completeness. While the globalization in
[13] is very similar, the methods from [1,22] use more sophisticated globalization strategies and
therefore seem to have a slightly better numerical behaviour, at least if their local assumptions are
satisfied. For example, the method from [1] was able to solve the Chemical equilibrium system
(System 2), whereas the method from [13] produced an additional error on the Bullard—Biegler
system.
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5. Final remarks

This paper has described two Levenberg—Marquardt-type methods for the solution of a constrained
system of equations. Both methods have been shown to possess a local quadratic rate of conver-
gence under a suitable error bound condition. This property is motivated by the recegt research for
unconstrained equations in [24] and seems to be much stronger than that of any r method for
constrained equations known to the authors.

The globalization strategy used in this paper is quite standard and can
although the numerical results indicate that the method works quite well wj
numerical experiments were carried out for the case of box constrai
computation of the projections onto the feasible set becomes very e
the overall cost of the algorithm. The question of how to deal with a ge convex set X in a
numerically efficient way deserves further study.
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