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Abstract

We consider the problem of 5nding a solution of a constrained (and not necessarily square) system of
equations, i.e., we consider systems of nonlinear equations and want to 5nd a solution that belongs to a
certain feasible set. To this end, we present two Levenberg–Marquardt-type algorithms that di8er in the way
they compute their search directions. The 5rst method solves a strictly convex minimization problem at each
iteration, whereas the second one solves only one system of linear equations in each step. Both methods
are shown to converge locally quadratically under an error bound assumption that is much weaker than the
standard nonsingularity condition. Both methods can be globalized in an easy way. Some numerical results
for the second method indicate that the algorithm works quite well in practice.
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1. Introduction

In this paper we consider the problem of 5nding a solution of the constrained system of nonlinear
equations

F(x) = 0; x∈X; (1)
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where X ⊆ Rn is a nonempty, closed and convex set and F :O → Rm is a given mapping de5ned
on an open neighbourhood O of the set X . Note that the dimensions n and m do not necessarily
coincide. We denote by X ∗ the set of solutions to (1).

The solution of an unconstrained square system of nonlinear equations, where X =Rn and n = m
in (1), is a classical problem in mathematics for which many well-known solution techniques like
Newton’s method, quasi-Newton methods, Gauss–Newton methods, Levenberg–Marquardt methods
etc., are available, see, e.g., [20,5,15] for three standard books on this subject.

The solution of a constrained (and possibly nonsquare) system of equations like problem (1),
however, has not been the subject of intense research. In fact, the authors are currently only
aware of the recent papers [10,16,13,14,19,23,22,1,21] that deal with constrained (typically box
constrained) systems of equations. Most of these papers describe algorithms that have certain global
and local fast convergence properties under a nonsingularity assumption at the
solution.

The nonsingularity assumption implies that the solution is locally unique. Here, we present some
Levenberg–Marquardt-type algorithms that are locally quadratically convergent under a weaker as-
sumption that, in particular, allows the solution set to be (locally) nonunique. To this end, we replace
the nonsingularity assumption by an error bound condition. This is motivated by the recent paper
[24] that deals with unconstrained equations only. See also [4,8] for some subsequent related results
for the unconstrained case.

On the other hand, the possibility of dealing with constrained equations is very important. In fact,
systems of nonlinear equations arising in several applications are often constrained. For example, in
chemical equilibrium systems (see, e.g., [17,18]), the variables correspond to the concentration of
certain elements that are naturally nonnegative. Furthermore, in many economic equilibrium problems,
the mapping F is not de5ned everywhere (see, e.g., [7]) so that one is urged to impose suitable
constraints on the variables. Finally, engineers often have a good guess regarding the area where
they expect their solution to lie; such a priori knowledge can then easily be incorporated by adding
suitable constraints to the system of equations.

The organization of this paper is as follows: Section 2 describes a constrained Levenberg–
Marquardt method for the solution of problem (1). It is shown that this method has some nice
local convergence properties under fairly mild assumptions. We also note that the method can
be globalized quite easily. The main disadvantage of this method is that it has to solve rela-
tively complicated subproblems at each iteration, namely (strictly convex) quadratic programs in
the special case where the set X is polyhedral, and convex minimization problems in the general
case.

In order to avoid this drawback, we present a variant of the constrained Levenberg–Marquardt
method in Section 3 (called the projected Levenberg–Marquardt method) that solves only a system
of linear equations per iteration. This method is shown to have essentially the same local (and
global) convergence properties as the method of Section 2. Numerical results for this method are
presented in Section 4. We conclude the paper with some remarks in Section 5.

The notation used in this paper is standard: The Euclidean norm is denoted by ‖ · ‖; B�(x) :=
{y∈Rn| ‖y − x‖6 �} is the closed ball centered at x with radius �¿ 0; dist(y; X ∗) := inf{‖y −
x‖ |x∈X ∗} denotes the distance from a point y to the solution set X ∗, and PX (x) is the projection
of a point x∈Rn onto the feasible set X .
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2. Constrained Levenberg–Marquardt method

This section describes and investigates a constrained Levenberg–Marquardt method for the solution
of the constrained system of nonlinear equations (1). The algorithm and the assumptions will be
given in detail in Section 2.1. The convergence of the distance from the iterates to the solution
set will be discussed in Section 2.2, while Section 2.3 considers the local behaviour of the iterates
themselves. A globalized version of the Levenberg–Marquardt method is given in Section 2.4.

2.1. Algorithm and assumptions

For solving (1) we consider the related optimization problem

min f(x) s:t: x∈X; (2)

where

f(x) := ‖F(x)‖2

denotes the natural merit function corresponding to the mapping F . A Gauss–Newton-type method
for this (not necessarily square) system of equations generates a sequence {xk} by setting xk+1 :=
xk + dk , where dk is a solution of the linearized subproblem

min fk(d) s:t: xk + d∈X (3)

with the objective function

fk(d) := ‖F(xk) + Hkd‖2;

where matrix Hk ∈Rm×n is an approximation to the (not necessarily existing) Jacobian F ′(xk). How-
ever, since we allow the solution of problem (1) to be nonunique and nonisolated, we replace
subproblem (3) by a regularized problem of the form

min � k(d) s:t: xk + d∈X (4)

with the objective function

� k(d) := ‖F(xk) + Hkd‖2 + �k‖d‖2; (5)

where �k is a positive parameter. Note that � k is a strictly convex quadratic function. Hence the
solution dk of subproblem (4) always exists uniquely.

Formally, we arrive at the following method for the solution of the constrained system of nonlinear
equations (1).

Algorithm 2.1 (Constrained Levenberg–Marquardt Method: Local Version).
(S.0) Choose x0 ∈X; �¿ 0, and set k := 0.
(S.1) If F(xk) = 0, STOP.
(S.2) Choose Hk ∈Rm×n, set �k := �‖F(xk)‖2, and compute dk as the solution of (4).
(S.3) Set xk+1 := xk + dk; k ← k + 1, and go to (S.1).

Note that the algorithm is well-de5ned and that all iterates xk belong to the feasible set X . To
establish our (local) convergence results for Algorithm 2.1, we need the following assumptions.
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Assumption 2.2. The solution set X ∗ of problem (1) is nonempty. For some solution x∗ ∈X ∗, there
exist constants �¿ 0; c1 ¿ 0; c2 ¿ 0 and L¿ 0 such that the following inequalities hold:

c1 dist(x; X ∗)6 ‖F(x)‖ ∀x∈B�(x∗) ∩ X; (6)

‖F(x)− F(xk)− Hk(x − xk)‖6 c2‖x − xk‖2 ∀x; xk ∈B�(x∗) ∩ X; (7)

‖F(x)− F(y)‖6 L‖x − y‖ ∀x; y∈B�(x∗) ∩ X: (8)

Assumption (6) is a local error bound condition and known to be much weaker than the more
standard nonsingularity of the Jacobian F ′(x∗) in the case where this Jacobian exists and is a square
matrix (i.e., if F is di8erentiable and n=m). For example, this local error bound condition is satis5ed
when F is aMne and X is polyhedral. To see this, let F(x) = Ax + a and X = {x |Bx6 b} with
appropriate matrices A; B and vectors a; b. Due to Ho8man’s [12] famous error bound result, there
exists �¿ 0 such that

� dist(x; X ∗)6 ‖F(x)‖+ ‖PX (x)‖: (9)

If x∈B�(x∗)∩X for some x∗ ∈X ∗, then PX (x) = 0. So, (9) reduces to � dist(x; X ∗)6 ‖F(x)‖, which
implies condition (6).

Furthermore, assumption (7) may be viewed as a smoothness condition on F together with a
requirement on the choice of matrix Hk . For example, this condition is satis5ed with the choice
Hk := F ′(xk) if F is continuously di8erentiable with F ′ being locally Lipschitzian.

Finally, assumption (8) only says that F is locally Lipschitzian in a neighbourhood of the solution
x∗. Of course, this condition is automatically satis5ed if F is a continuously di8erentiable function.

2.2. Local convergence of distance function

Throughout this subsection, we suppose that Assumption 2.2 holds. The constants �; c1; c2, and L
that appear in the subsequent analysis are always the constants from Assumption 2.2.

Our aim is to show that Algorithm 2.1 is locally quadratically convergent in the sense that the
distance from the iterates xk to the solution set X ∗ goes down to zero with a quadratic rate. In order
to verify this result, we need to prove a couple of technical lemmas. These lemmas can be derived
by suitable modi5cations of the corresponding unconstrained results in [24].

Lemma 2.3. There exist constants c3 ¿ 0 and c4 ¿ 0 such that the following inequalities hold for
each xk ∈B�=2(x∗) ∩ X :

(a) ‖dk‖6 c3 dist(xk ; X ∗),
(b) ‖F(xk) + Hkdk‖6 c4 dist(xk ; X ∗)2.

Proof. (a) Let Oxk ∈X ∗ denote the closest solution to xk so that

‖xk − Oxk‖= dist(xk ; X ∗): (10)
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Since dk is the global minimum of subproblem (4) and xk + Odk ∈X holds for the vector Odk := Oxk−xk ,
we have

� k(dk)6 � k( Odk) = � k( Oxk − xk): (11)

Furthermore, since xk ∈B�=2(x∗) by assumption, we obtain

‖ Oxk − x∗‖6 ‖ Oxk − xk‖+ ‖xk − x∗‖6 ‖x∗ − xk‖+ ‖xk − x∗‖6 �

so that Oxk ∈B�(x∗)∩ X . Moreover, the de5nition of �k in Algorithm 2.1 together with (6) and (10)
gives

�k = �‖F(xk)‖2¿ �c2
1 dist(xk ; X ∗)2 = �c2

1‖xk − Oxk‖2: (12)

Using (10), (11), (12) and (7), we obtain from the de5nition of the function � k in (5) that

‖dk‖26
1
�k

� k(dk)6
1
�k

� k( Oxk − xk)

=
1
�k

(‖F(xk) + Hk( Oxk − xk)‖2 + �k‖ Oxk − xk‖2)

=
1
�k
‖F(xk)− F( Oxk)︸ ︷︷ ︸

=0

− Hk(xk − Oxk)‖2 + ‖ Oxk − xk‖2

6
1
�k

c2
2‖xk − Oxk‖4 + ‖xk − Oxk‖2

6
c2

2

�c2
1
‖xk − Oxk‖2 + ‖xk − Oxk‖2 =

(
c2

2

�c2
1

+ 1
)

dist(xk ; X ∗)2:

Therefore, statement (a) holds with c3 :=
√

(c2
2=�c

2
1) + 1.

(b) The de5nition of � k in (5) implies

‖F(xk) + Hkdk‖26 � k(dk): (13)

On the other hand, from (11), (5) and (7), we have

� k(dk)6 � k( Oxk − xk)6 ‖F(xk)− F( Oxk)− Hk(xk − Oxk)‖2 + �k‖ Oxk − xk‖2

6 c2
2‖xk − Oxk‖4 + �k‖xk − Oxk‖2: (14)

Since (8) yields

�k = �‖F(xk)‖2 = �‖F(xk)− F( Oxk)‖26 �L2‖xk − Oxk‖2

we obtain from (13) and (14) that

‖F(xk) + Hkdk‖26 � k(dk)6 c2
2‖xk − Oxk‖4 + �k‖xk − Oxk‖2

6 c2
2‖xk − Oxk‖4 + �L2‖xk − Oxk‖4

= (c2
2 + �L2)‖xk − Oxk‖4:

Hence statement (b) holds with c4 :=
√

c2
2 + �L2.
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The next result is a major step in verifying local quadratic convergence of the distance function.

Lemma 2.4. Assume that both xk−1 and xk belong to the ball B�=2(x∗) for each k ∈N. Then there
is a constant c5 ¿ 0 such that

dist(xk ; X ∗)6 c5 dist(xk−1; X ∗)2

for each k ∈N.

Proof. Since xk ; xk−1 ∈B�=2(x∗) and xk = xk−1 + dk−1, we obtain from (7) that

‖F(xk−1 + dk−1)‖ − ‖F(xk−1) + Hk−1dk−1‖
6 ‖F(xk−1)− F(xk−1 + dk−1) + Hk−1dk−1‖6 c2‖dk−1‖2:

Using the error bound assumption (6) and Lemma 2.3, we therefore obtain

c1 dist(xk ; X ∗)6 ‖F(xk)‖= ‖F(xk−1 + dk−1)‖
6 ‖F(xk−1) + Hk−1dk−1‖+ c2‖dk−1‖2

6 c4 dist(xk−1; X ∗)2 + c2c2
3 dist(xk−1; X ∗)2

= (c4 + c2c2
3)dist(xk−1; X ∗)2;

and this completes the proof by setting c5 := (c4 + c2c2
3)=c1.

The next result shows that the assumption of Lemma 2.4 is satis5ed if the starting point x0 in
Algorithm 2.1 is chosen suMciently close to the solution set X ∗. Let

r := min
{

�
2(1 + 2c3)

;
1

2c5

}
: (15)

Lemma 2.5. Assume that the starting point x0 ∈X used in Algorithm 2.1 belongs to the ball
Br(x∗), where r is de<ned by (15). Then all iterates xk generated by Algorithm 2.1 belong to the
ball B�=2(x∗).

Proof. The proof is by induction on k. We start with k=0. By assumption, we have x0 ∈Br(x∗). Since
r6 �=2, this implies x0 ∈B�=2(x∗). Now let k¿ 0 be arbitrarily given and assume that xl ∈B�=2(x∗)
for all l = 0; : : : ; k. In order to show that xk+1 belongs to B�=2(x∗), 5rst note that

‖xk+1 − x∗‖ = ‖xk + dk − x∗‖6 ‖xk − x∗‖+ ‖dk‖
= ‖xk−1 + dk−1 − x∗‖+ ‖dk‖6 ‖xk−1 − x∗‖+ ‖dk−1‖+ ‖dk‖
...

...

6 ‖x0 − x∗‖+
k∑

l=0

‖dl‖6 r + c3

k∑
l=0

dist(xl; X ∗);

where the last inequality follows from Lemma 2.3. Since Lemma 2.4 implies

dist(xl; X ∗)6 c5 dist(xl−1; X ∗)2 l = 1; : : : ; k
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we have

dist(xl; X ∗)6 c5 dist(xl−1; X ∗)26 c5c2
5 dist(xl−2; X ∗)22

...
...

6 c5c2
5 · · · c2l−1

5 dist(x0; X ∗)2l
= c2l−1

5 dist(x0; X ∗)2l

6 c2l−1
5 ‖x0 − x∗‖2l

6 c2l−1
5 r2l

for all l = 0; : : : ; k. Using r6 1=(2c5), we therefore get

‖xk+1 − x∗‖6 r + c3

k∑
l=0

c2l−1
5 r2l

= r + c3r
k∑

l=0

c2l−1
5 r2l−1

6 r + c3r
k∑

l=0

(
1
2

)2l−1

6 r + c3r
∞∑
l=0

(
1
2

)l

= (1 + 2c3)r6
�
2
;

where the last inequality follows from de5nition (15) of r. This completes the induction.

We now obtain the following quadratic convergence result for the distance function as an imme-
diate consequence of Lemmas 2.4 and 2.5.

Theorem 2.6. Let Assumption 2.2 be satis<ed and {xk} be a sequence generated by Algorithm 2.1
with starting point x0 ∈Br(x∗), where r is de<ned by (15). Then the sequence {dist(xk ; X ∗)} con-
verges to zero quadratically, i.e., the iterates xk approach the solution set X ∗ locally quadratically.

Theorem 2.6 is the main result in this subsection and shows that the constrained Levenberg–
Marquardt method of Algorithm 2.1 is locally quadratically convergent under fairly mild assumptions.

2.3. Local convergence of iterates

The aim of this subsection is to investigate the local behaviour of the sequence {xk} generated
by Algorithm 2.1. To this end, we also assume throughout this subsection that the conditions in
Assumption 2.2 are satis5ed. Moreover, the constants � and ci; i = 1; : : : ; 5 will be those from the
previous subsections, i.e., from Assumption 2.2 and Lemmas 2.3–2.5.

In view of Theorem 2.6, we know that the distance dist(xk ; X ∗) from the iterates xk to the solution
set X ∗ converges to zero locally quadratically. However, this says little about the behaviour of the
sequence {xk} itself. In this subsection, we will see that this sequence converges to a solution of
(1), and that the rate of convergence is also locally quadratic.

We start by showing that the sequence is convergent.

Theorem 2.7. Let Assumption 2.2 be satis<ed and {xk} be a sequence generated by Algorithm 2.1
with starting point x0 ∈Br(x∗), where r is de<ned by (15). Then the sequence {xk} converges to a
solution Ox of (1) belonging to the ball B�=2(x∗).
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Proof. Since the entire sequence {xk} remains in the closed ball B�=2(x∗) by Lemma 2.5, every limit
point of this sequence belongs to this set, too. Hence it remains to show that the sequence {xk}
converges. To this end, we 5rst note that, for any positive integers k and m such that k ¿m, we
have

‖xk − xm‖ = ‖xk−1 + dk−1 − xm‖6 ‖xk−1 − xm‖+ ‖dk−1‖
= ‖xk−2 + dk−2 − xm‖+ ‖dk−1‖6 ‖xk−2 − xm‖+ ‖dk−2‖+ ‖dk−1‖
...

...

6
k−1∑
l=m

‖dl‖6
∞∑
l=m

‖dl‖:

Now, as in proof of Lemma 2.5, we have

‖dl‖6 c3 dist(xl; X ∗)6 c3c2l−1
5 r2l

6 c3r( 1
2 )2l−16 c3r( 1

2 )l;

where the 5rst inequality follows from Lemma 2.3 and the third inequality follows from r6 1=(2c5).
Consequently, we get ‖xk − xm‖6 c3r

∑∞
l=m( 1

2 )l → 0 as m → ∞. This means {xk} is a Cauchy
sequence and hence convergent.

In order to prove that the sequence {xk} converges locally quadratically, we need some further
preparatory results.

Lemma 2.8. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 2.1. Then there is a
constant c6 ¿ 0 such that dist(xk ; X ∗)6 c6‖dk‖ for all k ∈N su=ciently large.

Proof. In view of Theorem 2.6, we have dist(xk+1; X ∗)6 1
2 dist(xk ; X ∗) for all k ∈N suMciently

large. Letting Oxk+1 ∈X ∗ denote the closest solution to xk+1, we then obtain

‖dk‖ = ‖xk − xk+1‖¿ ‖xk − Oxk+1‖ − ‖ Oxk+1 − xk+1‖
¿ dist(xk ; X ∗)− dist(xk+1; X ∗)¿ dist(xk ; X ∗)− 1

2 dist(xk ; X ∗) = 1
2 dist(xk ; X ∗)

for all k ∈N large enough.

The next result shows that the length of the search direction dk goes down to zero locally quadrat-
ically.

Lemma 2.9. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 2.1. Then there is a
constant c7 ¿ 0 such that ‖dk+1‖6 c7‖dk‖2 for all k ∈N su=ciently large.

Proof. In view of Lemmas 2.3, 2.4, and 2.8, we have

‖dk+1‖6 c3 dist(xk+1; X ∗)6 c3c5 dist(xk ; X ∗)26 c3c5c2
6‖dk‖2

for all k ∈N suMciently large. Setting c7 := c3c5c2
6 gives the desired result.
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We next show that the length of the search direction dk is eventually in the same order as the
distance from the current iterate xk to the limit point Ox of the sequence {xk}.

Lemma 2.10. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 2.1 and converging
to Ox. Then there exist constants c8 ¿ 0 and c9 ¿ 0 such that

c8‖xk − Ox‖6 ‖dk‖6 c9‖xk − Ox‖
for all k ∈N su=ciently large.

Proof. The right inequality holds with c9 := c3 since Lemma 2.3 implies

‖dk‖6 c3 dist(xk ; X ∗)6 c3‖xk − Ox‖
for all k ∈N. In order to verify the left inequality, let k ∈N be suMciently large so that Lemma 2.9
applies and c7‖dk‖6 1 holds. Without loss of generality, we may also assume that ‖dk+1‖6 1

2‖dk‖
holds. We can then apply Lemma 2.9 successively to obtain

‖dk+2‖ 6 c7‖dk+1‖2 6 ( 1
2 )2c7‖dk‖2 6 ( 1

2 )2‖dk‖;
‖dk+3‖ 6 c7‖dk+2‖2 6 ( 1

2 )4c7‖dk‖2 6 ( 1
2 )3‖dk‖;

‖dk+4‖ 6 c7‖dk+3‖2 6 ( 1
2 )6c7‖dk‖2 6 ( 1

2 )4‖dk‖;
...

...
...

i.e., ‖dk+j‖6 ( 1
2 )j‖dk‖ for all j = 0; 1; 2; : : :. Since

xk+l = xk +
l−1∑
j=0

dk+j and Ox = lim
l→∞

xk+l

we therefore get

‖xk − Ox‖=
∣∣∣∣
∣∣∣∣xk − lim

l→∞
xk+l

∣∣∣∣
∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣ lim
l→∞

l−1∑
j=0

dk+j

∣∣∣∣∣∣
∣∣∣∣∣∣

= lim
l→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
l−1∑
j=0

dk+j

∣∣∣∣∣∣
∣∣∣∣∣∣6 lim

l→∞

l−1∑
j=0

‖dk+j‖

=
∞∑
j=0

‖dk+j‖6 ‖dk‖
∞∑
j=0

(
1
2

)j

= 2‖dk‖:

Setting c8 := 1
2 gives the desired result.

As a consequence of the previous lemmas, we now obtain our main local convergence result of
this subsection.
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Theorem 2.11. Let Assumption 2.2 be satis<ed and {xk} be a sequence generated by Algorithm
2.1 with starting point x0 ∈Br(x∗) and limit point Ox. Then the sequence {xk} converges locally
quadratically to Ox.

Proof. Using Lemmas 2.9 and 2.10, we immediately obtain

c8‖xk+1 − Ox‖6 ‖dk+1‖6 c7‖dk‖26 c7c2
9‖xk − Ox‖2

for all k ∈N suMciently large. This shows that {xk} converges locally quadratically to the limit
point Ox.

2.4. Globalized method

So far, we have presented only a local version of the constrained Levenberg–Marquardt method.
Although this is the main emphasis of this paper, we also present, for the sake of completeness, a
globalized version of Algorithm 2.1. The globalization given here is very simple and might not be
the best choice from the computational point of view. Nevertheless, we can show that it preserves
the nice local properties of Algorithm 2.1. Throughout this subsection, we assume that the mapping
F is continuously di8erentiable.

The globalized Levenberg–Marquardt method is based on a simple descent condition for the
function ‖F(x)‖: If a full Levenberg–Marquardt step gives a suMcient decrease of this merit function,
we accept this point as the new iterate. Otherwise we switch to a projected gradient step, see, e.g.,
Bertsekas [3] for more details on projected gradients. Formally, the globalized method looks as
follows. (Recall that we de5ne f(x) := ‖F(x)‖2.)

Algorithm 2.12 (Constrained Levenberg–Marquardt Method: Globalized Version).
(S.0) Choose x0 ∈X; �¿ 0, �; �;  ∈ (0; 1), and set k := 0.
(S.1) If F(xk) = 0, STOP.
(S.2) Choose Hk ∈Rm×n, set �k := �‖F(xk)‖2, and compute dk as the solution of (4).
(S.3) If

‖F(xk + dk)‖6  ‖F(xk)‖; (16)

then set xk+1 := xk + dk; k ← k + 1, and go to (S.1); otherwise go to (S.4).
(S.4) Compute a stepsize tk = max{�‘ | ‘ = 0; 1; 2; : : :} such that

f(xk(tk))6f(xk) + �∇f(xk)T(xk(tk)− xk);

where xk(t) := PX [xk − t∇f(xk)]. Set xk+1 := xk(tk); k ← k + 1, and go to (S.1).

The convergence properties of Algorithm 2.12 are summarized in the following theorem.

Theorem 2.13. Let {xk} be a sequence generated by Algorithm 2.12. Then any accumulation point
of this sequence is a stationary point of (2). Moreover, if an accumulation point x∗ of the sequence
{xk} is a solution of (1) and Assumption 2.2 is satis<ed at this point, then the entire sequence
{xk} converges to x∗, the rate of convergence is locally quadratic, and the sequence {dist(xk ; X ∗)}
also converges locally quadratically.
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Based on our previous results, the proof can be carried out in exactly the same way as that of
Theorem 3.1 in [24]. We therefore skip the details here.

3. Projected Levenberg–Marquardt method

This section deals with another Levenberg–Marquardt method for the solution of constrained non-
linear systems. The main di8erence from Algorithm 2.1 lies in the fact that the search direction can
be obtained by the solution of a single system of linear equations rather than a constrained optimiza-
tion problem. This method is shown to have the same convergence properties as the Levenberg–
Marquardt method of Algorithm 2.1.

The organization of this section is similar to the previous one. We 5rst state the algorithm and
assumptions in Section 3.1. Then we investigate the local behaviour of the distance function in
Section 3.2. Section 3.3 deals with the local behaviour of the iterates. Finally, Section 3.4 contains
a simple globalization strategy for the modi5ed Levenberg–Marquardt method.

3.1. Algorithm and assumptions

We consider again the constrained system of nonlinear equations (1). In the previous section, we
presented a constrained Levenberg–Marquardt method that generates a sequence {xk} by

xk+1 := xk + dk k = 0; 1; : : : ;

where dk is the solution of the constrained optimization problem

min � k(d) s:t: xk + d∈X

with � k being de5ned by (5).
In this section, we adopt a di8erent approach that uses the formula

xk+1 := PX (xk + dk
U ) k = 0; 1; : : : ;

where dk
U is the unique solution of the unconstrained (hence the subscript ‘U ’) subproblem

min � k(dU ); dU ∈Rn:

We call this the projected Levenberg–Marquardt method since the unconstrained step gets projected
onto the feasible region X . Note that, whenever the projection can be carried out eMciently (like in
the box constrained case), this method needs a signi5cantly less amount of work per iteration since
the strict convexity of the function � k ensures that dk

U is a global minimum of this function if and
only if ∇� k(dk

U ) = 0, i.e., if and only if dk
U is the unique solution of the system of linear equations

(HT
k Hk − �kI)dU =−HT

k F(xk): (17)

Speci5cally we consider the following algorithm.

Algorithm 3.1 (Projected Levenberg–Marquardt Method: Local Version).
(S.0) Choose x0 ∈X; �¿ 0, and set k := 0.
(S.1) If F(xk) = 0, STOP.
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(S.2) Choose Hk ∈Rm×n, set �k := �‖F(xk)‖2, and compute dk
U as the solution of (17).

(S.3) Set xk+1 := PX (xk + dk
U ); k ← k + 1, and go to (S.1).

Note that the algorithm is well-de5ned since the coeMcient matrix in (17) is always symmetric
positive de5nite. Furthermore, all iterates xk belong to the feasible set X .

The following assumption is supposed to hold throughout this section.

Assumption 3.2. The solution set X ∗ of problem (1) is nonempty. For some solution x∗ ∈X ∗, there
exists constants &¿ 0; '1 ¿ 0; '2 ¿ 0 and L¿ 0 such that the following inequalities hold:

'1 dist(x; X ∗)6 ‖F(x)‖ ∀x∈B&(x∗); (18)

‖F(x)− F(xk)− Hk(x − xk)‖6 '2‖x − xk‖2 ∀x; xk ∈B&(x∗); (19)

‖F(x)− F(y)‖6 L‖x − y‖ ∀x; y∈B&(x∗): (20)

We tacitly assume that the constant &¿ 0 in Assumption 3.2 is taken suMciently small so that the
mapping F is de5ned in the entire ball B&(x∗). Note that this is always possible since F is assumed
to be de5ned on an open set O containing the feasible region X .

Apart from this, the only di8erence between Assumptions 2.2 and 3.2 lies in the fact that we now
assume that conditions (18)–(20) hold in the entire ball B&(x∗), whereas before it was only assumed
that the corresponding conditions (6)–(8) hold in the intersection B�(x∗) ∩ X . The reason for this
slight modi5cation is that we sometimes have to apply conditions (18)–(20) to the vector xk + dk

U
that may lie outside X .

Without the restriction on X , condition (18) is more restrictive than the corresponding condition
(6). Whenever there exists a point x such that F(x) = 0 and x �∈ X , (18) may fail even if F is aMne
and X is polyhedral. Nevertheless, condition (18) is still signi5cantly weaker than the nonsingularity
of the Jacobian of F . To see this, consider the example with F : R2 → R and X ⊆ R2 being de5ned
by

F(x) =
√

x2
1 + x2

2 − 1 and X = {x | − 16 x16 1;−16 x26 0}; (21)

respectively. Note that the solution set of F(x) = 0 without the constraint is the unit circle, while
the solution set of the constrained equation F(x) = 0, x∈X , is the lower half of the unit circle.
By substituting x := (r cos �; r sin �) with r¿ 0, we have |F(x)| = |r − 1|. It is easy to see that
dist(x; X ∗) = |r − 1| when x is an interior point of X . Therefore (18) holds on the interior of
X . However, when x∗ = (−1; 0)T, which is a boundary point of X , (18) fails since F(x) = 0 but
dist(x; X ∗)¿ 0 for any x such that r = 1 and 0¡�¡). On the other hand, when x∗ = (0;−1)T,
which is also a boundary point of X , (18) is satis5ed for suMciently small &¿ 0.

3.2. Local convergence of distance function

This subsection deals with the behaviour of the sequence {dist(xk ; X ∗)}. The analysis is similar
to that of Section 2.2, and many of our results can be found in the related paper [24] that deals
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with the convergence properties of a Levenberg–Marquardt method for the solution of unconstrained
systems of equations. We therefore skip some of the proofs here.

Lemma 3.3. There exist constants '3 ¿ 0 and '4 ¿ 0 such that the following inequalities hold for
each xk ∈B&=2(x∗):

(a) ‖dk
U‖6 '3 dist(xk ; X ∗),

(b) ‖F(xk) + Hkdk
U‖6 '4 dist(xk ; X ∗)2.

Proof. The proof is similar to Lemma 2.3 and may also be found in [24].

We next state the counterpart of Lemma 2.4. Note, however, that the vector xk−1 + dk−1
U is

no longer equal to the next iterate xk in the method considered here. Hence the assumption in
the following result is somewhat di8erent from the assumption in the corresponding result in
Lemma 2.4.

Lemma 3.4. Assume that both xk−1 and xk−1 + dk−1
U belong to the ball B&=2(x∗) for each k ∈N.

Then there is a constant '5 ¿ 0 such that dist(xk ; X ∗)6 '5 dist(xk−1; X ∗)2 for each k ∈N.

Proof. The de5nition of xk and the nonexpansiveness of the projection operator imply that

'1 dist(xk ; X ∗) = '1 dist(PX (xk−1 + dk−1
U ); X ∗)

= '1 inf Ox∈X ∗‖PX (xk−1 + dk−1
U )− Ox‖

= '1 inf Ox∈X ∗‖PX (xk−1 + dk−1
U )− PX ( Ox)‖

6 '1 inf Ox∈X ∗‖xk−1 + dk−1
U − Ox‖

= '1 dist(xk−1 + dk−1
U ; X ∗)6 ‖F(xk−1 + dk−1

U )‖; (22)

where the last inequality follows from (18) together with our assumption that xk−1 +dk−1
U ∈B&=2(x∗).

Now, using (19) as well as xk−1, xk−1 + dk−1
U ∈B&=2(x∗), we have

‖F(xk−1 + dk−1
U )‖ − ‖F(xk−1) + Hk−1dk−1

U ‖
6 ‖F(xk−1)− F(xk−1 + dk−1

U ) + Hk−1dk−1
U ‖6 '2‖dk−1

U ‖2: (23)

Using (22), (23) and Lemma 3.3, we obtain

'1 dist(xk ; X ∗)6 ‖F(xk−1) + Hk−1dk−1
U ‖+ '2‖dk−1

U ‖2

6 '4 dist(xk−1; X ∗)2 + '2'2
3 dist(xk−1; X ∗)2

= ('4 + '2'2
3) dist(xk−1; X ∗)2:

This completes the proof by setting '5 := ('4 + '2'2
3)='1.
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The next result is the counterpart of Lemma 2.5 and states that the assumptions in Lemma 3.4
are satis5ed if the starting point x0 is chosen suMciently close to the solution set. Let

r := min
{

&
2(1 + 2'3)

;
1

2'5

}
: (24)

Lemma 3.5. Assume that the starting point x0 ∈X used in Algorithm 3.1 belongs to the ball Br(x∗),
where x∗ denotes a solution of (1) satisfying Assumption 3.2 and r is de<ned by (24). Then xk−1,
xk−1 + dk−1

U ∈B&=2(x∗) holds for all k ∈N.

Proof. The proof is by induction on k. We start with k = 1. By assumption, we have x0 ∈Br(x∗).
Since r6 &=2, this implies x0 ∈B&=2(x∗). Furthermore, we obtain from Lemma 3.3

‖x0 + d0
U − x∗‖6 ‖x0 − x∗‖+ ‖d0

U‖6 r + ‖d0
U‖

6 r + '3 dist(x0; X ∗)6 r + '3‖x0 − x∗‖6 (1 + '3)r:

Since (1 + '3)r6 &=2, it follows that x0 + d0
U ∈B&=2(x∗).

Now let k¿ 1 be arbitrarily given and assume that xl−1, xl−1 +dl−1
U ∈B&=2(x∗) for all l= 1; : : : ; k.

We have to show that xk and xk +dk
U belong to B&=2(x∗). Since xk−1+dk−1

U ∈B&=2(x∗), we immediately
obtain xk = PX (xk−1 + dk−1

U )∈B&=2(x∗) from the inequality

‖xk − x∗‖= ‖PX (xk−1 + dk−1
U )− PX (x∗)‖6 ‖xk−1 + dk−1

U − x∗‖:
To see that xk + dk

U ∈B&=2(x∗), 5rst note that

‖xk + dk
U − x∗‖6 ‖xk − x∗‖+ ‖dk

U‖
= ‖xk−1 + dk−1

U − x∗‖+ ‖dk
U‖

6 ‖xk−1 − x∗‖+ ‖dk−1
U ‖+ ‖dk

U‖
...

...

6 ‖x0 − x∗‖+
k∑

l=0

‖dl
U‖6 r + '3

k∑
l=0

dist(xl; X ∗);

where the last inequality follows from Lemma 3.3. Using Lemma 3.4, the induction can then be
completed by following the arguments in the proof of Lemma 2.5.

We are now able to state our main local convergence result of this subsection. It is an immediate
consequence of Lemmas 3.4 and 3.5.

Theorem 3.6. Let Assumption 3.2 be satis<ed and {xk} be a sequence generated by Algorithm 3.1
with starting point x0 ∈Br(x∗), where r is de<ned by (24). Then the sequence {dist(xk ; X ∗)} con-
verges to zero locally quadratically.
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3.3. Local convergence of iterates

This subsection deals with the local behaviour of the sequence {xk} itself. In order to investigate
its behaviour, we suppose that Assumption 3.2 holds throughout this subsection. Our 5rst result
states that the sequence {xk} generated by Algorithm 3.1 is convergent.

Theorem 3.7. Let Assumption 3.2 be satis<ed and {xk} be a sequence generated by Algorithm 3.1
with starting point x0 ∈Br(x∗), where r is de<ned by (24). Then the sequence {xk} converges to a
solution Ox of (1) belonging to the ball B&=2(x∗).

Proof. Similar to the proof of Theorem 2.7, we verify that {xk} is a Cauchy sequence. Indeed, for
any integers k and m such that k ¿m, we have

‖xk − xm‖ = ‖PX (xk−1 + dk−1
U )− PX (xm)‖

6 ‖xk−1 + dk−1
U − xm‖6 ‖xk−1 − xm‖+ ‖dk−1

U ‖
= ‖PX (xk−2 + dk−2

U )− PX (xm)‖+ ‖dk−1
U ‖

6 ‖xk−2 + dk−2
U − xm‖+ ‖dk−1

U ‖
6 ‖xk−2 − xm‖+ ‖dk−2

U ‖+ ‖dk−1
U ‖

...
...

6
k−1∑
l=m

‖dl
U‖6

∞∑
l=m

‖dl
U‖:

The rest of the proof is identical to that of Theorem 2.7.

We next want to show that the sequence {xk} is locally quadratically convergent. To this end, we
begin with the following preliminary result.

Lemma 3.8. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 3.1. Then there is a
constant '6 ¿ 0 such that dist(xk ; X ∗)6 '6‖dk

U‖ for all k ∈N su=ciently large.

Proof. The proof is a modi5cation of that of Lemma 2.8. First note that Theorem 3.6 implies
that dist(xk+1; X ∗)6 1

2 dist(xk ; X ∗) for all k ∈N suMciently large. Let Oxk+1 be the closest solution to
xk+1, i.e., dist(xk+1; X ∗)=‖xk+1− Oxk+1‖. Then we obtain from the nonexpansiveness of the projection
operator

‖dk
U‖ = ‖xk + dk

U − xk‖¿ ‖PX (xk + dk
U )− PX (xk)‖

= ‖xk+1 − xk‖¿ ‖ Oxk+1 − xk‖ − ‖xk+1 − Oxk+1‖
¿ dist(xk ; X ∗)− dist(xk+1; X ∗)¿ dist(xk ; X ∗)− 1

2 dist(xk ; X ∗) = 1
2 dist(xk ; X ∗)

for all k ∈N large enough.
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The next result shows that the length of the unconstrained search direction dk
U goes down to zero

locally quadratically.

Lemma 3.9. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 3.1. Then there is a
constant '7 ¿ 0 such that ‖dk+1

U ‖6 '7‖dk
U‖2 for all k ∈N su=ciently large.

Proof. Lemmas 3.3, 3.4, and 3.8 immediately imply

‖dk+1
U ‖6 '3 dist(xk+1; X ∗)6 '3'5 dist(xk ; X ∗)26 '3'5'2

6‖dk
U‖2

for all k ∈N suMciently large. The desired result then follows by setting '7 := '3'5'2
6.

We next state the counterpart of Lemma 2.10 that relates the length of dk
U with the distance from

the iterates xk to their limit point Ox.

Lemma 3.10. Let x0 ∈Br(x∗) and {xk} be a sequence generated by Algorithm 3.1 and converging
to Ox. Then there exist constants '8 ¿ 0 and '9 ¿ 0 such that

'8‖xk − Ox‖6 ‖dk
U‖6 '9‖xk − Ox‖

for all k ∈N su=ciently large.

Proof. Lemma 3.3(a) yields the right inequality with '9 = '3. We will show the left inequality.
Following the proof of Lemma 2.10 and exploiting Lemma 3.9 (instead of Lemma 2.9), we can
show that the following inequality holds for some suMciently large (but 5xed) index k ∈N:

‖dk+j
U ‖6

(
1
2

)j ‖dk
U‖ for all j = 0; 1; 2; : : : :

Furthermore, the nonexpansiveness of the projection operator yields

‖xk − xk+l‖ = ‖PX (xk)− PX (xk+l−1 + dk+l−1
U )‖6 ‖xk − xk+l−1 − dk+l−1

U ‖
6 ‖xk − xk+l−1‖+ ‖dk+l−1

U ‖
...

...

6
l−1∑
j=0

‖dk+j
U ‖:

Since Ox = liml→∞ xk+l, we therefore obtain from the continuity of the norm

‖xk − Ox‖ = lim
l→∞
‖xk − xk+1‖6 lim

l→∞

l−1∑
j=0

‖dk+j‖

6 ‖dk
U‖ lim

l→∞

l−1∑
j=0

(
1
2

)j

= ‖dk
U‖

∞∑
j=0

(
1
2

)j

= 2‖dk
U‖:

Since this holds for an arbitrary (suMciently large) k ∈N, we obtain the desired result by setting
'8 := 1=2.

DUPLIC
ATE



C. Kanzow et al. / Journal of Computational and Applied Mathematics 173 (2005) 321–343 337

Using Lemmas 3.9 and 3.10, we get the following local convergence result for the iterates xk in
exactly the same way as in the proof of the corresponding Theorem 2.11.

Theorem 3.11. Let Assumption 3.2 be satis<ed and {xk} be a sequence generated by Algorithm 3.1
with starting point x0 ∈Br(x∗) and limit point Ox. Then the sequence {xk} converges locally quadrat-
ically to Ox.

Hence it turns out that the projected Levenberg–Marquardt method of Algorithm 3.1 has essen-
tially the same local convergence properties as the constrained Levenberg–Marquardt method of
Algorithm 2.1.

3.4. Globalized method

Although we are mainly interested in the local behaviour of the projected Levenberg–Marquardt
method, we can globalize this method in a simple way by introducing a projected gradient step
whenever the full projected Levenberg–Marquardt step does not provide a suMcient decrease for
‖F(x)‖. The globalization strategy is therefore very similar to the one discussed in Section 2.4.
Assuming that F is continuously di8erentiable, we may formally state the algorithm as follows.

Algorithm 3.12 (Projected Levenberg–Marquardt Method: Globalized Version).
(S.0) Choose x0 ∈X , �¿ 0, �; �,  ∈ (0; 1), and set k := 0.
(S.1) If F(xk) = 0, STOP.
(S.2) Choose Hk ∈Rm×n, set �k := �‖F(xk)‖2, and compute dk

U as the solution of (17).
(S.3) If

‖F(PX (xk + dk
U ))‖6  ‖F(xk)‖; (25)

then set xk+1 := PX (xk + dk
U ), k ← k + 1, and go to (S.1); otherwise go to (S.4).

(S.4) Compute a stepsize tk = max{�‘| ‘ = 0; 1; 2; : : :} such that

f(xk(tk))6f(xk) + �∇f(xk)T(xk(tk)− xk);

where xk(t) := PX [xk − t∇f(xk)]. Set xk+1 := xk(tk), k ← k + 1, and go to (S.1).

Algorithm 3.12 has the advantage of having simpler subproblems than Algorithm 2.12. However,
this advantage is realized only if the projections onto the feasible set X can be computed in a
convenient manner, which is particularly the case when X is described by some box constraints.

Based on our previous results, it is not diMcult to see that the counterpart of Theorem 2.13 also
holds for Algorithm 3.12. We skip the details here.

4. Numerical results

We have implemented Algorithm 3.12 in MATLAB and tested it on a number of examples
from di8erent areas. The implementation di8ers slightly from the description of Algorithm 3.12.
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Speci5cally, Algorithm 3.12 considers two types of steps only, namely Levenberg–Marquardt and
projected gradient steps, whereas our implementation uses the following three types of steps:

• LM-step (Levenberg–Marquardt step): This is used when the descent condition (25) is satis5ed,
i.e., (S.3) is carried out.
• LS-step (line search step): This step occurs if condition (25) is not satis5ed but the search direction

sk := PX (xk + dk)− xk is a descent direction for f in the sense that ∇f(xk)Tsk 6− +‖sk‖p for
some constants +¿ 0 and p¿ 1. We then use an Armijo-type line search to reduce f along the
direction sk .

• PG-step (projected gradient step): If neither an LM-step nor an LS-step can be used, we apply a
projected gradient step as described in (S.4) of Algorithm 3.12.

It is easy to see that this modi5cation does not change the local and global convergence properties
of Algorithm 3.12.

The parameters used for our test runs are �=0:9, �=10−4,  =0:99995, +=10−8, p=2:1. For the
Levenberg–Marquardt parameter, we initially take �0 := 1

2 · 10−8‖F(x0)‖2 and then use the update
�k+1 := min{�k; ‖F(xk+1)‖2}, which is motivated by our local convergence analysis. Furthermore,
we always take Hk := F ′(xk) since all our test examples are smooth. The computation of the search
direction dk

U from the linear system (17) is done by a Cholesky factorization. Alternatively, (17)
could be replaced by an equivalent linear least squares problem which then could be solved by
suitable orthogonal transformations (Householder or Givens). Finally, we terminate the iteration if
‖F(xk)‖6 & or k¿ kmax or tk 6 tmin with &= 10−5, kmax = 100 and tmin = 10−12. The computational
results obtained with these parameters are shown in Tables 1–6.

Tables 1 and 2 give the results for some square systems of equations. All these systems have
some bound constraints. For example, many of the test examples come from chemical equilibrium
problems where the components of the vector x correspond to chemical concentrations, so that these
problems have some nonnegativity constraints. Other examples are obtained from complementarity
problems

G(x)− y = 0; x¿ 0; y¿ 0; xiyi = 0 ∀i:
Also some convex optimization problems are solved by applying the algorithm to the corresponding
KKT conditions.

The starting point taken for all test examples is the vector of lower bounds except for those
examples which arise from complementarity or optimization problems. For the latter problems we
used the standard starting point from the literature (5lled with zero Lagrange multipliers).

The columns in Table 1 contain the name of the test problem (together with a hint to the literature
that, however, is usually not the original reference for that particular example), the dimension n (=m)
of this example, the number of iterations, the number of LM-, LS- and PG-steps, the number of
function evaluations as well as the 5nal value of the merit function f. Table 2 has a similar structure
except that the 5rst column gives the value of a parameter for the particular problem (we use all
three di8erent parameters given in [9]).

Table 3 states the results obtained for some underdetermined systems taken from [4]. The columns
have a similar meaning to those of Table 1 except that we added one more column that gives the
dimension m of the corresponding (nonsquare) system.
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Table 1
Numerical results for di8erent test problems (square systems)

Test problem, source n iter LM/LS/PG F-eval. f(x)

Himmelblau function, [9, 14.1.1] 2 8 8/0/0 9 1:1e − 11
Equilibrium combustion, [9, 14.1.2] 5 10 6/4/0 11 5:2e − 11
Bullard–Biegler system, [9, 14.1.3] 2 11 9/2/0 40 9:5e − 15
Ferraris–Tronconi system, [9, 14.1.4] 2 3 3/0/0 4 8:9e − 15
Brown’s almost lin. syst., [9, 14.1.5] 5 10 10/0/0 11 9:1e − 16
Robot kinematics system, [9, 14.1.6] 8 5 5/0/0 6 2:1e − 19
Circuit design problem, [9, 14.1.7] 9 — —/—/— — —
Chem. equil. system, [18, system 1] 11 15 13/1/1 64 6:5e − 11
Chem. equil. system, [18, system 2] 5 — —/—/— — —
Combust. system (Lean case), [17] 10 7 5/2/0 99 2:0e − 11
Combust. system (Rich case), [17] 10 — —/—/— — —
Kojima–Shindo problem, [7] 4 5 4/1/1 21 3:1e − 13
Josephy problem, [7] 4 11 8/2/1 80 9:5e − 21
Mathiesen problem, [7] 4 3 3/0/0 4 2:0e − 16
Hock–Schittkowski 34, [11] 16 8 7/1/0 32 7:6e − 18
Hock–Schittkowski 35, [11] 8 2 2/0/0 3 1:2e − 13
Hock–Schittkowski 66, [11] 16 65 35/30/0 253 3:4e − 11
Hock–Schittkowski 76, [11] 14 43 23/0/20 428 7:1e − 11

Table 2
Numerical results for test problem 14.1.9 from [9] (Smith steady state temperature)

SH n iter LM/LS/PG F-eval. f(x)

−50; 000 1 3 3/0/0 4 2:8e − 15
−35; 958 1 3 3/0/0 4 2:9e − 17
−35; 510 1 3 3/0/0 4 2:3e − 17

Table 3
Numerical results for some underdetermined systems from [4]

Test problem, source n m iter LM/LS/PG F-eval. f(x)

Linear system, [4, Problem 2] 100 50 3 3/0/0 4 1:3e − 11
Linear system, [4, Problem 2] 200 100 6 6/0/0 7 1:8e − 14
Linear system, [4, Problem 2] 300 150 13 13/0/0 14 7:8e − 29
Quadratic system, [4, Problem 4] 100 50 11 11/0/0 12 1:2e − 11
Quadratic system, [4, Problem 4] 200 100 26 26/0/0 27 5:0e − 12
Quadratic system, [4, Problem 4] 300 150 72 72/0/0 73 2:6e − 15

Finally, Tables 4–6 contain numerical results for some parameter-dependent problems where
the starting point of a problem is equal to the solution of the previous problem, i.e., we ap-
ply Algorithm 3.12 in the framework of a path-following method. Note, however, that the
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Table 4
Numerical results for test problem 14.1.8 from [9] (CSTR)

R n iter LM/LS/PG F-eval. f(x)

0.995 2 8 8/0/0 9 1:6e − 10
0.990 2 9 9/0/0 10 8:5e − 11
0.985 2 9 9/0/0 10 1:7e − 10
0.980 2 10 10/0/0 11 1:2e − 19
0.975 2 11 11/0/0 12 1:1e − 10
0.970 2 12 12/0/0 13 1:2e − 10
0.965 2 13 13/0/0 14 1:8e − 10
0.960 2 15 15/0/0 16 1:9e − 10
0.955 2 18 18/0/0 19 2:0e − 10
0.950 2 24 24/0/0 25 1:5e − 10
0.945 2 — —/—/— — —
0.940 2 — —/—/— — —
0.935 2 — —/—/— — —

Table 5
Numerical results for Chandrasekhar H-equation, see [15]

c n iter LM/LS/PG F-eval. f(x)

0.5 100 4 4/0/0 5 4:1e − 11
0.6 100 4 4/0/0 5 2:3e − 11
0.7 100 5 5/0/0 6 1:3e − 10
0.8 100 9 9/0/0 10 5:1e − 11
0.9 100 95 3/92/0 383 1:6e − 10
0.99 100 98 97/1/1 102 1:7e − 10

Table 6
Numerical results for a chemical equilibrium problem (propane), see [6]

c n iter LM/LS/PG F-eval. f(x)

3.0 10 14 14/0/0 15 1:0e − 10
3.1 10 11 7/2/2 177 1:6e − 10
3.2 10 2 2/0/0 3 6:4e − 13
3.3 10 2 2/0/0 3 3:0e − 15
3.4 10 2 2/0/0 3 1:1e − 15
3.5 10 2 2/0/0 3 2:9e − 15
3.6 10 2 2/0/0 3 1:4e − 15
3.7 10 2 2/0/0 3 2:2e − 15
3.8 10 2 2/0/0 3 1:9e − 15
3.9 10 2 2/0/0 3 2:3e − 15
4.0 10 2 2/0/0 3 2:8e − 15
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dependence of these problems on the corresponding parameters might be nonsmooth, e.g., the num-
ber of (known) solutions in the example given in Table 4 varies signi5cantly with the values of
parameters.

Interestingly, our method is also able to solve the counterexample from (21) which does not
satisfy the local error bound assumption (18) at the solution point x∗ := (−1; 0) (recall also that
this example has a connected solution set, hence the above x∗ is not locally unique). For example,
taking starting points like (−2; 0), (−2; 1) or (−3; 1), our method terminates with x∗ = (−1; 0) after
one or two iterations only.

To summarize the results shown in the tables, we were able to solve most of the test problems
without any diMculties. Only in a few cases, we were not able to 5nd an approximate solution
(the same is true for the method of [1], which has also been tested on many of the examples used
here). This is typically due to the fact that the step size gets too small (except for the circuit design
problem in Table 1, for which we observed convergence to a nonoptimal stationary point). For
some examples, we also needed a relatively large number of function evaluations (at least compared
to the number of iterations), but this is mainly due to the fact that the stepsize reduction factor
� was chosen equal to 0.9 (both for LS- and PG-steps). Taking a smaller value of � typically
reduces the number of function evaluations, but increases the number of iterations. For example,
applying our method with � = 0:5 to the three problems Josephy, Hock–Schittkowski 66 and
Hock–Schittkowski 76, it takes 15, 70 and 57 iterations, respectively, but only 49, 136 and 161
function evaluations, cf. Table 1.

Of course, the behaviour of our method also depends on the choice of the Levenberg–Mar-
quardt parameter. However, since we have to use updates of the form �k = O(‖F(xk)‖2) in order
to be consistent with our theory, the de5nition of �k is somewhat restricted. In fact, the entire be-
haviour of our algorithm does not change much if we use modi5ed updates of the form �k+1 :=
min{�k; �‖F(xk+1)‖2} for some constant �¿ 0, e.g., taking �=0:1 does not change a single iteration
number for any of the test examples from Table 1.

We close this section with some comments in order to compare our method with those from
[1,13,22]. To this end, we 5rst want to stress that these three methods can be applied to nonlinear
systems of equations with box constraints only, whereas our method is much more general and
allows convex constraints. Furthermore, our method can also be applied to nonsquare problems like
those from Table 3. This is not possible for the methods developed in [1,13,22]. Furthermore, the
local convergence analysis for all methods from [1,13,22] is based on a nonsingularity assumption
which implies that the solution is locally unique. The methods from [1,22] also have to solve more
complicated subproblems (trust region subproblems, quadratic programs), although the implementa-
tion of the method from [1] and described in more detail in [2] is based on a dogleg-type strategy
and therefore solves only one linear system of equations per iteration like our method or the one
from [13].

On the other hand, the main focus of this paper is on the local convergence behaviour, and
the globalization has been included only for the sake of completeness. While the globalization in
[13] is very similar, the methods from [1,22] use more sophisticated globalization strategies and
therefore seem to have a slightly better numerical behaviour, at least if their local assumptions are
satis5ed. For example, the method from [1] was able to solve the Chemical equilibrium system
(System 2), whereas the method from [13] produced an additional error on the Bullard–Biegler
system.
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5. Final remarks

This paper has described two Levenberg–Marquardt-type methods for the solution of a constrained
system of equations. Both methods have been shown to possess a local quadratic rate of conver-
gence under a suitable error bound condition. This property is motivated by the recent research for
unconstrained equations in [24] and seems to be much stronger than that of any other method for
constrained equations known to the authors.

The globalization strategy used in this paper is quite standard and can certainly be improved,
although the numerical results indicate that the method works quite well with this strategy. However,
numerical experiments were carried out for the case of box constraints only since otherwise the
computation of the projections onto the feasible set becomes very expensive and, in fact, dominates
the overall cost of the algorithm. The question of how to deal with a general convex set X in a
numerically eMcient way deserves further study.
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