Biplanes (79, 13, 2) with Involutory Automorphism

Luubo Marangunić
Department of Mathematics, University of Zagreb, 41000 Zagreb, Croatia
Communicated by the Managing Editors
Received July 16, 1990

Abstract

We show that each ($79,13,2$) biplane admitting an involutory automorphism is isomorphic to one of the two designs constructed by Aschbacher. © 1992 Academic Press, Inc.

1. Introduction and Preliminary Results

This paper is a contribution to the investigation of possible automorphism groups of biplanes with parameters (79,13, 2). This is the largest set of parameters for which a biplane is known to exist. In [1]. Aschbacher constructs two such designs with automorphism group of order $2 \cdot 5 \cdot 11$ which are dual. It is an open question whether these designs are, up to isomorphism, the only biplanes with these parameters.

If G is a group of automorphism of a $(79,13,2)$ biplane \mathscr{D} and p is a prime divisor of $|G|$, then $p \in\{2,3,5,11,13\}$ (see [1]). Further, various authors have shown that if $p>3$ then \mathscr{D} is an Aschbacher biplane. See [5] for the case $p=5$. The case $p=11$ is handled by V. Cepulić and M. Essert in a paper which has not yet appeared; see also [6]. Finally, the case $p=13$ is eliminated in [6]. Thus it remains to investigate the cases $p=2$ and 3.

In this paper we consider the case where $\mathscr{\mathscr { O }}$ admits an involutory automorphism. We show that each such design is an Aschbacher design. The approach is quite similar to that of [4], but is much more difficult because of a far larger number of possible orbital structures. Therefore the computing time is increased by a factor of 1200 .

Our algorithm consists of two steps. The fundamental idea goes back to Janko and van Trung ([3]). In some aspects we follow the presentation and notation of Ćepulić ([2]). We build at first all possible orbital structures \mathscr{S} of \mathscr{D}, and after that the biplanes \mathscr{D} themselves by "indexing" the "big points" of \mathscr{S}. So we begin by recalling some basic definitions and facts related to the first step.

2. Basic Notions Concerning Tactical Decompositions

Let $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ be an incidence structure with point set \mathscr{P}, line set \mathscr{B}, and incidence relation $I \subseteq \mathscr{P} \times \mathscr{B}$. For $P \in \mathscr{P}, x \in \mathscr{B}$ denote

$$
\begin{array}{ll}
\langle P\rangle=\{y \in \mathscr{O} \mid(P, y) \in I\}, & \\
\langle P|=|\langle P\rangle|, \\
\langle x\rangle=\{Q \in \mathscr{P} \mid(Q, x) \in I\}, & \\
|x|=|\langle x\rangle| .
\end{array}
$$

Definition 1. A symmetric (v, k, λ)-block design, $v, k, \lambda \in N$, is an incidence structure $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ such that:
(i) $|\mathscr{P}|=|\mathscr{B}|=v=k(k-1) / \lambda+1$
(ii) $|x|=|P|=k$, for all $x \in \mathscr{B}, P \in \mathscr{P}$
(iii) $|\langle x\rangle \cap\langle y\rangle|=|\langle P\rangle \cap\langle Q\rangle|=\lambda$, for all $x, y \in \mathscr{B}, \quad x \neq y$, $P, Q \in \mathscr{P}, P \neq Q$.

The conditions (iii) we call the consistence conditions.
For two symmetric designs $\mathscr{X}_{1}=\left(\mathscr{P}_{1}, \mathscr{B}_{1}, I_{1}\right)$ and $\mathscr{D}_{2}=\left(\mathscr{P}_{2}, \mathscr{P}_{2}, I_{2}\right)$ an isomorphism from \mathscr{D}_{1} onto \mathscr{D}_{2} is a bijection which maps points onto points and lines onto lines preserving the incidence. An isomorphism from \mathscr{D} onto \mathscr{D} is an automorphism of \mathscr{D}. Similarly, dual isomorphisms and dual automorphisms are such bijections which map points onto lines and lines onto points and preserve the incidences. In the following we shall use the term design for symmetric block designs.
Let $(\mathscr{P}, \mathscr{B}, I)$ be a (v, k, λ)-design and ρ an automorphism of \mathscr{D}, that is $\langle\rho\rangle \leqslant$ Aut \mathscr{D}. For $x \in \mathscr{B}, P \in \mathscr{P}$ we denote with $x \rho, P \rho$ the ρ-images of P and x, and with $x\langle\rho\rangle, P\langle\rho\rangle$ the ρ-orbits of x and P, respectively. By a known result the number of point orbits equals the number of line orbits. Denoting this number with t and the corresponding orbits with $\mathscr{B}_{i}, \mathscr{P}_{r}$, $1 \leqslant i, r \leqslant t$, we have

$$
\begin{equation*}
\mathscr{B}=\bigsqcup_{i-1}^{t} \mathscr{R}_{i}, \quad \mathscr{P}=\bigsqcup_{r=1}^{1} \mathscr{P}_{r}, \tag{1}
\end{equation*}
$$

where $\mathscr{P}_{i}=x_{i}\langle\rho\rangle, \mathscr{P}_{r}=P_{r}\langle\rho\rangle$ for some $x_{i} \in \mathscr{B}, P_{r} \in \mathscr{P}, 1 \leqslant i, r \leqslant t$. We use the symbol \amalg for the disjoint union of sets.
Denote $\left|\mathscr{P}_{i}\right|=\Omega_{i},\left|\mathscr{P}_{r}\right|=\omega_{r}$. From (1) and the Definition 1. (i), it follows immediately that

$$
\begin{equation*}
\sum_{i=1}^{i} \Omega_{i}=\sum_{r=1}^{i} \omega_{r}=v . \tag{2}
\end{equation*}
$$

Lemma 1. Let $\mathscr{P}=(\mathscr{P}, \mathscr{B}, I)$ be $a(v, k, \lambda)$-design and $\langle\rho\rangle \leqslant$ Aut \mathscr{X}. Then the point orbits $\mathscr{P}_{1}, \mathscr{P}_{2}, \ldots, \mathscr{P}_{1}$, and the line orbits $\mathscr{B}_{1}, \mathscr{B}_{2}, \ldots, \mathscr{B}_{1}$, are the point classes and block classes of a tactical decomposition of \mathscr{D} (see, e.g., [3]).

Proof. Let $x \in \mathscr{B}_{i}, P \in \mathscr{P}_{r}$. Then $\left|\langle x\rangle \cap \mathscr{P}_{r}\right|=\left|\langle x\rangle g \cap \mathscr{P}_{r} g\right|=$ $\left|\langle x g\rangle \cap \mathscr{P}_{r}\right|$ for all $g \in\langle\rho\rangle$. As $x\langle\rho\rangle=\mathscr{B}_{i}$, we see that $\left|\langle x\rangle \cap \mathscr{P}_{r}\right|=\mu_{i r}$ depends on \mathscr{B}_{i} and \mathscr{P}_{r} only. Similarly, $\left|\langle P\rangle \cap \mathscr{B}_{i}\right|=\Gamma_{i r}$ does not depend on the choice of P. Each line of \mathscr{B}_{i} contains exactly $\mu_{i r}$ points from \mathscr{P}_{r}, and each point of \mathscr{P}_{r} lies in exactly $\Gamma_{i r}$ lines of \mathscr{B}_{i}. Thus, a partition of \mathscr{P} into t point orbits and a partition of \mathscr{B} into t line orbits give a tactical decomposition of \mathscr{D}, with the corresponding t by t "multiplicity matrices" $\mathscr{S}=\left[\mu_{i r}\right]$ and $\mathscr{O}=\left[\Gamma_{i r}\right]$, the remaining parameters of decomposition being $\left|\mathscr{B}_{i}\right|=\Omega_{i},\left|\mathscr{P}_{r}\right|=\omega_{r}, 1 \leqslant i, r \leqslant t$.

In the following we state some important relations among the parameters of our tactical decomposition. By counting the incidences of lines in \mathscr{B}_{i} and points in \mathscr{P}_{r} in two ways, we obtain

$$
\begin{equation*}
\Omega_{i} \mu_{i r}=\omega_{r} \Gamma_{i r}, \quad 1 \leqslant i, r \leqslant t . \tag{3}
\end{equation*}
$$

From Definition 1 (ii) it follows that

$$
\begin{array}{ll}
\sum_{r-1}^{t} \mu_{i r}=k & 1 \leqslant i \leqslant t \tag{4}\\
\sum_{i=1}^{t} \Gamma_{i r}=\sum_{i=1}^{t} \frac{\Omega_{i}}{\omega_{r}} \mu_{i r}=k, & 1 \leqslant r \leqslant t
\end{array}
$$

Let $P \in \mathscr{P}$ and $\mathscr{P}_{r}=P\langle\rho\rangle$. Denote the points of \mathscr{P}_{r} with $P_{r}, P_{r} \rho, \ldots, P_{r} \rho^{|\rho|-1}$ or, abbreviated in a customary manner, as $r_{0}, r_{1}, \ldots, r_{|\rho|-1}$. In this context one often speaks about r as about "big point" (also: orbital number), which is supplied with indices. Now, for each orbit $\mathscr{P}_{r}=\left\{r_{0}, r_{1}, \ldots, r_{|\rho|} \quad 1\right\}$ the automorphism group $\langle\rho\rangle$ is represented as a permutation group on the indices $0,1, \ldots,|\rho|-1$. The same holds for the line orbits.

From the rows of a multiplicity matrice $\left[\mu_{i r}\right]$, denoted with $\left[\mu_{i r}\right]_{i}$, we derive so-called orbital lines, denoted with \hat{x}_{i}, as the multisets $\left\langle\hat{x}_{i}\right\rangle$ consisted of big points: inside a multiset $\left\langle\hat{x}_{i}\right\rangle$ a big point r occurs $\mu_{i r}$ times. So we call $\mu_{i r}$ the multiplicity of the big point r inside the orbital line \hat{x}_{i}. The sets containing all big points and orbital lines we denote with $\hat{\mathscr{P}}$ and $\hat{\mathscr{B}}$, respectively.

Lemma 2. Let $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ be a (v, k, λ)-design, and $\langle\rho\rangle \leqslant$ Aut \mathscr{D}. We assume other notation to be as stated above. It holds:

$$
\begin{align*}
& \sum_{r-1}^{i} \mu_{i r} \Gamma_{j r}=\lambda \Omega_{j}+\delta_{i j}(k-\lambda) \tag{*}\\
& \sum_{i=1}^{i} \Gamma_{i r} \mu_{i s}=\hat{\lambda} \omega_{s}+\delta_{r s}(k-\lambda)
\end{align*}
$$

for all $1 \leqslant i, j \leqslant t, 1 \leqslant r, s \leqslant t, \delta_{i j}, \delta_{r s}$ being the correspondent Kronecker symbols.

Proof. See, e.g., [2].
Definition 2. We denote

$$
\begin{align*}
{\left[\hat{x}_{i}, \hat{x}_{j}\right] \equiv \sum_{r=1}^{t} \mu_{i r} \Gamma_{j r}=\sum_{r=1}^{t} \frac{\Omega_{j}}{\omega_{r}} \mu_{i r} \mu_{j r}, } & 1 \leqslant i, j \leqslant t \\
{\left[\hat{T}_{r}, \hat{T}_{s}\right] \equiv \sum_{i=1}^{t} \Gamma_{i r} \mu_{i s}=\sum_{i=1}^{t} \frac{\Omega_{i}}{\omega_{r}} \mu_{i r} \mu_{i s}, } & 1 \leqslant r, s \leqslant t \tag{}
\end{align*}
$$

and call these expressions the game products.

3. Basic Properties of (79, 13, 2)-orbital Structures

Let $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ be a (79, 13, 2)-biplane, and let ρ be an involutory automorphism acting on \mathscr{D}. By the fundamental result about involution acting on biplanes obtained by M. Aschbacher in [1], ρ fixes exactly one point on any fixed line. So ρ can operate on \mathscr{D} with exactly seven fixed points (and, hence, with exactly seven fixed lines) and 36 orbits of length 2. We have in this case $t=43, \Omega_{i}=\omega_{r}=1$ for $1 \leqslant i, r \leqslant 7 ; \Omega_{i}=\omega_{r}=2$ for $8 \leqslant i, r \leqslant 43$. We denote, in the usual way, fixed points and lines by ∞_{r}, and $\left(p_{\infty}\right)_{i}, r, i=1,2, \ldots, 7$. Thus, if $\infty_{1}, \ldots, \infty_{7}, \mathscr{P}_{8}, \ldots, \mathscr{P}_{43}$ and $\left(p_{\infty}\right)_{1}, \ldots,\left(p_{\infty}\right)_{7}$, $\mathscr{B}_{8}, \ldots, \mathscr{B}_{43}$ are the $\langle\rho\rangle$-orbits of points and lines in a defined order, we obtain the corresponding big point set $\hat{\mathscr{P}}$ and orbital line set $\hat{\mathscr{B}}$:

$$
\begin{aligned}
& \hat{\mathscr{P}}=\left\{\infty_{1}, \ldots, \infty_{7}, 8, \ldots, 43\right\}, \\
& \hat{\mathscr{B}}=\left\{\left(p_{\infty}\right)_{1}, \ldots,\left(p_{\infty}\right)_{7}, \hat{x}_{8}, \ldots, \hat{x}_{43}\right\} .
\end{aligned}
$$

For ρ we can write

$$
\rho=\left(\infty_{1}\right) \cdots\left(\infty_{7}\right)\left(8_{0} 8_{1}\right) \cdots\left(43_{0} 43_{1}\right)
$$

Definition 3. Let $\Omega_{i}, \omega_{r}, t$ be as stated above. Let any t by t matrix $\mathscr{S}=\left[\mu_{i r}\right]$ satisfying the conditions (3), (4), and $\left(^{*}\right)$ be called the (79, 13, 2)-orbital structure for lines with respect to $\langle\rho\rangle$, for a potential (79, 13, 2)-design \mathscr{D}.

For two orbital structures $\mathscr{S}_{1}=\left[\mu_{i r}^{\prime}\right]$ and $\mathscr{S}_{2}=\left[\mu_{i r}^{\prime \prime}\right]$ with big point sets $\hat{\mathscr{P}}_{1}$ and $\hat{\mathscr{P}}_{2}$ and orbital line sets $\hat{\mathscr{F}}_{1}$ and $\hat{\mathscr{B}}_{2}$, respectively, an isomorphism from \mathscr{S}_{1} onto \mathscr{S}_{2} is a bijection σ which maps big points from $\hat{\mathscr{P}}_{1}$ onto big points of $\hat{\mathscr{P}}_{2}$, orbital lines from $\hat{\mathscr{B}}_{1}$ onto orbital lines of $\hat{\mathscr{B}}_{2}$, preserving the entries: $\mu_{\sigma(i) \sigma(r)}^{\prime \prime}=\mu_{i r}^{\prime}$. If there is an isomorphism from \mathscr{S}_{1} onto \mathscr{L}_{2} then we say that \mathscr{S}_{1} and \mathscr{S}_{2} are isomorphic and write $\mathscr{S}_{1} \cong \mathscr{S}_{2}$.

Now we try to construct all the orbital structures $\mathscr{P}=\left[\mu_{i r}\right]$ of \mathscr{D} with respect to $\langle\rho\rangle$. We use the previously introduced terminology. Let $\mathscr{F}(\rho)$ be the structure consisting of orbital lines $\left(p_{\infty}\right)_{1}, \ldots,\left(p_{\infty}\right)_{7}$. Obviously, up to isomorphism, $\mathscr{F}(\rho)$ is uniquelly determined as shown in (Table I).
Denote $\hat{\mathscr{P}}_{x_{x}}=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{7}\right\}, \hat{\mathscr{P}}_{1}=\{8,9, \ldots, 28\}, \hat{\mathscr{P}}_{2}=\{29,30, \ldots, 43\}$. We observe that

$$
\text { Aut } \mathscr{F}(\rho)=G_{1} \times G_{2} \cong S_{15} \times S_{7},
$$

where $G_{1}=\sum_{\dot{y}_{2}} \cong S_{15}$ is the symmetric group on $\hat{\mathscr{P}}_{2}$, and $G_{2}=$ $\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}\right\rangle \cong S_{7}$ is the subgroup of the symmetric group $\sum_{\hat{\boldsymbol{\beta}}_{\times L} \hat{\dot{\xi}}_{1}}$, with generators:

$$
\begin{aligned}
& \sigma_{1}=\left(\infty_{1} \infty_{2}\right)(914)(1015)(1116)(1217)(1318), \\
& \sigma_{2}=\left(\infty_{1} \infty_{3}\right)(814)(1019)(1120)(1221)(1322), \\
& \sigma_{3}=\left(\infty_{1} \infty_{4}\right)(815)(919)(1123)(1224)(1325), \\
& \sigma_{4}=\left(\infty_{1} \infty_{5}\right)(816)(920)(1023)(1226)(1327), \\
& \sigma_{5}=\left(\infty_{1} \infty_{6}\right)(817)(921)(1024)(1126)(1328), \\
& \sigma_{6}=\left(\infty_{1} \infty_{7}\right)(818)(922)(1025)(1127)(1228) .
\end{aligned}
$$

TABLE I
The Structure $\mathscr{F}(\rho)$

| level | | | | | | | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | ∞_{1} | 8 | 8 | 9 | 9 | 10 | 10 | 11 | 11 | 12 | 12 | 13 | 13 |
| 2 | ∞_{2} | 8 | 8 | 14 | 14 | 15 | 15 | 16 | 16 | 17 | 17 | 18 | 18 |
| 3 | ∞_{3} | 9 | 9 | 14 | 14 | 19 | 19 | 20 | 20 | 21 | 21 | 22 | 22 |
| 4 | ∞_{4} | 10 | 10 | 15 | 15 | 19 | 19 | 23 | 23 | 24 | 24 | 25 | 25 |
| 5 | ∞_{5} | 11 | 11 | 16 | 16 | 20 | 20 | 23 | 23 | 26 | 26 | 27 | 27 |
| 6 | ∞_{6} | 12 | 12 | 17 | 17 | 21 | 21 | 24 | 24 | 26 | 26 | 28 | 28 |
| 7 | ∞_{7} | 13 | 13 | 18 | 18 | 22 | 22 | 25 | 25 | 27 | 27 | 28 | 28 |

Using $\left({ }^{* *}\right)$ and $\left({ }^{*}\right)$ we have for $i>7$:

$$
\begin{equation*}
\left[\hat{x}_{i}, \hat{x}_{i}\right]=\sum_{r=1}^{43} \frac{\Omega_{i}}{\omega_{r}} \mu_{i r}^{2}=\sum_{r=1}^{7} 2 \cdot \mu_{i r}^{2}+\sum_{r=8}^{43} 1 \cdot \mu_{i r}^{2}=15 . \tag{5}
\end{equation*}
$$

Combined with $\sum_{r=1}^{43} \mu_{i r}=13$, from (5) we obtain two types of nontrivial orbital lines:
(a) lines with two fixed points and 11 multiplicities equal 1 among nonfixed points, and
(b) lines without fixed points, with one multiplicity equal 2 and with 11 multiplicities equal 1 , among nonfixed points.
Analogously, we apply: $\left[\hat{T}_{r}, \hat{T}_{r}\right]=2 \omega_{r}+11$ for $1 \leqslant r \leqslant 43$. Taking into account that $\sum_{i=1}^{\eta}\left(\Omega_{i} / \omega_{r}\right) \mu_{i r}^{2}$ is already determined by $\mathscr{\mathscr { F } ^ { (}}(\rho)$ we obtain

$$
\sum_{i=8}^{43} \mu_{i r}^{2}=\left\{\begin{array}{rc}
6, & 1 \leqslant r \leqslant 7 \tag{6}\\
11, & 8 \leqslant r \leqslant 28 \\
15, & 29 \leqslant r \leqslant 43
\end{array}\right.
$$

We also count $\sum_{i=1}^{43} \Gamma_{i r}=\sum_{i=1}^{7}\left(\Omega_{i} / \omega_{r}\right) \mu_{i r}+\sum_{i=8}^{43}\left(\Omega_{i} / \omega_{r}\right) \mu_{i r}=13$, thus obtaining

$$
\sum_{i=8}^{43} \mu_{i r}=\left\{\begin{array}{rc}
6, & 1 \leqslant r \leqslant 7 \tag{7}\\
11, & 8 \leqslant r \leqslant 28 \\
13, & 29 \leqslant r \leqslant 43
\end{array}\right.
$$

From (6) and (7) we conclude for the nontrivial part of [$\left.\mu_{i r}\right]$, consisting of the rows $\left[\mu_{i r}\right]_{i}$ with $i>7$: the first seven columns have six units, the columns $8 \leqslant r \leqslant 28$ have 11 units, and the columns $29 \leqslant r \leqslant 43$ have one entry equal to two and 11 units, the remaining entries being zero in all the considered cases.

All the above conclusions imply that inside an orbital structure $\mathscr{\mathscr { G }}$ there are 21 orbital lines of type (a) and 15 orbital lines of type (b). Each type (a) orbital line contains a pair of fixed points $\infty_{r} \infty_{s}, r, s \in\{1,2, \ldots, 7\}$, $r<s$. Note that a pair $\infty_{r} \infty_{s}$ cannot appear twice inside \mathscr{S}, since the game product $\left[\hat{T}_{r}, \hat{T}_{s}\right.$] would exceed $\lambda \omega_{s}=2$. In type.(b) orbital lines big points $29,30, \ldots, 43$ appear with multiplicity 2 . If we denote the set containing type (a) orbital lines with $\hat{\mathscr{B}}_{1}$, and the set containing type (b) orbital lines with $\hat{\mathscr{B}}_{2}$, we can set

$$
\hat{\mathscr{P}}=\hat{\mathscr{P}}_{\infty} \sqcup \hat{\mathscr{P}}_{1} \sqcup \hat{\mathscr{P}}_{2}, \quad \hat{\mathscr{B}}=\mathscr{\mathscr { F }}(\rho) \sqcup \hat{\mathscr{R}}_{1} \sqcup \hat{\mathscr{F}}_{2} .
$$

4. Construction of (79, 13, 2)-orbital Structures

In the following we shall assume for orbital structures \mathscr{P} to be written as sets or orbital lines \hat{x}_{i} represented as sequences of their $k=13$ big points from $\left\langle\hat{x}_{i}\right\rangle$. Without loss of generality we assume that the first seven levels of \mathscr{S} coincide with $\mathscr{F}(\mu)$. Next, we introduce canonical form of \mathscr{S}.

Definition 4. Let $\hat{x} \in \hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{S}}_{2}$. Then there is a unique sequence \tilde{x} of length k consisted of big points from $\langle\hat{x}\rangle$, such that

$$
\begin{array}{ll}
\tilde{x}(1)=\infty_{r}, \quad \tilde{x}(2)=\infty_{s}, \quad r<s, & \text { for } \hat{x} \in \hat{\mathscr{B}}_{1} \\
\tilde{x}(1)=\tilde{x}(2), & \text { for } \hat{x} \in \hat{\mathscr{B}}_{2},
\end{array}
$$

and big point sequence $\tilde{x}(3), \tilde{x}(4), \ldots, \tilde{x}(13)$ is ordered lexicographically. The sequence \tilde{x} will be called the canonical form of \hat{x}.

Obviously, each canonical line \hat{x} is uniquely determined within an orbital structure by its beginning pair $(\tilde{x}(1), \tilde{x}(2))$. So we can establish an correspondence $l: \hat{x} \rightarrow l(\hat{x})$ between the orbital lines from the set $\hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{B}}_{2}$ and their ordinal numbers $8,9, \ldots, 43$: if a sequence $\tilde{x}(1), \tilde{x}(2)$ corresponding to $\hat{x} \in \hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{B}}_{2}$ precedes lexicographically a sequence $\tilde{y}(1), \tilde{y}(2)$ corresponding to $\hat{y} \in \hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{B}}_{2}$, we set $l(\hat{x})<l(\hat{y})$. The number $l(\hat{x})$ will be called the orbital level of \hat{x}. A line $\hat{x} \in \hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{B}}_{2}$ with the orbital level l we denote with \hat{x}_{I}.

In the following we shall identify \tilde{x} with \hat{x}.

DEFINITION 5. Let \mathscr{S} be an orbital structure of \mathscr{D}. Then there is a unique sequence $\tilde{\mathscr{S}}$ of the length $t-7=36$ consisted of canonical lines $\hat{x}_{r} \in \hat{\mathscr{B}}_{1} \sqcup \mathscr{\mathscr { B }}_{2}$, such that the corresponding sequence consisted of orbital levels of \hat{x}_{r} is ordered lexicographically. The sequence $\tilde{\mathscr{S}}$ will be called the canonical form of \mathscr{S}.

In our further explanation we deal with canonical structures $\tilde{\mathscr{S}}$ only, and identify $\tilde{\mathscr{P}}$ with \mathscr{S}.

DEFINITION 6. Let $\hat{x}, \hat{y} \in \hat{\mathscr{B}}_{1} \sqcup \hat{\mathscr{B}}_{2}$ be two canonical lines corresponding to a same orbital level, i.e., $l(\hat{x})=l(\hat{y})$. Then \hat{x} precedes $\hat{y}, \hat{x} \leqslant \hat{y}$, if \hat{x} precedes \tilde{y} lexicographically. As usual $\hat{x}<\hat{y}$ will stand for $\hat{x} \preccurlyeq \hat{y}$ and $\hat{x} \neq \hat{y}$.

Definition 7. Let \mathscr{I}_{1} and \mathscr{S}_{2} be orbital structures and $\tilde{\mathscr{S}}_{1}$ and $\tilde{\mathscr{S}}_{2}$ their canonical forms. We define that \mathscr{S}_{1} precedes $\mathscr{S}_{2}, \mathscr{S}_{1} \leqslant \mathscr{S}_{2}$, if $\widetilde{\mathscr{S}}_{1}$ precedes $\widetilde{\mathscr{S}}_{2}$
in terms of the canonical precedence of their orbital lines. As usual $\mathscr{S}_{1} \prec \mathscr{S}_{2}$ will stand for $\mathscr{L}_{1} \preccurlyeq \mathscr{S}_{2}$ and $\mathscr{L}_{1} \neq \mathscr{L}_{2}$.

Lemma 3. An orbital structure $\mathscr{S}=\left[\mu_{i r}\right]$ of \mathscr{D} can be represented by block matrices $\left[\mu_{i r}\right]=\left[N_{m n}\right], m, n \in\{1,2,3\}$, where
N_{11} is the 7 by 7 identity matrix I_{7},
N_{12} is the 7 by 21 matrice:

$$
N_{12}=\left[\begin{array}{lllllllllllllllllllll}
2 & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 0 & 2 & 2
\end{array}\right]
$$

N_{13} is the 7 by 15 zero matrix,
$N_{21}=\frac{1}{2} N_{12}^{T}$,
N_{22} is a 21 by 21 incidence matrix with exactly six units in each row and exactly six units in each column,
N_{23} is a 21 by 15 incidence matrix with exactly five units in each row and exactly seven units in each column,

$$
N_{31}=N_{13}^{T},
$$

N_{32} is a 15 by 21 incidence matrix with exactly seven units in each row and exactly five units in each column,
$N_{33}=2 I_{15}+N_{33}^{*}$, where
N_{33}^{*} is a 15 by 15 incidence matrix with exactly four units in each row and exactly four units in each column.

Proof. From the game products $\left[\hat{x}_{i}, \hat{x}_{j}\right]$ and $\left[\hat{T}_{r}, \hat{T}_{s}\right]$, defined by $\left({ }^{* *}\right)$ and (*), by a some rearrangement one obtains

$$
\begin{array}{ll}
\sum_{r=8}^{43} \mu_{i r} \mu_{j r}=2(2-f), & 1 \leqslant i, j \leqslant 48, \quad i \neq j, \\
\sum_{i=8}^{43} \mu_{i r} \mu_{i s}=\omega_{r} \omega_{s}-\frac{1}{2} \sum_{i=1}^{7} \mu_{i r} \mu_{i s}, & i \leqslant r, s \leqslant 48, \quad r \neq s \tag{9}
\end{array}
$$

where $f \in\{0,1\}$ is the number of common fixed points from the orbital lines \hat{x}_{i}, \hat{x}_{i}.

Applying (8) with fixed $i \in\{8,9, \ldots, 28\}$, and changing $j \in\{1,2, \ldots, 7\}$, one obtains, in a similar manner as in [4], a system consisting of seven cquations. Adding up these equations and dividing by 4 we obtain

$$
\sum_{j=8}^{28} \mu_{i j}=6, \quad 8 \leqslant i \leqslant 28
$$

Thus, the block matrix N_{22} has six units in each row. Analogously, applying (9) with fixed $s \in\{8,9, \ldots, 28\}$ and changing $r \in\{1,2, \ldots, 7\}$ one obtains: $\sum_{r=8}^{28} \mu_{r s}=6$, for $8 \leqslant s \leqslant 28$, and thus N_{22} has six units in each column. The rest of the proof is analogous.

We also observe that the application of (9) with $r=1, s \in\{29,30, \ldots, 43\}$ gives the equations:

$$
\begin{equation*}
\sum_{i=8}^{13} \mu_{i s}=2, \quad 29 \leqslant s \leqslant 43 \tag{10}
\end{equation*}
$$

Thus, by selecting the rows $i=8,9, \ldots, 13$ and the columns $r=29,30, \ldots, 43$ of $\left[\mu_{i r}\right.$] one produces a 6 by 15 incidence matrix with five units in each row and two units in each column. We denote this matrice by $M=\left[v_{i r}\right]$.

Denote $\hat{x}_{l}^{(\infty)}, \hat{x}_{l}^{(1)}$, and $\hat{x}_{l}^{(2)}$ the "sublines" of an orbital line \hat{x}_{l}, defined by:

$$
\begin{equation*}
\left\langle\hat{x}_{l}^{(x)}\right\rangle=\left\langle\hat{x}_{1}\right\rangle \cap \hat{\mathscr{P}}_{x}, \quad\left\langle\hat{x}_{l}^{(1)}\right\rangle=\left\langle\hat{x}_{1}\right\rangle \cap \hat{\mathscr{P}}_{1}, \quad\left\langle\hat{x}_{l}^{(2)}\right\rangle=\left\langle\hat{x}_{1}\right\rangle \cap \hat{\mathscr{P}}_{2} \tag{11}
\end{equation*}
$$

Obviously, we have

$$
\begin{equation*}
\left\langle\hat{x}_{i}\right\rangle=\left\langle\hat{x}_{i}^{(\infty)}\right\rangle \sqcup\left\langle\hat{x}_{i}^{(1)}\right\rangle \sqcup\left\langle\hat{x}_{i}^{(2)}\right\rangle . \tag{12}
\end{equation*}
$$

By solving the system of equations considered in the proof of Lemma 3, we actually search for lines \hat{x}_{i} of the i-th level which are consistent with all the fixed lines $\hat{x}_{j}, 1 \leqslant j \leqslant 7$. A decomposition of \hat{x}_{i} given by (12) implies the fact that possible solutions of \hat{x}_{i} can be obtained by "combining" the components $\hat{x}_{i}^{(1)}$ and $\hat{x}_{i}^{(2)}$. One obtains 167 possible solutions for sublines $\hat{x}_{i}^{(1)}$ and $\binom{15}{5}$ for sublines $\hat{x}_{i}^{(2)}$, for all $i \in\{8,9, \ldots, 28\}$. So we can compute the number N_{1} of possibilities for \hat{x}_{l} on the level l, for $8 \leqslant l \leqslant 28$:

$$
N_{1}=167 \cdot\binom{15}{5}=501,501
$$

In a similar manner we obtain 465 distinct sublines $\hat{x}_{l}^{(1)}$ for $29 \leqslant l \leqslant 43$. The number N_{2} of possibilities for \hat{x}_{l} on the level l, for $29 \leqslant l \leqslant 43$, equals:

$$
N_{2}=465 \cdot\binom{14}{4}=465,465 .
$$

Now we can sketch an algorithm for constructing all nonisomorphic orbital structures \mathscr{S} in the canonical form.

Algorithm-Step 1. We build the partial orbital structures, level by level. A partial scheme of l th level, denoted $S(l)$, is any l by t matrix satisfying the consistence conditions (*) for rows, and not violating the consistence conditions $\left(^{*}\right)$ for columns. Let $S^{(/)}$be the set of all possible partial schemes $S(l)$. In our case the sets $S^{(1)}, S^{(2)}, \ldots, S^{(7)}$ are trivial. We construct $S^{(l)}$ from $S^{(l-1)}, 8 \leqslant l \leqslant 43$, by joining to each $S(l-1) \in S^{(l-1)}$ all possible canonical lines \hat{x}_{l}. Let the consistencies among $S(l-1)$ and some \hat{x}_{l} be satisfied. Then we include $S(l)=S(l-1) \cup \hat{x}_{I}$ into $S^{(l)}$ if it cannot be eliminated by finding a scheme $S(l) \sigma$ isomorphic to $S(l)$, which precedes $S(l)$. We try to reach the elimination by means of automorphisms $\sigma \in$ Aut $\mathscr{F}(\rho)$. If $S(l) \sigma \prec S(l)$ (in terms of the precedence of partial schemes considered as parts of the whole orbital structures $\mathscr{S}) S(l)$ is omitted. In this way we ensure the elimination of a lot of isomorphic orbital structures, retaining only those among them which are first in terms of the defined precedence.

Let $\hat{S}(l)$ be the set of lines of a scheme $S(l)$, i.e., $\hat{S}(l)=\left\{\hat{x}_{i} \mid i=8,9, \ldots, l\right\}$. Then a decomposition of \hat{x}_{i} given by (12) enables us to consider the subline sets: $\hat{S}_{1}(l)=\left\{\hat{x}_{i}^{(1)} \mid i=8,9, \ldots, l\right\}$ and $\hat{S}_{2}(l)=\left\{\hat{x}_{i}^{(2)} \mid i=8,9, \ldots, l\right\}$. We denote the corresponding substructures by $S_{1}(l)$ and $S_{2}(l)$, respectively.
(I) Generating new schemes $S(l)$ for $8 \leqslant l \leqslant 13$. For a chosen subline $\hat{x}_{i}^{(1)}$ we generate one by one $\binom{15}{5}$ the lexicographically ordered sublines $\hat{x}_{i}^{(2)}$. When a first subline $\hat{x}_{l}^{(2)}$ appears such that the whole line \hat{x}_{l} $\left(\left\langle\hat{x}_{l}\right\rangle=\left\langle\hat{x}_{l}^{(\infty)}\right\rangle \sqcup\left\langle\hat{x}_{l}^{(1)}\right\rangle \sqcup\left\langle\hat{x}_{l}^{(2)}\right\rangle\right)$ is consistent with the corresponding scheme $S(l-1)$, a new scheme $S(l)$ is produced. All forthcoming consistent schemes $\bar{S}(l)$ with the same $\hat{x}_{l}^{(1)}$ are isomorphic to $S(l)$, since Eq. (10) and Lemma 3 of [4] imply the existence of such an automorphism $\delta \in G_{1}$ which maps the scheme $\bar{S}_{2}(l)$ onto $S_{2}(l)$. Therefore we interrupt generating the remaining sublines $\hat{x}_{l}^{(2)}$ and repeat the same procedure with the next subline $\hat{x}_{l}^{(1)}$, exhausting all 167 possibilities.
(II) Elimination of isomorphic schemes for $8 \leqslant l \leqslant 14$. We search for a $\sigma \in G_{2}$ which gives $S_{1}(l) \sigma<S_{1}(l)$. When such a σ is found, $S(r)$ is omitted, because from Eq. (10) and Lemma 3 of [4] there follows the existence of such an automorphism $\delta \in G_{1}$ which maps the scheme $S_{2}(l) \sigma$ onto $S_{2}(l) \sigma \delta=S_{2}(l)$, i.e., $S \sigma \delta<S$.
(III) Generating new schemes for $l \geqslant 14$. We must examine all 501,501 possibilities for $\hat{x}_{l}^{(1)}$ on each level $14 \leqslant l \leqslant 28$, and all 465,465 possibilities for $\hat{x}_{l}^{(1)}$ on each level $29 \leqslant l \leqslant 43$.
(IV) Elimination of isomorphic schemes for $14 \leqslant l \leqslant 28$:
(a) We use $G_{t} \subseteq G_{1}$: the set of transpositions over $\hat{\mathscr{P}}_{2},\left|G_{l}\right|=$ $\binom{15}{5}=105$.
(b) Denote with $S_{1}^{*}(14)$ and $S_{2}^{*}(14)$ the substructures obtained by selecting from the schemes $S_{1}(l)$ and $S_{1}(l) \sigma$, respectively, their lines with the orbital levels $\leqslant 14$. By finding a $\sigma \in G_{2}$ which gives $S_{2}^{*}(14)<S_{1}^{*}(14), S(l)$ is omitted by the same argument as in case (II). We use (IV) (b) only on the level $l=28$, since a searching for an adequate $\sigma \in G_{2}$ on the levels $l<28$ consumes too much computing time.

Applying the algorithm we obtain, with the help of a computer, as the only solutions (up to isomorphism) two orbital structures: \mathscr{S}_{1} and \mathscr{S}_{2}. This result is reached after 3700 h of continuous computing on a computer Dynatech DCS-1/320. The greatest number of schemes we observe on level 16, where we count approximately $420,000,000$ (not necessarily nonisomorphic) schemes. On level 28 this number reduces to six and, after applying (IV) (b), to only two nonisomorphic schemes.

5. Final Results

Let $\mathscr{D}=(\mathscr{P}, \mathscr{B}, I)$ be a (v, k, λ)-design and $\langle\rho\rangle\langle$ Aut \mathscr{D}. We have shown (by Lemmas 1 and 2) that the existence of the orbital structure \mathscr{S} with respect to $\langle\rho\rangle$ is the necessary condition for the existence of \mathscr{D}. Applying Step 1 of our algorithm we found all the possible solutions for $\mathscr{\mathscr { S }}$. Now we try to construct the designs by "indexing" the big points of \mathscr{P}. This problem in the general case need not have a solution, and if a solution exists it need not be unique. We now give a brief description of our algorithm for constructing all possible solutions.

Algorithm-Step 2. Let $\mathscr{S}=\left[\mu_{j r}\right]$ be the orbital structure under consideration. For the j th row in \mathscr{S} we construct lines x_{j} from the line orbit \mathscr{B}_{j}, by supplying orbital numbers of \hat{x}_{j} with indices $\in\{0,1, \ldots,|\rho|-1\}$. For $x_{j}^{\prime}, x_{j}^{\prime \prime}$ corresponding to the same \hat{x}_{j} we define: x_{j}^{\prime} precedes $x_{j}^{\prime \prime}, x_{j}^{\prime}<x_{j}^{\prime \prime}$, if the sequence of indices of big points corresponding to x_{j}^{\prime} precedes that of $x_{j}^{\prime \prime}$ lexicographically. Among the lines of the orbit \mathscr{B}_{j} we take out as its representative the first in terms of the defined precedence, thus obtaining \tilde{x}_{j}-the canonical form of x_{j}. In the following we identify \tilde{x}_{j} with x_{j} and call it the canonical line. The set of all j th level canonical lines we denote $x^{(i)}$.
After finding $x^{(j)}$, we build the partial designs. A partial design of j th level, denoted Δ_{j}, is an incidence structure $\left(\mathscr{P}, \mathscr{B}^{(j)}, I\right)$ with $\left|\mathscr{B}^{(j)}\right|=j$ canonical lines, such that $|\langle x\rangle \cap\langle y\rangle|=\lambda$ for all $x, y \in \mathscr{B}^{(j)}, x \neq y$. With $\mathscr{P}^{(j)}$ we denote the set of all j th level partial designs Δ_{j} which we construct

TABLE II

An Aschbacher's Design Constructed under the Assumption of Involution Acting

Orbital level													
1	∞_{1}	80	8	90	91	10_{0}	101	11_{0}	11_{1}	120	12_{1}	13	13_{1}
2	∞_{2}	80	81	14_{0}	14_{1}	15_{0}	15_{1}	16_{0}	16_{1}	17_{0}	17	18	181
3	∞_{3}	90	9	14_{0}	14_{1}	190	19	20_{0}	20_{1}	210	21.	22_{0}	22_{1}
4	∞_{4}	10_{0}	10	15_{0}	15_{1}	190	191	23_{0}	23_{1}	24_{0}	24_{1}	25	25_{1}
5	∞_{5}	11_{0}	11_{1}	16_{0}	16_{1}	200	201	23_{0}	23_{1}	26_{0}	26_{1}	270	271
6	∞_{0}	12.	12	17.	17,	210	21,	24_{0}	24	26_{0}	26,	28	28,
7	∞,	130	131	180	181	22_{0}	22_{1}	25_{0}	25_{1}	27_{0}	271	28	281
8	∞_{1}	∞_{2}	80	190	200	24_{0}	270	280	290	30_{0}	310		33_{0}
9	∞_{1}	∞_{3}	90	15_{0}	170	25_{0}	26_{0}	27.	291	34_{0}	35_{0}	36	370
10	∞_{1}	∞_{4}	13_{0}	16_{0}	170	21_{0}	22_{0}	23_{0}	30_{0}	311	34_{1}	38	390
11	∞_{1}	∞_{5}	120	14_{0}	180	22_{0}	23_{1}	24_{0}	32_{1}	35_{1}	36_{0}	40_{0}	41_{0}
12	∞_{1}	∞_{6}	11_{0}	14_{0}	15_{0}	20_{0}	25_{1}	28	381	39_{0}	40	42	43_{0}
13	∞_{1}	∞_{7}	10_{0}	16_{0}	18.	19	21_{1}	26_{0}	33_{0}	37_{1}	41_{0}	42	43_{0}
14	∞_{2}	∞_{3}	10_{0}	11_{1}	16_{1}	22_{0}	24_{0}	281	341	35_{0}	38_{1}		42_{1}
15	∞_{2}	∞_{4}	11_{0}	121	15_{0}	21	22_{0}	271	33_{0}	36_{1}	370	40_{0}	43_{1}
16	∞_{2}	∞_{5}	10_{0}	13_{0}	14_{0}	21_{0}	25_{0}	26_{0}	290	30_{1}	36_{1}	39	42_{0}
17	∞_{2}	∞_{6}	90	131	180	19_{1}	23_{0}	26_{0}	31_{0}	34_{1}	35_{1}	40	43_{1}
18	∞_{2}	∞_{7}	90	12_{1}	170	20_{0}	23_{1}	25_{1}	32_{1}	371	38.	39	41_{1}
19	∞_{3}	∞_{4}	80	12_{1}	180	20_{0}	25_{0}	26_{1}	30_{1}	31_{1}	40_{1}		42_{1}
20	∞_{3}	∞_{5}	120	131	15_{0}	16_{0}	190	28.	311	320	371	39	43_{1}
21	∞_{3}	∞_{6}	80	10_{1}	181	21_{0}	23_{0}	27	32,	33_{0}	36_{0}	38	39_{1}
22	∞_{3}	∞_{7}	11_{0}	13_{1}	14_{1}	170	23_{0}	24_{0}	290	30_{1}	33_{1}	40_{0}	43_{0}
23	∞_{4}	∞_{5}	90	10	171	180	20_{1}	28,	290	33_{0}	35_{0}	38	43_{0}
24	∞_{4}	∞_{6}	90	13_{0}	14_{1}	16_{1}	24_{0}	27_{1}	291	32_{0}	37_{1}	41_{0}	42_{0}
25	∞_{4}	∞_{7}	80	11_{1}	14_{1}	190	26_{0}	28	32,	34_{0}	35_{1}		39_{0}
26	∞_{5}	∞_{6}	80	11_{0}	17	19	220	25_{0}	30_{0}	331	34_{0}		41_{1}
27	ω_{5}	∞_{7}	80	9_{0}	15_{1}	21.	24_{1}	27_{0}	31	34_{1}	38_{1}	40_{0}	42_{0}
28	∞_{6}	∞_{7}	10_{0}	12_{1}	15_{0}	16_{1}	20_{1}	22_{1}	290	30_{0}	311	35	36_{0}
29	290	29_{1}	11_{0}	12_{0}	16_{1}	18_{1}	190	21_{1}	250	32_{1}	34_{1}	380	40_{1}
30	30_{0}	30_{1}	90	11_{0}	15_{1}	18.	210	231	281	320	35_{1}		42_{1}
31	310	31_{1}	10_{0}	11_{0}	14_{1}	171	210	251	270	32_{1}	35_{0}		43_{1}
32	320	32_{1}	10_{0}	13_{1}	151	17_{0}	20_{1}	22_{0}	26_{1}	33_{0}	340		42_{0}
33	33_{0}	33_{1}	90	12_{0}	14_{0}	16_{1}	23_{0}	25_{1}	280	311	34_{0}	36	42
34	34_{0}	34_{1}	10_{0}	12	14.	180	20_{0}	24_{1}	271	30_{0}	370		43_{0}
35	35_{0}	35_{1}	80	13_{0}	16_{0}	20_{1}	21_{1}	24_{0}	25_{1}	33_{1}	37.	39	40_{1}
36	36_{0}	36_{1}	11_{0}	13_{0}	17.	180	190	201	24_{1}	310	37.		42_{1}
37	37.	37_{1}	80	10_{0}	140	22_{1}	230	26_{1}	281	29.	31_{0}	38.	40_{0}
38	$38{ }_{0}$	38_{1}	120	13_{0}	14_{1}	15_{0}	19_{1}	26_{1}	27_{0}	30_{1}	33_{0}		411
39	39_{0}	39_{1}	90	11_{1}	15_{0}	181	22_{0}	24_{1}	26_{1}	290	310		41_{0}
40	40_{0}	401	90	10_{0}	16_{0}	17_{1}	190	271	280	30_{1}	36_{0}	390	41_{1}
41	41_{0}	41_{1}	80	13_{1}	15_{0}	20_{1}	210	23_{1}	280	291	341	36	43_{0}
42	42_{0}	42_{1}	8	120	17_{0}	191	22_{1}	231	271	290	35_{0}	39	43_{1}
43	43_{0}	43_{1}	80	9	16_{1}	22_{0}	24_{1}	25_{1}	26_{0}	30_{1}	32	36	380

in our procedure. For two such partial designs Δ_{j}^{\prime} and $\Delta_{j}^{\prime \prime}$ we say Δ_{j}^{\prime} precedes $\Delta_{j}^{\prime \prime}, A_{j}^{\prime}<\Delta_{j}^{\prime \prime}$, if there exists some $q, q \leqslant j$, such that
(i) corresponding i th level canonical lines of Δ_{j}^{\prime} and $\Delta_{j}^{\prime \prime}$ coincide for $1 \leqslant i<q$, and
(ii) q th level canonical line of Δ_{j}^{\prime} precedes that of $\Delta_{j}^{\prime \prime}$.

In our case partial designs $\mathscr{D}^{(1)}, \ldots, \mathscr{D}^{(7)}$ are trivial. We construct $\mathscr{D}^{(j)}$ from $\mathscr{D}^{(j-1)}, 8 \leqslant j \leqslant 43$, in the following way: To each partial design $\Delta_{j-1} \in \mathscr{D}^{(j-1)}$ we join all possible j th level canonical lines x_{j} which intersect with each line of Δ_{j-1} in exactly two points. In such a way we obtain one by one potential partial designs $\Delta_{j}=\Delta_{j-1} \cup x_{j}$ of the j th level. Then we try to eliminate Δ_{j} by searching for a design $\Delta_{j} \alpha$ that is isomorphic to Δ_{j}, which precedes Δ_{j}. Denote with S the stabilizer of all $t=43$ point orbits of 2. Obviously, $\alpha \in S$ fixes all the orbital lines of \mathscr{S}. Now, we include Δ_{j} into $\mathscr{D}^{(j)}$ if it cannot be eliminated by finding an $\alpha \in S$ such that $\Lambda_{j} \alpha<\Lambda_{j}$ in terms of the above defined precedence of partial designs. At the end of this procedure, $\mathscr{P}^{(t)}$ will be the set of all possible designs with the orbital structure \mathscr{S}, admitting the given automorphism group $\langle\rho\rangle$.

The described procedure is also carried out by computer. It turns out that both orbital structures \mathscr{S}_{1} and \mathscr{S}_{2} can be supplied by the indices in unique manner up to isomorphism. So we obtain biplane \mathscr{D}_{1} by indexing \mathscr{S}_{1} and biplane $\mathscr{\mathscr { D }}$, by indexing \mathscr{S}_{2} as the only solutions and conclude that they represent a pair of nonisomorphic Aschbacher's designs which are mutually dual. The biplane \mathscr{D}_{1}, lexicographically the first, is enclosed in Table II, by writing down only the $\langle\rho\rangle$-orbit representatives.

So we proved the following:
THEOREM 1. Let \mathscr{D} be a biplane $(79,13,2)$ admitting an involutory automorphism. Then \mathscr{D} is unique, up to isomorphism and duality, and represents an Aschbacher's design with the full automorphism group of the order 110.

Together with previously mentioned results this yields
THEOREM 2. If \mathscr{D} is a biplane $(79,13,2)$ that is not isomorphic to an Aschbacher's design, then the full automorphism group of \mathscr{D} is either trivial or a 3-group.

References

1. M. Aschbacher, On collineation groups of symmetric block designs, J. Combin. Theory 11 (1971), 272-281.
2. V. Cepulić, On symmetric block designs (45,12,3) with automorphisms of order 5 , to appear in Ars Combinatoria.
3. Z. Janko and T. Trung, Construction of a new symmetric block design for $(78,22,6)$ with the help of tactical decompositions, J. Combin. Theory Ser. A 40 (1985), 451-455.
4. Lu. Marangunić, Biplanes ($56,11,2$) with involutory collineation fixing 6 points. J. Combin. Theory Ser. A 54 (1990), 149-163.
5. B. Shita, "Klasifikacija nekih dvoravnina sa kolineacijama malih redova," Doctoral Dissertation, University of Prishtina, Yugoslavia, 1988.
6. D. Ulzenheimer, Gruppentheoretische Konstruktionmethoden für Symetrische Blockplane, Diplomarbeit, Heidelberg, 1985.
