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Abstract

In fuzzy logic, connectives have a meaning that, can frequently be known through the use of these connectives in a given
context. This implies that there is not a universal-class for each type of connective, and because of that several continuous
t-norms, continuous t-conorms and strong negations, are employed to represent, respectively, the and, the or, and the not.
The same happens with the case of the connective If/then for which there is a multiplicity of models called T-conditionals
or implications. To reinforce that there is not a universal-class for this connective, four very simple classical laws translated
into fuzzy logic are studied.
� 2007 Elsevier Inc. All rights reserved.
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1. On fuzzy rules

The typical simplest rule appearing in fuzzy logic is ‘‘If x is P, then y is Q”, with x in a universe of discourse
X (usually an interval in the real line R), y in another universe Y (also usually an interval in R), P an imprecise
predicate on X, and Q another imprecise predicate on Y. This rule is to be represented by means of a numerical
function J : ½0; 1� � ½0; 1� ! ½0; 1� such that JðlP ðxÞ; lQðyÞÞ captures the meaning of the rule, that is, the use of
it made by who is uttering the conditional statement ‘‘If x is P, then y is Q”. It is well known that such use, or
meaning, is sometimes captured by several models coming from ortholattices, Boolean algebras, and ortho-
modular lattices.

The first goal of functions J is to represent the meaning of the rule and, for this, J can be chosen as being or
being not an implication function. This election depends on the character of the conditional statement ‘‘If x is
P, then y is Q”.

The second goal of functions J is to allow inferences. For this, J should verify some directive concerning the
inference to be done. For example, if it is a forward inference, J does verify the inequality T ða; Jða; bÞÞ 6 b for
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all a; b in [0,1], and a continuous t-norm T. This idea comes from the inequality p � ðp ! qÞ 6 q in lattices that
compacts the rule of Modus Ponens ‘‘p! q; p : q” (see [6]). In this case, J is called a T-conditional. Provided
the inference is backwards, J does verify the inequality T ðNðbÞ; Jða; bÞÞ 6 NðaÞ for all a; b in [0,1], a continu-
ous t-norm T, and a strong negation N corresponding to not (recall that N : ½0; 1� ! ½0; 1� is said to be a strong
negation when it is decreasing and involutive). This time the inequality comes from the case of ortholattices
where Modus Tollens ‘‘p ! q; not q : not p” is compacted by q0 � ðp ! qÞ 6 p0. A complete study about
modus ponens and modus tollens can be found in [15].

Among the models quoted above the most widely considered are the following (see for instance [8,13]):

(a) Mamdani–Larsen operators: JðlP ðxÞ;lQðyÞÞ ¼ T ðlP ðxÞ; lQðyÞÞ, with T a continuous t-norm without zero-
divisors.

(b) R-implication operators: JðlP ðxÞ; lQðyÞÞ ¼ supfz 2 ½0; 1�jT ðz; lP ðxÞÞ 6 lQðyÞg, with a continuous t-norm
T.

(c) S-implication operators: JðlP ðxÞ; lQðyÞÞ ¼ SðNðlP ðxÞÞ; lQðyÞÞ, with S a continuous t-conorm and N a
strong negation.1

(d) QM-operators: JðlP ðxÞ; lQðyÞÞ ¼ SðNðlP ðxÞÞ; T ðlP ðxÞ; lQðyÞÞÞ, with S a continuous t-conorm, N a strong
negation and T a continuous t-norm.

(e) D-operators: JðlP ðxÞ; lQðyÞÞ ¼ SðlQðyÞ; T ðNðlP ðxÞÞ;NðlQðyÞÞÞÞ, with S; N and T like in (d).

Model (a) comes from the conditional in lattices p ! q ¼ p � q, that is not an implication in the usual sense.
However, we include them in our study because this model is frequently used to model fuzzy rules in fuzzy
control. The main reason is because Mamdani–Larsen operators are always T1-conditionals for any t-norm
T 1, that is, they satisfy T 1ðx; Jðx; yÞÞ 6 y for all x; y 2 ½0; 1�. This condition is important because when it is sat-
isfied, the inference rule of Modus Ponens is guaranteed. Note that all other models only satisfy the previous
condition for some adequate t-norms T 1.

Model (b) comes from p ! q ¼ p0 þ q, the typical implication in Boolean algebras that is only a conditional
on them but not in other ortholattices or De Morgan algebras. Model (c) comes from the equality
p0 þ q ¼ supfzjp � z 6 qg that only holds in Boolean algebras. Models (d) and (e) come, respectively, from
the Sasaki hook p! q ¼ p0 þ p � q, and the Dishkant hook p! q ¼ qþ p0 � q0, that are conditionals in ortho-
modular lattices and collapse, on Boolean algebras, with p0 þ q. In fuzzy logic only models (b) and (c) are
implications and models (b)–(e) coincide, when restricted to crisp sets lP ; lQ with the classical implication:
l0P þ lQ ¼ max �ðð1� idÞ � lP � lQÞ. For more details see [3] for R- and S-implications and [12] for Q- and
D-operators. See also the recent survey [13].

Another interesting point lies in the study of these models of implications in the framework of discrete set-
tings. In particular, operators used in model (a), defined on a finite chain, are characterized in [9]. In the same
framework, those operators used in models (b)–(c) are developed in [10] and those used in models (d)–(e) in [11].

A particular type of these operators is useful if it reflects what rules mean, that is, how the linguistic state-
ment ‘‘If x is P, then y is Q” is actually used for what concerns the equivalence between meaning and use (see
[17]). Notice that, in principle, if rules are not correctly represented, the problem that will be solved is not the
one posed, but another corresponding to the same rules but used in a different way.

Representing the statement ‘‘x is P” by a, and ‘‘y is Q” by b, the protoform rule ‘‘If a, then b” (a! b) will
mean some (not necessarily functionally expressible) model involving a and b. For example, let
L ¼ ðL; �;þ;0; 0; 1Þ be an ortholattice, then a! b could mean:
1 Ex
includ
a0 þ b; or a0 þ a � b; or a � b; or
a0 þ b if a � b ¼ 0

a � b otherwise

�
; . . .
Only after this protoform is established in accordance with the use of a! b, can function J be searched for.
Notice that if the rule a! b means a0 þ b, both models (b) and (c) are candidates for its representation.
tensions of this kind of implications have been considered in [16] under the name of improper S-implications. Some examples are
ed there illustrating the use of these new operators.
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Many works in fuzzy logic deal with logical formalisms studying the correctness and completeness of the
corresponding formal fuzzy system, and proving that, from this point of view, R-implications are the best sui-
ted (see [1,4,5]).

These syntactically oriented researchers in fuzzy logic advocate mainly using R-implications to represent
rules. This is a position that avoids taking into account the ‘‘meaning” of rules and requires posing the prob-
lems in a way not always reflecting what is actually stated by, for example, the experts giving the rules. With
the selection of R-implications only one of the possible meanings of the rules is taken into account.

Since quantum logic broke by the first time the operator a! b ¼ a0 þ b, this paper presents three classical
laws involving the symbol ‘‘!” that are in between Boolean and quantum logics. It appears that R-implica-
tions seem to be well suited when the law is only typical of Boolean logic, but not when the law also holds in
quantum logic. In addition, there is a case in which the law does hold in Boolean and in quantum logic but no
one of the operators stated before are useful in fuzzy logic.

2. Preliminaries

We will suppose the reader to be familiar with basic results concerning t-norms and t-conorms that can be
found for instance in [7]. We only recall here some definitions and results that we will specially use.

Definition 1 [7, Definition 11.3]. A function N : ½0; 1� ! ½0; 1� is called a strong negation if it is non-increasing,
and NðNðxÞÞ ¼ x for all x 2 ½0; 1�.

Of course, all strong negations do verify Nð0Þ ¼ 1 and Nð1Þ ¼ 0.

Proposition 2 [14], see also [3, Theorem 1.1]. A function N : ½0; 1� ! ½0; 1� is a strong negation if and only if

there exists a strictly increasing function u : ½0; 1� ! ½0; 1� with uð0Þ ¼ 0 and uð1Þ ¼ 1 such that
NðxÞ ¼ NuðxÞ ¼ u�1ð1� uðxÞÞ for all x 2 ½0; 1�:
Definition 3 [7, Definition 2.9]. A t-norm T is an Archimedean t-norm if for each ðx; yÞ 2�0; 1½2 there is an n 2 N

such that xðnÞT < y where xðnÞT is defined recursively by
xð1ÞT ¼ x; xðnÞT ¼ T x; xðn�1Þ
T

� �
for all n P 2:
Archimedean t-conorms are defined dually, and in the continuous case, it is known that a t-norm T (t-con-
orm S) is Archimedean if and only if T ðx; xÞ < x ðSðx; xÞ > x) for all x 2�0; 1½ (see [7, Theorem 2.12]).

Definition 4 [7, Definition 2.13]. A t-norm T is called

� Strict if it is continuous and strictly monotone.
� Nilpotent if it is continuous and for each x 2�0; 1½ there is some n 2 N such that xðnÞT ¼ 0.
Definition 5 [7, Definitions 3.25 and 3.39]. Let T (S) be a continuous t-norm (t-conorm). An additive generator

of T (S) is a continuous strictly decreasing (increasing) function t : ½0; 1� ! ½0;þ1� (s : ½0; 1� ! ½0;þ1�) with
tð1Þ ¼ 0 ðsð0Þ ¼ 0Þ such that for all ðx; yÞ 2 ½0; 1�2 we have
T ðx; yÞ ¼ t�1ðminðtð0Þ; tðxÞ þ tðyÞÞÞ; ðSðx; yÞ ¼ s�1ðminðsð1Þ; sðxÞ þ sðyÞÞÞÞ:

Note that, when exist, additive generators are uniquely determined up to a positive multiplicative constant.

On the other hand, all continuous Archimedean t-norms are either strict or nilpotent as it is stated in the fol-
lowing proposition.

Proposition 6 [7, Corollary 5.5]. A function S : ½0; 1�2 ! ½0; 1� is a continuous Archimedean t-conorm if and only

if has a (continuous) additive generator, i.e., there is a continuous, strictly increasing function s : ½0; 1� ! ½0;1�
with sð0Þ ¼ 0 such that
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Sðx; yÞ ¼ s�1ðminðsð1Þ; sðxÞ þ sðyÞÞÞ

for all x; y 2 ½0; 1�. The t-conorm S is strict when sð1Þ ¼ 1 and nilpotent when sð1Þ <1.

A dual characterization can be given for Archimedean t-norms which additive generators are strictly
decreasing with f ð1Þ ¼ 0. On the other hand, when a t-conorm S is nilpotent one can take the additive gen-
erator f such that f ð1Þ ¼ 1 which is called the normalized generator of S and will be represented here by
u : ½0; 1� ! ½0; 1�. In this case, Nu is a strong negation and S satisfies Sða; bÞ ¼ 1 if and only if b P NuðaÞ.

Given any binary operator F on [0,1] and any increasing bijection u : ½0; 1� ! ½0; 1�, we denote by F u the u-
conjugate of F given by
F uðx; yÞ ¼ u�1ðF ðuðxÞ;uðyÞÞÞ for all x; y 2 ½0; 1�:

With this notation, a nilpotent t-conorm can be always written as the u-conjugate of the Łukasiewicz t-con-

orm W �ðx; yÞ ¼ minð1; xþ yÞ, where u is the normalized generator of S, that is S ¼ W �
u.

3. The case with the classical law a! ðb! aÞ ¼ 1

Note that in a Boolean algebra, by taking a! b ¼ a0 þ b, is
a! ðb! aÞ ¼ a0 þ ðb0 þ aÞ ¼ aþ a0 þ b ¼ 1þ b ¼ 1:
Hence a! ðb! aÞ ¼ 1 is a law of Boolean algebras with a! b ¼ a0 þ b. Nevertheless, the expression
a! ðb! aÞ ¼ 1 is not a law in any lattice if taking the conditional a! b ¼ a � b, since then
a! ðb! aÞ ¼ a � ðb � aÞ ¼ a � b 6¼ 1:
In orthomodular lattices a! ðb! aÞ ¼ 1 is not a law with the conditional!Q given by a!Qb ¼ a0 þ a � b.
To see this, it is enough to consider the orthomodular lattice:

where
a!Qðb!QaÞ ¼ a!Qðb0 þ b � aÞ ¼ a!Qb0 ¼ a0 þ a � b0 ¼ a0 6¼ 1:
On the contrary, a! ðb! aÞ ¼ 1 is a law with respect to the conditional !D given by a!Db, since
a!Dðb!DaÞ ¼ a!Dðaþ b0 � a0Þ ¼ ðaþ b0 � a0Þ þ a0 � ðaþ b0 � a0Þ0 ¼ aþ a0 � b0 þ a0 � ða0 � ðaþ bÞÞ
¼ aþ a0 � ðaþ bÞ þ a0 � b0
but now using the orthomodular property
y þ x � y0 ¼ x for all y 6 x ð1Þ
for the values y ¼ a and x ¼ aþ b, we obtain
a!Dðb!DaÞ ¼ aþ a0 � ðaþ bÞ þ a0 � b0 ¼ aþ bþ a0 � b0 ¼ ðaþ bÞ þ ðaþ bÞ0 ¼ 1:
Hence, a! ðb! aÞ ¼ 1 is a law that holds in orthomodular lattices, depending on the used conditional.

3.1. The law l! ðr! lÞ ¼ 1 in fuzzy logic

Let us now investigate what happens with this law in fuzzy logic when we take as conditionals the five pos-
sible models stated in the introduction. To do this, we study the functional equation
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Jða; Jðb; aÞÞ ¼ 1 for all a; b 2 ½0; 1�; ð2Þ

where J is an implication function given by one of the five possible models. We begin with an example showing
the behavior of some particular implications, one in each one of the five types considered.

Example 7. Let J0 be the Mamdani–Larsen operator given by J 0ða; bÞ ¼ minða; bÞ. Let J1 and J2 be the R-
implication derived from the minimum (Gödel implication) and the S-implication derived from the maximum
and the negation NðaÞ ¼ 1� a (Kleene–Dienes implication), respectively. That is
J 1ða; bÞ ¼
1 if a 6 b

b if a > b
;

�
J 2ða; bÞ ¼ maxð1� a; bÞ:
Finally, let J 3 and J 4 be, respectively, the QM-operator and the D-operator derived from S ¼ max; T ¼ min
and NðaÞ ¼ 1� a. That is
J 3ða; bÞ ¼ maxð1� a;minða; bÞÞ; and J 4ða; bÞ ¼ maxðb;minð1� a; 1� bÞÞ:

In these cases, we have that Eq. (2):

� Is not a law with J 0 since J 0ða; J 0ðb; aÞÞ ¼ minða; bÞ 6¼ 1.
� Is a law with J 1 since, when b 6 a we have J 1ða; J 1ðb; aÞÞ ¼ J 1ða; 1Þ ¼ 1, whereas when b > a we have

J 1ða; J 1ðb; aÞÞ ¼ J 1ða; aÞ ¼ 1.
� Is not a law neither with J 2, nor with J 3, nor with J 4 since in these three cases we have, for instance
Jð0:6; Jð0:7; 0:6ÞÞ ¼ Jð0:6; 0:6Þ ¼ 0:6:
Now, we deeply analyze Eq. (2). We begin by proving that in the case of Mamdani–Larsen operators there
are no solutions of this law.

Proposition 8. Let J ¼ T the Mamdani–Larsen operator given by a t-norm T. Then, the functional equation

T ða; T ðb; aÞÞ ¼ 1 for all a; b 2 ½0; 1� is never satisfied.

Proof. This is obvious since T ða; T ðb; aÞÞ 6 a < 1 for all a; b 2 ½0; 1½. h

Now we deal with R-implications defined, from a left-continuous t-norm T, by
J T ða; bÞ ¼ supfz 2 ½0; 1�jT ða; zÞ 6 bg for all a; b 2 ½0; 1�:
In this case, all implications J T are solutions of the law. In fact, this is a well known property about R-
implications, but we include here the proof for the sake of completeness.

Proposition 9. Let T be a left-continuous t-norm and JT the corresponding R-implication. Then, the functional

equation JT ða; JT ðb; aÞÞ ¼ 1 for all a; b 2 ½0; 1� is always satisfied.

Proof. Since b 6 1 we have
J T ðb; aÞP J T ð1; aÞ ¼ supfz 2 ½0; 1�jT ð1; zÞ ¼ z 6 ag ¼ a
for all a 2 ½0; 1�. But then
J T ða; J T ðb; aÞÞ ¼ supfz 2 ½0; 1�jT ða; zÞ 6 J T ðb; aÞg ¼ 1: �
In the case of S-implications defined from a continuous t-conorm S and a strong negation N by
J S;N ða; bÞ ¼ SðNðaÞ; bÞ for all a; b 2 ½0; 1�
we can characterize which S-implications are solutions of the law. Note that in this case Eq. (2) can be written
as
SðNðaÞ; SðNðbÞ; aÞÞ ¼ 1 for all a; b 2 ½0; 1�: ð3Þ
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Then,

Proposition 10. Let S be a continuous t-conorm, N a strong negation and JS;N the corresponding S-implication.

Then, the functional Eq. (3) is satisfied if and only if, S is a nilpotent t-conorm, say S ¼ W �
u and N P Nu.

Proof. Suppose first that the law is satisfied. Then, we have
SðNðaÞ; SðNðbÞ; aÞÞ ¼ 1 for all a; b 2 ½0; 1�

and taking b ¼ 1 in this equation we obtain SðNðaÞ; aÞ ¼ 1 for all a 2 ½0; 1� and this is equivalent to be S a
nilpotent t-conorm S ¼ W �

u with N P Nu. Conversely, if S and N satisfy the conditions in the proposition,
we have SðNðaÞ; aÞ ¼ 1 for all a 2 ½0; 1� and then,
SðNðaÞ; SðNðbÞ; aÞÞP SðNðaÞ; aÞ ¼ 1 for all a; b 2 ½0; 1�: �
We deal now with QM-operators. That is, given a strong negation N, a continuous t-conorm S and a con-
tinuous t-norm T, the corresponding QM-operator is given by
J Qða; bÞ ¼ SðNðaÞ; T ða; bÞÞ for all a; b 2 ½0; 1�:
In this case, we have not found a complete characterization of the corresponding functional equation, that
can be written as
SðNðaÞ; T ða; SðNðbÞ; T ðb; aÞÞÞÞ ¼ 1 for all a; b 2 ½0; 1�; ð4Þ
but we can give several necessary conditions as well as sufficient ones.

Proposition 11. Let S be a continuous t-conorm, N a strong negation, T a continuous t-norm and JQ the

corresponding QM-operator. Then,

(i) If Eq. (4) is satisfied, S must be a nilpotent t-conorm S ¼ W �
u with N P Nu. Moreover, T must satisfy

T ða; aÞP NuðNðaÞÞ for all a 2 ½0; 1� (which in particular implies that T must have a trivial zero region, that

is, T ða; bÞ > 0 for all a; b > 0).

(ii) If the above conditions hold and, in addition, T ða; bÞP u�1ðuðaÞ � uðNðbÞÞÞ for all a; b 2 ½0; 1� such that

NðbÞ < a, then Eq. (4) holds.
Proof. Taking b ¼ 1 in Eq. (4), we obtain
SðNðaÞ; T ða; aÞÞ ¼ 1 for all a 2 ½0; 1�; ð5Þ
which implies SðNðaÞ; aÞ ¼ 1 and consequently, S ¼ W �
u with N P Nu. Now, Eq. (5) also implies that

T ða; aÞP NuðNðaÞÞ for all a 2 ½0; 1� and then (i) is proved.
To prove (ii) note that if
SðNðbÞ; T ðb; aÞÞP a for all a; b 2 ½0; 1� ð6Þ
then we obtain
SðNðaÞ; T ða; SðNðbÞ; T ðb; aÞÞÞÞP SðNðaÞ; T ða; aÞÞ ¼ 1
and thus Eq. (4) holds. Note however that, when a 6 NðbÞ, condition (6) is trivially satisfied. Consequently, to
ensure that Eq. (4) holds, it is enough to have
SðNðbÞ; T ðb; aÞÞP a for all NðbÞ < a:
But this is equivalent to:
u�1ðuðNðbÞÞ þ uðT ðb; aÞÞÞP a() T ða; bÞP u�1ðuðaÞ � uðNðbÞÞÞ:
Thus, the proposition is proved. h
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Example 12

(i) Note that taking for instance S ¼ W �
u with N P Nu and T the t-norm minimum, we obtain solutions of

Eq. (4). Moreover, if we take N ¼ Nu we have NuðNðaÞÞ ¼ a for all a 2 ½0; 1� and then T ¼ min is the
only possible t-norm for which the corresponding J Q satisfies Eq. (4).

(ii) Analogously if we take S ¼ W �
u with N > Nu and T any t-norm such that T ða; aÞP NuðNðaÞÞ for all

a 2 ½0; 1� and T greater than or equal to the Nu-dual of S in points ða; bÞ such that NðbÞ < a, we obtain
again solutions of Eq. (4). Effectively, since in this case we have, for NðbÞ < a,
u�1ðuðaÞ � uðNðbÞÞÞ < u�1ðuðaÞ þ uðbÞ � 1Þ 6 T ða; bÞ:

(iii) Taking S to be the Łukasiewicz t-conorm, T and N such that NðaÞP 1� T ða; aÞ for all a 2 ½0; 1� and

NðbÞP a� T ða; bÞ for all a; b 2 ½0; 1�, we obtain solutions of Eq. (4).
(iv) More particularly, taking S to be the Łukasiewicz t-conorm, T the t-norm product and N a strong nega-

tion such that NðaÞP 1� a2 for all a 2 ½0; 1�, we obtain a solution of Eq. (4).
Let us finally deal with D-operators. Given a strong negation N, a continuous t-conorm S and a continuous
t-norm T, the corresponding D-operator is given by
J Dða; bÞ ¼ Sðb; T ðNðaÞ;NðbÞÞÞ for all a; b 2 ½0; 1�

and the functional Eq. (2) is written as:
SðSða; T ðNðbÞ;NðaÞÞÞ; T ðNðaÞ;NðSðT ðNðbÞ;NðaÞÞ; aÞÞÞÞ ¼ 1 ð7Þ

for all a; b 2 ½0; 1�. This case is quite similar to the above one and we can give a result analogous to Proposition
11.

Proposition 13. Let S be a continuous t-conorm, N a strong negation, T a continuous t-norm and JD the

corresponding D-operator. If Eq. (7) is satisfied, S must be a nilpotent t-conorm S ¼ W �
u with N P Nu.

Moreover, T must satisfy T ða; aÞP NuðNðaÞÞ for all a 2 ½0; 1�.

Proof. Just taking b ¼ 1 in Eq. (7) we obtain SðT ðNðaÞ;NðaÞÞ; aÞ ¼ 1 for all a 2 ½0; 1� and the proof follows as
in part (i) of Proposition 11. h

In this case, we have not found any sufficient condition but note that we have solutions by taking simply
T ¼ min as it is stated in the following example.

Example 14. Note that taking for instance S ¼ W �
u with N P Nu and T the t-norm minimum, we obtain

solutions of Eq. (7). Moreover, as in the case of QM-operators, if we take N ¼ Nu, T ¼ min is the only
possible t-norm for which the corresponding JD satisfies Eq. (7).

In conclusion, the law a! ðb! aÞ ¼ 1, that is typical of Boolean algebras and of orthomodular lattices
with the conditional a!Db, holds in fuzzy logic with R-implications. Moreover, it should be noticed that there
are a lot of cases for which S-implications also work, and the same happens for Q- and D-operators.

4. The case with the classical law ða! a0Þ ! a ¼ a

Note that in a Boolean algebra, by taking a! b ¼ a0 þ b, is
ða! a0Þ ! a ¼ ða0 þ a0Þ ! a ¼ a0 ! a ¼ aþ a ¼ a
and ða! a0Þ ! a ¼ a is a law. But also in orthomodular lattices with the conditionals a!Qb ¼ a0 þ a � b, or
a!Db ¼ bþ a0 � b0 is a law, since then
ða!Qa0Þ!Qa ¼ ða0 þ a � a0Þ!Qa ¼ a0!Qa ¼ aþ a0 � a ¼ a
and
ða!Da0Þ!Da ¼ ða0 þ a0 � aÞ!Da ¼ a0!Da ¼ aþ a � a0 ¼ a:
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On the other hand, in ortholattices with the conditional a! b ¼ a � b, is not a law because
ða! a0Þ ! a ¼ ða � a0Þ ! a ¼ 0! a ¼ 0.

4.1. The law ðl! l0Þ ! l ¼ l in fuzzy logic

This law in fuzzy logic becomes the functional equation
JðJða;NðaÞÞ; aÞ ¼ a for all a 2 ½0; 1�; ð8Þ
where J is an implication function and N is a strong negation. We will study again the five possible models of
implications stated in the preliminaries. In this case, we have the following example.

Example 15. With the notations in Example 7, and taking NðaÞ ¼ 1� a we have that Eq. (8):

� Is not a law with J 0 since J 0ðJ 0ða; 1� aÞ; aÞ ¼ minð1� a; aÞ 6¼ a for all a > 1=2.
� Is not a law with J 1 since, for instance J 1ðJ 1ð0:6; 1� 0:6Þ; 0:6Þ ¼ J 1ð0:4; 0:6Þ ¼ 1 6¼ 0:6.
� Is a law with J 2 because
J 2ðJ 2ða; 1� aÞ; aÞ ¼ maxð1�maxð1� a; 1� aÞ; aÞ ¼ maxða; aÞ ¼ a:
� Is also a law with J 3 because
J 3ðJ 3ða; 1� aÞ; aÞ ¼ J 3ðmaxð1� a;minða; 1� aÞÞ; aÞ ¼ J 3ð1� a; aÞ ¼ maxða;minð1� a; aÞÞ ¼ a:
� Is again a law with J 4 because
J 4ðJ 4ða; 1� aÞ; aÞ ¼ J 4ðmaxð1� a;minð1� a; aÞÞ; aÞ ¼ J 4ð1� a; aÞ ¼ maxða;minða; 1� aÞÞ ¼ a:
We begin the study of Eq. (8) by proving that in the cases of Mamdani–Larsen operators and R-implica-
tions, there are no solutions of this law.

Proposition 16. Let J ¼ T the Mamdani–Larsen operator given by a t-norm T. Then, the functional equation
T ðT ða;NðaÞÞ; aÞ ¼ a for all a 2 ½0; 1� is never satisfied.

Proof. This is obvious since taking a 2 ½0; 1� such that NðaÞ < a, we have
T ðT ða;NðaÞÞ; aÞ 6 T ðNðaÞ; aÞ 6 NðaÞ < a
for all these values. h
Proposition 17. Let T be a continuous t-norm and J T the corresponding R-implication. Then, the functional equa-

tion J T ðJ T ða;NðaÞÞ; aÞ ¼ a for all a 2 ½0; 1� is never satisfied.

Proof. Note that when a 6 NðaÞ we have J T ðJ T ða;NðaÞÞ; aÞ ¼ J T ð1; aÞ ¼ a. However, we will prove in two
steps that when NðaÞ < a this is not true:

� Suppose first that T has an idempotent b 2�0; 1½. In this case taking a such that NðaÞ < b < a < 1, we
obtain:
J T ðJ T ða;NðaÞÞ; aÞ ¼ J T ðNðaÞ; aÞ ¼ 1 6¼ a:
� If T has no non-trivial idempotents, then T must be Archimedean with additive generator
t : ½0; 1� ! ½0;þ1�, and J T is given by (see for instance [3, Theorem 1.16]):
J T ða; bÞ ¼ t�1ðmaxð0; tðbÞ � tðaÞÞÞ for all a; b 2 ½0; 1�:

Thus, for NðaÞ < a < 1 we have J T ða;NðaÞÞ ¼ t�1ðtðNðaÞÞ � tðaÞÞ. Now, when a! 1, we obtain
JT ða;NðaÞÞ ! 0 and consequently there is some a such that NðaÞ < a < 1 and J T ða;NðaÞÞ 6 a. But then
JT ðJ T ða;NðaÞÞ; aÞ ¼ 1 6¼ a. h
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For S-implications, we obtain solutions of the functional equation but only when the t-conorm is the
maximum.

Proposition 18. Let S be a continuous t-conorm, N a strong negation and JS;N the corresponding S-implication.

Then, JS;N satisfies Eq. (8) if and only if, S ¼ max.

Proof. In this case, the functional Eq. (8) becomes:
SðNðSðNðaÞ;NðaÞÞÞ; aÞ ¼ a for all a 2 ½0; 1�: ð9Þ
It is clear that when S ¼ max this equation holds. To prove the converse, assume that Eq. (9) holds and sup-
pose that S has an Archimedean ordinal summand on ½c; d� with 0 6 c < d 6 1. If there is some a 2 ½c; d½ such
that NðSðNðaÞ;NðaÞÞÞ > c, since NðSðNðaÞ;NðaÞÞÞ 6 a for all a 2 ½0; 1�, we have c < NðSðNðaÞ;NðaÞÞÞ 6
a < d and then for this value:
SðNðSðNðaÞ;NðaÞÞÞ; aÞ > a
obtaining a contradiction. Thus, NðSðNðaÞ;NðaÞÞÞ 6 c for all a 2 ½c; d½ and consequently SðNðaÞ;NðaÞÞP
NðcÞ > NðaÞ for all a 2�c; d½. That is, S is Archimedean in �NðdÞ;NðcÞ½.

On the other hand, if S was Archimedean in an interval ½r; s� with r < NðdÞ or s > NðcÞ, the same reasoning
could be used to prove that S should be Archimedean in the interval �NðsÞ;NðrÞ½ that strictly contains c or d,
reaching a contradiction. Consequently, S is Archimedean in ½NðdÞ;NðcÞ� with SðNðaÞ;NðaÞÞP NðcÞ for all
NðaÞ 2 �NðdÞ;NðcÞ½ contradicting the continuity of S.

Thus, S cannot have any Archimedean summand and so S ¼ max. h

In the case of QM-operators Eq. (8) can be written as
SðNðSðNðaÞ; T ða;NðaÞÞÞÞ; T ðSðNðaÞ; T ða;NðaÞÞÞ; aÞÞ ¼ a ð10Þ
for all a 2 ½0; 1�. We have not been able to find a complete characterization of the previous functional equa-
tion, but a lot of solutions can be presented.

Proposition 19. Let S be a continuous t-conorm, N a strong negation, T a continuous t-norm and JQ the

corresponding QM-operator:

(i) If S ¼ max, then Eq. (10) holds for any strong negation N and for any t-norm T.

(ii) If T ða;NðaÞÞ ¼ 0 for all a 2 ½0; 1�, Eq. (10) holds for any strong negation N and for any t-conorm S.
Proof. In both cases, the proof is a simple checking. h

In the case of D-operators, Eq. (8) can be written as
Sða; T ðNðaÞ;NðSðNðaÞ; T ðNðaÞ; aÞÞÞÞÞ ¼ a ð11Þ
for all a 2 ½0; 1�. Analogously to the case of Q-operators, we can find a lot of solutions of this equation.

Proposition 20. Let S be a continuous t-conorm, N a strong negation, T a continuous t-norm and JD the

corresponding D-operator:

(i) If S ¼ max, then Eq. (11) holds for any strong negation N and for any t-norm T.

(ii) If T ða;NðaÞÞ ¼ 0 for all a 2 ½0; 1�, Eq. (11) holds for any strong negation N and for any t-conorm S.
Proof. Straightforward. h

As a conclusion note that, although ða! a0Þ ! a ¼ a is a law in Boolean algebras as well as in orthomod-
ular lattices, in fuzzy logic no solutions of the corresponding functional equation can be found for Mamdani–
Larsen, or for R-implications. On the other hand, the law holds for S-implications only when S ¼ max,
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whereas there are a lot of solutions for Q- and D-operators. This shows that the most usual models are not a
good option when this law is required, being best suited the less usual ones: Q- and D-operators.

5. The case with the classical law ða! a0Þ ! a0 ¼ 1

Note that in a Boolean algebra, by taking a! b ¼ a0 þ b,
ða! a0Þ ! a0 ¼ ða0 þ a0Þ ! a0 ¼ a0 ! a0 ¼ aþ a0 ¼ 1
and ða! a0Þ ! a0 ¼ 1 is a law. But also in orthomodular lattices with the conditionals a!Qb ¼ a0 þ a � b, or
a!Db ¼ bþ a0 � b0 is a law, since then
ða!Qa0Þ!Qa0 ¼ ða0 þ a � a0Þ!Qa0 ¼ a0!Qa0 ¼ aþ a0 � a0 ¼ 1
and
ða!Da0Þ!Da0 ¼ ða0 þ a0 � aÞ!Da0 ¼ a0!Da0 ¼ a0 þ a � a ¼ 1:
On the other hand, in ortholattices with the conditional a! b ¼ a � b, is not a law because
ða! a0Þ ! a0 ¼ ða � a0Þ ! a0 ¼ 0! a0 ¼ 0.

5.1. The law ðl! l0Þ ! l0 ¼ 1 in fuzzy logic

In fuzzy logic this law will be clarified by the analysis of the functional equation
JðJða;NðaÞÞ;NðaÞÞ ¼ 1 for all a 2 ½0; 1�; ð12Þ

where J is an implication function and N a strong negation.

Example 21. Following again the notations in Example 7, and taking NðaÞ ¼ 1� a we have that Eq. (12) fails
in all cases since:

� With J 0 we have J 0ðJ 0ða; 1� aÞ; 1� aÞ ¼ minða; 1� aÞ 6¼ 1 for all a.
� With J 1, we have for instance
J 1ðJ 1ð0:5; 1� 0:5Þ; 1� 0:5Þ ¼ J 1ð1; 0:5Þ ¼ 0:5 6¼ 1:
� With J 2, we have
J 2ðJ 2ða; 1� aÞ; 1� aÞ ¼ maxð1�maxð1� a; 1� aÞ; 1� aÞ ¼ maxða; 1� aÞ 6¼ 1 for all a 6¼ 0; 1:
� With J 3 and J 4, we have in both cases
JðJð0:6; 1� 0:6Þ; 1� 0:6Þ ¼ Jð0:4; 0:4Þ ¼ 0:6 6¼ 1:
In this case, the situation is worse than the others as we can see in the following results.

Proposition 22. There are no solutions of the Eq. (12) neither when J is a Mamdani–Larsen operator, nor when J

is an R- nor an S-implication.

Proof. Let us prove it case by case:

� If J ¼ T , then we have T ðT ða;NðaÞÞ;NðaÞÞ 6 T ðNðaÞ;NðaÞÞ 6 NðaÞ for all a 2 ½0; 1� and then Eq. (12) does
not hold.
� If J ¼ J T for a continuous t-norm T, taking a such that a 6 NðaÞ < 1, we obtain:
J T ðJ T ða;NðaÞÞ;NðaÞÞ ¼ J T ð1;NðaÞÞ ¼ NðaÞ 6¼ 1:
� Finally, when J ¼ J S;N for a continuous t-conorm S and a strong negation N, Eq. (12) becomes
SðNðSðNðaÞ;NðaÞÞÞ;NðaÞÞ ¼ 1 for all a 2 ½0; 1�: ð13Þ
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Since NðSðNðaÞ;NðaÞÞÞ 6 a, if S; N satisfy the above equation Sða;NðaÞÞ ¼ 1 for all a 2 ½0; 1� and conse-
quently S should be S ¼ W �

u and N P Nu. But then, taking s the fixed point of N, we have Sðs; sÞ ¼ 1 and
SðNðSðNðsÞ;NðsÞÞÞ;NðsÞÞ ¼ SðNðSðs; sÞÞ; sÞ ¼ Sð0; sÞ ¼ s 6¼ 1
obtaining a contradiction. Thus, there are no solutions of Eq. (12) neither for S-implications. h
In the case of QM-operators, Eq. (12) becomes
SðNðSðNðaÞ; T ða;NðaÞÞÞÞ; T ðSðNðaÞ; T ða;NðaÞÞÞ;NðaÞÞÞ ¼ 1 ð14Þ
for all a 2 ½0; 1�. And for D-operators it can be written as
SðNðaÞ; T ða;NðSðNðaÞ; T ðNðaÞ; aÞÞÞÞÞ ¼ 1 ð15Þ
for all a 2 ½0; 1�.

Proposition 23. Let N be a strong negation, S a continuous t-conorm and T a continuous t-norm. If Eq. (14) holds

then S ¼ W �
u and N P Nu. The same happens if Eq. (15) holds.

Proof. Note that for all a 2 ½0; 1� we have
NðSðNðaÞ; T ða;NðaÞÞÞÞ 6 a and T ðSðNðaÞ; T ða;NðaÞÞÞ;NðaÞÞ 6 NðaÞ

and therefore, if Eq. (14) holds we have 1 6 Sða;NðaÞÞ and the result follows.

On the other hand, if Eq. (15) holds we similarly obtain SðNðaÞ; aÞ ¼ 1 and the result also follows
trivially. h

Remark 24. In this case, we have not found any solution neither for Eq. (14) nor for Eq. (15). Note for
instance that, with the conditions of the previous proposition, T ¼ min is not a solution and neither t-norms
with T ða;NðaÞÞ ¼ 0.

As a conclusion note that the law ða! a0Þ ! a0 ¼ 1, true in Boolean algebras as well as in orthomodular
lattices, does not hold in fuzzy logic for Mamdani–Larsen, nor for R-, nor for S-implications. Moreover, it
seems to be no solutions for Q- nor for D-operators. That is, when this law is required, no one of the five models
of implications are suitable, showing that even new models for implications should be welcome in fuzzy logic.

6. The case with the classical law ða! a � bÞ ! a ¼ a

Note that in a Boolean algebras, by taking a! b ¼ a0 þ b, is
ða! a � bÞ ! a ¼ ða0 þ a � bÞ ! a ¼ ða0 þ a � bÞ0 þ a ¼ a � ða � bÞ0 þ a ¼ a
and ða! a � bÞ ! a ¼ a is a law. But also in orthomodular lattices with the conditionals a!Qb ¼ a0 þ a � b, or
a!Db ¼ bþ a0 � b0 is a law, since then
ða!Qa � bÞ!Qa ¼ ða0 þ a � bÞ0 þ ða0 þ a � bÞ � a
but, applying the orthomodular property (1) with x ¼ a and y ¼ ða0 þ a � bÞ0 ¼ a � ða � bÞ0 6 a, we obtain
ða!Qa � bÞ!Qa ¼ a:
With respect to the conditional !D we have
a!Da � b ¼ a � bþ a0 � ða � bÞ0 ¼ a � bþ a0
and consequently
ða!Da � bÞ!Da ¼ aþ a0 � ða � bþ a0Þ0 ¼ aþ a0 � ða � ða � bÞ0Þ ¼ aþ 0 ¼ a:
On the other hand, in ortholattices with the conditional a! b ¼ a � b, is not a law because ða! a � bÞ ! a ¼
a � b 6¼ a.
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6.1. The law ðl! l � rÞ ! l ¼ l in fuzzy logic

In fuzzy logic this law becomes the functional equation
JðJða; T 0ða; bÞÞ; aÞ ¼ a for all a 2 ½0; 1�; ð16Þ
where J is an implication function and T 0 is a continuous t-norm. In this case the situation is similar to the
previous one.

Example 25. Following again the notations in Example 7, and taking T 0 ¼ min we have that Eq. (16):

� Fails with J 0 since J 0ðJ 0ða;minða; bÞÞ; aÞ ¼ minða; bÞ 6¼ a for all b < a.
� Fails also with J 1 since for instance
J 1ðJ 1ð0:6;minð0:6; 0:4ÞÞ; 0:6Þ ¼ J 1ð0:4; 0:6Þ ¼ 1 6¼ 0:6:
� Is a law with J 2 because
J 2ðJ 2ða;minða; bÞÞ; aÞ ¼ maxð1�maxð1� a;minða; bÞÞ; aÞ ¼ maxðminða; 1�minða; bÞÞ; aÞ ¼ a:
� Fails with J 3 since for instance
J 3ðJ 3ð0:7;minð0:7; 0:5ÞÞ; 0:7Þ ¼ J 3ð0:5; 0:7Þ ¼ 0:5 6¼ 0:7:
� Is a law with J 4 since, if a 6 b, J 4ðJ 4ða;minða; bÞÞ; aÞ coincides with
J 4ðJ 4ða; aÞ; aÞ ¼ J 4ðmaxða; 1� aÞ; aÞ ¼ maxða;minða; 1� aÞÞ ¼ a;
whereas, if b < a we have 1� a < 1� b and then J 4ðJ 4ða;minða; bÞÞ; aÞ coincides with
J 4ðmaxðb; 1� aÞ; aÞ ¼ maxða;minð1�maxðb; 1� aÞ; 1� aÞÞ ¼ maxða;minð1� b; a; 1� aÞÞ
¼ maxða;minð1� a; aÞÞ ¼ a:
Proposition 26. Let J be an implication function and T 0 a continuous t-norm. Then,

(i) There are no solutions of the Eq. (16) neither when J is a Mamdani–Larsen operator, nor when J is an R-
implication.

(ii) When J ¼ J S;N is an S-implication, it satisfies Eq. (16) if and only if S ¼ max.
Proof. To prove (i) note that when J ¼ T is a Mamdani–Larsen operator, taking b ¼ 0, we obtain
T ðT ða; T 0ða; 0ÞÞ; aÞ ¼ T ðT ða; 0Þ; aÞ ¼ T ð0; aÞ ¼ 0 6¼ a:
When J ¼ J T is an R-implication, take also b ¼ 0 and a 2�0; 1½ such that T ða; aÞ 6¼ 0. We have
JT ða; 0Þ ¼ supfz 2 ½0; 1�jT ða; zÞ ¼ 0g 6 a and then
J T ðJ T ða; T 0ða; 0ÞÞ; aÞ ¼ J T ðJ T ða; 0Þ; aÞ ¼ 1 6¼ a:
To prove (ii), note that when J ¼ J S;N is an S-implication, Eq. (16) can be written as
SðNðSðNðaÞ; T 0ða; bÞÞÞ; aÞ ¼ a for all a 2 ½0; 1�: ð17Þ
Now, since a P NðSðNðaÞ; T 0ða; bÞÞÞ, it is clear that S ¼ max satisfies Eq. (17). Conversely, if J S;N satisfies (17),
taking b ¼ 0, we obtain
a ¼ SðNðSðNðaÞ; T 0ða; 0ÞÞÞ; aÞ ¼ Sða; aÞ
and consequently, S must be the maximum. h

On the other hand, for Q- and D-operators, Eq. (16) can be written, respectively, by
SðNðSðNðaÞ; T ða; T 0ða; bÞÞÞÞ; T ðSðNðaÞ; T ða; T 0ða; bÞÞÞ; aÞÞ ¼ a ð18Þ
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and
Sða; T ðNðSðT 0ða; bÞ; T ðNðaÞ;NðT 0ða; bÞÞÞÞÞ;NðaÞÞÞ ¼ a ð19Þ
for all a; b 2 ½0; 1�. In the first case, we obtain a complicated functional equation that has no immediate solu-
tions. For instance, we have the following result.

Proposition 27. Let N be any strong negation and take T ¼ T 0 ¼ min. Then, there is no continuous t-conorms S

satisfying (18).

Proof. Suppose that a t-conorm S satisfies Eq. (18). Taking b ¼ 0 in this equation, we obtain
Sða;minðNðaÞ; aÞÞ ¼ a for all a 2 ½0; 1�: ð20Þ
Now, if s is the fixed point of N, for all a 6 s we have a 6 NðaÞ and (20) implies Sða; aÞ ¼ a for all a 6 s. By
continuity of S we have Sða; bÞ ¼ maxða; bÞ for all a; b with minða; bÞ 6 s 6 maxða; bÞ.

At the same time, taking a; b in (18) such that NðaÞ < NðbÞ < s < b < a, we have SðNðaÞ; bÞ ¼ b and then
Eq. (18) becomes
a ¼ SðNðSðNðaÞ; bÞÞ;minðSðNðaÞ; bÞ; aÞÞ ¼ SðNðbÞ;minðb; aÞÞ ¼ b
which is a contradiction. Thus, the proposition is proved. h

On the contrary, for D-operators we can give some solutions as stated in the following proposition.

Proposition 28. Let N be a strong negation with fixed point s, take T ¼ T 0 ¼ min and S a continuous t-conorm.
Then, Eq. (19) holds if and only if S is such that Sða; aÞ ¼ a for all a 6 s.

Proof. Just taking b ¼ 0 in (19) we obtain again that S must satisfy Eq. (20) and consequently Sða; aÞ ¼ a for
all a 6 s.

Conversely, if Sða; aÞ ¼ a for all a 6 s we have Sða; bÞ ¼ maxða; bÞ for all a; b with
minða; bÞ 6 s 6 maxða; bÞ as in the previous proposition. Now, Eq. (19) can be checked by considering
several cases:

� If a 6 b then the left side of Eq. (19) becomes
Sða;minðNðSða;NðaÞÞÞ;NðaÞÞÞ ¼ Sða;NðSða;NðaÞÞÞÞ
and then, when a 6 s the above expression is Sða; aÞ ¼ a, whereas when a > s, it is Sða;NðaÞÞ ¼ a.
� If b < a < s, we have Sðb;NðaÞÞ ¼ NðaÞ and then the left side of Eq. (19) becomes
Sða;minðNðSðb;NðaÞÞÞ;NðaÞÞÞ ¼ maxða;minða;NðaÞÞÞ ¼ a:
� If b < a and s 6 a, the result follows similarly by distinguishing two subcases: when b 6 NðaÞ and when
NðaÞ < b. h
As a conclusion, the law ða! a � bÞ ! a ¼ a is another law for which Mamdani–Larsen operators and R-
implications cannot be used, and S-implications only when S ¼ max. Even for QM-operators no simple solu-
tions appear, whereas for D-operators we have found solutions as in Proposition 28.
7. Conclusion

In fuzzy logic, and from the very beginning, it is implicitly accepted that also connectives do have meaning,
that they show different uses and that, consequently, for each particular problem there is a type of connectives
that is better suited than others do. This is also the case of connective If/then, representable by means of sev-
eral models some of them coming either from classical or from quantum logic. There is not a universal class
for each connective, but the specific features of the given problem and, in particular, those shown by the
expression of the involved knowledge, could eventually lead to the needed type of connective.
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Like with and (t-norms), or (t-conorms), and not (strong negations), in the case of the numerical functions J

representing fuzzy (If/then) rules, there is not a class of them being the universal-class. Each rule, or system of
rules, deserves its own J and, to show it as clearly as possible, this paper just followed the strategy of consid-
ering four classical (boolean or quantum) very simple laws that, if needed with fuzzy sets cannot be used with
the same type of functions J.2 Namely:

� If the needed law is l! ðr! lÞ ¼ 1, only R-implications can be used in general (and

several options work for S-, Q- or D-operators).

� If the needed law is ðl! l0Þ ! l ¼ l, Mamdani–Larsen and R-implications cannot be

used, S-implications only for S ¼ max, whereas a lot of Q- and D-operators can be

used.

� If the needed law is ðl! l0Þ ! l0 ¼ 1, no implications of the five models quoted in the
preliminaries can be used.

� If the needed law is ðl! l � rÞ ! l ¼ l, Mamdani–Larsen and R-implications cannot be

used, S-implications only for S ¼ max, for QM-operators no simple solutions appear,
whereas for D-operators some solutions can be found.

From all that it follows, in particular, that R-implications J T are not the only way of representing the
knowledge embedded in fuzzy (If/then) rules: R-implications are not, like the other classes of conditional func-
tions, the universal class of fuzzy conditionals.
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