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In this paper, we investigate complete spacelike hypersurfaces in the de Sitter space
Sn+1

1 (c) with constant k-th mean curvature and two distinct principal curvatures one of
which is simple. We obtain some characterizations of the Riemannian product H

1(c1) ×
S

n−1(c2) or H
n−1(c1) × S

1(c2) in the de Sitter space Sn+1
1 (c).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and main result

Let Mn+1
1 (c) be an (n + 1)-dimensional Lorentzian manifold of constant curvature c, which we call a Lorentzian space

form. Then a Lorentzian space form Mn+1
1 (c) is said to be a de Sitter space Sn+1

1 (c), a Lorentz–Minkowski space Ln+1 or an
anti-de Sitter space Hn+1

1 (c) respectively, according to its sectional curvature c > 0, c = 0 or c < 0. A hypersurface M in a
Lorentzian space form Mn+1

1 (c) is said to be spacelike if the induced metric on M from that of Mn+1
1 (c) is positive definite.

The study of spacelike hypersurfaces in Lorentzian space forms has been of substantial interest from both physical and
mathematical points of view, and has been under very extensive study by many geometricians. From the physical one, that
interest became clear when Lichnerowicz showed that the Cauchy problem of the Einstein equation with initial conditions
on a spacelike hypersurface with vanishing mean extrinsic curvature has a particularly nice form, reducing to a linear
differential system of first order and to a non-linear second order elliptic differential equation. Also, it turns out that the
knowledge of spacelike hypersurfaces in de Sitter spaces can give information about the causal structure in this interesting
class of spacetimes.

From the geometric point of view, it is seen that a complete spacelike hypersurface of a Lorentz–Minkowski space Ln+1

possesses a remarkable Bernstein property in the maximal case by E. Calabi [7], S.Y. Cheng and S.T. Yau [10]. The initial
step for the study of spacelike hypersurfaces in de Sitter space is due to A.J. Goddard [11], that conjectured that every
complete spacelike hypersurface in Sn+1

1 (c) with constant mean curvature must be totally umbilical. Since Goddard’s conjecture has
been completely settled (cf. [2,19] and [21] for details), most of the research interest turns to the study of hypersurfaces in
Sn+1

1 (c) with constant scalar curvature instead of constant mean curvature. Especially, the interest focuses on characterizing
the totally umbilical properties of such hypersurfaces. A classical result due to Q.-M. Cheng and S. Ishikawa [9] states that
the totally round spheres are the only compact spacelike hypersurfaces in Sn+1

1 (c) with constant normalized scalar curvature
R < c. For a more closely study related to the complete spacelike hypersurfaces in Sn+1

1 (c) with constant scalar curvature,
we refer to [5,6,16–18,23] and the references therein.
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Recently, another important and popular problem is to describe the Riemannian product structure of spacelike hyper-
surfaces in de Sitter space Sn+1

1 (c) with constant scalar curvature and with two distinct principal curvatures. For instance,
Z.-J. Hu et al. [12] and S.-C. Shu [22] proved that the spacelike hypersurface in de Sitter space Sn+1

1 (c) with constant scalar
curvature and with two distinct principal curvatures whose multiplicities are greater than 1 is isometric to the Riemannian
product H

k(c1)×S
n−k(c2), 1 < k < n −1. Here, H

k(c1) is a k-dimensional hyperbolic space with constant sectional curvature
c1 < 0 and S

n−k(c2) is well known as an (n − k)-dimensional sphere with constant sectional curvature c2. c1 and c2 are
related by 1

c1
+ 1

c2
= 1

c . Furthermore, Z.-J. Hu et al. [12] investigated the similar problem for the case of the multiplicity of
one of the principal curvatures is n − 1, and proved the following theorem.

Theorem 1.1. (See [12].) Let Mn (n � 3) be an n-dimensional complete spacelike hypersurface in Sn+1
1 (1) with two distinct principal

curvatures.

(i) Assume that Mn has constant scalar curvature n(n − 1)R and that the multiplicity of one of the principal curvatures is n − 1, then
R < n−2

n . Moreover, if we assume that R �= 0 and that the squared length S of the second fundamental form of Mn satisfies

S � (n − 1)
n − 2 − nR

n − 2
+ n − 2

n − 2 − nR
,

then Mn is isometric either to the Riemannian product H
1( −nR

n−2−nR ) × S
n−1( nR

n−2 ) for R > 0 or to the Riemannian product

H
n−1( nR

n−2 ) × S
1( −nR

n−2−nR ) for R < 0.
(ii) Assume that Mn has constant scalar curvature n(n − 1)R, R > 0, and that the multiplicity of one of the principal curvatures is

n − 1. If, in addition, the squared length S of the second fundamental form of Mn satisfies

S � (n − 1)
n − 2 − nR

n − 2
+ n − 2

n − 2 − nR
,

then Mn is isometric to the Riemannian product H
1( −nR

n−2−nR ) × S
n−1( nR

n−2 ).

It is well known that the k-th mean curvatures Hk , for k = 1, . . . ,n, of a given hypersurface in Lorentzian space forms
are the natural generalizations of mean curvature for k = 1 and normalized scalar curvature for k = 2 (up to a constant), for
the details, see Section 2. Therefore, it is also a natural and interesting thing to characterize the totally umbilical properties
and to investigate the Riemannian product structures of spacelike hypersurfaces in a Lorentzian space form Mn+1

1 (c) with
constant k-th mean curvature Hk for some k ∈ [1,n]. We refer reader to [3,4,15] and the references therein for that things
of characterizing the totally umbilical properties of such hypersurfaces.

In this paper, we will focus our attention on studying the Riemannian product structures for spacelike hypersurfaces in
the de Sitter space Sn+1

1 (c) with constant k-th mean curvature and two distinct principal curvatures whose multiplicities
are n − 1 and 1, respectively. In fact, we will prove the following result.

Theorem 1.2. Let Mn (n � 3) be an n-dimensional complete spacelike hypersurface in the de Sitter space Sn+1
1 (c) with constant k-th

mean curvature Hk (> 0) for some k ∈ [2,n] and with two distinct principal curvatures one of which is simple. Assume that H
2
k

k �= c.

If the squared length S of the second fundamental form of Mn in Sn+1
1 (c) satisfies

S � (n − 1)t
2
k
0 + c2t

− 2
k

0

or

S � (n − 1)t
2
k
0 + c2t

− 2
k

0 ,

then Mn is isometric to the Riemannian product H
1(c1) × S

n−1(c2) or H
n−1(c1) × S

1(c2), where c1 < 0, c2 > 0 and 1
c1

+ 1
c2

= 1
c ,

t0 is the positive real root of the equation P Hk (t) ≡ ckt
k−2

k + (n − k)t − nHk = 0 for t > 0.

Remark 1. We will show in Lemma 3.2 that the equation P Hk (t) ≡ ckt
k−2

k + (n − k)t − nHk = 0 for t > 0 has actually only
one positive root when Hk > 0 for any k � 2. The motivation of constructing such a function P Hk (t) of t will be explained
in Remark 3.

Remark 2. Let k = 2, c = 1, then H2 = 1 − R (here R is the normalized scalar curvature). The assumption H
2
k

k �= c reduces to

H2 �= 1, equivalently, R �= 0. Also for k = 2 and c = 1, the only one root of the equation P Hk (t) ≡ ckt
k−2

k + (n − k)t − nHk = 0

is t0 = n(1−R)−2
n−2 . We remark that t0 > 0 because of R < n−2

n by Theorem 1.1. At that time, it is easy to check that (n −1)t
2
k
0 +

c2t
− 2

k = (n − 1)n−2−nR + n−2 . So the assumption S � (n − 1)t
2
k + c2t

− 2
k or S � (n − 1)t

2
k + c2t

− 2
k in Theorem 1.2 reduces
0 n−2 n−2−nR 0 0 0 0
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to S � (n − 1)n−2−nR
n−2 + n−2

n−2−nR or S � (n − 1)n−2−nR
n−2 + n−2

n−2−nR , respectively. Therefore, our main Theorem 1.2 for k = 2
reduces to Theorem 1.1.

Remark 3. The well-known standard models (see U.H. Ki et al. [14]) H
m(c1)×S

n−m(c2), m = 1,2, . . . ,n −1, are the complete
hypersurfaces with nonzero constant k-th mean curvature in the de Sitter space Sn+1

1 (c), where c1 < 0, c2 > 0, 1
c1

+ 1
c2

= 1
c .

We note that H
m(c1) × S

n−m(c2) has two distinct principal curvatures
√

c − c1 with multiplicity m and
√

c − c2 with mul-
tiplicity n − m. In particular, hyperbolic cylinder H

1(c1) × S
n−1(c2) or spherical cylinder H

n−1(c1) × S
1(c2) has two distinct

principal curvatures one of which is simple. Without loss of generality, we may put λ1 = λ2 = · · · = λn−1 = λ, λn = μ. No-
tice that λ �= 0, μ �= 0 and λμ = c, then the squared length S∗ of the second fundamental form of H

1(c1) × S
n−1(c2) or

H
n−1(c1) × S

1(c2) in Sn+1
1 (c) is

S∗ = (n − 1)λ2 + μ2 = (n − 1)
(
λk) 2

k + c2(λk)− 2
k .

Solving μ from Eq. (2.7) and substituting into the formula λμ = c yields

ckλk−2 + (n − k)λk − nHk = 0.

Putting t = λk , the above equation becomes

ckt
k−2

k + (n − k)t − nHk = 0.

This explains where the function P Hk (t) = ckt
k−2

k + (n − k)t − nHk of t in our main Theorem 1.2 arises from.

Remark 4. The similar Riemannian product results for spacelike hypersurfaces in an anti-de Sitter space Hn+1
1 (c) have been

obtained by L. Cao and G. Wei in [8], Y. Jin Suh and G. Wei in [13].

2. Preliminaries

Let Mn be an n-dimensional spacelike hypersurface of Sn+1
1 (c). We choose a local field of pseudo-Riemannian orthonor-

mal frames e1, . . . , en+1 in Sn+1
1 (c) with dual coframe ω1, . . . ,ωn+1, such that, at each point of Mn , e1, . . . , en are tangent

to Mn and en+1 is the unit timelike normal vector. Then the structure equations of Sn+1
1 (c) are given by

dωA =
n+1∑
B=1

εBωAB ∧ ωB , ωAB + ωB A = 0, εi = 1, εn+1 = −1,

dωAB =
n+1∑
C=1

εCωAC ∧ ωC B − 1

2

n+1∑
C,D=1

K ABC DωC ∧ ωD ,

K ABC D = cεAεB(δAC δB D − δADδBC ).

Restricted to Mn , then ωn+1 = 0 and there are, by Cartan’s lemma, symmetric functions hij such that ωin+1 = ∑
j hi jω j

(here and in the sequel, we use the convention for the range of indices: 1 � i, j, . . . � n). This gives the second fundamental
form of Mn , B = ∑

i, j hi jωiω j with squared length S = ∑
i, j h2

i j . The mean curvature H is defined by H = 1
n

∑
i hii .

From all of which, we obtain the structure equations of Mn

dωi =
∑

j

ωi j ∧ ω j, ωi j + ω ji = 0, (2.1)

dωi j =
∑

k

ωik ∧ ωkj − 1

2

∑
k,l

Ri jklωk ∧ ωl, (2.2)

and the Gauss equation

Rijkl = c(δikδ jl − δilδ jk) − (hikh jl − hilh jk). (2.3)

Let hijk denotes the covariant derivative of hij , then we have∑
k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj. (2.4)

The Codazzi equation is

hijk = hikj. (2.5)
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Let Hk , 1 � k � n, be the k-th mean curvatures of the spacelike hypersurface Mn in Sn+1
1 (c), which are defined by(

n

k

)
Hk = σk(λ1, . . . , λn), (2.6)

where
(n

k

) = n!
k!(n−k)! , and σk(λ1, . . . , λn) = ∑

1�i1<···<ik�n λi1 · · ·λik , 1 � k � n, be the normalized symmetric functions of
principal curvatures λ1, . . . , λn . In particular, when k = 1, H1 = H is nothing but the mean curvature of Mn , which is
the main extrinsic curvature of the hypersurface. Hn defines the Gauss–Kronecker curvature of Mn . On the other hand,
H2 defines a geometric quality which is related to the (intrinsic) scalar curvature of Mn . Indeed, a straightforward calculation
by using Gauss equation of Mn , we can show that the scalar curvature of Mn is n(n − 1)(c − H2), in other words, its
normalized scalar curvature is c − H2. We refer reader to [3] for details.

When the spacelike hypersurface Mn in Sn+1
1 (c) has two distinct principal curvatures λ and μ with multiplicities n − 1

and 1, respectively, then we have from (2.6) that(
n

k

)
Hk =

(
n − 1

k

)
λk +

(
n − 1

k − 1

)
λk−1μ,

this implies that

λk−1((n − k)λ + kμ
) = nHk. (2.7)

In order to prove our main Theorem 1.2, we need the following lemma which can be proved by using the same method
as in [20] due to T. Otsuki, see also Z.-J. Hu et al. [12].

Lemma 2.1. Let Mn be a spacelike hypersurface in a de Sitter space Sn+1
1 (c) such that the multiplicities of the principal curvatures

are all constant. Then the distribution of the space of the principal vectors corresponding to each principal curvature is completely
integrable. In particular, if the multiplicity of a principal curvature is greater than 1, then this principal curvature is constant on each
integral submanifold of the corresponding distribution of the space of the principal vectors.

3. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. For the sake of succinctness, we need the following four lemmas which can
be viewed as the key steps in the proof of Theorem 1.2.

Lemma 3.1. Let Mn (n � 3) be an n-dimensional oriented spacelike hypersurface in Sn+1
1 (c) with constant k-th mean curvature

Hk > 0 and two distinct principal curvatures λ and μ with multiplicities n − 1 and 1, respectively. Then w̄ = |λk − Hk|− 1
n satisfies

the following ordinary differential equation of order 2:

d2 w̄

ds2
+ w̄

ckλk−2 + (n − k)λk − nHk

kλk−2
= 0. (3.1)

Proof. Noticing the assumption Hk > 0, then (2.7) ensures λ �= 0. For k � 2, we can solve from (2.7) that

μ = nHk − (n − k)λk

kλk−1
, λ − μ = n(λk − Hk)

kλk−1
. (3.2)

Denote the integral submanifold through x ∈ Mn corresponding to λ by Mn−1
1 (x), and write dλ = ∑

i λ,iωi , dμ = ∑
j μ, jω j ,

where λ,i = ei(λ), μ, j = e j(μ). Then Lemma 2.1 implies that

λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1
1 (x). (3.3)

Taking exterior differentiation of the first formula in (3.2), and using (3.3), we get

μ,1 = μ,2 = · · · = μ,n−1 = 0 on Mn−1
1 (x). (3.4)

Choosing e1, . . . , en such that hij = λiδi j and using (2.4), (2.5), (3.3) and (3.4), it is easy to see that∑
k

habkωk = δabλ,nωn for 1 � a,b � n − 1,

∑
k

hnnkωk = μ,nωn.

These two formulas imply that habn = δabλ,n for 1 � a,b � n − 1 and hnna = 0. Furthermore,∑
haniωi =

∑
hanbωb + hannωn =

∑
δabλ,nωb = λ,nωa. (3.5)
i b b
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On the other hand, we know from (2.4) that∑
i

haniωi = dhan +
∑

i

hinωia +
∑

i

haiωin = (λ − μ)ωan. (3.6)

Comparing (3.5) with (3.6), it follows that

ωan = λ,n

λ − μ
ωa. (3.7)

According to the structure equations of Mn , we get from (3.7) that

dωn = 0. (3.8)

Since the multiplicities of λ and μ are constant, their eigenspaces are completely integrable. Notice that ∇en en =
−∑

a ωna(en)ea = 0 (here ∇ is the Levi-Civita connection of Mn), the integral curves corresponding to μ are geodesics,
and they are orthogonal trajectories of the family of the integral submanifolds corresponding to λ. Let s be the arc length of
the geodesic corresponding to μ. Taking into count of (3.8), we may put ωn = ds (cf. [20]). Thus, we may consider λ = λ(s)
to be locally a function of s, consequently, dλ = λ,nds by (3.3). Substituting into (3.7) and using (3.2), then

ωan = d{log |λk − Hk| 1
n }

ds
ωa. (3.9)

Taking exterior differentiation of (3.9), we derive

dωan = d2{log |λk − Hk| 1
n }

ds2
ds ∧ ωa + d{log |λk − Hk| 1

n }
ds

dωa

= −d2{log |λk − Hk| 1
n }

ds2
ωa ∧ ds + d{log |λk − Hk| 1

n }
ds

(
n−1∑
b=1

ωab ∧ ωb + ωan ∧ ωn

)

=
{
−d2{log |λk − Hk| 1

n }
ds2

+
[

d{log |λk − Hk| 1
n }

ds

]2}
ωa ∧ ds

+ d{log |λk − Hk| 1
n }

ds

n−1∑
b=1

ωab ∧ ωb. (3.10)

On the other hand, using (2.1), (2.2), (2.3) and (3.9), a standard computation gives

dωan =
n−1∑
b=1

ωab ∧ ωbn − 1

2

∑
k,l

Ranklωk ∧ ωl

=
n−1∑
b=1

ωab ∧ ωbn + (λμ − c)ωa ∧ ωn

= d{log |λk − Hk| 1
n }

ds

n−1∑
b=1

ωab ∧ ωb + (λμ − c)ωa ∧ ds. (3.11)

Comparing (3.10) and (3.11), we obtain

d2{log |λk − Hk| 1
n }

ds2
−

{
d{log |λk − Hk| 1

n }
ds

}2

+ (λμ − c) = 0. (3.12)

Using (3.12) and (3.2), for w̄(s) = |λk − Hk|− 1
n , s ∈ (−∞,+∞), a straightforward calculation finishes the proof of

Lemma 3.1. �
Lemma 3.2. Let P Hk (t) = ckt

k−2
k + (n − k)t − nHk, t > 0, be the same as in Theorem 1.2, where c > 0, k � 2 and Hk > 0 is constant.

Then P Hk (t) is a strictly monotone increasing function of t and has unique positive root, denoted by t0 . Moreover,

(1) t0 < Hk when H
2
k

k < c.

(2) t0 > Hk when H
2
k

k > c.
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Proof. Since
dP Hk

(t)
dt = c(k − 2)t− 2

k + (n − k) > 0 for t > 0, it follows that P Hk (t) is a strictly monotone increasing function
of t and limt→+∞ P Hk (t) = +∞.

It is obvious that limt→0+ P Hk (t) = −nHk < 0 for k > 2. When k = 2, the normalized scalar curvature R = c − H2

as we pointed out in Section 2. On the other hand, Theorem 1.1 asserts that R < n−2
n c, equivalently, H2 > 2

n c. Hence,
limt→0+ P H2(t) = 2c − nH2 < 0. In summary, we conclude that limt→0+ P Hk (t) < 0 for k � 2. Therefore, according to the
continuous property of P Hk (t), we infer that P Hk (t) = 0 has only one positive root.

Note that P Hk (Hk) = kH
k−2

k
k (c − H

2
k

k ), so P Hk (Hk) < 0 for H
2
k

k > c and P Hk (Hk) > 0 for H
2
k

k < c. Since P Hk (t) is a strictly

monotone increasing function of t and t0 is a positive root of P Hk (t) = 0, henceforth, t0 > Hk for H
2
k

k > c and t0 < Hk for

H
2
k

k < c. This completes the proof of Lemma 3.2. �
Lemma 3.3. Let Mn be the same hypersurface as in Theorem 1.2 with constant k-th mean curvature Hk > 0 and with two distinct

principal curvatures λ and μ. Suppose that the multiplicity of λ is n − 1. If H
2
k

k �= c, then λk �= Hk. Moreover:

(1) If H
2
k

k > c, then λk > Hk.

(2) If H
2
k

k < c, then λk < Hk.

Proof. Because of λ �= μ, it follows from (3.2) that λk �= Hk .
Since λ �= 0 by the assumption Hk > 0 and Eq. (2.7), choosing the appropriate orientation of Mn , we may suppose that

λ > 0 on Mn . According to the definition of P Hk (t), we can rewrite (3.1) as

d2 w̄

ds2
+ w̄

P Hk (λ
k)

kλk−2
= 0. (3.13)

(1) When H
2
k

k > c, Lemma 3.2 asserts Hk < t0. Suppose now, by contradiction, that λk < Hk , then λk < t0. Consequently,

P Hk (λ
k) < 0 and d2 w̄(s)

ds2 > 0 by (3.13). Thus dw̄
ds is a strictly monotone increasing function of s and has at most one zero

point for s ∈ (−∞,+∞). If dw̄(s)
ds has no zero point in (−∞,+∞), then w̄(s) is a monotone function of s in (−∞,+∞). If

dw̄(s)
ds has exactly one zero point s0 in (−∞,+∞), then w̄(s) is a monotone function of s in (−∞, s0] and [s0,+∞). Notice

that w̄(s) is bounded by definition, so both lims→−∞ w̄(s) and lims→+∞ w̄(s) exist and

lim
s→−∞

dw̄(s)

ds
= lim

s→+∞
dw̄(s)

ds
= 0.

This is impossible because dw̄(s)
ds is a strictly monotone increasing function of s. Therefore, it must be λk > Hk when H

2
k

k > c.

(2) When H
2
k

k < c, then Hk > t0 by Lemma 3.2. Suppose now, by contradiction, that λk > Hk , then λk > t0. Consequently,

P Hk (λ
k) > 0 and d2 w̄(s)

ds2 < 0 by (3.13). Thus dw̄
ds is a strictly monotone decreasing function of s. This will lead to a contra-

diction by taking the similar argument as in case (1), so it must be λk < Hk when H
2
k

k < c. This completes the proof of
Lemma 3.3. �
Lemma 3.4. For t > 0, k � 2 and Hk a positive constant. Let

f (t) = 1

k2t
2k−2

k

{
(n − 1)k2t2 + (

(n − k)t − nHk
)2}

.

Then f (t0) = (n − 1)t
2
k
0 + c2t

− 2
k

0 , where t0 is the only positive root of the equation P Hk (t) = 0 obtained as in Lemma 3.2. Also f (t) is
an increasing (resp. decreasing) function of t for t � Hk (resp. 0 < t � Hk).

Proof. Using the fact P Hk (t0) = 0, it is easy to verify f (t0) = (n − 1)t
2
k
0 + c2t

− 2
k

0 .
After a directly computation, we have

d f (t)

dt
= 2t

2−3k
k

k3

{(
n2 − 2nk + nk2)t2 + n(k − 2)(n − k)Hkt + (1 − k)n2 H2

k

}
.

Putting g(t) ≡ (n2 − 2nk + nk2)t2 + n(k − 2)(n − k)Hkt + (1 − k)n2 H2
k , then g(Hk) = 0. We remind that Hk is the only

one solution of g(t) = 0 since t > 0. In view of n2 − 2nk + nk2 > 0 for k � 2, then g(Hk) = 0 implies that g(t) � 0 for
0 < t � Hk and g(t) � 0 for t � Hk . Consequently, d f (t)

dt � 0 (resp. � 0) for 0 < t � Hk (resp. t � Hk). Hence, Lemma 3.4
follows immediately. �
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Now we are ready to prove our main Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we may put λ1 = λ2 = · · · = λn−1 = λ, λn = μ. By means of the assumption

H
2
k

k �= c, there are two cases, i.e. H
2
k

k > c or H
2
k

k < c. Either of the cases ensures that P Hk (t) has unique positive root t0

according to Lemma 3.2. We remind from Lemma 3.4 that f (t0) = (n − 1)t
2
k
0 + c2t

− 2
k

0 . Meanwhile, λ �= 0 because of the
assumption Hk > 0 and Eq. (2.7), by choosing appropriate orientation of Mn , we may suppose λ > 0 on Mn so that f (λk) is
meaningful. It is easy to check that f (λk) = (n − 1)λ2 + μ2 = S .

If S � (n − 1)t
2
k
0 + c2t

− 2
k

0 , then

f
(
λk) = S � (n − 1)t

2
k
0 + c2t

− 2
k

0 = f (t0). (3.14)

Case (i): H
2
k

k > c. According to Lemmas 3.2 and 3.3, we know that t0 > Hk and λk > Hk . It follows from Lemma 3.4 and
inequality (3.14) that λk � t0. Since P Hk (t) is a strictly monotone increasing function of t with zero point t0, so P Hk (λ

k) � 0.

This fact together with (3.13) leads to d2 w̄
ds2 � 0, which implies that dw̄

ds is a monotonic function of s ∈ (−∞,+∞), so does
w̄(s) when s tends to infinity. Meanwhile, w̄(s) is bounded by virtue of the definition. Hence, both lims→−∞ w̄(s) and
lims→+∞ w̄(s) exist and

lim
s→−∞

dw̄(s)

ds
= lim

s→+∞
dw̄(s)

ds
= 0.

Using again the monotonicity of dw̄(s)
ds , we conclude that dw̄(s)

ds ≡ 0 and w̄(s) is constant. Furthermore, λ is constant on Mn

because of w̄ = |λk − Hk|− 1
n . Making use of (3.2), we also know μ is constant on Mn . Therefore, Mn is an isoparametric

hypersurface. According to the congruence theorem of N. Abe et al. [1], we know that Mn is isometric to the Riemannian
product H

1(c1) × S
n−1(c2) or H

n−1(c1) × S
1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0 and c2 > 0.

Case (ii): H
2
k

k < c. In this case, Lemmas 3.2 and 3.3 assert t0 < Hk and λk < Hk . Then Lemma 3.4 and the inequality
(3.14) imply that λk � t0. Since P Hk (t) is a strictly monotone increasing function of t with zero point t0, so P Hk (λ

k) � 0.

This fact together with (3.13) leads to d2 w̄
ds2 � 0, which implies that dw̄

ds is a monotonic function of s ∈ (−∞,+∞), so does
w̄(s) when s tends to infinity. The same argument as in the case (i) will show that the principal curvatures λ and μ are
constant on Mn , i.e. Mn is an isoparametric hypersurface. We conclude that Mn is isometric to the Riemannian product
H

1(c1) × S
n−1(c2) or H

n−1(c1) × S
1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0 and c2 > 0.

If S � (n − 1)t
2
k
0 + c2t

− 2
k

0 , then

f
(
λk) = S � (n − 1)t

2
k
0 + c2t

− 2
k

0 = f (t0). (3.15)

Applying (3.15) instead of (3.14), the same argument finishes the proof of Theorem 1.2. �
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