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Abstract-Multicomponent distillation is essentially a nonlinear boundary value problem in difference 
equations. Different computational approaches can be developed based on the choice of different parameters 
as the unknown variables, different stages as the initial stage, and different methods to solve the difference 
equations. In this work, ihese different aspects are explored. One particular interesting approach is to choose 
the (m - I) liquid phase concentrations and total liquid molal rate as the unknowns, where m is the number of 
components in the system. This approach results in a system of nonlinear simultaneous mixed difference and 
algebraic equations and presents some interesting computational problems. 

I. INTRODUCTION 

In an earlier paper Noh and Lee (1971), the quasilinearization technique was used to solve 
multicomponent distillation problems. We wish to show in this work that the concept of treating 
multicomponent distillation as nonlinear boundary value problems in difference equations is a 
powerful approach. Many different algorithms can be formulated by the combined use of this 
concept and quasilinearization. For example, the computation of the multistage process can 
commence at any stage in the column as long as appropriate boundary conditions are used. Three 
different starting points, namely the condenser, the reboiler, and the feed stage are illustrated in 
this paper. 

A second aspect concerns the choice of unknown variables. In the earlier paper (Noh and 
Lee, 1971) the liquid phase concentration was used as the unknown variables. Any other 
parameters such as vapor phase concentration, total flow rate of the vapor or liquid, temperature, 
and the flow rates of the individual components can also be used as the unknown variables 
provided that the number of unknown variables is equal to the number of components in the 
system. To illustrate this concept, (m - I) liquid phase concentrations plus total liquid phase flow 
rate will be used as the unknown variables in this work. The number m represents the number of 
components in the system. This approach results in a system of simultaneous mixed difference 
and algebraic equations and presents some interesting computation problems. In a latter paper, 
the use of (m - 1) liquid phase concentrations plus temperature as unknown variables will be 
discussed. 

A third aspect concerns the direction of computation. It is shown in this work that the 
computation can be carried out in any one direction or in any mixed directions. 

2. FEED STAGE AS THE INITIAL STAGE AND LIQUID PHASE COMPOSITION 

AS THE UNKNOWN VARIABLES 

The basic equations for a multicomponent distillation column with liquid phase mole fractions 
as the unknown variables have been obtained in an earlier paper (Noh and Lee, 1971) by using 
conventional material and enthalpy balances and by eliminating all the unknown parameters 
except liquid phase compositions. The resulting equations for a system with a total condenser are 

,%(n) = [k(n + l)x,(n + 1)-x,(0)1 ;, x;(n)h;(n) 

+ [Xi(O)-Xi(n)] 2 kj(n + l)Xj(n t l)H,(n + 1) 
i=l 

+[Xi(n)-ki(!Z + l)Xi(n + l)][z+g Xj(O)hj(O)]=O n=l,2 ,..., f-1. (1) 
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g(n) = 
[ 
ki(tl + I)x,(n + w;xi, +gxi(o)] 2 x,(n)/&(n) 

+ 
[ 
;Xif -iXi(O)-Xi(n) 2 kj(n + I)Xj(fZ + l)Hj(n + 1) 1 j-1 

with i = 1,2,. . ., m, where m is the number of components in the system, x,(n) denotes the mole 
fraction of component i leaving plate n in the liquid phase, F, D, and B denote the total molal 
rates of the feed, distillate, and bottom streams, respectively, ki, hi, and Hi denote the equilibrium 

constant, liquid phase enthalpy, and vapor phase enthalpy of the ith component, respectively, 
and f denotes the feed stage. The plates are numbered consecutively down from the top of the 
column to the reboiler. The condenser is assigned the number zero, and the boiler the number 
(N + 1). The subscripts f and c denote the feed stream and the condenser, respectively. An 
expression for the condenser duty QC can be obtained by using enthalpy balance around the 
condenser. For a total condenser, QC can be represented by 

Qc = V(l),$, xj(O)[Hj(I)-hj(O)I. (3) 

For a total condenser, the zeroth stage or condenser can be represented by 

Xi(O) = k;(l)&(l), i = 1,2, . . ., m, (4) 

where V(l) is the total molal flow rate leaving plate one in the vapor phase. 
Following the Thiele and Geddes assumptions, we shall assume that the following quantities 

are specified: the flow rate, thermal condition and composition of the feed, the number of plates, 
feed plate location, column pressure, and two other variables. These two other variables can be 
any two of the three variables, D, L(O), and V(l), where L (0) represents the total molal flow rate 
leaving the condenser at the liquid phase. Noting that when any two of the three variables are 
specified, the third one can be obtained by using the total material balance equation around the 
condenser. 

Equations (I), (2) and (4) represent m first order nonlinear difference equations over the entire 
column including both the condenser and the reboiler. The m unknowns are xi(n), i = 1,2, . . ., m. 
The parameters k, h, and H are functions of the temperature T. The temperature, in turn, is a 
function of the liquid phase composition through the bubble point temperature equation 

,$ ki(n)xi(n) = 1, (5) 

for all n. Thus, k, h and H are not unknowns but are implicit functions of x,(n) through T. All the 
other quantities in equations (l)-(4) are given. Notice that B can be obtained easily once D and F 
are given. 

The boundary conditions for this system of first order difference equations are 

Fx;, = Dxi(0) + Bx,(N + l), i=1,2 ,..., m. (6) 

In an earlier paper (Noh and Lee, 1971) the above mixed boundary value problem was solved 
by quasilinearization and by commence the computation at n = 0. We wish to solve the same 
problem by quasilinearization except that the feed stage, or n = f, is treated as the initial stage. 
Equations (1) and (2) can be represented symbolically by the vector equation 

g(x(O), x(n), x(n + 1)) = 0, n=l,2 ,..., N, (7) 
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where g and x are m dimensional vectors and the three x vectors are the unknowns in equations 

(1) and (2). The above equation can be linearized as (Noh and Lee, 1971; Bellman and Kalaba. 
1965; Lee, 1968) 

gk +J,c,,[X,+,(n)-x,,(n)l+J,,,+,,[xt+,(n + I)--G(n + 111, (8) 

where the variables with subscript k are known variables and are obtained during the previous 
kth iteration, The matrix J is Jacobian matrix and is functions of the kth iteration variables. 

We have omitted xi(O) in equations (1) and (2) in the above linearization. In actual 
computation, the results for xi(O) of the previous kth iteration will be used in the current (k + 1)s.t 
iteration. Since our computation commence at the feed stage, the values of xi(O) are unknown 
values until the end of the computation. The elements of the Jacobian matrix can be obtained by 
partial differentiation. For example, the elements of J xCnI can be obtained by partial differentiation 
of equations (1) and (2) with respect to x(n). Due to the presence of h and H, implicit 
differentiations must be used. The resulting expressions are fairly complicated and they will not 
be listed here. However, this procedure for obtaining the implicit differentiations using equation 
(5) has been discussed in an earlier paper (Noh and Lee, 1971). For example, the elements for 

J XCll+l) for the rectifying section can be represented by 

agi(n) 
axi(n + 1) = 

2 x,(n)h,(n)-g- m kj(n + l)Hi(n + 1) 
r=l 

,s xr(O)hr(O) ki(n + 1)Sij +[xi(O)-xi(n)] 1 
-~$k,(n+l)x,(n+1)H:(n+t) m k(n+l) 1 i,j=1,2 ,..., m, (9) 

z x,(n + l)kVn + 1) 

with n=l, 2 ,..., f-l, where 

6,= 0, if j 
=l, j=j 

and 

dH dk 
H’=dT, k’=dT, 

where we have omitted the subscript k on all the variables. 
In addition to x,(O), the functions k,(n + 1) and Hi(l) are also not considered in linearization. 

Strictly speaking and also to obtain the quadratic convergence property of quasilinearization, all 
nonlinear functions should be linearized. However, practical experience indicates that due to the 
implicit differentiation, if k,(n + 1) is also considered for linearization, the resulting linear 
equations are so complicated that unreasonably large or small values are obtained for the 
particular and homogeneous solutions. Since H,(l) appears only in equation (3) practical 
experience indicates that the linearization of the function H,(l) does not influence the 
convergence rate to any noticeable degree. 

The general solution for the linearized equation (6) can be represented by 

Xi,~+,cn,=Xi~.,,,(n)+,~, ajXihj.k+l(n) (10) 

i=l,2 ,..., m, n=0,1,2 ,...) N+l, 

where a represents the integration constants, the subscripts h and p represent the homogeneous 
and particular solutions, respectively. These particular and homogeneous solutions can be 
obtained by solving the linearized equations with assumed initial conditions at the feed stage. For 
the rectifying section, the computation is carried out from the feed stage upward until the 
condenser. For the stripping section, this computation is carried out from the feed stage 
downward until the reboiler. Any reasonable values can be used for the initial conditions as long 
as the initial conditions used for the homogeneous solutions are nontrivial and distinct. 
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Once the particular and M sets of homogeneous solutions are obtained, the integration 
constants can be calculated by substituting equation (10) into the boundary condition equation 
(6). The resulting equations represent a system of algebraic equations with a’s as the only 
unknowns. After obtaining the values of a, the general solution can be obtained by using 
equation. Call this just obtained general solution as the kth iteration, (k + 1)st can be calculated in 
a similar manner. This iterative procedure is continued until the desired accuracy is obtained. A 
detailed discussion of the computational procedure is given, see ref. Lee, 1968. 

Numerical results 
The same problem solved by Noh and Lee (1971) and originally solved by Holland (1963) is 

solved. The problem has five hydrocarbon components. The numerical values used are 

Xlf’ 0.05, xy = 0.15, Xjf = 0.25 

xaf = 0.20, xsf = 0.35, N = 9 (11) 

f = 5, F = 100, D = 48.9, v(l) = 175. 

The feed is boiling point liquid and a total condenser is used. The functions H, h, and k have been 
correlated as functions of temperature by Holland (1963). The initial conditions used to obtain the 
homogeneous and particular solutions are listed in Table 1. To start the iteration, the feed 
composition is used as the initial approximation, or 

x,.k=o(n) = 0.05, xl,k=o(n) = 0.15, x3.!+=,,(n) = 0.25 

Xd.k=O(IZ) = 0.20, xS,k=o(n) = 0.35, (12) 

for all n. The convergence rates of the distillate composition and distillate rate are shown in 
Table 2. As can be seen that the convergence rate is slower than that obtained in an earlier paper 
(Noh and Lee, 1971). This is caused by the fact that xi(O), i = 1,2,. . ., m, was not considered in 
linearization. This difficulty can be avoided it in making the material balance, the condenser stage 
is not always included and hence xi(O) does not appear in equations (1) and (2). 

Table 1. Initial conditions used for obtaining particular and 
homogeneous solutions using feed as the initial stage 

Particular Homogeneous solution 
Variable solution I 2 3 4 5 

xS5) 0.2 0.3 0.2 0.2 0.2 0.1 
x*(5) 0.2 0.2 0.3 0.2 0.2 0.2 
M) 0.2 0.2 0.2 0.3 0.2 0.2 
x&) 0.2 0.2 0.2 0.2 0.3 0.2 
x,(5) 0.2 0.1 0.1 0.1 0.1 0.3 

Table 2. Convergence rates of distillate composition and distillate rate using feed as 
the initial stage 

Iteration X!(O) x2(0) 

0 

2 
3 
4 
5 
6 
I 
8 
9 

10 
1S 
20 
2s 
30 

0.05 0.15 0.25 
0.1108 0.3767 OS%5 
0.1022 0.2767 0.3854 
0.1031 0.3013 0.4685 
0.0999 0.2749 0.4093 
0.1010 0.2909 0.4526 
0.1011 0.2890 0.4419 
0.1012 0.2922 0.4535 
0.1015 0.2934 0.4555 
0.1015 0.2942 0.4584 
0.1017 0.2958 0.4616 
0.1020 0.2981 0.4677 
0.1021 0.2994 0.4709 
0.1022 0.2997 0.4716 
0.1022 0.2999 0.472 1 

x3(0) MO -G(O) 

0.20 0.35 
-0.1211 -0.1748 

0.2261 0.1454 
-0.0153 0.0009 

0.1273 0.0789 
0.0358 0.0294 
0.0764 0.0483 
0.051 I 0.0366 
0.0661 0.0456 
0.0584 0.0418 
0.0652 0.0462 
0.0682 0.0494 
0.0708 0.0517 
0.0719 0.0525 
0.0722 0.0528 

D 

38.54 
55.54 
41.89 
48.43 
44.49 
46.78 
45.70 
47.04 
46.67 
47.46 
48.18 
48.65 
48.80 
48.86 
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3. REBOILER AS THE INITIAL STAGE AND LIQUID PHASE COMPOSITION 
ASTHE UNKNOWN VARIABLES 

89 

Instead of used the condenser or the feed stage as the initial stage, the reboiler will be used as 
the initial stage in this section. Equations (l)-(7) remain unchanged. However, in order to 
increase the convergence rate, k,(n + 1) will also be considered in the linearization of equation 
(7). Equation (8) remains unchanged. But because of the linearization with respect to k,(n + I), 
the Jacobians are different from those shown in equation (9). The elements for the Jacobian 
J xCn+l) for the rectifying Section are 

@5(n) 
&V;(n + 1) = L 

2 x,(n)h,(n) -$- 3 x.(O)h,(O)] r=, r-1 

x 

i 

ki(n +1)&j - m 
k,(n + 1) 

xi(n + l)k:(n + 1) 

z xr(n + l)kYn + 1) 

+ [xi(O)-x,(n)] c ki(n + l)Hj(n + 1) 

- g k,(n + l)x,(n + l)H:(n + I)+ 2 k’,(n + l)x,(n + l)K(n + I)] 
r=, 

X 
k,(n + 1) i,j = 1,2,. 

$,x,(n+I)kyn+l) “’ 1 

m, (13) 

with n = 1,2, . ., f - 1. Because of the linearization with respect to xi (n + 1), equation (13) is a 
much more complicated expression than equation (9). The elements of the other Jacobians can be 
obtained in a similar manner. Notice that x, (0) and H,( 1) are still not considered in linearization. 

Since ki(n) is considered in the linearization operation, equation (4) or the zeroth stage 
equation is no longer linear. This equation can be represented as 

gi(0)=xi(O)-ki(l)xi(l)=O, i=l,2 ,..., m. (14) 

Symbolically, this equation can be represented by the vector equation 

g(x@), x(l)) = 0, (15) 

which can be linearized as 

gk(O)+ Jx,o,[x,+dO) - x,(O)1 + Jru,[x,+dl) - xli(l)l = 0. (16) 

The elements of the Jacobian matrices can again be obtained by partial differentiation of equation 

(14). For Jxcolt these elements are 

@-!, (0) __ = &, 
axi (0) 

i,j = I, 2, . . ., m. 

The elements for Jxc,, are 

agi (0) 
-II 

adn) 
- k,( 1)6, + m kj(‘) kXl)x,(l), i,j = 1,2,. . ., m. 

z xr(l)kXl) 

(17) 

(18) 

Equation (10) remains the same. The computational procedure is essentially the same as 
before except that the initial conditions are given at n = iV + I or the reboiler. The particular and 
homogeneous solutions are obtained by calculating upward commence at the reboiler. The initial 
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conditions at n = N + 1 are not listed. It should be emphasized that any reasonable sets of initial 
conditions can be used as long as the homogeneous solutions are nontrivial and distinct. Practical 
experience has indicated that the same genera1 solution is obtained no matter what initial 
conditions are used as long as they satisfy the above specifications. 

Using the numerical values listed in equation (11) and using the same initial approximations as 
those given in equation (12), the numerical results shown in Table 3 are obtained. As can be seen 
that since ki(n + 1) is also linearized, the convergence rate is much faster than that shown in 
Table 2. An even faster convergence rate can be obtained if xi(O) does not appear in equations (1) 
and (2). This can be achieved by performing the material balance from the reboiler instead of 
from the condenser of column. The resulting equations would include x,(N + 1) as unknowns in 
the difference equations. Thus, xi(N + 1) must be considered in the linearization. 

Table 3. Convergence rates of distillate composition using reboiler as 
the initial stage 

Iteration Xl(O) x,(O) X?(O) x,(O) x,(O) 

0 0.05 0.15 0.25 0.20 0.35 

: 
0.2072 0.8022 I.2772 - -0.5207 - -0.7659 
0.1021 0.2761 0.5745 0.0330 0.0142 

3 0.1022 0.3104 0.4502 0.0622 0.0749 
4 0.1022 0.2976 0.4891 0.0794 0.0317 
5 0.1022 0.3004 0.4624 0.0692 0.0657 

10 0.1022 0.3001 0.4742 0.0725 0.0511 
15 0.1022 0.3000 0.4719 0.0726 0.0533 
19 0.1022 0.3000 0.4722 0.0726 0.053 I 

4. TOTAL LIQUID FLOW RATE AS AN UNKNOWN VARIABLE WITH BOUNDARY 
CONDITIONS AT FEED STATE 

In the previous Sections, xi(n) was used as the m unknown variables and all the other 
parameters are considered as functions of x,(n). In practical designs, it is much more convenient 
if the m unknown variables are (m - 1)x’s and one liquid phase total molal rate. This choice of 
unknown variables results in a system of simultaneous mixed algebraic and difference equations. 
We shall show that this mixed system of equations can also be solved by the quasilinearization 
technique. 

Eliminating the total molal vapor rate, V(n + I), and the mole fraction of component i in the 
vapor, y, (n + l), from the four equations which are obtained by using the total material balance, 
individual material balance, enthalpy balance and the equilibrium ratio relationship, the following 
two equations can be obtained for the rectifying section 

g,(n) =[L(n)+D]k,(n + I)x,(n + I)-L(n)x,(n)-Dx,(O)=O, 

i=1,2 ,..., m-l; n=1,2 ,..., (f-l) (l9a) 

gm(n) = [L(n)+ D] 2 kj(n + I)Hj(n + l)Xj(n + 1) 
j-l 

171 ,,I 

-L(n)CXj(n)hj(n)-DC X,(O)h,(O)-Qc =O n=l,2 ,...,(f-I), (20) 
j=l j=I 

where the material and enthalpy balances were obtained by considering a section of the column 
which includes the condenser and any stage n. The fidw rate L(n) represents the total liquid 
phase molal rate leaving stage n. Again, a total condenser has been assumed in the above 
equations. The unknown x,,,(n) can be eliminated from equation (20) by using the following 
equation 

x,,(n) = 1 - c x,(n). (21) 
j=l 

Equation (20) now becomes 

~m(n)=[L(n)+DJa(n+I)-L(n)p(n)-DP(O)-Q,.=O, n=l,2,...,(f-I) (l9b) 
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m-1 
a(n)=/&(n)&(n)+ ,z (Xi(~)[~i(n)Hj(n)-k~(n)~~(n)l) (22) 

(23) 

For the stripping section, the material and enthalpy balances were obtained by considering the 
reboiler and any stage (n + 1). After elimination, the resulting two equations for the stripping 
section are 

gi(n)=[L(n)-B]ki(n + I)Xi(fI + l)+BX(N+ l)-L(?Z)Xi(n)=O, 

i=1,2 ,..., m-l; n=N,N-l,..., f 

gm(n)=tL(n)-B]a(n +l)-L(n)p(n)-D/3(O)bQc +Fg X&j~=O, 
j-l 

n=N,N-l,...,f. 

(244 

(24b) 

Equations (19) and (24) are the desired equations. They constitute m nonlinear first order 
difference equations. The m unknowns are L(n) and xi(n), i = 1,2,. . ., (m - 1). Notice that 
equations (19) and (24) are a mixed simultaneous system of algebraic and difference equations. 
The equations are algebraic in L(n) since only an algebraic quantity L(n) appears in these 
equations. They are first order difference equations in Xi(n) since both xi(n) and Xi(n + 1) appear 
in these equations. Since L(n) is an algebraic quantity and also since L(0) is given, no equation is 
needed for the zeroth stage for L(n). For x(n), the zeroth stage equation can be represented by 

gi(0)=Xi(O)-k,(l)xi(l), i=1,2 ,..., (m-l). (25) 

Equations (19), (24), and (25) represent the complete column including the condenser and the 
reboiler. The condenser duty, QC, is represented by equation (3). The unknown x, (0) can again be 
eliminated from equation (3) by using equation (21). The resulting equation is 

Qc = V(1)l~m(1)-kz(O)l+ V(1) ,z X~(O)[~~(l)-~j(O)-~~(l)+~~(O)I. (24) 

Instead of solving the above system in a stage by stage fashion from the condenser to the 
reboiler, the problem will be solved in two sections with the boundary conditions at the feed 
stage. In other words, the calculations will commence at each end of the column and continue in a 
stage by stage fashion until the feed plate. In order to use the same initial conditions at both end 
of the column, the following equation can be added to the above system of difference equations 

Fxi,=Dxi(0)+Bxi(N+l), i=l,2 ,..., (m-l). (27) 

Equations (19), (24), (25) and (27) constitute the system of difference equations over the entire 
length or stages of the problem. Notice that equation (27) is a first-order difference equation for 
our purpose. The boundary conditions for this system of equations can be obtained by matching 
the results at the feed plate. 

$Cf)fiCf)=ki(f)XI(f), i= 1,2,.. .,(m ~ l), (28) 

where Z represents the stripping section results and x represents the rectifying, section results. 
The above system of equations can again be solved by quasilinearization. Equations (19) and (24) 
can be represented symbolically by 

g(x(O),X(n), z(n + l),x(N + 1)) = 0, n = 1,2,. . ., N, (29) 

where g and z(n + 1) represent m dimensional vectors with components g,, g,, . . ., g, and 
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x,(n + l), xZ(n + l), . . ., x,,-~(Iz + l), L(n), respectively. The x’s represent (m - 1) dimensional 
vectors. Equation (29) can be linearized as 

gk+Jx(0)[Xk+I~O)-X~(O~l+Jx,n~~~L.~il~n.~-~li~~~l 
+ J*(“+,)[&+,(n + 1) - &(?I + 111+ Jx,N+I,[Xk+,(N + 1) - Xk(N + 111 = 0, (30) 

where Jz~n+,~ represents an m x m matrix and the other Jacobians are mx(m - 1) matrices. The 
elements of the Jacobians can be obtained in the same way as before. Again, the functions ki(n) 
and H,(l) are not considered in the linearization. Since ki(n) is not considered in linearization, 
both equations (25) and (27) are linear equations. The general solutions for the linear equations 
(25), (27) and (30) can be represented by 

i=1,2,. . ., (m - I); n = 0, 1,2, ., N + 1 

Since L(n) appears only as an algebraic quantity, the solutions for L(n) is 

Lk+,(n) = L,,,,+,(n), n = 1, 2,. . ., n. (32) 

However, equation (32) is correct only if correct values of xi(O), i = 1,2,. . ., (m - 1) are used as 
the initial condition for the particular solution. Since xi (0)‘s are unknown quantities whose values 
are the desired results, some approximate values must be used for xi(O). Thus, equation (32) is not 
exact until convergence is obtained. To avoid this difficulty, any reasonable set of values were 
used for x,(O) and the following equation is used to obtain the solution of L(n) during the first 

few iterations 

withn=1,2,..., N. The (m - 1) integration constants can be obtained by substituting equation 
(31) into the boundary conditions. Equation (28). Once the (m - 1) a’s are obtained, the general 
solution can be obtained by using equations (31)-(33). 

Using the numerical values listed in equation (11) and using the following initial 
approximations 

x,&=0(n) = 0.05, Xz.k=,,(n) = 0.15, x&k=<,(n) = 0.25, X4.&n) = 0.20, (34) 

for all n, and 
Lk=,,(n)= 126.2, n= 1,2 ,..., f-1 

1,~=“(n)=226.2, n=Lf+l,... ,N, (35) 

the results listed in Table 4 is obtained. Notice that the initial approximations used are very 
approximate and 126.2 is the value of L(0). 

Table4. Convergenceratesofdistillatecompositionand L(l) 

Iteration Xl(O) x,(O) x,(O) x4(0) L.(l) 

0 0.05 0.15 0.25 0.20 126.2 
I 0.1584 0.3857 0.4732 0.0003 127.4 
2 0.1440 0.3601 0.4735 0.0494 103.2 
3 0.0963 0.2934 0.4724 0.0681 120.3 
4 0.1056 0.3021 0.4663 0.0611 125.3 
5 0.1025 0.2999 0.4704 0.0673 124.8 
6 0.1022 0.2998 0.4712 0.0691 123.8 
7 0.1022 0.2999 0.4717 0.0707 122.9 
8 0.1022 0.2999 0.4721 0.0717 122.3 
9 0.1022 0.3000 0.4722 0.0722 122.0 
10 0.1022 0.3000 0.4723 0.0724 121.9 
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For the homogeneous solutions, the same values listed in Table 1 are used as the initial 

conditions for all iterations for xihj,k+l (0), i,j = 1,2,3,4. However, since we wish to obtain the 

solution for L(n) simultaneously, the initial conditions used for the particular solutions are 

x~~,~+,(O) = x~,~+~O), i = 1,2, . . ., (m - 1). (36) 

In other words, the general solution of the previous iteration is used as the particular solution 
initial condition of the current iteration for all the iterations. Notice that inspite of the very rough 
initial approximations, the convergence rates obtained are much faster than those obtained 
earlier. Furthermore, since only (m - l), not m, homogeneous solutions are needed, the 
computation time required is also reduced. 
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