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SUMMARY

The cell-cycle transition from G1 to S phase has been
difficult to visualize. We have harnessed antiphase
oscillating proteins that mark cell-cycle transitions
in order to develop genetically encoded fluorescent
probes for this purpose. These probes effectively la-
bel individual G1 phase nuclei red and those in S/G2/
M phases green. We were able to generate cultured
cells and transgenic mice constitutively expressing
the cell-cycle probes, in which every cell nucleus ex-
hibits either red or green fluorescence. We per-
formed time-lapse imaging to explore the spatiotem-
poral patterns of cell-cycle dynamics during the
epithelial-mesenchymal transition of cultured cells,
the migration and differentiation of neural progeni-
tors in brain slices, and the development of tumors
across blood vessels in live mice. These mice and
cell lines will serve as model systems permitting un-
precedented spatial and temporal resolution to help
us better understand how the cell cycle is coordi-
nated with various biological events.

INTRODUCTION

Considerable progress has been made toward understanding

the mechanism of cell-cycle progression in individual cells

(Nurse et al., 1998; Nurse, 2000). However, the cell cycle is reg-

ulated not only by intracellular signals, but also by extracellular

signals, and less is known about how the cell cycle is coordi-

nated with differentiation, morphogenesis, and cell death in a

multicellular context. While the transition from M to G1 phase—
namely cell division—can be monitored by morphological

changes, the transition from G1 to S is difficult to observe in

live samples. To date, the G1/S transition has mostly been ob-

served either after nuclear bromodeoxyuridine (BrdU) staining,

or by synchronizing the cell cycle by pharmacological means.

Recently, several cell-cycle markers that identify the S phase

and the subsequent transition to G2 in live cells have been devel-

oped by fusing fluorescent proteins to proliferating cell nuclear

antigen (PCNA) (Leonhardt et al., 2000; Essers et al., 2005; Kisie-

lewska et al., 2005), DNA ligase I (Easwaran et al., 2005), or the

C terminus of helicase B (GE healthcare). However, since identi-

fication of cell-cycle transitions requires the detection of subtle

and often minute changes in the distribution pattern and intensity

of fluorescence signals, these markers cannot track phase tran-

sitions with high contrast.

In addition to being regulated at the transcriptional and post-

translational levels, the cell cycle is controlled by ubiquitin

(Ub)-mediated proteolysis (Figure 1A) (Ang and Harper, 2004;

Nakayama and Nakayama, 2006). The APCCdh1 and SCFSkp2

complexes are E3 ligase activities that mark a variety of proteins

with Ub in a cell cycle-dependent manner (Vodermaier, 2004).

Because the SCFSkp2 complex is a direct substrate of the

APCCdh1 complex but also functions as a feedback inhibitor of

APCCdh1 (Wei et al., 2004; Benmaamar and Pagano, 2005), these

two ligase activities oscillate reciprocally during the cell cycle.

The APCCdh1 complex is active in the late M and G1 phases, while

the SCFSkp2 complex is active in the S and G2 phases.

Two direct substrates of the APCCdh1 and SCFSkp2 complexes,

Geminin and Cdt1, are involved in ‘‘licensing’’ of replication ori-

gins (Nishitani et al., 2000). This carefully regulated process en-

sures that replication occurs only once in a cell cycle. In higher

eukaryotes, proteolysis and Geminin-mediated inhibition of

the licensing factor Cdt1 are essential for preventing re-replica-

tion. Due to cell cycle-dependent proteolysis, protein levels of

Geminin and Cdt1 oscillate inversely. Western blot analysis of
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synchronized cultured cells has shown that Cdt1 levels are high-

est during G1, while Geminin levels are highest during the S, G2,

and M phases (Nishitani et al., 2004). In this study, we harnessed

the regulation of cell cycle-dependent ubiquitination in order to

develop two genetically encoded indicators for cell-cycle pro-

gression.

RESULTS AND DISCUSSION

Construction of Cell-Cycle Probes
We fused red- and green-emitting fluorescent proteins to E3 li-

gase substrates, Cdt1 and Geminin, to develop dual-color fluo-

rescent probes that indicate whether individual live cells are in

G1 phase or S/G2/M phases (Figure 1B). First, a fast-folding var-

iant of mKO (monomeric version of Kusabira Orange) (Karasawa

et al., 2004) was generated (H.O.S. Karasawa and A.M., unpub-

lished data) and named mKO2. mKO2 was fused to full-length

human Cdt1 (hCdt1) (Figure 1C, [1–546]). When the chimeric

protein was expressed in HeLa cells under the control of the

ubiquitous CMV promoter, red fluorescence was observed in

the nuclei of a fraction of cells. Cells were then time-lapse im-

aged using computer-assisted fluorescence microscopy (Olym-

pus, LCV100). Cell morphology was monitored by differential

interference contrast (DIC) to follow cell division. During the first

48 hr after transfection, we observed a sudden disappearance of

red fluorescence, suggesting that mKO2-hCdt1 protein was

being degraded by the SCFSkp2 complex at the onset of S phase.

However, after 48 more hours, we noticed that the transfected

cells failed to proceed to mitosis, whereas nontransfected cells

divided normally. This is consistent with the fact that overexpres-

sion of hCdt1 causes re-replication of DNA (Vaziri et al., 2003;

Blow and Dutta, 2005). In addition, we were unable to obtain

any healthy stable transformants expressing the chimeric

protein.

To overcome the cell-cycle arrest, numerous hCdt1 deletion

mutants were constructed and fused to mKO2 (Figure 1C),

then evaluated for cell cycle-dependent red fluorescence in the

nucleus by time-lapse imaging. As expected, the Cy motif (amino

acids 68 – 70), which binds to the SCFSkp2 E3 ligase (Nishitani

et al., 2006), was required for proper function. Although the

N-terminus of hCdt1 (amino acids 1–10) binds to a different E3

ligase (Cul4) (Senga et al., 2006; Nishitani et al., 2006), removal

of this region appeared to be critical for the establishment of sta-
ble transformants with normal cell division. Since Cdt1 degrada-

tion by the SCFSkp2 complex has been shown to be independent

of its binding to Geminin (Lee et al., 2004; Nishitani et al., 2004;

Sugimoto et al., 2004), we also removed the Geminin-binding re-

gion. The resulting truncated hCdt1 protein (amino acids 30–120)

is sufficient for marking cells in G1 phase [mKO2-hCdt1(30/120),

Figure 1C]. Interestingly, mKO2 in mKO2-hCdt1(30/120) could

not be replaced with mAG (the monomeric version of Azami

Green) (Karasawa et al., 2003), mEGFP, or mRFP1; the use of

these latter fluorescent proteins resulted in constant fluores-

cence signal throughout the cell cycle (Figure 1C).

Like Cdt1, the cyclin-dependent kinase (Cdk) inhibitor p27 is

ubiquitinated by the SCFSkp2 complex. Since a p27-luciferase

(p27Luc) fusion protein can be used to monitor Cdk2 inhibitor

pharmacodynamics in vivo (Zhang et al., 2004), we attempted

to fuse fluorescent proteins to p27 or the p27 domains recog-

nized by ubiquitin ligase, but none of the fusions produced

bright, cell cycle-dependent fluorescence comparable to that

observed with mKO2-hCdt1(30/120) (data not shown).

Next, mKO2 was fused to truncated versions of human Gem-

inin (hGem) (Figure 1D) and tested as described for mKO2-

hCdt1. A chimeric protein composed of mKO2 and the 110

amino acid N-terminus of hGem [mKO2-hGem(1/110)] showed

the best performance among the constructs tested. It should

be noted that mKO2-hGem(1/110) also lacks the Cdt1 binding

region (Lee et al., 2004). Unlike hCdt1(30/120), hGem(1/110)

could be fused to several other fluorescent proteins. mAG was

substituted to generate a green version, mAG-hGem(1/110)

(Figure 1D).

Cell Cycle Analysis of Cultured Cells Stably
Expressing the Cell-Cycle Probes
We next used lentiviral vectors for coexpression of the two con-

structs in HeLa cells. Since this gene-transfer technique is highly

efficient, cotransduction allowed us to obtain stable transform-

ants expressing equivalent levels of mKO2-hCdt1(30/120) and

mAG-hGem(1/110). In each transformant, red fluorescence al-

ternated with green fluorescence in the nucleus (Movie S1 avail-

able online). A typical time series is shown in Figure 1E. The cell-

cycle period was variable, presumably due to differences in cell

density and serum concentration. Since the green fluorescence

disappeared rapidly in late M phase and the red fluorescence be-

came detectable in early G1 phase, a small gap in fluorescence
Figure 1. Development and Characterization of a Fluorescent Indicator for Cell-Cycle Progression

(A) Cell-cycle regulation by SCFSkp2 and APCCdh1 maintains bistability between G1 and S/G2/M phases.

(B) A fluorescent probe that labels individual G1 phase nuclei in red and S/G2/M phase nuclei green.

(C) Various constructs with concatenated mKO2 and deletion mutants of human Cdt1 for labeling nuclei in G1 phase. Grey box, QXRVTDF motif (amino acids

1–10); blue box, Cy motif (amino acids 68–70); cyan box, Geminin binding domain (data from mouse Cdt1). Symbols and abbreviations are as follows: B,

pass; 3, failure; N, nucleus; C, cytosol.

(D) Various constructs with concatenated mAG and deletion mutants of human Geminin for labeling nuclei in S, G2, and M phases. Pink box, D (destruction) box;

black box, NLS; yellow box, coiled coil domain (Cdt1 binding domain). Symbols and abbreviations are as follows: B, pass; 3, failure; D, marginal; —, not de-

termined; N, nucleus; C, cytosol.

(E) Cell cycle-dependent changes in fluorescence of mKO2-hCdt1(30/120) and mAG-hGem(1/110) in HeLa cells. Arrows indicate cells that were tracked. The

scale bar represents 10 mm.

(F) Typical fluorescence images of HeLa cells expressing mKO2-hCdt1(30/120) and mAG-hGem(1/110) and immunofluorescence for incorporated BrdU at G1,

G1/S, S, G2, and M phases. The scale bar represents 10 mm.

(G) HeLa cells showing red [mKO2(+)mAG(-)], yellow [mKO2(+)mAG(+)], and green [mKO2(-)mAG(+)] fluorescence were collected, and their DNA contents were

stained with Hoechst33342 and measured using a fluorescence-activated cell sorter.
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was observed in newborn daughter cells. By contrast, during

red-to-green conversion, red and green fluorescence always

overlapped to yield a yellow nucleus. To examine whether the

timing of the color conversion correlates with the onset of S

phase, transformants were pulse-labeled with BrdU for five min-

utes and immediately immunostained for BrdU. Typical confocal

images of cells at the G1/S transition and in the G1, S, G2, and M

phases are shown in Figure 1F (see Figures S1A–S1D for a wide-

field image). Since all of the cells with yellow nuclei showed BrdU

incorporation, the emergence of the green fluorescence is indic-

ative of the initiation of the S phase. Similar results were obtained

from a separate experiment in which we immunostained for

PCNA (Bravo and Macdonald-Bravo, 1987) (Figure S1E). Cells

with nuclei emitting pure green fluorescence were also ob-

served. These cells were either in the S or G2 phase, and were

distinguishable by nuclear BrdU or PCNA immunostaining.

These results are consistent with the fact that Cdt1 accumulates

in G1, while Geminin accumulates in S/G2/M phases.

We named this fluorescent, ubiquitination-based cell cycle in-

dicator, ‘‘Fucci.’’ Analysis of DNA content by flow cytometry

revealed the same distribution between Fucci-expressing and

parental HeLa cells (Figure 1G, left). Cells expressing Fucci

were divided into red-, yellow-, and green-emitting populations

[mKO2(+)mAG(-), mKO2(+)mAG(+), mKO2(-)mAG(+), respec-

tively] (Figure 1G, middle), and their DNA contents were analyzed

following Hoechst33342 staining. Green and yellow cells had

fully- and partially-replicated complements of DNA, respectively

(Figure 1G, right). Thus, differential profiling of cells at G1 and

S/G2/M phases can be achieved by sorting a population of cells

into red, yellow, or green and examining various cellular func-

tions, such as gene expression and antigen surface expression.

Stable transformants constitutively expressing Fucci were ob-

tained using other cell lines, including normal murine mammary

gland (NMuMG) cells, PC12 cells, and COS7 cells.

Monitoring Structural and Behavioral Changes
and Cell-Cycle Dynamics of Cultured Cells
The epithelial-mesenchymal transition (EMT) is a fundamental

morphogenetic process by which mesenchymal cells are formed

from epithelia during embryonic development, wound repair,

and tumor progression in multicellular organisms (Thiery and

Sleeman, 2006). In vitro EMT is characterized by dissolution of

cell-cell junctions, cytoskeletal rearrangements, and increased

motility of cultured cells. It is possible that specific stages of

the cell cycle are involved in the process. Indeed, it was recently

reported that transforming growth factor b (TGFb) efficiently in-

duced EMT in AML-12 hepatocytes synchronized at the G1/S

phase, but not in cells synchronized at the G2/M phase (Yang

et al., 2006). Moreover, NMuMG cells undergo EMT in response

to TGFb (Piek et al., 1999; Tojo et al., 2005).

To examine cell-cycle progression during EMT, we examined

Fucci-expressing, stably transformed NMuMG cells. After cells

were plated on a glass coverslip, they proliferated as clusters

maintaining cell-cell adhesion with their neighbors (Figure 2A,

1 hr). The high proliferation rate of these cells was evidenced

by the large fraction of cells with green nuclei (Figure 2A, 25–

49 hr). However, at confluence, the green nuclei were replaced

with red nuclei (Figure 2A, 73 hr), indicating that cells remained
490 Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc.
in G1 phase (Movie S2, left). When we introduced a wound in

the confluent monolayer (Figure 2C, 1 hr), cells at the edge of

the wound turned green (Figure 2C, 13 hr, arrows), indicating

that closure of the wound required proliferation of NMuMG cells.

Notably, the green nuclei appeared 9-13 hr after wound induc-

tion. Such a time delay of more than 8 hr was reproducibly ob-

served in other similar wound healing experiments and is remi-

niscent of the 8 hr required for NIH 3T3 cells to re-enter the

cycle from a state of quiescence (G0) after the onset of prolif-

eration stimuli (Zetterberg and Larsson, 1985). It is thus possible

that the confluent NMuMG cells (Figure 2A, 85 hr) remained in

G0 phase.

Next, we performed the same experiments in the presence of

1 ng/ml of TGFb. Within one day following TGFb treatment,

the number of cells with green nuclei increased (Figure 2B,

1–49 hr), indicating that this ligand induced a G1/S transition.

Subsequently, cells began to adopt a spindle-shaped, fibro-

blast-like morphology and high motility (Figure 2B, 49 hr). After

two days of TGFb treatment, the number of cells with green nu-

clei diminished, reflecting the G1 arrest effect of TGFb (Figure 2B,

49–85 hr) (Movie S2, right). Thus, TGFb-treated cells spread

without proliferation, in contrast with the untreated NMuMG

cells, which were densely packed in a confluent monolayer. In

addition, the introduction of a wound did not result in prolifera-

tion, but rather a further expansion of cells (Figure 2D).

Cell-Cycle Progression of Tumor Cells in Live Mice
Whole-body and intravital cellular imaging of mice injected with

cultured tumor cells genetically labeled with fluorescent proteins

has proven to be a powerful technique for investigating tumor

development (Hoffman, 2005; Yamauchi et al., 2006). We tested

whether or not Fucci could be used to monitor tumor develop-

ment by subcutaneously injecting Fucci-expressing NMuMG

cells into the mammary fat pad of nude mice (Figure 3A). One

day after inoculation, both green and red cells were observed

(Figure 3B). After 16 days, however, only red cells were seen

(Figure 3C), indicating that NMuMG cells are nontumorigenic.

Next, Fucci-expressing HeLa cells were injected in a similar fash-

ion into nude mice (Figure 3D). The injected cells gradually grew

and emitted both green and red fluorescence for a month, sug-

gesting tumor progression (Figures 3E and 3F). The expanded

mass was observed through the skin under a microscope (Olym-

pus, IV100, 103, UplanFL N N.A. = 0.30) 27 days after injection

(Figure 3G). Well-developed tumor vessels were visualized by

loading AngioSense750, which emits far-red fluorescence. Al-

though triple-color live imaging identified HeLa cells in G1 and

S/G2 phases, their positions relative to the vessels were not clear

due to the low spatial resolution. The tumor was fixed, sectioned,

and stained with an antibody against CD31. Both the red and

green fluorescence of Fucci remained after conventional immu-

nostaining procedures, including fixation in 4% PFA. The cell-cy-

cle phase pattern of HeLa cells around blood vessels was clearly

visualized (Figure 3H). The pattern appeared to depend on sev-

eral factors, including the maturity of vessels and the degree of

necrosis in the surrounding tissues. A statistical analysis is un-

derway to investigate these relationships.

Next, cell-cycle progression of tumor cells was examined dur-

ing the initial steps of the classic metastatic cascade, such as



Figure 2. Cell-Cycle Regulation of Cultured NMuMG Cells

(A and B) Fluorescence images of Fucci-expressing NMuMG cells in the absence (A) and presence (B) of TGFb (1 ng/ml) while reaching a confluent monolayer

state.

(C and D) Fluorescence images of Fucci-expressing NMuMG cells in the absence (C) and presence (D) of TGFb (1 ng/ml) after the monolayer was scratched. Two

nuclei entering S phase at 13 hr are indicated by arrows in (C). The scale bar represents 50 mm.
adhesion to endothelial cells and extravasation. Fucci-express-

ing HeLa cells in a gel were injected into a skin vein (Figure S2),

and intravital cellular imaging was performed. Interestingly, at

early stages, nearly all of the cells attached to the inner wall of

the veins were in G1 phase (Figures 3I and 3J). We captured an

image of a cell in the process of extravasation (Figures 3K, 3L,

and 3M). Within a cluster of HeLa cells across a vein wall, an
elongated cell with a yellow, fragmented nucleus was observed

to pass through the wall. Four days postinjection, HeLa cells

were found to invade and proliferate over the veins (Figures 3N

and 3O), suggesting multiple occurrences of extravasation.

Previous work showed that cultured cells with differentially la-

beled cytoplasm and nuclei that were injected into mice could be

used to image nuclear-cytoplasmic dynamics in order to monitor
Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc. 491



Figure 3. Cell-Cycle Progression of Cultured Cells Injected into Live Mice

(A–H) Observation of Fucci-expressing cultured cells subcutaneously inoculated into the mammary fat pad of nude mice. (A–C) Fucci-expressing NMuMG cells.

(D–H) Fucci-expressing HeLa cells. (A–F) Whole-body images were acquired using the Olympus OV100 Imaging System with a 0.143 objective lens and F-View II

camera (Soft Imaging System). The scale bar represents 1 cm. (A, B, D, and E) 1 day postinoculation. (C and F) 16 days postinoculation. (A and D) bright-field

images. (B, C, E, and F) Red and green fluorescence images were merged. The yellow mass (B, E, and F) consisted of both red and green nuclei, while the red

mass (C) consisted predominantly of red nuclei. (G) A triple-color intravital cellular image of the expanded mass of HeLa cells 27 days post inoculation. Tumor

vessels were visualized (blue) after loading the mouse with AngioSense750. Image acquisition was performed using an IV100 intravital laser scanning microscope

(Olympus). The scale bar represents 100 mm. (H) A triple-color image of a section of the fixed mass. Vessels were stained for CD31 and displayed in blue. Image

acquisition was performed using an FV1000 confocal microscope system. The scale bar represents 100 mm.

(I–O) Observation of Fucci-expressing HeLa cells after injection into an epigastrica cranialis vein. Fluorescence images were acquired using the Olympus OV100;

red and green images were merged and superimposed on DIC images. Vessels are delineated with white dotted lines. The scale bar represents 100 mm. (I and J)
492 Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc.



cancer cell trafficking, deformation, extravasation, mitosis, and

cell death in live mice (Yang et al., 2003). In combination with

these cytoplasmic labeling techniques, fluorescence imaging

of stably transformed Fucci-expressing cells injected into live

animals will provide reliable pharmacodynamic readouts for

the growth and metastatic behavior of tumors.

Cell Cycle Analysis of Developing Neural Tissue
in Fucci Transgenic Mice
One major advantage of our genetically encoded probe is that it

need not depend on transcriptional regulation; its transcription

can be driven using constitutive promoters. Thus, we can easily

generate transgenic organisms for cell cycle analysis. Using the

CAG promoter (Niwa et al., 1991), we have made transgenic

mouse lines that ubiquitously express mKO2-hCdt1(30/120).

From 16 mouse lines emitting red fluorescence, #596 was se-

lected for further characterization. We also made eight green

fluorescent mAG-hGem(1/110) mouse lines from which #504

was chosen for further characterization. These mouse lines pro-

vide us with an unprecedented model system with which to

study the coordination of the cell cycle and development. #504

is particularly useful because it provides in vivo information

about proliferation patterns. During early development of the

mammalian cerebral cortex, neural progenitors in the ventri-

cular zone (VZ) undergo expansion. To determine whether

mAG-hGem(1/110) green fluorescence is produced by neural

progenitors, we performed immunohistochemistry on telen-

cephalic sections of an embryonic day (E)14 #504 transgenic

embryo. Since the telencephalic cells with green nuclei were im-

munopositive for Nestin but not MAP2 (Figure S3), these cells

were likely to be neural progenitors.

Next, we crossbred #596 and #504 transgenic mice to gener-

ate a mouse line producing Fucci, in which every somatic cell nu-

cleus exhibited either red or green fluorescence. We fixed an E13

Fucci transgenic embryo and prepared coronal sections of the

brain. Red and green fluorescence was examined in every sec-

tion using confocal laser scanning microscopy. Fluorescence

images of three representative sections are shown in Figures

4A, 4E, and 4I. The red and green signals appear to be well bal-

anced at the embryonic stage, but the overall ratio of green-to-

red signal decreases as the mice grow (data not shown).

In the developing cerebral cortex (Figures 4B, 4F, 4G, and 4J),

nuclei emitting red mKO2-hCdt1(30/120) fluorescence were

identified in two main cell populations: mitotic neural progenitors

in the VZ and postmitotic neurons destined to populate different

layers in the cortical plate (CP). The postmitotic neurons ex-

hibited much brighter red fluorescence, probably due to accu-

mulation of mKO2-hCdt1(30/120) after cell-cycle exit. The bright

red nuclei of blood vessels were also visible in the VZ of the dor-

sal telencephalon (Figures 4B and 4F). It is interesting to note that

in the diencephalon there was a stripe of cells in G1 phase, which

corresponded to the zona limitans intrathalamica (zli). The dorsal

thalamus contained more green nuclei than the ventral thalamus

(Figures 4I and 4J), which suggests that cells in the ventral region
undergo cell-cycle exit for differentiation prior to those in the

dorsal region.

The differential intensity of red fluorescence between mitotic

and postmitotic cells was observed also in the developing neuro-

epithelia of the olfactory and vomeronasal systems (Figures 4C

and 4D, respectively) and the retina (Figure 4H). The random dis-

tribution of high- and low-intensity fluorescent nuclei may sug-

gest that the architecture of the olfactory and vomeronasal epi-

thelia is not yet established at E13. In contrast, bright red

nuclei were observed in the central apical region of the develop-

ing retina (Figure 4H), whose developing retinal ganglion cells un-

dergo centrifugal differentiation (Neumann and Nuesslein-Vol-

hard, 2000). The epithelial cells of the lens had also exited the

cell cycle by this stage. Other extra-neural tissues with bright

red fluorescence include the trigeminal ganglion (Figure 4K)

and pituitary gland (Figure 4L).

Coronal sections of mouse embryos (E13) were also examined

immunohistochemically. Proliferation was visualized by nuclear

immunostaining for BrdU (Figure S4) or PCNA (Figure S5).

PCNA images were merged with fluorescence images of

mKO2-hCdt1(30/120) to indicate neuronal differentiation. The

balance between proliferation and differentiation in the telen-

cephalon, diencephalon, olfactory vesicle, and retina (Figures

S4 and S5) was very similar to that observed through the green

and red signals of Fucci (Figure 4).

Geminin and Cdt1 were previously shown to be abundantly

expressed by neural progenitors during early mouse neurogene-

sis, but transcriptionally downregulated at late developmental

stages (Spella et al., 2007). It should be again noticed that Fucci

signal is not affected by transcriptional regulation in our trans-

genic mice.

In the developing cerebral cortex, some neural progenitors exit

the cell cycle and migrate beyond the VZ, where they differenti-

ate into neurons or, at later stages, into glial cells. Neural progen-

itors also undergo a typical migration pattern within the VZ; their

nuclei undergo characteristic movements, known as interkinetic

nuclear movements (Sauer, 1935). M-phase nuclei are located

on the ventricular surface, while S-phase nuclei are farther

from the ventricle. In order to observe the spatial and temporal

regulation of proliferation, differentiation, and migration of neural

progenitors, we performed time-lapse imaging experiments us-

ing slices of dorsal telencephalon prepared from an E13 Fucci

transgenic embryo (Figure 5A). Time-lapse imaging experiments

using acute cortical slices are usually acquired at >3 hr intervals.

With such long intervals, neither nuclear movements nor cell-cy-

cle progression can be adequately followed. However, the bright

Fucci fluorescence enables 3D time-lapse imaging with 10 min

intervals in the xyz-t mode using the FV1000 multiposition stage

system. At each time point, 20 confocal images along the z-axis

(2 mm step) were acquired. In addition, exposure of slices to 40%

oxygen, instead of the usual 20%, has significantly improved cell

proliferation, differentiation, and migration during imaging exper-

iments (Miyata et al., 2002, 2004). As mentioned earlier, the red

nuclei of mitotic neural progenitors were much dimmer than
At an early stage, most of the cells remaining in vessels were in G1 phase. The box region in (I) is expanded and shown in (J). Two HeLa cells with red nuclei

attached to the inner surface of the vein. (K–M) An image of the process of extravasation. Red (L) and green (M) fluorescent images showing the presence of

a cell with an elongated, yellow nucleus. (N and O) 4 days postinjection. The box region in (N) is expanded and shown in (O).
Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc. 493



Figure 4. A Survey of the Cell Cycle in the Developing Mouse Head

Coronal sections of an E13 Fucci transgenic embryo. Red and green fluorescence signals are merged. The scale bar represents 100 mm.

(A–D) The section containing the brain, olfactory system, and vomeronasal system. The box regions in (A) are expanded in (B), dorsal telencephalon, (C), olfactory

vesicle, and (D), vomeronasal organ.

(E–H) Section containing the brain, hippocampus, and eye. The boxed regions in (E) are expanded in (F), dorsal telencephalon, (G), hippocampus, and (H), eye.

(I–L) Section containing the brain, trigeminal ganglion, and pituitary gland. The box regions in (I) are expanded in (J), the dorsal/ventral boundary of diencephalon,

(K), trigeminal ganglion, and (L), pituitary gland.
494 Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc.



those of postmitotic ones. To visualize migration of the nuclei in

the cell cycle within the VZ, we increased the photomultiplier

tube (PMT) sensitivity for red fluorescence. While nuclei in the

CP showed saturated red fluorescence, nuclei in the VZ ex-

hibited equivalent levels of either green or red fluorescence

(Figure 5B). Under these conditions, the change in color between

green and red during cell-cycle progression and the migration of

cells could be clearly followed. First, we followed the trajectories

of VZ neural progenitor nuclei corresponding to interkinetic nu-

clear movements. The trajectory of a migrating cell along with

its cell-cycle progression from S/G2 to G1 and cell division at

the ventricular surface is illustrated in Figure 5C (left). A green nu-

cleus descended in the VZ and completed mitosis upon reaching

the ventricular surface. Then, the two daughter nuclei turned red

and started migrating away from the surface. Another nucleus

that progressed from G1 to M (Figure 5C, middle) underwent

the G1/S transition while making a hairpin turn near the interme-

diate zone (IZ). In addition, we observed nuclear migration, which

might be involved in nonsurface mitoses (Haubensak et al., 2004;

Noctor et al., 2004); a green nucleus was observed to wander

about in the IZ until it entered M phase (Figure 5C, right). Finally,

we observed bright red nuclei traveling quickly in the IZ from the

ventral to dorsal part of the telencephalon (Figure 5C, top). These

nuclei are likely to belong to cortical GABA (g-amino-butyric

acid) neurons, which are born in the subpallial telencephalon

and migrate tangentially to reach their final destination (Marı́n

and Rubenstein, 2001).

Figure 5. Cell Cycle-Related Migration of Nuclei in the

Dorsal Telencephalon of an E13 Fucci Transgenic

Mouse Embryo

Abbreviations are as follows: CP, cortical plate; IZ, interme-

diate zone; VZ, ventricular zone. The scale bar represents

100 mm.

(A) A cultured slice for 3D time-lapse imaging.

(B) An expanded image of the IZ and VZ with red fluorescence

detection sensitivity increased.

(C) A schematic diagram showing migration of neural progen-

itors (bottom) and an interneuron (top) in the cultured slice. Ab-

breviation is as follows: M, M phase. Entry into prometaphase

can be detected by the spread of green fluorescence through-

out the cell due to breakdown of the nuclear envelope.

Fucci Is Compatible with Established
Imaging Protocols
The nuclear localization of Fucci is advantageous in

the following respects: additional far-red fluores-

cent proteins that are spectrally distinct from both

mAG and mKO2, such as mCherry (Shaner et al.,

2004) and mKeima (Kogure et al., 2006), can be ex-

pressed in the cytoplasm by tagging them with Nu-

clear Export Signal (NES), in order to identify cell

types and observe cell morphology. The third color

fluorescence signal can also be provided by chem-

ical dyes. In the experiment shown in Figure 5, we

placed fine DiD crystals on the pial surface of the

brain slice to sparsely label pia-connected progen-

itors. The bipolar morphology of a progenitor with

a green nucleus whose movement was tracked

(Figure 5C, left) could be identified. The DiD image at a particular

time point (indicated by an arrow in Figure 5C) is shown in

Figure S6. The excitation and emission spectra of Fucci and pos-

sible complementary dyes are presented in Figure S7.

Many genetically encoded indicators that utilize Green Fluo-

rescent Protein (GFP)-based Fluorescence Resonance Energy

Transfer (FRET), including cameleon (Miyawaki et al., 1997)

and Raichu-Ras (Mochizuki et al., 2001), are distributed in the cy-

toplasm. Thus, cell-cycle phase can be monitored in parallel with

signaling events taking place in the cytoplasm. For instance, we

transfected Raichu-Ras (Raichu 124X) into Fucci-expressing

COS7 cells, and observed that K-ras was more active in G1

phase than in S/G2 phase in response to epidermal growth factor

signaling (Figure S8). Thus, the cell-cycle dependency of numer-

ous cellular events can be elucidated without using cell-cycle

synchronization techniques. Multicolor imaging in combination

with these fluorescent probes and proteins will further expand

the applications of the Fucci technology.

Future Perspectives of the Fucci Technology
The Fucci technology allows dual-color imaging, which can dis-

tinguish between live cells in the G1 and the S/G2/M phases. This

technology allows for in vivo analysis of spatial and temporal pat-

terns of cell-cycle dynamics, owing to the brightness of the fluo-

rescence and the high contrast between the two colors (red and

green). Although Fucci is composed of mKO2-hCdt1(30/120)

and mAG-hGem(1/110), single transfection of either would
Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc. 495



suffice in conferring the cell-cycle indicator function; for in-

stance, the transgenic mouse line #504 just produces

mAG-hGem(1/110) but nevertheless provides in vivo information

about proliferation patterns. However, coexpression of both

constructs is still considerably more useful because it highlights

the G1/S transition with a yellow signal, and because it permits us

to continuously track migrating cells or nuclei in the cell cycle. In

this regard, reliable gene-transfer techniques which control the

stoichiometry of two constructs will be required.

Future challenges involve further developing the Fucci deriva-

tives (1) with different colors so that coexpressed GFP or RFP

can be spectrally distinguished, (2) that highlight cell-cycle tran-

sitions other than G1/S, and (3) that function in nonmammalian

cell types. Such research will benefit from exploration of the mo-

lecular mechanisms underlying both cell-cycle progression and

ubiquitin-mediated protein degradation. Regarding the last chal-

lenge, it should be noted that the primary structures of Cdt1 and

Geminin vary among species. By tagging certain domains of the

lower eukaryotic homologs of these two proteins to mKO2 or

mAG, we have developed a version of Fucci that functions in

fish and insect cells (data not shown). We have also generated

transgenic zebrafish and Drosophila lines expressing the non-

mammalian Fucci in an effort to investigate the spatial and tem-

poral regulation of cell-cycle progression during major morpho-

genetic events such as gastrulation and metamorphosis, and

during basic morphogenetic processes such as invagination, in-

volution, and branching.

EXPERIMENTAL PROCEDURES

Gene Construction

mKO2 was developed by introducing eight mutations (K49E, P70V, F176M,

K185E, K188E, S192D, S196G, and L210Q) into mKO (Karasawa et al.,

2004). mKO2 absorbs light maximally at 551 nm (molar extinction coefficient,

63,800 M-1cm-1) and emits fluorescence at 565 nm (fluorescence quantum

yield, 0.57). mKO2 and mAG cDNAs (Medical Biological Laboratory, Amal-

gaam) were amplified using primers containing 50-EcoRI and 30-EcoRV sites,

and digested products were cloned in-frame into the EcoRI/EcoRV sites of

pcDNA3 (Invitrogen) vector to generate pcDNA3/mKO2 and pcDNA3/mAG,

respectively. The entire or numerous partial cDNA species of human Cdt1

(GenBank: NM_030928) or human Geminin (GenBank: NM_015895) were am-

plified using primers containing 50-XhoI and 30-XbaI sites, and digested prod-

ucts were cloned in-frame into the XhoI/XbaI sites of pcDNA3/mKO2 or

pcDNA3/mAG.

Cell Culture

HeLa cells and COS7 cells were grown in DMEM supplemented with 10% fetal

bovine serum and penicillin/streptomycin. Mouse NMuMG breast epithelial

cells were grown in DMEM (high glucose) medium supplemented with 10%

fetal bovine serum, penicillin/streptomycin, and 10 mg/ml Insulin (Sigma).

EGF and TGFb1 were purchased from R&D.

Imaging of Cultured Cells

Cells were grown on a 35 mm glass-bottom dish in phenol red-free Dulbecco’s

modified Eagle’s medium containing 10% fetal bovine serum (FBS). Cells were

transiently or stably transfected with cDNA using Lipofectin (Invitrogen) and

subjected to long-term, time-lapse imaging using a computer-assisted fluo-

rescence microscope (Olympus, LCV100) equipped with an objective lens

(Olympus, UAPO 403/340 N.A. = 0.90), a halogen lamp, a red LED (620 nm),

a CCD camera (Olympus, DP30), differential interference contrast (DIC) optical

components, and interference filters. For fluorescence imaging, the halogen

lamp was used with two filter cubes, one with excitation (BP520-540HQ)
496 Cell 132, 487–498, February 8, 2008 ª2008 Elsevier Inc.
and emission (BP555-600HQ) filters for observing mKO2 fluorescence, and

the other with excitation (470DF35) and emission (510WB40) filters for observ-

ing mAG fluorescence. For DIC imaging, the red LED was used with a filter

cube containing an analyzer. Image acquisition and analysis were performed

by using MetaMorph 6.13 software (Universal Imaging, Media, PA).

Lentivirus Construction and Production

Replication-defective, self-inactivating lentivirus vectors were used (Miyoshi

et al., 1997, 1998). cDNA encoding mKO2-hCdt1(30/120) or mAG-hGem(1/

110) was cloned into a CSII-EF-MCS vector. The plasmid was cotransfected

with the packaging plasmid (pCAG-HIVgp) and the VSV-G- and Rev-express-

ing plasmid (pCMV-VSV-G-RSV-Rev) into 293T cells. High-titer viral solutions

for mKO2-hCdt1(30/120) and mAG-hGem(1/110) were prepared and used for

cotransduction into several cell lines: HeLa, COS7, NMuMG, and PC12 cells.

Immunocytochemical Cell Cycle Analysis

Fucci-expressing HeLa cells grown on a coverslip were treated with BrdU

(Sigma) for 5 min at 37�C. After being washed with PBS(�), cells were fixed

with 4% PFA for 10 min at 4�C and then with 0.1% Triton X-100/PBS(�) for

5 min at room temperature. The antibodies used were: mouse anti-BrdU

mAb (ImmunologicalsDirect), mouse anti-PCNA mAb (DAKO), and goat anti-

mouse IgG conjugated with Alexa Fluor 633 (Molecular Probes). Image acqui-

sition was performed using an FV500 (Olympus) confocal microscope system

equipped with 488 nm (argon), 543 nm (He/Ne), and 633 nm (He/Ne) laser lines.

Flow Cytometry

Hoechst 33342 solution (56 ml of 1 mg/ml stock) (DOJINDO) was added to a

10 cm dish containing parental or Fucci-expressing HeLa cells. After incuba-

tion for 30 min, cells were harvested and analyzed using BD LSR (Becton Dick-

inson). Both mKO2 and mAG were excited by a 488 nm laser line (argon), and

Hoechst 33342 was excited by a 325 nm laser line (HeCd). Fluorescence sig-

nals were collected at 530 nm (530/28 BP)(FL1) for mAG, at 575 nm (575/

26 BP)(FL2) for mKO2, and at 400 nm (380 LP) (FL5) for Hoechst33342. The

data were analyzed using FlowJo software (Tree Star).

Generation of Transgenic Mice

cDNA encoding mKO2-hCdt1(30/120) or mAG-hGem(1/110) was cloned into

a pCAGGS vector (Niwa et al., 1991). The transgenic insert, devoid of vector

sequences, was gel-purified and microinjected into the pronuclei of zygotes

of BDF1 inbred mice. Screening for fluorescent founders was performed by il-

lumination with a blue LED (for mAG) and a green LED (for mKO2). 16 lines ex-

pressing mKO2-hCdt1(30/120) and eight lines expressing mAG-hGem(1/110)

were obtained. The experimental procedures and housing conditions for ani-

mals were approved by the Institute’s Animal Experimental Committee, and

all animals were cared for and treated humanely in accordance with the Insti-

tutional Guidelines for Experiments using Animals.

Whole-Body Imaging of Mice

Subcutaneous and intravenous injection of cultured cells, and whole-body

imaging with OV100 (Olympus) were performed as described elsewhere

(Hoffman and Yang, 2006). To visualize blood vessels, Angio Sense-IVM750

(VisEn medical) was injected, or endothelial cells were stained using anti-

CD31 mAb (Chemicon).

Histological Observation of Tissue Sections

E13 Fucci (#596/#504) embryos were perfused transcardially with fixative (4%

PFA), placed in ice-cold fixative for 2 hr, cryoprotected in PBS containing 20%

sucrose, and embedded in OCT compound. Coronal head sections (15 mm

thick) were imaged using FV1000 equipped with two laser diodes (473 nm

and 559 nm). The images were tiled to create wide-field pictures. Brain sec-

tions from an E14 #504 embryo were fixed, incubated with mouse anti-

MAP2 mAb (Chemicon) or mouse anti-Nestin mAb (PharMingen), followed

by goat anti-mouse IgG conjugated with AlexaFluor 546X (Molecular Probes).

Imaging of Cultured Brain Slices

Brain slices were prepared from Fucci-expressing mice (#596/#504) at E13,

and cultured in collagen gel as previously described (Miyata et al., 2002). Slices



were exposed to 5% CO2 and 40% O2. Time-lapse 3D imaging was performed

in the xyz-t mode using the FV1000 multiposition stage system. The recording

interval was 10 min. At each time point, 20 confocal images along the z-axis

(2 mm step) were acquired. To avoid crossdetection of green and red signals,

images were acquired sequentially at 488 nm (Argon) and 543 nm (He/Ne).

Green and red images were merged for each confocal image. Proper align-

ment and correct image registration of FV1000 with the two laser lines and de-

tection channels were verified using double-labeled fluorescent beads (Tetra-

Speck Fluorescent Microsphere Standards, 0.5 mm in diameter, Molecular

Probes). Data analysis was performed using Volocity software (Improvision)

and METAMORPF software (Universal Imaging, Media, PA).

Distribution of Materials

DNA constructs such as mKO2-hCdt1(30/120) and mAG-hGem(1/110), their

stable transformant cell lines, and transgenic mouse lines reported in this pa-

per will be distributed with concomitant purchase of cDNA for mKO2 or mAG

from MBL International (Amalgaam) (http://www.mblintl.com/mbli/index.asp).

Supplemental Data

Supplemental Data include eight figures and three movies and can be found

with this article online at http://www.cell.com/cgi/content/full/132/3/487/

DC1/.
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