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For a given m X n matrix A of rank I ov+r a finite field F, the number of generalized invers:s, 
of reflexive generalized inverses, of normalized generalized inverses, and of pseudoinverses of 
A are derermined by elementary methods. The more dticult problem of determining which 
m X n matrices A of rank I over F have normalized genevbed inverses and which hatye 
pseudoinverses is soived. Moreover, the number of such matrices v*hich possess normelkd 
generalized inverses and the number which possess pseudoinverses are fotind. 

1. Introduction 

Moore [8,9] generalized the notlon of tine i-~ L verse of an n X n matrix to include 
generalized inverses of m X n matrices of arbitrary rank r over the real and the 
complex fields. Penrose [ll] applied generalized inverses of matrices to solutions 
of simultaneous linear equations. Rohde [12,13] distinguished four differeut 
generalized inverses of a given m x n matrix A of rank r over the complex fie,ld 
(see Section 2). Pearl ilO] considered the existence of the various generalized 
inverses of a given m >: II matrix of rank r ever an arbitrary field F under an 
arbitrary involutory automorphism - : F + F. Kim [71 la.3~ found, for a given 
m x n matrix of rank T over a finite field, the number 02 reflexi;le generalized 
inverses 3f A. 

2. Notation and p~eliminmaries 

Let F be a field with an involutory alutomorphism -. Let M,,,,(F) derlote the 

set of all nYm matrices over F. If A =(a,;)~ M,,,(F), then A*=(u~)E ,X_(F), 
where 0: = nii. 

Ddhition 2.1. Let A E M,,,,(F) and 4 =(~ij>. Ally X i,n G(m, hi, F) = 

{XE M,,,,(F): AXA = ,I) will be called 2 gener~clized &verse ol A and will be 
denoted by Ag= X. Any X in R(m, 11, Fj = {X E G(m, n, F): XAX = X} will be 
called a reflexhe generalized in;wse c>f A and wil! lx tiew~ted !y A’ -- X. .4nq X 
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in .N( m4 m, _F) = (X fz R( nap n, F) : (AX)” = AJCj will be ealle:d a normalized 
genhziized inverse ctf A !and wiXl be denoted by A” = X. Any X h P( m, n, F) =: 
{X E N( vn, n, F) : (XA)“’ = XA) will be called a ~s~~doi~~erse of A and will be 

denoted by /I? = X. 

GF (4’) will denote a &rite &Id of cardina1it.y q*, where q = py, p a prime, y a 
positive integer. The symbol - will denote an involutory field automorphism of 

GF (q*) given by ii: E= a? Then GF (4) is the fixed subfield of GF (q2) relative to the 
automorphism - . If q is odd and g is any generator of the multiplicative group of 

GF (a>, let w = gt4+*‘)‘*. 1’?en GF(q2)={c+dw:c,d~GF(q)> and c+dw= 
C+dWq = c - dw. If q is even, let w denote any primlt;ve element of GF fq*). Then 
GF (q2) = (c t- &w : c, d E GE (q)}, and if a=c+dw, then ti=c+dw* and ati= 
c.‘-f (w + wq)cd i- wq+‘d2 E OF (4). 

V&‘) will denote the vector space of c-tuples x = (x,, x2,. . . , xc) over GF (q’), 
i = 1, 2. If 82 is a Werrnitian scalar product on ‘Q$J*) x Vc (q*) and if .2? is any 
ordered basis for ?,(q*), then there exist elements !qj in GF (q*) such that 
jr(x v) = 2; z Eyix& s ksx*, -*here H = (hj) is the c x c H,rrnitian matrix of the 
Herrnitian ,Form on 4r,(q2) relative to 9? defined by h and where * represents the 
coiljugate, transpose. 

If h is a Hermitian scalar product of rank k on V”(q2) x TV”(q*), it may be seen 
in the text by Jacobson [6, p.153], for example that there exists an ordered basis 

(V 1, ’ ’ l 7 V&9 51,. l l 9 f;r_+) of ‘V&2) such that the matrix of k- relative to this basis 
is the diagonal matrix D z D[bl, . . . , bk, 0, . . . , 01, where 0 # bi = h( vi, vi), i = 
1 k. f--*9 

CarPitz and 1‘ feets [1] use a theorem by Dickson [a, p.461 to show tht;lf if q2 is 
odd, there exi asis (o19 . . . , mk9 t19 . . . , f;r_+) of VJq*) such that &e matrix 
oi h relative to l,lls basis is 

.& 0 c 1 0 0’ 

where lk is the k x k identity matrix. . 

Sugpssc ?* is even. Since each bi in the matrix D above is a Hermitian element 
of GF(q2), choose element ci E GF (4) such that ~2 = 6i E GF (9). Then C& = bi. 

Hence, there exists an ordered basis (ol, . . . , w,, &, . . . , &,_+) such Lhat the 
matrix of h relative to this basis is 

f Sp is a. subspace g,f ‘V = %r,(q’), Fubspace 2’ for ah 
&ZCCI! of subspace 9’ is the subspace .~d 9 = 9’ ~3 ZP. A subspace 

a2 to be nonisotropic, is0 r totally isotropic according as Rad( 
is {cl), is not (Og, r‘r is .Yy r-es itiar~ scalar product h is said to 
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nondeg.enemte, or be of fr4U rank . ;f &id ?‘={~}. Stbspaces 9, and J!?$ of 9f are 
said to be h-equiuale.w if md only if there exists a linear isomorphism ?_I of Y, 

that h(x, 77) = h(U(x), U(q)) fo7- ~11 x, TJ E q,. Also, if U defines an 
h-equivalence of V’, then U is said to be a cknitary transformation on ‘V. 

Throughout this paper, 191 will denote the cardinahty of the set 9, and p(A) 
will denote the rank of matrix A. 

3. The gener e6 inverses of 8 ghen matr 

We shall prcve the following +heorem: 

Theawem 3.1. Let A E M,,,,(GF (4)) of rank r = p(A). Theft 

jG(m, n, GF (4))) = q”“-” 

IR(m, 11. GF ($)I = qrcin +n- ? 

Let A E Mm,,,@ (q2)) of rank r = p(A). Then 

]N(m, n, GF (q2))1 = 
r 
q2ri-Mri $ :; L:;t:i’ 

. 

IPh n, GF (q291 = 
1 ifr=p(.A*A)=p(AA*), 

otherwise. 

(1) 

(2) 

(3) 

(4) 

Proof. (4) follows from [8] and [IO, Theorem 11. (2) is clear from [7]. We consider 
(1). For A, there exist two nonsingular matrices P and Q mer GF !q) such that 

lr 0 
pAQ= 0 0 =& ( 1 

where I, denotes the r x r identity matrix. Let X E G(m, n, GF (q)) and let 

Y=Q-‘XP-I= 

From AXA = A, we obtain K,YK, = K, ar:d Y, = &. We see that Y2, Y3, and YA 
are arbitrary. Thus, we find that ]C<m, yd, (3F (q))j = q”“’ _” since Y2 is T x (w -.- r) 
Y3 is (n-r)xr, and Y4 is (n-r)X(m-rL 



Thus, asI has been indica&xt by Pear1 [lo], the methods of Section 3 are field 
indepicnde,ot a&i certainly free of the t&oq of Hermitian fqns. NOWHW, aas wiil 
be seen in Section 4, the more difftcuit problem of determining which matrices 
over GF (s2) have normalized generalized inve~rses arld which have pseudionverses 
will be resolved by methods peculiar to finite fields. Our methods invoke the 
classical thelory of Hermitiaq forms over W [q2). 

Pearl [lc, Theorem l] proved that A E M,,(GF (q*)) with t = p(A) has a 
normalized Beneralized inverse if and only if r = p(A*A) 2nd has a pscudoinverse 
if and only if r = p(A*A) = &IA”)- We let &(Rz, n, r, q2) ={P- E A&,,,(GF 

(9-2)):r=p(A~)-p(A*A)} and let %(I~E, n, r, s2) = (A E.&PPZ, n, P, 4’) : r = 

P~~“~~- 

We require in this section the cardinaIity (see [ 14, p. 331, for example) 

1Q,(q2)1 =: qtknek)/2 fJ, (qi -( _ l)i) (5) 
i=l 

of 4!&(q2j, the unitary :;ubg;oup of the gc neral linear group in M,,(GF (q2)). Also, 
we require the widely known cdSrlality 

py7, k, q’jl = fj (q2k - q2i) (6) i = 0 

of y(r, k, q’) = (A E Mr,k(GF (q2)) : r = p(A)). 
?ur method sf characterizing Lnd enumeratir:g the rank t matrices A E 

7 n (GF (q2>) such that A” or At exist involves the .sb;a;tbns in M,,(GF (q*)) to 
1 i- = I,. 

(7) 
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Broof, Let T = [Tl, T2, . . . ) TJE T(m, r, 4’) and :et %&sp denoie column space. FGT 

P’ =V,,,(q2), let h be a nondegcnerate Hermitian scalar prc>Juct on V x V such 

that the matrix of h rela the to the ordered basis of elementary M x 1 unit vectors 

(8, , . . . , 5:,,) ,,f V is fm. Let W = Cs,, . . . , E, ; ad consider the linear transfor- 
I~M&HI R : W -+ %-9”(T) SUCK that L(q)= Ti, i = 1, . . . , 1. Then L is an h- 
equivaielece of’ W dnto %3’(T). Since W” = (YY( T))-‘ = (0}, each of W and %ul( T) 
is nonisotropic: and Witt’s theorem [6, p. 162) applies. Hence, L can be extended 
to an element U0 of the unitary group on Y. Consider the unitary group on Q as 
%,(cj2), the g~*oup of unitary matrices of the unitary transformations on V relative 
to the ordere 3 b:lsis (cl, E?, . . . , km). Let 9 = {UE ‘p1,(q2): U e;;ter2& L}. Also, 
the identity lineal transformation I : W + W such that I( &i) = Ei, i = 1, . . . , r, is an 
h-equivalence of W and, thus, can be extended to an element of uI&,(q2). If WC let 
JJ denote the subgroup {U&,(q2): U extends 1) of %,(q2), it is immediate that 
9 is isomorphic to % ,__(q’) and that %‘= U&3?, the coset of 3’ in %,,,(q”) which 
contains &. Hence, 191= IV, Sl= ISI = I%,,&q2)l. Therefore, lY(m, r, q’)l is 
given by (7), and the proof is c. \mpl&e. 

Theorem4.2. Let41~M,,,(GF(~~2)) hauep(A)=r. Then A~ti(m, n r.q”) ifand 

ody if A = TS, where T is m x r srrch that FT = I, and where S ‘s r x n with 

p(S) = r. Moreover, 

IJWh k r, q2)1 = IW n, q2)l l-W-4 r, q2))11%,(q2)l, (8) 

where (Y’(r, n, q2)( is given by (6), IS( m, r, q2)( is given by (7), anti !%&*)I is given 

by (5). 

Proof. Let A E M,,,,(GF (4’)) have rank r. Then A =RS,, where R is vnxr ant? 

S1 is rX n such that p(R)= p(S,)= r (see [3]). Yow p(A*A) = r if and only if 

p(R”R) = r. Again, for V= ?$Jq2), let h be a nundegenerate Hermitian scalar 

product on ‘V x “cr such that the matrix of h ; ?arive to the Grdered basis of 

elementary m X 1 unit vectors <to,, . . . ,, E,) of 9’ 2 .i, . From Section 2, p(R*R) = r 
if and only if there exists an ordered basis (rl, 8.2! . . . , 7,) of %9(R) such that 
h(Ti, Tj)= S,, the Kronecker delta, ~II& firus, if and only if there exists a nonsingu- 
Sar matrix MEM,,(GF (4’)) such that if [T,, 72, . . . , T,] = RM = 27: then T*T = I,. 
Thus, r = p(A*A) = p(A) if and only if A = RS, = TM-??, = ‘I’S, where T and S 
satisfy the statement of Theorem 4.2 

Among the IT(m, r, $)I IY(r. 2, y- 11 pairs of matrices d,T, S) in $(sn, I, 9’) X 
sP(r, 12, q2), the same matrix A = T§ in d(n2, n, r, q2) may be repeated many Cmes. 
In fact, for (a,, S,), (T,, S,\ in F( m, i’, q’) X Y(r. ~1, q’), T,S, = T&!S, if ar,3. ody if 
T2= T1(S&), where &= CT, = (S,S&)*~T,(S&) = (S,Sk) *(S,S;) and where 
S: is any right inverse for Sz. Herwe TJl =- a2S2 if and only if S&X %!,(q2). On 

the other hand, if TI E Y(m, r, q*) ;:lnd U e Qq’f, so does T, = T, II E Y(m, r, $1. 
Thl;s, I.&,m, ~1, ,; q”,i is given by 18). Mence, Theorem 4.2 has been pxwd. 



We remark here that iF ‘3(r, n, 42) = {G E MJGF (4*)) : GG” = I,}, then 

i%C fl, 4’)f= fs( 12, r, 43, given by (7). 

TIEONBD 4.3. Let A E M,,,,(GF (4”)) have p(A) = I=. ‘Then A E tB(m, PT, Y, q2) if and 
only if A = TNG, where ‘P’E Y(m, r, s2), NE 3’(r. a, 42), and G E S(r, n, 42). 
Moreover, 

pHm, n, t, 4”>l= p-tm, r, s”>l IW, r, 4’>l ImY r, 42M%k2)12~ (9) 

wheti it each of $“(m, r, 42) and ?@I, T, q2) is givera by (7), where Y(r, r, q2) is given 
by \6), and where 4&(4’) is given by (5). 

Proof. Let A = TS E d(m, n, r, q”), where 7’~ Y[i,z, r, q2) and SE Y(r, n, 4’). Then 
r = &IA*) if ant only if r = p(SS*) if and only if there exists an I x I nonsinguiar 
matrix IV1 such that if i; = N,S, then GG* = I,. Hence, p(AA*) = t if rnd only if 
A = 27VG, whe!-e each of ‘I’: M = _&‘, and G satisfies the statement ox Tbeor em 

4.3. 
Consider the list of 

m X n matrices A = TMG, each belonging tr\ %(m, n, r, $1, where T E F( nl., r, 42), 
NE Y’(r, t; 42j, and GE %(r, bz, CJ~) and where if TIP&G, and T2N2G2 are in the 
!ist, then T 1 P T,U for any UE %,(4”). Now TINIG1 = ‘I’JV2G2 in the list if and 
only if T2 = 2;(.N,G1G~N~*), where Gk is ~ny right inverse for G2 and where 
U== .NLGIG~N;’ E %(42). That is, T,NIGI = T2.!V~c’z if and only if CT’1 = ‘7; and, 
thus, N,4;, = O&G,. But NiG, = N2G2 if and only if G2= (IV,lN,)G,, where 
IF = G,G$= (N~lPJI)CIG~(N~‘N1)* = (M21N1) (N,‘N1)*. Hence each A E 
%(m, n, r; 4’) occurs precisely \%?&(4’)l times in the list. Therefore, la(nx, n, r, 42)1 
is given *uy (9). The proof is complete. 

The problem of fiading the number m x n matrices X over GF (42) which 
satisfy thz matrix equation XAX” = B, for given Hermitian matrixs A and B has 
received much attention [l, 4,5,15], and in the latter three papers, the number 
solutions X of rank r is given. We did not appeal to these papers, however, dnd 
weferred to develop methods of our own. 

VJe a~utn& in this section that the involutosy auton)or?:lsm - on GF(4’) was 
not the identity (tee Section 2). However? if - is the i-lentftv automorphism of 
5F is’) GF (q) could he used as weli in this case), cxr:cl’ $4 ib srM :he m&ods 
ax.! enumerations of this section need no a!te~xlas:~ t6, p. 1623. On the other 

hand, if - is the identity and 4 is ever&, Witt’s thccrer I must be reformulaeed [6, p. 
‘IQ]. and special methods must be devised& 113 find Id(n?, n, r, 4”)1 and 
-2 I fi;, g + y3”. ?T!c case where the involutory autoit, xrphicln -. of GF f$), y even, 

’ . ‘::~ i ,i :!:i:fa:rr_,f!krr? ‘*4.118 h6” c,-~~~s&y-{.-:j i ‘n i !: ii cs ;2apcr by !.hr i4ir*nc1r. 
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