GENERALIZED INVERSES OF MATRICES OVER A FINITE FIELD

John D. FULTON
Clemson University, Dept of Mathematical Sciences, College of Sciences, Clemson, SC 2963i. U.S.A.

Received 5 April 1976
Revised 24 January 1977
For a given $m \times n$ matrix A of rank r over a finite field F, the number of generalized invers as, of reflexive generalized inverses, of normalized generalized inverses, and of pseudoinverses of A are derermined by elementary methods. The more difficult problem of determining which $m \times n$ matrices A of rank r over F have normalized generalized inverses and which have pseudoinverses is solved. Moreover, the number of such matrices which possess normalized generalized inverses and the number which pcssess pseudoinverses are found.

1. Introdaction

Moore [8,9] generalized the notion of the inverse of an $n \times n$ matrix to include generalized inverses of $m \times n$ matrices of arbitrary rank r over the real and the complex fields. Penrose [11] applied generalized inverses of matrices to solutions of simultaneous linear equations. Rohde [12,13] distinguished four different generalized inverses of a given $m \times n$ matrix A of rank r over the complex fielo (see Section 2). Pearl [10] considered the existence of the various generalized inverses of a given $m \times n$ matrix of rank : cyer an arbitrary field F under an arbitrary involutory automorphism $-: F \rightarrow F$. Kina [7] 1 is found, for a given $\boldsymbol{m} \times \boldsymbol{n}$ matrix of rank r over a finite field, the number oi reflexive generalized inverses of A.

2. Notation and preliminaries

Let F be a field with an involutory automorphism -. Let $M_{n, m}(F)$ de note the set of all $n \times m$ matrices over F. If $A=\left(a_{i j}\right) \in M_{n, m}(F)$, then $A^{*}=\left(a_{i j}^{*}\right) \in M_{m, n}(F)$, where $a_{i j}^{*}=\bar{a}_{i i}$.

Definition 2.1. Let $A \in M_{m . n}(F)$ and $A=\left(a_{i j}\right)$. Any X in $G(m, n, F)=$ $\left\{X \in M_{n, m}(F): A X A=A\right\}$ will be called a generrized inverse of A and will be denoted by $A^{g}=X$. Any X in $R(m, n, F)=\{X \in G(m, n, F): X A X=X\}$ will be called a reflexive generalized inverse of A and will be denoted by $A^{\prime}-X$. Any X
in $N(m, n, F)=\left\{X \in R(m, n, F):(A X)^{*}=A X\right\}$ will be called a normalized generalized inverse of A and will be denoted by $A^{n}=X$. Any X in $P(m, n, F)=$ $\left\{X \in N(m, n, F):(X A)^{*}=X A\right\}$ will be called a pseudoinverse of A and will be denoted by $A \dagger=X$.

GF $\left(q^{2}\right)$ will denote a finite field of cardinality q^{2}, where $q=p^{y}, p$ a prime, y a positive integer. The symbol - will denote an involutory field automorphism of GF $\left(q^{2}\right)$ given by $\bar{a}=a^{q}$. Then GF (q) is the fixed subfield of GF $\left(q^{2}\right)$ relative to the automorphism -. If q is odd and g is any generator of the multiplicative group of $\operatorname{GF}(a)$, let $w=g^{(q+1) / 2}$. Then $\operatorname{GF}\left(q^{2}\right)=\{c+d w: c, d \in \operatorname{GF}(q)\}$ and $\overline{c+d w}=$ $c+d w^{q}=c-d w$. If q is even, let w denote any primitive element of GF $\left(q^{2}\right)$. Then GF $\left(q^{2}\right)=\{c+d w: c, d \in \operatorname{GF}(q)\}$, and if $a=c+d w$, then $\bar{a}=c+d w^{q}$ and $a \bar{a}=$ $c^{L}+\left(w+w^{q}\right) c d+w^{q+1} d^{2} \in$ ($\mathrm{BF}(q)$.
$\mathscr{V}_{c}\left(q^{i}\right)$ will denote the vector space of c-tuples $\chi=\left(x_{1}, x_{2}, \ldots, x_{c}\right)$ over GF $\left(q^{i}\right)$, $i=1,2$. If h is a Hermitian scalar product on $\mathscr{V}_{c}\left(q^{2}\right) \times \mathscr{V}_{c}\left(q^{2}\right)$ and if \mathscr{T}_{3} is any ordered basis for $\mathscr{V}_{c}\left(q^{2}\right)$, then there exist elements $h_{i j}$ in GF $\left(q^{2}\right)$ such that $h(\chi, \chi)=\sum_{i}^{c} \sum_{j}^{c} h_{i j} x_{i} \bar{x}_{j}=\chi H \chi^{*}$, where $H=\left(h_{i j}\right)$ is the $c \times c$ Hermitian matrix of the Hermitian form on $\mathscr{V}_{c}\left(q^{2}\right)$ relative to \mathscr{B} defined by h and where * represents the conjugate, transpose.

If h is a Hermitian scalar product of rank k on $\mathscr{V}_{n}\left(q^{2}\right) \times \mathscr{V}_{n}\left(q^{2}\right)$, it may be seen in the text by Jacobson [6, p.153], for example that there exists an ordered basis $\left(\nu_{1}, \ldots, \nu_{k}, \zeta_{1}, \ldots, \zeta_{n-k}\right)$ of $\mathscr{V}_{n}\left(q^{2}\right)$ such that the matrix of h relative to this basis is the diagonal matrix $D=D\left[b_{1}, \ldots, b_{k}, 0, \ldots, 0\right]$, where $0 \neq b_{i}=h\left(\nu_{i}, \nu_{i}\right), i=$ $1, \ldots, k$.

Carlitz and I 'ges [1] use a theorem by Dickson [2, p.46] to show that if q^{2} is odd, there exi asis $\left(\omega_{1}, \ldots, \omega_{k}, \zeta_{1}, \ldots, \zeta_{n-k}\right)$ of $\mathscr{V}_{n}\left(q^{2}\right)$ such that ,ie matrix of h relative to cus basis is

$$
\left[\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right]
$$

where I_{k} is the $k \times k$ identity matrix.
Suppose \boldsymbol{q}^{2} is even. Since each b_{i} in the matrix D above is a Hermitian element of $\operatorname{GF}\left(q^{2}\right)$, choose element $c_{i} \in \operatorname{GF}(q)$ such that $c_{i}^{2}=b_{i} \in \operatorname{GF}(q)$. Then $c_{i} \bar{c}_{i}=b_{i}$. Hence, there exists an ordered basis $\left(\omega_{1}, \ldots, \omega_{k}, \zeta_{1}, \ldots, \zeta_{n-\mathrm{r}}\right)$ such that the matrix of h relative to this basis is

$$
\left[\begin{array}{ll}
I_{h} & 0 \\
0 & 0
\end{array}\right] .
$$

If \mathscr{S} is a subspace of $\mathscr{V}=\mathscr{V}_{c}\left(q^{2}\right)$, subspace $\mathcal{S}^{\mathscr{L}}=\{\chi \in \mathscr{V}: h(\chi, \sigma)=0$ for all $\sigma \in \mathscr{Y}\}$. The radical of subspace \mathscr{S} is the subspace $\mathrm{R} \mathfrak{I} \mathscr{P}=\mathscr{P} \cap \mathscr{S}^{\perp}$. A subspace \mathscr{S} of \mathscr{V} is said to be nonisotropic, isotropic, or totally isotropic according as $\operatorname{Rad}(\mathscr{Y})$ is $\{0\}$, is not $\{0\}, \sim$ is \mathscr{P}, respectively. The Hermitian scalar product h is said to be
nondegenerate, or be of full rank if Rad $\mathscr{V}:=\{0\}$. St bspaces \mathscr{S}_{1} and \mathscr{S}_{2} of \mathscr{O} are said to $\mathbf{d e} h$-equivalent if and only if there exists a linear isomorphism U of \mathscr{S}_{1} onto \mathscr{S}_{2} such that $h(\chi, \eta)=h(U(\chi), U(\eta))$ fo ${ }^{*}$ all $\chi, \eta \in \mathscr{C}_{1}$. Also, if U defines an h-equivalence of \mathscr{V}, then U is said to be a unitary transformation on \mathscr{V}.

Throughout this paper, $|\mathscr{F}|$ will denote the cardinality of the set \mathscr{P}, and $\rho(A)$ will denote the rank of matrix A.

3. The generalized inverses of a given matrix

We shall prove the following theorem:
Theorem 3.1. Let $A \in M_{m, n}(G F(q))$ of $\operatorname{rank} r=\rho(A)$. Theri

$$
\begin{align*}
|G(m, n, \mathrm{GF}(q))| & =q^{n m-r^{2}} \tag{1}\\
|R(m, n \cdot \mathrm{GF}(g))| & =q^{r(m+n-2 r)} . \tag{2}
\end{align*}
$$

Let $A \in M_{m, n}\left(G F\left(q^{2}\right)\right)$ of rank $r=\rho(A)$. Then

$$
\begin{align*}
& \left|N\left(m, n, \operatorname{GF}\left(q^{2}\right)\right)\right|=\left\{\begin{array}{cc}
q^{2 r(n-r)} & \text { if } r=\rho\left(A^{*} A\right), \\
0 & \text { if } r>\rho\left(A^{*} A\right) .
\end{array}\right. \tag{3}\\
& \left|P\left(m, n, \operatorname{GF}\left(q^{2}\right)\right)\right|= \begin{cases}1 & \text { if } r=\rho\left(A^{*} A\right)=\rho\left(A A^{*}\right), \\
0 & \text { otherwise. } .\end{cases} \tag{4}
\end{align*}
$$

Proof. (4) follows from [8] and [10, Theorem 1]. (2) is clear from [7]. We consider (1). For A, there exist two nonsingular matrices P and Q over GF (q) such that

$$
P A Q=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right)=K_{r},
$$

where I_{r} denotes the $r \times r$ identity matrix. Let $X \in G(m, n, \mathrm{GF}(q))$ and let

$$
Y=Q^{-1} X P^{-1}=\left(\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right)
$$

From $A X A=A$, we obtain $K_{r} Y K_{r}=K_{r}$ and $Y_{1}=I_{r}$. We see that Y_{2}, Y_{3}, and Y_{s} are arbitrary. Thus, we find that $|G(m, n, G F(q))|=q^{m n-r^{2}}$ since Y_{2} is $r \times(m-r)$ Y_{3} is $(n-r) \times r$, and Y_{4} is $(n-r) \times(m-r)$.

Consider (3). If $r>\rho\left(A^{*} A\right)$, then $\left|N\left(m, n, G F\left(q^{2}\right)\right)\right|=0$ by [10. Corollary 1]. W'e suppose $\rho\left(A^{*} A\right)=r=\rho(A)$. For A, there exist nonsingular matrices P in $M_{m, m}\left(\mathrm{GF}\left(q^{2}\right)\right)$ and O in $M_{n, n}\left(\mathrm{GF}\left(q^{2}\right)\right)$ such that $P A O=K_{r}$. Let Xe $N\left(m, n, \mathrm{GF}\left(q^{2}\right)\right)$ and let

$$
Y=Q^{-i} X P^{-1}=\left(\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right)
$$

Then we can obtain that $K_{r} Y K_{r}=K_{n} Y_{1}=I_{n} Y_{4}=Y_{3} Y_{2}$ and $P F^{*}\left(K_{r} Y\right)^{*}\left(P P^{*}\right)^{-1}=$ K, Y, By letting

$$
\left(P P^{*}\right)^{-1}=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right)
$$

we show with little difficilty that $Y_{2}^{*} B_{1}=B_{3}$. We show that B_{1} is nonsingular (see [10, pp. $5 / 4-575]$). Thus, we have $Y_{2}=\left(B_{3} B_{1}^{-1}\right)^{*} . Y_{3} \in M_{r, n-r}\left(G F\left(q^{2}\right)\right)$ is arbitrary, and, herce, we infer that $\left|N\left(m, n, \operatorname{GF}\left(q^{2}\right)\right)\right|=q^{2 r(n-r)}$. This proves the theorem.

Thus, as has been indicatcd by Pearl [10], the methods of Section 3 are field independent and certainly free of the theory of Hermitian forms. However, as will be seen in Section 4, the more difficult problem of determining which matrices over GF (q^{2}) have normalized generalized inverses and which have pseudionverses will be resolved by methods peculiar to finite fislds. Our methods invoke the classical theory of Hermitian forms over Gr $\left(q^{2}\right)$.

4. Matrices A such that A^{n} and $A \dagger$ exist

Pearl [10, Theorem 1] proved that $A \in M_{m, n}\left(G F\left(q^{2}\right)\right)$ with $r=\rho(A)$ has a normalized generalized inverse if and only if $r=\rho\left(A^{*} A\right)$ and has a pseudoinverse if and only if $r=\rho\left(A^{*} A\right)=\rho\left(A A^{*}\right)$. We let $\mathscr{A}\left(m, n, r, q^{2}\right)=\left\{A \in M_{m, n}(G F\right.$ $\left.\left.\left(q^{2}\right)\right): r=\rho\left(A_{i}\right)=\rho\left(A^{*} A\right)\right\} \quad$ and \quad let $\quad \mathscr{B}\left(m, n, r, q^{2}\right)=\left\{A \in \mathscr{A}\left(\neq n, n, r, q^{2}\right): r=\right.$ $\left.\rho\left(A A^{*}\right)\right\}$.

We require in this section the cardinality (see [14, p. 33], for example)

$$
\begin{equation*}
\left|U_{k}\left(q^{2}\right)\right|=: q^{\left(k^{2}-k\right) / 2} \prod_{i=1}^{k}\left(q^{i}-(-1)^{i}\right) \tag{5}
\end{equation*}
$$

of $\mathscr{U}_{k}\left(q^{2}\right)$, the unitary subgioup of the $g \in$ neral linear group in $M_{r, k}\left(G F\left(q^{2}\right)\right)$. Also, we require the widely known caillinality

$$
\begin{equation*}
\left|\mathscr{S}\left(r, k, q^{2}\right)\right|=\prod_{i=0}^{r-1}\left(q^{2 k}-q^{2 i}\right) \tag{6}
\end{equation*}
$$

of $\mathscr{P}\left(r, k, q^{2}\right)=\left\{A \in M_{r, k}\left(\operatorname{GF}\left(q^{2}\right)\right): r=p(A)\right\}$.
Our method of characterizing and enumerating the rank r matrices $A \in$ ${ }_{n, n}\left(\mathrm{GF}\left(q^{2}\right)\right)$ such that A^{n} or $A \dagger$ exist involves the sGations in $M_{\text {m, }}\left(\mathrm{GF}\left(q^{2}\right)\right)$ to $\therefore T=I_{r}$.

Lemma 4.1. If $\mathscr{G}\left(m, r, q^{2}\right)=\left\{T \in M_{m, r}\left(G F\left(q^{2}\right)\right): T^{*} T=I_{r}\right\}$, then

$$
\begin{equation*}
\left|\mathscr{T}\left(m, r, q^{2}\right)\right|=\left|U_{m}\left(q^{2}\right)\right| /\left|U_{m-r}\left(q^{2}\right)\right| \tag{7}
\end{equation*}
$$

where for $k=m$ or $k=m-r,\left|U_{k}\left(q^{2}\right)\right|$ is given by (5).

Proof. Let $T=\left[\tau_{1}, \tau_{2}, \ldots, \tau_{r}\right] \in \mathscr{T}\left(m, r, q^{2}\right)$ and let \mathscr{C} denote column space. FGT $\mathcal{q}=V_{m}\left(q^{2}\right)$, let h be a nondegenerate Hermitian scalar pressuct on $\mathscr{V} \times \mathscr{V}$ such that the rnatrix of h relative to the ordered basis of elementary $m \times 1$ unit vectors ($\varepsilon_{1}, \ldots, s_{2}$) of \mathscr{V} is I_{m}. Let $\left.\mathscr{W}=<\varepsilon_{1}, \ldots, \varepsilon_{r}\right\rangle$ and consider the linear transformation $L: W \rightarrow \mathscr{G}(T)$ such that $L\left(\varepsilon_{i}\right)=\tau_{i}, i=1, \ldots, r$. Then L is an h equivalence of \mathscr{W} onto $\mathscr{C} \mathscr{P}(T)$. Since $W^{\perp}=(\mathscr{C} \mathscr{P}(T))^{\perp}=\{0\}$, each of \mathscr{W} and $\mathscr{C} \mathscr{S}(T)$ is nonisotropi: and Witt's theorem [6, p. 162] applies. Hence, L can be extended to an element U_{0} of the unitary group on \mathscr{V}. Consider the unitary group on \mathscr{V} as $\mathscr{U _ { m }}\left(q^{2}\right)$, the group of unitary matrices of the unitary transformations on \mathscr{V} relative to the ordere 1 basis $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right)$. Let $\mathscr{L}=\left\{U \in \mathscr{U}_{m}\left(q^{2}\right): U\right.$ exten's $\left.L\right\}$. Also, the identity linear transformation $I: \mathscr{W} \rightarrow \mathscr{W}$ such that $I\left(\varepsilon_{i}\right)=\varepsilon_{i}, i=1, \ldots, r$, is an h-equivalence of W and, thus, can be extended to an element of $\|_{m}\left(q^{2}\right)$. If we let \mathscr{I} denote the subgroup $\left\{U_{\varepsilon} \mathscr{U}_{m}\left(q^{2}\right): U\right.$ extends $\left.I\right\}$ of $\mathscr{U}_{m}\left(q^{2}\right)$, it is immediate that Φ is isomorphic to $\mathscr{U}_{m \ldots}\left(q^{2}\right)$ and that $\mathscr{L}=U_{0} \mathscr{L}$, the coset of \mathscr{L} in $U_{m}\left(q^{2}\right)$ which contains U_{0}. Hence, $|\mathscr{L}|=\left|U_{0} \mathscr{I}\right|=|\mathscr{I}|=\left|U_{m-r}\left(q^{2}\right)\right|$. Therefore, $\left|\mathscr{T}\left(m, r, q^{2}\right)\right|$ is given by (7), and the proof is complete.

Theorem 4.2. Let $A \in M_{m, n}\left(\operatorname{GF}\left(i^{2}\right)\right)$ have $\rho(A)=r$. Then $A \in \mathscr{A}\left(m, n r, q^{2}\right)$ if and only if $A=T S$, where T is $m \times r$ such that $T^{*} T=I_{r}$ and where S s $r \times n$ with $\rho(S)=r$. Moreover,

$$
\begin{equation*}
\left|\mathscr{A}\left(m, n, r, q^{2}\right)\right|=\left|\mathscr{S}\left(r, n, q^{2}\right)\right|\left|\mathscr{T}\left(m, r, q^{2}\right)\right| /\left|थ_{r}\left(q^{2}\right)\right| \tag{8}
\end{equation*}
$$

where $\left|\mathscr{P}\left(r, n, q^{2}\right)\right|$ is given by (6), $\left|\mathscr{T}\left(m, r, q^{2}\right)\right|$ is given by (7), ana $\left|Q_{r}\left(q^{2}\right)\right|$ is given by (5).

Proof. Let $A \in M_{m, n}\left(G F\left(q^{2}\right)\right)$ have rank r. Then $A=R S_{1}$, where R is $m \times r$ and S_{1} is $r \times n$ such that $\rho(R)=\rho\left(S_{1}\right)=r$ (see [3]). Now $\rho\left(A^{*} A\right)=r$ if and only if $\rho\left(R^{*} R\right)=r$. Again, for $\mathscr{V}=\mathscr{V}_{m}\left(q^{2}\right)$, let h be a nundegenerate Hermitian scalar product on $\mathscr{V} \times \mathscr{V}$ such that the matrix of h : ative to the ordered basis of elementary $m \times 1$ unit vectors $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)$ of $\mathscr{V} ; i_{n}$. From Section $2, \rho\left(R^{*} R\right)=r$ if and only if there exists an ordered basis $\left(\tau_{1}, i_{2}, \ldots, \tau_{r}\right)$ of $\mathscr{C} \mathscr{S}(R)$ such that $h\left(\tau_{i}, \tau_{j}\right)=\delta_{i j}$, the Kronecker delta, ancu, tius, if anci only if there exists a nonsingular matrix $\operatorname{MeM}_{r, r}\left(\mathbf{G F}\left(q^{2}\right)\right)$ such that if $\left[\tau_{1}, \tau_{2}, \ldots, \tau_{r}\right]=R M=T$, then $T^{*} T=I_{r}$. Thus, $r=\rho\left(A^{*} A\right)=\rho(A)$ if and orly if $A=R S_{1}=T M^{-1} S_{1}=T S$, where T and S satisfy the statement of Theorem 4.2

Among the $\left|\mathscr{T}\left(m, r, q^{2}\right)\right| \mid \mathcal{F}\left(r: z, q^{-} \|\right.$pairs of matrices (T, S) in $\mathscr{T}\left(m, r, q^{2}\right) \times$ $\mathscr{P}\left(r, n, q^{2}\right)$, the same matrix $A=T S$ in $\mathscr{A}\left(m, n, r, q^{2}\right)$ may be repeated many times. In fact, for $\left(T_{1}, S_{1}\right),\left(T_{2}, S_{2}\right.$ in $\mathscr{T}\left(m, r, q^{2}\right) \times \mathscr{F}\left(r, n, q^{2}\right), T_{1} S_{1}=T_{2} S_{2}$ if and only if $T_{2}=T_{1}\left(S_{1} S_{2}^{i}\right)$, where $I_{r}=T_{2}^{*} T_{2}=\left(S_{1} S_{2}^{i}\right)^{*} T_{1}^{*} T_{1}\left(S_{1} S_{2}^{i}\right)=\left(S_{1} S_{2}^{i}\right) *\left(S_{1} S_{2}^{i}\right)$ and where S_{2}^{i} is any right inverse for S_{2}. Hence $T_{1} S_{1}=T_{2} S_{2}$ if and only if $S_{1} S_{2}^{i} \in \mathcal{U}_{r}\left(q^{2}\right)$. On the other hand, if $T_{1} \in \mathscr{T}\left(m, r, q^{2}\right)$ and $U \in \varkappa_{r}\left(q^{2}\right)$, so does $T_{2}=T_{1} U \in \mathscr{T}\left(m, r, q^{2}\right)$. This, $\mathscr{A}\left(m, n, r, q^{2}\right) \mid$ is given by (8). Hence, Theorem 4.2 has been pioved.

We remark here that if $\mathscr{G}\left(r, n, q^{2}\right)=\left\{G \in M_{r, n}\left(G F\left(q^{2}\right)\right): G G^{*}=I_{r}\right\}$, then $\left|G\left(r, n, q^{2}\right)\right|=\mid \mathscr{T}\left(n, r, q^{2}\right)_{i}$, given by (7).

Theorem 4.3. Let $A \in M_{m, n}(G F(q))$ have $\rho(A)=r$. Then $A \in \mathscr{B}\left(m, n, r, q^{2}\right)$ if and only if $A=T N G$, where $T \in \mathscr{T}\left(m, r, q^{2}\right), \quad N \in \mathscr{S}\left(r, r, q^{2}\right)$, and $G \in \mathscr{G}\left(r, n, q^{2}\right)$. Moreover,

$$
\begin{equation*}
\left|\mathscr{B}\left(m, n, r, q^{2}\right)\right|=\left.\left|\mathscr{T}\left(m, r, q^{2}\right)\right|\left|\mathscr{S}\left(r, r, q^{2}\right)\right|\left|\mathscr{T}\left(n, r, q^{2}\right)\right|| | \mathscr{U}_{r}\left(q_{1}^{2}\right)\right|^{2} \tag{9}
\end{equation*}
$$

wher: each of $\mathscr{T}\left(m, r, q^{2}\right)$ and $\mathscr{T}\left(n, r, q^{2}\right)$ is given by (7), where $\mathscr{S}\left(r, r, q^{2}\right)$ is given by (6), and where $U_{r}\left(q^{2}\right)$ is given by (5).

Proof. Let $A=T S \in \mathscr{A}\left(m, n, r, q^{2}\right)$, where $T \in \mathscr{S}\left(i m, r, q^{2}\right)$ and $S \in \mathscr{P}\left(r, n, q^{2}\right)$. Then $r=\rho\left(A A^{*}\right)$ if anc oniy if $r=\rho\left(S S^{*}\right)$ if and only if there exists an $r \times r$ nonsinguiar matrix N_{1} such that if $\dot{v}=N_{1} S$, then $G G^{*}=I_{r}$. Hence, $\rho\left(A A^{*}\right)=r$ if nd only if $A=T N G$, where each of $T, N=N_{1}^{-1}$; and G satisfies the statement or Theorem 4.3.

Consider the list of

$$
\left|\mathscr{T}\left(m, r, q^{2}\right)\right|\left|\mathscr{P}\left(r, r, q^{2}\right)\right|\left|\mathscr{T}\left(n, r, q^{2}\right)\right| /\left|U_{r}\left(q^{2}\right)\right|
$$

$m \times n$ matrices $A=T N G$, each belonging to $\mathscr{B}\left(m, n, r, q^{2}\right)$, where $T \in \mathscr{T}\left(m, r, q^{2}\right)$, $N \in \mathscr{S}\left(r, r, q^{2}\right)$, and $G \in \mathscr{G}\left(r, n, q^{2}\right)$ and where if $T_{1} N_{1} G_{1}$ and $T_{2} N_{2} G_{2}$ are in the ist, then $T_{1} \neq T_{2} U$ for any $U \in \mathscr{Q} i_{r}\left(q^{2}\right)$. Now $T_{1} N_{1} G_{1}=T_{2} N_{2} G_{2}$ in the list if and only if $T_{2}=T_{1}\left(N_{1} G_{1} G_{2}^{i} N_{2}^{-1}\right)$, where G_{2}^{i} is any right inverse for G_{2} and where $U=N_{1} G_{1} G_{2}^{i} N_{2}^{-1} \in \mathscr{U}_{r}\left(q^{2}\right)$. That is, $T_{1} N_{1} G_{1}=T_{2} N_{2} F_{2}$ if and only if $T_{1}=T_{2}$ and, thus, $N_{1} G_{1}=N_{2} G_{2}$. But $N_{1} G_{1}=N_{2} G_{2}$ if and only if $G_{2}=\left(N_{2}^{-1} N_{1}\right) G_{1}$, where $I_{r}=G_{2} G_{2}^{*}=\left(N_{2}^{-1} N_{1}\right) G_{1} G_{1}^{*}\left(N_{2}^{-1} N_{1}\right)^{*}=\left(N_{2}^{-1} N_{1}\right)\left(N_{2}^{-1} N_{1}\right)^{*}$. Hence each $A \in$ $\mathscr{B}\left(m, n, r, q^{2}\right)$ occurs precisely $\left|U_{r}\left(q^{2}\right)\right|$ times in the list. Therefore, $\left|\mathscr{B}\left(m, n, r, q^{2}\right)\right|$ is given by (9). The proof is complete.

The problem of finding the number $m \times n$ matrices X over GF $\left(q^{2}\right)$ which satisfy the matrix equation $X A X^{*}=B$, for given Hermitian matrives A and B has received much attention $[1,4,5,15]$, and in the latter three papers, the number solutions X of rank r is given. We did not appeal to these papers, however, and referred to develop methods of vur own.

We assumed in this section that the involutory automernem - on $\operatorname{GF}\left(q^{2}\right)$ was not the identity (see Section 2). However, if - is the ilentity automorphism of GF $\left(q^{2}\right)$ (GF (q) could be used as well in this case, ant if q is odd the methods ard enumerations of this section need no alterthon $[6, p$. 162]. On the other hand, if - is the identity and q is ever, Witt's thecren must be reformulaicd [$6, p$. 162], and special methods must be devised to find $\left|\mathscr{A}\left(m, n, r, q^{2}\right)\right|$ and Pim, $n \cdot q^{3}!$ Th $=$ case where the involutory autom whis in \cdots of $G F\left(q^{2}\right)$, q even, * a tomorphism will be considered in ab il er paper by the aubor.

References

[1] L. Carlitz and J.H. Hodges, Representations by Hermitian forms in a finite fie'd, Duke Math. J. 22 (1965) 393-406.
[2] L. Dickson, Linear Groups With an Exposition of the Galois Theory, (Leipzig; Reprinted by Dover, New York, 1958).
[3] J.S. Frame, Matrix functions and applications, IEEE Spectrum 1 (1964) 208-220.
[4] J.D. Fulton, Representations by Hermitian forms in a finite field of characte istic two, Can. J. Math. (to appear).
[5] J.H. Hodges, An Hermitian matrix e fuation over a finite field Duke Math. J. 33 (1966) 123-130.
[6] N. Jacobson, Lectures in Abstract Algebra, Vol. II, (Van Nostrand, New York, 1953).
[7] J.B. Kim, On singular matrices, J. Korean Math. Soc. 3 (1966) 1-2.
[8] E.H. Moore, On the reciprocal of the general algebraic matrix (abstract). Bull. Am. Matt. So:26 (1920) 394-395.
[9] S.H. Moore, General analysis, Part I, Mem. Am. Prlos. Soc. 1 (1935).
[10] M.H. Peatı, Generalized inverses of matrices with entries taken from an arbitrary field, :inear Algebra and Appl. 1 (1968) 571-587.
[11] R. Pearuse, A generalized inverse for marices, Pruc. Cambridge Philos. Soc. 51 (1955) 4061 -413.
[12] C.A. Rohde, Generalized inverses of partitioned matrices, J. Soc. Irdust. Appl. Math. 13 (1965) 1033-1035.
[13] C.A. Rohde, Some results on generalized inverses, SIAM Rev. 8 (1966) 2 J1-205.
[14] G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc 3 (1963) 1-62.
[15] Z. Wan and B. Yang, Studies in finite geometries and the construction of i icomplete block designs, III: some "anzahl" theorems in unitary geometry over finite fields and their applizations, Acta Math. Sinica 15 (1965) 533-544 (Chinese Math.-Acta 7 (1955) 252-264).

