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For a given m X n matrix A of rank r over a finite field F, the number of gencralized invers=s,
of reflexive generalized inverses, of normalized generalized inverses, and of pseudoinverses of
A are derermined by elementary methods. The more difficult problem of determining which
mXn matrices A of rank r over F have normalized generzlized inverses and which have
pseudoinverses is solved. Morrover, the number of such matrices which possess normalized
generalized inverses and the nember which pcssess pseudoinverses are found.

1. Introduction

Moore [8, 9] generalized the notion of the inverse of an n X n matrix to include
generalized inverses of m X n matrices of arbitrary rank r over the real and the
complex fields. Penrose [11] applied generalized inverses of matrices to solutions
of simultaneous linear equations. Rohde [12,13] distinguished four different
generalized inverses of a given m X n matrix A of rank r over the complex field
(see Section 2). Pearl {10] considered ths existence of the various generalized
inverses of a given m X n matrix of rank r cver an arbitrary field F under an
arbitrary involutory automorphism —:F — F. Kim [7] btas found, for a given
m X n matrix of rank r over a finite field, the number oi reflexive generalized
inverses of A.

2. Notation and preliininaries

Let F be a field with an involutory automorphism —. Let M, (F) deaote the
set of all n X m matrices over F. If A =(a,)eM,,,(F), then A*=(a})e M, . (F),
where af = a,.

Definition 2.1. Let AeM, . (F) and A=(qy). Any X in G(mn F)=
{XeM,,(F):AXA = A} will be called 2 generslized inverse of 4 and will be
denoted by A%=X. Any X in R(m,n, F;={Xe G(m, n, F): XAX = X} will be
called a reflexive generalized inverse of A and will be denoted by A" - X, Any X
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in N(m, n, F) {X e R(m, n, F): (AX)*"-AX} will be calied a normalized
generahzed inverse of A and wiil be denoted by A"=X. Any X in P(m,n, F)=
{XeN(m, n, F):(XA)*= XA} will be called a pseudoinverse of A and will be
denoted by AT=X.

GF (¢ will denote a finite field of cardinality q°, where q=p”, p a prime, y a
positive integer. The symbol — will denote an involutory field automorphism of
GF (g?) given by a = a® Then GF (q) is the fixed subfield of GF (q°) relative to the
automorphism —. If q is odd and g is any generator of the multiplicative group of

GF (g}, let w= . g2 Then GF(¢¥)={c+dw:c,deGF(q)! and ct+dw=
c+dw?=c—dw. If q is even, let w denote any primit:ve element of GF (g?). Then
GF(g®)={c+dw:c,deGF(q)}, and if a=c+dw, then d=c+dw’ and ad=
ct+H(w+wred+wid?e GF ().

V.(q') will denote the vector space of c-tuples x = (x;, X, ..., x.) over GF (¢°),
i=1, 2. If h is a Hermitian scalar product on ¥.{(g*)*x¥,(q? and if 93 is any
ordered basxs for ¥ (g%, then there exist elements h; in GF (g® such that
hix, x)=Y: Y5 hyx% = xHx™, where H= =(hy) is the ¢ X c He rmltxan matrix of the
Hermitian form on ¥,(q?) relative to # defined by h and where * represents the
conjugate, transpose.

If h is a Hermitian scalar product of rank k on ¥,(q% X ¥,,(¢?%), it may be seen
in the text by Jacobson [6, p.153], for example that there exists an ordered basis
(Vs envs Vi L1y e v vy Lux) Of Vi(g®) such that the matrix of h relative to this basis
is the diagonal matrix D =D[b,,..., b,0,...,0], where 0#b,=h(v, v;), i=
1,...,k

Carlitz and ¥’ ‘ges [1] use a theorem by Dickson [2, p.46] to show that if g is
odd, there exi asis (g, ..., @ L1y -+ + 5 Luie) 0F ¥V, (g?) such that ilve matrix
of h relative 10 w.us basis is

[Ik O]
0 9)
where I, is the k X k identity matrix.
Suppose 4 is even. Since each b; in the matrix D above is a Hermitian element
of GF(q®), choose element c; € GF (q) cuch that ¢?=b, € GF(q). Then ¢g& =b,

Hence, there exists an ordered basis (wq,...,w. {...., &) such that the
matrix of h relative to this basis is

G of
If & is a subspace of ¥ =%¥.(q%), cubspace ¥ ={ye ¥ :h(x.0)=0 for all
o€ ¥}. The radical of subspace ¥ is the subspace Rid ¥ =% NS*. A subspace

& of V is said to be nonisotropic, isotropic, or iotally isctropic according as Rad(¥)
is {0}, is not {0}, ~r is &, respectively. The Hermitian scalar product h is said to be
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nondegeneraie, or be of full rank ¥ Rad 7"+ {0}. Subspaces ¥, and &, of ¥ are
said to be h-equivaleat if and only if there exists a linear isomorphism U of &,
onto &, such that h(x, n)= h(U(x), U(y)) for all x, ne ¥,. Also, if U defines an
h-equivalence of ¥, then U is said to be a unitary t'ansformation on V.

Theanachnant thia 1Pl wrill Aa tha rdinag of the set & and 6(A)
Lluuusuuul. L3310 }Jclphl) ‘-J‘ Wlll ubuuu. tll\- wnu: cun_y Ul 11T DL L J amnu p\n)

will denote the rank of matrix A.

3. The generalized inverses of a given matrix

We shall preve the following *heorem:

heorem 3.1, ILet Ac M, (GF( q)) of rank r = p(A). Thesi

m,

|G(m, n, GF (q))|=4q™™" (1)
|[R(m, n. GF (gV)|=q """ 2 (2)

Let AeM,, ,(GF (q%) of rank r=p(A). Then

2r(n-—-r) iy = *
2y =44 if r=p(A™A), {
IN(m, n. GF (¢?))| { 0 fr>plA*A). ?
1 ifr=p(A*A)=p(AA%),
23| 4
|P(m, n, GF (¢%)| {0 otherwise. @

Proof. (4) follows fiom [8] and [10, Theorem 1]. (2) is clear from [7]. We consider
(1). For A, there exist two nonsingular matrices P and Q over GF /q) such that

I 0
PAO=(" )=k
AQ (0 O) g

where I, denotes the r X r identity matrix. Let X € G(m, n, GF (g)) and let

Y=Q'XP'= (Y‘ YZ)

Y, Y./

From AXA = A, we obtain K, YK, =K, ard Y,=1I. We see that Y,, Y,, and Y.
are arbitrary. Thus, we find that |G(m, n, GE (9))|=q™" " since Y, is rx(m—r).
Y;is (n—r)Xr,and Y, is (n—7)X(m—r).

Consider (3). If r>p(A*A), then [N(m. n, GF (g7)|=0 by [10. Corollary 1].
We suppose p{A*A)=r=p(A). For A, there exist nonsingular matrices P in
M, .. (GF{g*)) and @ in M, (GF(3%) such that PAQ =K, Let X«
N(m, n, GF (g°)) and iet

Y, Ya‘)

o (0
Y O P y1 ‘%‘3,’



{10, pp‘S /«4*57 ’]) Thus, we have Y2 (BgB;l)* Yse MM-,(GF (qz)) is arbxtrary,
and, hence, we infer, that lN(m, n,GF (qz))‘-~ 2rn-n)_This proves the theorem.

Thus, as has been indicatca by Pearl [10], the methods of Section 3 are field
independent and certainly free of the theary of Hermitian forms However, as will
be seen in Section 4, the more difficult pmblf:m of determimng which matrices
over GF (g% have normalized generalized inverses and which have pseudionverses
will be resolved by methods peculiar to finite ficlds. Our methods invoke the
classical theory of Hermitian forms over G {g%).

4. Matrices A such that A" and AT exist

Pearl [10, Theorem 1] proved that AeM, .(GF(¢%) with r=p(A) has a
normalized generalized inverse if and only if r = p{A*A) 2nd has a pseudoinverse
if and only if r=p(A*A)=p(AA%). We let (m nr, ) ={L eM,, . (GF
(@) :r=p(A)=p(A*A)} and let B(nnr,q>)={Aecdimnrq’):r=
p(AA™].

We require in this section the cardinality (see [14, p. 33], for example)

k
U (gD)] = g2 ] (g — (- 1)) )
i=1

of 4.(q*), the unitary subgioup of the ge neral linear group in M, . (GF (q?)). Also,
we require the widely known cditinality
r—13

|F(r, k, 32)| = 11) (g% —q*) (6)

of #(r, k,q*)={A e M, (GF (¢?):r=p(A)}.
“ur method of characterizing and enumeratir'g the rank r matrices A €
+~(GF (¢%)) such that A" or A+ exist involves the sciutions in M, ,(GF (¢2)) to
 T=1.
Lemma 4.1. If S(m, r,q*)={TeM,, (GF(q?): T*T=1)}, then
\T(m, 1, ¢»)| = U, @ VUn_.(q), (7)

where for k =m or k = m ~ r, |U(q?)| is given by (3).
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Proof. Let T=[1,,75,...,7,]J€e F(m,r, ¢°) and let €¥ denoie column space. For
¥ =¥,(q°), let h be a nondegcnerate Hermitian scalar proauct on ¥ X ¥ such
that the matrix of h relative to the ordered basis of elemcntary m X 1 unit vectors
(1n...,5)0f Vis I, Let W=<g,,...,¢ > and consider the linear transfor-
wmadon L :W — €F(T) such that L(g)=1, i=1,...,r. Then L is an h-
equivalence of W onto €¥(T). Since W = (6L(T))* ={0}, each of W and €F(T)
is nonisotropi: and Witt’s theorem [6, p. 162] applies. Hence, L can be extended
to an element U, of the unitary group on ¥. Consider the unitary group on ¥ as
,,(g?), the group of unitary matrices of the unitary transformations on ¥ relative
to the orderel basis (g, &5,.. ., ¢,,). Let £={UcX,,(¢g*): U extends L}. Also,
the identity linear transformation I: %W — W such that I(g;)=¢, i=1,...,r is an
h-equivalence of W and, thus, can be extended tc an element of %, (g?). If we let
# denote the subgroup {Ue®,,.(q): U extends I} of U,,(q%), it is immediate that
# is isomorphic to %,,_.(q°) and that £ = U, ¥, the coset of & in U,,(q>) which
contains U,. Hence, |&|=|U,¥%|=|%|=|U,._,(a?)|. Therefore, |T(m,r,q%)| is
given by (7), and the proof is (-mplate.

Theorem 4.2. Let A ¢ M, (GF (+?)) have p(A)=r. Then Acsi(m, n r.q) if and
only if A=TS, where T is mXxr such that T*T=1, and where S s rxn with
p(S) =r. Moreover,

[d(m, n, r, g =91, n, )| |T(m, r, 4%)/|%, (g%, ®)

where |¥(r, n, q%)| is given by (6), |T(m, r, q%)| is given by (7), ana |9,(g*)} is given
by (5).

Proof. Let A € M, .(GF (q%) have rank r. Then A = RS, where R is m Xr and
S, is rxn such that p(R)=p(S;)=r (sce [3]). Now p(A*A)=r if and nnly if
p(R*R)=r. Again, for ¥ =¥,(q%), let h be a nundegenerate Hermitian scalar
product on ¥ X ¥ such that the matrix of h : ‘atve to the ordered basis of
elementary m X 1 unit vectors {g,, - .., &,) of ¥ = i,. From Section 2, p(R*R)=r
if and only if there sxists an ordered basis (7}, ., ..., 7,) of €¥(R) such that
h(7;, 1;) = §,;, the Kronecker deita, aud, tius, if anc only if there exists a nonsingu-
lar mawnx MeM,,(GF (g%)) such that if [7,75,...,7,]= RM =T, then T*T=1.
Thus, r=p(A*A)=p(A) if and ovly if A=RS,=TM™'S, =TS, where T and S
satisfy the statement of Theorem 4.2

Among the |T(m,r,@*)||¥(r. 7,q7)| pairs of matrices (T, S) in JT(m,r,q°)x
$(r, n, g*), the same matrix A = TS in &(m, n, r, ¢°) may be repeated many times.
In fact, for (T,, S)), (T2, S.' in T(m, v, ") xF(r.n,q°), TS, =T,S, if and only if
T, = T,(S,S%), where I =T¥T,=(S,85)*TTT1(S;55) = (5,85 *(§5,S5) and where
S& is any right inverse for S,. Hence TS, = TS, if and only if S;S5¢€ U%,(g%). On
the otter hand, it T,e J(m,r,q%) and Ue 9, {q?), so does T,= T, Ue T(m. r.q*).
Thus, '(m, n, 1, g*)| is given by (8). Hence, Theorem 4.2 has been pioved.
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We remark here that i 9(r,n,g*)={GeM,,(GF(4*):GG*=1}, then
19(r, n, @Y= 1T (n, 1, ¢°);, given by (7).

Theorem 4.3. Let AcM,, .(GF (q*)) have p(AY=r. Then A € B(m, n, 1, g% if and
only if A=TNG, where TeT(m,r,q°), NeP(r,1,q°), and Ge%(r, n,q%.
Moreover,

|B(m, 1, 1, ¢*)|=|T(m, 1, @) 1S, 1, @W | T (n, 1, @ UG, ©)

whei 2 each of T(m, 1, q*) and T(n,v,q°) is given by (7), where &(r. 1, q?) is given
by (6), and where %U,(q°) is given by {5).

Proof. Let A = TSe of(m, n,r, 7°), where T€ {in, 1, ¢4°) and S (1, n, g%). Then
r=p{AA*) if anc¢ oniy if r = p(SS*) if and only if there exists an r X r nopsinguiar
matrix N, such that if G=N,§, then GG* = I,. Hence, p(AA*)=r if ~nd only if
A =TNG, whers each of T, N=N7!, and G satisfies the statement or Theorem
4.3,

Consider the list of

[T (m, r, )| |1, 1, @} | T (n, 1, @)%, (@),

m X n matrices A = TNG, each belonging tc B(m, n, r, ¢», where Te T(m, r, ¢%),
Ne &(r,1,q%), and G e 9(r, n, q*) and where if T,N,G, and T,N,G, are in the
tist, then T, 3 T,U for any U e %,(q%). Now T;N;G; = T,N,G, in the list if and
only if T,=T,(N,G,G,N3"), where G5 is any right inverse for G, and where
U= N,G,G5N;5"e U,(¢?. That is, T;N;G, = T,N~G, if and only if T, = T, and,
thus, N,G,=N,G,. But N;G,=N,G, if and only if G,=(N;'N,)G,, where
I,=G,G¥=(N:"N))G,G¥(N;'N)*=(N3;'N)) (N;'N,)*. Hence each Ace
B(m, n, r, g°) occurs precisely |U,(g?)| times in the list. Therefore, |B(m, n, 1, g*)|
is given by (9). The proof is complete.

The problem of finding the number m X n matrices X over GF (g% which
satisfy thz matrix equation XAX™ = B, for given Hermitian matrices A and B has
received much attention [1,4, 5, 15], and in the latter three papers, the number
solutions X of rank r is given. We did not appeal to these papers, however, and
sreferred to develop methods of our own.

We assumed in this section that ihe involutory autonicr~tusm — on GF(q?) was
not the identitv (cee Section 2). However, if — is the identity automorphism of
3E (9°) (GF (q) could be used as well in this case;, and if q is od4. the m=thods
ard enumcrations of this section need no alteration (6, p. 162). On the other
hand, if — is the identity and q is even, Witt’s thcorer) must be reformulaicd [6, p.
162], and special methods must be devised to find |o(m, n, 1 g°) and

Amon - g The case where the involutory auton. rphisin - of GF (g2), g even,
tooatomoerphism will be considercd 4 aw il er paper by the awhor.
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