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Abstract

A relatively compressed algebra with given socle degrees is an Artinian quotientA of a given
graded algebraR/c, whose Hilbert function is maximal among such quotients with the given s
degrees. For usc is usually a “general” complete intersection and we usually require thatA be level.
The precise value of the Hilbert function of a relatively compressed algebra is open, and we
that finding this value is equivalent to the Fröberg conjecture.

We then turn to the minimal free resolution of a level algebra relatively compressed with re
to a general complete intersection. When the algebra is Gorenstein of even socle degree we
precise graded Betti numbers. When it is of odd socle degree we give good bounds on the
Betti numbers. We also relate this case to the Minimal Resolution Conjecture of Musta¸tǎ for points
on a projective variety.

Finding the graded Betti numbers is essentially equivalent to determining to what exten
can be redundant summands (i.e., “ghost terms”) in the minimal free resolution, i.e., when
of the sameR(−t) can occur in two consecutive free modules. This is easy to arrange using K
syzygies; we show that it can also occur in more surprising situations that are not Koszul. Us
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equivalence to the Fröberg conjecture, we show that in a polynomial ring where that conjectur
(e.g., in three variables), the possible non-Koszul ghost terms are extremely limited.

Finally, we use the connection to the Fröberg conjecture, as well as the calculation of the m
free resolution for relatively compressed Gorenstein algebras, to find the minimal free resolu
general Artinian almost complete intersections in many new cases. This greatly extends p
work of the first two authors.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field and letR = k[x1, . . . , xn] be the homogeneous polynomial ring. W
will say that an Artiniank-algebraA = R/I hassocle degrees(s1, . . . , st ) if the minimal
generators of its socle (asR-module) have degreess1 � · · · � st . Thus, the number ofsj ’s
that equali is the dimension of the component of the socle ofA in degreei. For fixed socle
degrees, a graded Artinian algebra of maximal Hilbert function among all graded Ar
algebras with that socle degrees is said to becompressed. We extend this notion as follows

Definition 1.1. Let c ⊂ R be a homogeneous ideal and let 0� s1 � · · · � st be integers
Then a graded Artiniank-algebraA is said to berelatively compressed with respect toc

and with socle degrees(s1, . . . , st ) if A has maximal length among all graded Artini
k-algebrasR/I satisfying

(i) SocR/I ∼= ⊕t
i=1 k(−si);

(ii) c ⊂ I .

Equivalently,A = R/I is relatively compressed with respect toc if it is a quotient of
R/c having maximal length and the prescribed socle degrees. This is a slight extens
lowing c to be Artinian or non-saturated) of the notion of “relatively compressed alge
introduced in [6, Definition 2.2]. The paper [14] introduces anotion of an algebra bein
“compressed relative to an Artin algebra,” but this is unrelated to our notion.

In almost all of our work,c will be a complete intersection (only in Section 2 will w
extend this to allowc to be Gorenstein).Note that the complete intersection itself is n
necessarily Artinian.In many situations it is important to look for ideals that contai
regular sequence (i.e., complete intersection) in certain degrees, and to ask for suc
that are maximal in some way. The lex-plus-powers conjecture is an example of suc
problem (cf. [22]). We are interested in a similar situation, seeking an ideal that conta
a regular sequence of fixed degrees, has fixed socle degrees, and has maxima
function among all such ideals.

In Section 2 of this paper we give a good motivation for studying such ideals by sho
the connection to the famous conjecture of Fröberg on the Hilbert function of an
of general forms of fixed degrees. There is a natural guess for the Hilbert functio
relatively compressed Artinian algebra, based on an upper bound coming from the
of inverse systems (see, for instance, [9,15]). However, we also give examples to sh
the “natural guess” for the Hilbert function of a relatively compressed algebra nee
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hold, and we also show that even the choice of the field (in positive characteristic) can
this Hilbert function. We also show how the choice of the complete intersection can
this, again in positive characteristic. We do not know if this can happen in charact
zero, but anyway for many of our results we will assume thatc is a “general” complete
intersection of fixed generator degrees.

The question of when a given Hilbert function can fail to exist for a given socle deg
despite it satisfying the natural guess mentioned above, has been considered els
See, for instance, [6,10,26]. Our focus on algebras relatively compressed with respec
a complete intersection, and our consequences of this fact, are new. This part of ou
can be viewed as a partial answer to the question asked near the end of [6, Remark
determine an upper bound for the Hilbert function of a relative compressed algebra,
try to see when it may be sharp.

For most of this paper, however, we are interested inlevelgraded Artinian algebras, i.e
in the case where all socle degrees are equal, so the socle is concentrated in one
The study of level algebras was initiated by Stanley [24]. Level graded algebras p
important role in many parts of commutative algebra, algebraic geometry and alg
combinatorics. For instance, a sufficiently general set of points in projective space is
level (it depends on the number of points)—cf. [16]. Even the Gorenstein case, wh
just a special case of level algebras, has an extensive literature. See [10] for an ex
bibliography and overview of level algebras.

The level graded Artinian algebras of maximal Hilbert function among all level grade
algebras of given codimension and socle degree are calledcompressed level algebrasand
they fill a non-empty Zariski open set in the natural parameter space. If the soc
dimension one and occurs in degrees then the algebraR/I is Gorenstein andI can be
identified with the ideal consisting of partial derivatives of all orders annihilating a ge
polynomialf ∈ R of degrees. The notion of a relatively compressed Gorenstein alge
naturally arises by requiring that a priori some partial derivatives off vanish.

Beyond finding the Hilbert function, a much more subtle question is to understand
the syzygies of a relatively compressed levelArtinian algebra, or at least to find the grad
Betti numbers in the minimal freeR-resolution ofA. A central part of this is to determin
if there can be redundant summands (i.e., “ghost terms”) in consecutive free mod
the minimal free resolution. Sometimes this is easy to force with Koszul syzygies. T
teresting situation is when there are syzygies that cannot be explained by Koszul re
the so-callednon-Koszul ghost terms.

Note that even in the case of compressed level Artinian algebras, very little is k
about the graded Betti numbers. In [4, Corollary 3.10], Boij showed that there is a we
defined notion of “generic” Betti numbers for compressed level algebras of fixed
degrees, and in Conjecture 3.13 he guessed what they may be. The main point is th
should be no ghost terms. The first case is that of Gorenstein algebras. When th
degree is even, the result was well-known, following from the almost purity of the min
free resolution. In the case of odd socle degree, the result was shown by the first and
authors in [18, Proposition 3.13], as long as the initial degree is sufficiently large. Very littl
is known beyond this.

In Section 3, our first main result is to give the precise graded Betti numbers of a
tively compressed Artinian Gorenstein algebra,A, of even socle degree. Here we assu
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thatk has characteristic zero, or else that the characteristic satisfies a certain numerical co
dition (see Remark 3.6). We find that any ghost terms in the minimal free resolution ofA

occur either directly because of Koszul relations, or indirectly because of Koszul relatio
and duality. We also give a similar result for relatively compressed Artinian Goren
algebras of odd socle degree, but here we are not able to give the precise resolut
we show where there is uncertainty). However, we are able to give the precise res
in odd socle degree when the embedding dimension is 4, the socle degree is oddA

is relatively compressed with respect to a general quadric. We also give a nice c
tion to the Minimal Resolution Conjecture for points on complete intersection varietie
special case of a conjecture of Musta¸tǎ), showing that if the conjecture holds then we c
find the graded Betti numbers of a general Gorenstein Artinian algebra of odd soc
gree, relatively compressed with respect to a general complete intersection of codim
� n − 2.

Section 4 deals with level algebras of socle dimension� 2. Our main goal is to see ho
it can happen that the minimal free resolution has non-Koszul ghost terms. We give
conditions that force such ghost terms. We also give several examples and conje
Finally, we show that ifR satisfies Fröberg’s conjecture then the minimal free resolu
of a relatively compressed level algebra can have non-Koszul ghost terms only in
limited way. This holds, for example, ifn = 3.

In Section 5 we go in the opposite direction. It is known that in characteristic zero
slightly more generally) an ideal ofn + 1 general forms satisfies Fröberg’s conjecture
has been conjectured that an ideal ofn + 1 general forms has the “expected” minimal free
resolution in the sense that the Betti numbers are the minimal ones consistent w
Hilbert function (i.e., no ghost terms). The first and second authors showed this in s
cases in [18] (and also gave some counterexamples). Here, using our result for Gor
algebras in Section 3, we show that an ideal ofn+1 general forms (with generator degre
satisfying certain conditions) must have the predicted graded Betti numbers, extend
known results.

2. Relatively compressed algebras and Fröberg’s conjecture

Throughout this paper we will use the following notation.

Notation 2.1. Let k be an infinite field (often making further assumptions, such as ch
teristic zero). LetR = k[x1, . . . , xn] and letA be a gradedk-algebra. The Hilbert function
of A is denoted byhA(t) := dimk At .

In this section we give some basic results about relatively compressed algebra
main purpose is to establish the connection between them and Fröberg’s conjecture
Hilbert function of an ideal of general forms. However, we also discuss the failure o
“expected” Hilbert function to occur even with generic choices.

If the Artinian algebraA has socle degrees(s1, . . . , st ) then st = max{s1, . . . , st } is
calledthe maximum socle degreeof A. It equals the Castelnuovo–Mumford regularity ofA.
Moreover, by ageneralhomogeneous polynomial of degreed we mean a polynomial in
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suitable Zariski open and dense subset ofRd . Similarly, a general complete intersection
type (d1, . . . , dt ) is generated by polynomials in a suitable Zariski open and dense s
of Rd1 × · · · × Rdt .

We now begin with a simple remark.

Remark 2.2. Let A = R/I be an Artinian algebra with socle degrees(s1, . . . , st ). Let
c � I be an Artinian Gorenstein ideal. Denote bye the maximum socle degree ofR/c.
Let J := c : I be the residual ideal. Then there are homogeneous formsG1, . . . ,Gt ∈ R of
degreee − s1, . . . , e − st such that

J = c + (G1, . . . ,Gt ).

In fact, this follows from the standard mapping cone procedure that relates the reso
of I, J, c.

We will say thate − s1, . . . , e − st are theexpected degreesof the extra generators ofJ ,
i.e., of the minimal generators ofJ that are not inc.

We would like to generalize this remark. LetA = R/I be an Artinian algebra with
socle degrees(s1, . . . , st ). Let c � I be a Gorenstein ideal of codimensionc. Denote bye
the Castelnuovo–Mumford regularity ofR/c and put

s := max{s1, . . . , st }.

Let F1, . . . ,Fn−c ∈ I be general forms of degrees + 1. Then

c′ := c + (F1, . . . ,Fn−c)

is an Artinian Gorenstein ideal with socle degree

e′ = e + (n − c)s

becauseIs+1 = Rs+1.

Remark 2.3. If c is already Artinian, thenc = n, c = c′, e = e′ and there are no formsFi

needed.

Now we link. LetJ := c′ : I be the residual ideal. Then there are homogeneous f
G1, . . . ,Gt ∈ R of degreee′ − s1, . . . , e

′ − st such that

J = c′ + (G1, . . . ,Gt ) = c + (F1, . . . ,Fn−c) + (G1, . . . ,Gt ).

In fact, this follows from the standard mapping cone procedure that relates the reso
of I, J , andc.

Hence, keeping the notation above, we get an upper bound for the Hilbert functio
relatively compressed algebra with respect toc.
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Lemma 2.4. Let A = R/I be a relatively compressed algebra with respect toc and with
socle degrees(s1, . . . , st ). Let G′

1, . . . ,G
′
t ∈ R be general homogeneous forms of deg

e′ − s1, . . . , e
′ − st and putJ ′ := c′ + (G′

1, . . . ,G
′
t ). Then we have for all integersj ,

hA(j) � hR/c′(j) − hR/J ′(e′ − j).

Proof. By Liaison theory we have the formula

hA(j) = hR/c′(j) − hR/J (e′ − j).

Using Remark 2.2, we get for all integersj ,

hR/J (j) � hR/J ′(j)

by the choice of the generators ofJ ′. The claim follows. �
Note that the Hilbert function ofR/c′ is determined by the Hilbert function ofR/c

ands. For example, ifc = n − 1, then

hR/c′(j) = hR/c(j) − hR/c(j − s − 1)

for all integersj .
If we start withJ ′ we get:

Corollary 2.5. Let F1, . . . ,Fn−c ∈ R be general forms of degrees + 1. If the union of a
minimal basis ofc, {F1, . . . ,Fn−c}, and{G′

1, . . . ,G
′
t } is a minimal basis ofJ ′ then we have

equality in Lemma2.4, i.e.,

hA(j) = hR/c′(j) − hR/J ′(e − j).

Proof. The assumption on the minimal generators ofJ ′ guarantees thatA = R/I , where
I := c′ : J ′, has socle degrees(s1, . . . , st ). Hence Lemma 2.4 shows thatA is compressed
with respect toc. �
Remark 2.6. Note that by semicontinuity, the Hilbert function ofJ ′ does not depend on th
choice of the polynomialsG′

i . It is determined byR/c and the degreese′ − s1, . . . , e
′ − st

of the extra generators (since these were chosengenerally). In general, there are no expli
formulas. However, ifc is a general complete intersection then Fröberg’s conjecture (se
below) predicts the precise value of the Hilbert function. But independently of Fröbe
the assumption of Corollary 2.5 is satisfied then in principle it allows us to compu
least on the computer) the Hilbert function of a relatively compressed algebra with re
to c and with socle degrees(s1, . . . , st ) from the given data.
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Thanks to a conjecture of Fröberg [7, p. 120] all this can be made (conjecturally)
explicit if c is a general complete intersection. In order to state this conjecture recall th
the Hilbert series of an algebraA is the formal power series

HA(Z) :=
∑
j�0

hA(j)Zj .

We define for a power series
∑
j�0

ajZ
j with real coefficients

∣∣∣∣∑
j�0

ajZ
j

∣∣∣∣ :=
∑
j�0

bjZ
j ,

where

bj :=
{

aj if ai � 0 for all i � j,

0 otherwise.

Conjecture 2.7 (Fröberg). Let J ⊂ R be an ideal generated by general forms of deg
d1, . . . , dr . Then the Hilbert series ofR/J is

HR/J (Z) =
∣∣∣∣
∏r

i=1(1− Zdi )

(1− Z)n

∣∣∣∣.
Note that it is easy to see that

HR/J (Z) �
∣∣∣∣
∏r

i=1(1− Zdi )

(1− Z)n

∣∣∣∣,
where the estimate compares the coefficients of same degree powers. Moreover, t
jecture was proved to be true forn = 2 in [7], for n = 3 in [1], and for arbitraryn if J is a
complete intersection or ifJ is an almost complete intersection [23].

Now we specialize to the case wherec ⊂ R is a complete intersection of typ
(d1, . . . , dc). Then the Castelnuovo–Mumford regularity ofR/c is e = d1 + · · · + dc − c.

Corollary 2.8. Let A = R/I be a relatively compressed algebra with respect to the c
plete intersectionc and with socle degrees(s1, . . . , st ). Put

e′ = (n − c)s + d1 + · · · + dc − c.

Then

HA(Z) �
∣∣∣∣
∏c

i=1(1− Zdi ) · (1− Zs+1)n−c

(1− Z)n

∣∣∣∣
−

∣∣∣∣
∏c

i=1(1− Zdi ) · (1− Zs+1)n−c · ∏t
i=1(1− Ze′−si )

n

∣∣∣∣.
(1− Z)
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Proof. Using the notation of Lemma 2.4 it is easy to see that

HR/J ′(Z) �
∣∣∣∣
∏c

i=1(1− Zdi ) · (1− Zs+1)n−c · ∏t
i=1(1− Ze′−si )

(1− Z)n

∣∣∣∣.
The claim follows. �

In fact, if c is ageneralcomplete intersection then we often expect equality.

Conjecture 2.9. LetJ ⊂ R be the ideal generated by general formsG1, . . . ,Gc+t of degree
d1, . . . , dc, e − s1, . . . , e − st and general formsF1, . . . ,Fn−c of degrees + 1. Assume
that {G1, . . . ,Gc+t , F1, . . . ,Fn−c} is a minimal basis ofJ . Then the Hilbert series of
relatively compressed algebraA with respect to ageneralcomplete intersection of typ
(d1, . . . , dn) and with socle degrees(s1, . . . , st ) is

HA(Z) =
∣∣∣∣
∏c

i=1(1− Zdi ) · (1− Zs+1)n−c

(1− Z)n

∣∣∣∣
−

∣∣∣∣
∏c

i=1(1− Zdi ) · (1− Zs+1)n−c · ∏t
i=1(1− Ze′−si )

(1− Z)n

∣∣∣∣.
Remark 2.10. By Corollary 2.5, this conjecture is true if and only if Fröberg’s conject
is true in the corresponding case. Note that granting Fröberg’s conjecture, the assu
of Conjecture 2.9 can be translated into a purely numerical condition involving onl
numbersd1, . . . , dn, e − s1, . . . , e − st in every specific example though it seems diffic
to make this explicit in general.

Remark 2.11. Potentially, the Hilbert function of a relatively compressed algebra
respect to a specific complete intersection could differ from the one with respect togen-
eral complete intersection of the same type, and the result can change as the chara
varies. While it might not be the case over fields of characteristic zero (it is an open
tion) that different complete intersections yield different Hilbert functions for relati
compressed algebras of the same type, this phenomenon does occur over fields of
characteristic. The following example illustrates all these things.

Example 2.12. We illustrate the assertions of Remark 2.11. We will consider the ca
three variables,R = k[x1, x2, x3] (leaving open for now the characteristic), and a comp
intersectionc = (F1,F2,F3) generated by three quartics. This complete intersection
Hilbert function

1 3 6 10 12 12 10 6 3 1.

We will be interested in relatively compressed Gorenstein algebras of socle degree
expected Hilbert function for this algebra is

1 3 6 10 12 10 6 3 1,
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and by [15, Theorem 4.16], this is achieved ifk has characteristic zero and if, in add
tion, the complete intersection is either the monomial complete intersection(x4

1, x4
2, x4

3),
or general.

We now consider a fieldk of characteristic 2. A standard mapping cone argumen
used also elsewhere in this paper) gives that the relatively compressed Gorenstein alge
is linked viac to an idealI with four generators, and the fact that the desired socle de
of the Gorenstein algebra is 8 yields thatI = (L,F1,F2,F3), whereL is a linear form.
The fact that the Gorenstein algebra has maximal Hilbert function tells us that the
form is general, and that the Hilbert function ofI is as small as possible among ideals w
these generator degrees. Note also that in order to obtain the expected Hilbert function f
the relatively compressed Gorenstein algebra, the Hilbert function ofI must be

1 2 3 4 2.

We first consider the complete intersectionc = (x4
1, x4

2, x4
3). If L = ax1 + bx2 + cx3 is a

general linear form, then (because of the characteristic) in factI is a complete intersection
I = (L,x4

1, x4
2). Its Hilbert function is

1 2 3 4 3 2 1.

This is not the required Hilbert function, soR/c does not have a relatively compress
Gorenstein algebra with the predicted Hilbert function. In fact, the Hilbert function
relatively compressed Gorenstein algebra with respect to this complete intersection

1 3 6 9 10 9 6 3 1.

In fact, by studying the mapping cone for the link ofI via this complete intersection, on
sees that the relatively compressed Gorenstein algebra is in fact itself a complete interse
tion of type(3,4,4).

Now we consider what happens (still in characteristic 2) if we change the gener
We have verified usingmacaulay [2] that in characteristic 2, if we change the compl
intersection to(F1,F2,F3) where

F1 = x4
1 + x1x

3
2 + x2

1x2x3 + x2
1x2

3 + x1x2x
2
3 + x1x

3
3 + x2x

3
3,

F2 = x3
1x2 + x2

1x2x3 + x1x
2
2x3 + x3

2x3 + x2
2x2

3 + x2x
3
3 + x4

3,

F3 = x1x
3
2 + x3

1x3 + x2
1x2x3 + x1x

2
2x3 + x3

2x3 + x2
1x2

3 + x2
2x2

3 + x1x
3
3,

and takeL = x2, then the Hilbert function we get is the same as that obtained in chara
istic zero, the expected one, completing our verification of the assertions in Remark

Notice that similar behavior occurs when we look for relatively compressed Gorenste
algebras with respect to any monomial complete intersection where all the generato
the same degree and this degree is a multiple of the characteristic.

The ideas in this example are directly related to the question of whetherR/c has the
Weak Lefschetz Property—cf. [12, Remark 2.9 and Corollary 2.4].
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We now consider relatively compressedlevel algebras. First recall (cf. [8,14]) that
compressed(in the classical sense) level Artinian algebraA with socle degrees and socle
dimensionc has Hilbert function

hA(t) = min{dimRt, c · dimRs−t }.

(The idea is that from the left and from the right the function grows as fast as it theore
can; so it is not hard to see that this is an upper bound, but the hard part is to sho
this bound is actually achieved, and even more there is an irreducible parameter sp
which the bound is achieved on a Zariski-open subset.) For example, whenn = 3, s = 10,
andc = 3, we get the Hilbert function of the compressed level algebra to be 1 3 6 10
28 30 18 9 3.

We now want to consider relatively compressed level Artinian algebras, and in pa
lar algebras that are relatively compressed in a complete intersection. So, lettingc ⊂ R be a
complete intersection, we consider relatively compressed level quotients ofR/c. Occasion-
ally such algebras are compressed in the classical sense, but not usually. We are in
in both the Hilbert function and the minimal free resolution of such algebras.

We first determine another upper bound for the Hilbert function of a graded leve
tinian algebraA that is relatively compressed with respect to a complete intersectionc ⊂ R.

Lemma 2.13. LetA = R/I be a graded level Artinian algebra of socle dimensionc, socle
degrees and relatively compressed with respect to a complete intersectionc ⊂ R. Then

hA(t) � min
{
dim(R/c)t , c · dim(R/c)s−t

}
.

Proof. We use the theory of inverse systems (cf. [9,15]) and refer to those sourc
the necessary background. The following short summary is taken from [10, Chap
Let S = k[y1, . . . , yn]. We consider the action ofR on S by differentiation: if F ∈ Sj

thenxi ◦ F = ( ∂
∂yi

)F . There is an order-reversing function from the ideals ofR to the
R-submodules ofS defined by

φ1 : {ideals ofR} → {R-submodules ofS}

defined by

φ1(I) = {F ∈ S | G ◦ F = 0 for all G ∈ I }.

This is a 1-1 correspondence, whose inverseφ2 is given byφ2(M) = AnnR(M). We denote
φ1(I) by I−1, called theinverse systemto I . The pairing

Rj × Sj → S0 ∼= k

is perfect. For a subspaceV of Rj we writeV ⊥ ⊂ Sj for the annihilator ofV in this pairing.
If F is an element of[cj ]⊥ then the idealJ = Ann(F ) is a Gorenstein ideal containingc,
of socle degreej .
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Now we proceed by induction onc. For c = 1, we takeF ∈ [cs ]⊥ and we consider th
Gorenstein graded algebraR/Ann(F ). BecauseR/Ann(F ) is a quotient ofR/c, which is
Gorenstein, we clearly have

hA(t) � min
{
dim(R/c)t ,dim(R/c)s−t

}
. (1)

Note that by [15, Theorem 4.16], ifc andF are both general (or ifc is a monomial complete
intersection andF is general) and ifk has characteristic zero (but see also Remark
then we have equality in (1) andR/Ann(F ) is relatively compressed. To prove the gene
case we can choose independent elementsF1, . . . ,Fc ∈ [cs]⊥. Summing up the Hilber
functions of the Gorenstein quotientsR/Ann(F1), . . . ,R/Ann(Fc) of R/c, we get

dim
(
R/Ann(F1, . . . ,Fc)

)
t
�

c∑
i=1

dim
(
R/Ann(Fi)

)
t

from which the result follows. �
It was noted in the proof above that whenc = 1 andc andF are general, and if th

field has characteristic zero or satisfies a certain numerical condition (see Rema
then the Gorenstein quotient that we get is relatively compressed with respect toc, i.e.,
the inequality (1) is an equality. It is natural to ask if the same holds forc � 2. We now
present some examples that show that the naive guess that the inequality in the st
of Lemma 2.13 is an equality even for “generic” choices, is not always correct.

Example 2.14. Consider the general complete intersectionc of type(3,3,3) in 3 variables.
Its Hilbert function is 1 3 6 7 6 3 1. Suppose we want a level algebraA = R/I with s = 5
andc = 2 that is relatively compressed with respect toR/c. One would “expect” that its
Hilbert function would be 1 3 6 7 6 2.

First, we note that there is an algebra with this Hilbert function, which is a quo
of that complete intersection, but itmusthave a ghost term making it not be level. T
reason comes from liaison theory. LetJ be the residual toI with respect to the complet
intersectionc. ThenR/J would have Hilbert function 1 1 (cf. [17, Corollary 5.2.19]),
its resolution begins

· · · → R(−2) ⊕ R(−3)2 → R(−1)2 ⊕ R(−2) → J → 0.

Since the complete intersectionc does not contain a quadric, the mapping cone procedu
(cf. [17, Proposition 5.2.10]) does not splitoff any summands corresponding to genera
of J , so the idealI has resolution that ends

0 → R(−8)2 ⊕ R(−7) → R(−7) ⊕ R(−6)5 → ·· ·

and so is not level.
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Second, we show that there is a relatively compressed algebra that has Hilbert fu
1 3 6 7 5 2. Indeed, it can be obtained as the residual of a complete intersection o
(1,1,3) inside a complete intersection of type(3,3,3).

Finally, we observe that all this can even be done at the level of points inP3 by lifting
the Artinian ideals to ideals of sets of points: simply start with a set of three points
line in P3 and link using three cubics.

Example 2.15. Now we consider ideals in the polynomial ringR with 4 variables. Letc be
a general complete intersection of type(3,3,3,3). Its Hilbert function is

1 4 10 16 19 16 10 4 1.

Suppose we look for a relatively compressed level algebra withs = 7 andc = 2. A first
guess could be that the correct Hilbert function should be 1 4 10 16 19 16 8 2. If this
true, the residualJ in the complete intersection(3,3,3,3) would have Hilbert function
1 2 2. But suchJ has (at least) generators of degrees 1, 1, 2, 3, 3, so the mapping
procedure shows thatR/I has Cohen–Macaulay type (at least) 3, hence it is not a
algebra. Again there is a ghost term. Notethat generically we get Cohen–Macaulay ty
exactly 3.

On the other hand, we can again construct a relatively compressed level algebra wi
s = 7, c = 2, and Hilbert function 1 4 10 16 19 16 7 2. This is done by starting with
algebra with Hilbert function 1 2 3. Its generators will be of degree 1, 1, 3, 3, 3,
the complete intersection will split off all the terms corresponding to the cubic gener
leaving a residual that is a level algebra.

Example 2.16. This time we will even compute the graded Betti numbers, not just
“surprising” Hilbert function. We work over a polynomial ring with 3 variables. Reca
that in this case we know Fröberg’s conjecture to hold, thanks to work of Anick [1], w
gives the Hilbert function of an ideal generated by general forms of any prescribed degre
(as illustrated below).

Consider a level algebra withs = 7, c = 2 that is relatively compressed with respec
the general complete intersectionc of type(4,4,4). It is constructed as follows. Adjoinin
two general forms of degree 2 to the general complete intersectionc of type (4,4,4), we
get (using Anick’s result) successively the Hilbert functions

1 3 6 10 12 12 10 6 3 1
1 3 5 7 6 2
1 3 4 4 1.

The residual with respect toc provides the desired algebraA. It has Hilbert function

1 3 6 10 12 11 6 2,

where one might have expected in degree 5 a 12 rather than 11. The reason th
is no level algebra with a 12 rather than an 11 in degree 5, that is a quotient ofR/c,
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is precisely that such an algebra would be residual to an algebra with Hilbert fun
1, 3, 4, 4, which has too many generators to allow the residual to be level! Note ho
that there is a level algebraR/I with Hilbert function 1,3,6,10,12,12,6,2 if we do not
require thatI contains a regular sequence of type(4,4,4). It can be constructed as Artinia
quotient of the coordinate ring of 12 points inP2 using [10, Proposition 7.1].

In order to compute the graded Betti numbers ofA we start with the setX of 3 general
points inP3. Their resolution has the shape

0 → R2(−4) → R5(−3) → R(−1) ⊕ R3(−2) → I (X) → 0.

Linking by a complete intersection of type(2,2,4), we get a residualJ whose Betti
numbers read as

0 → R(−7) ⊕ R(−6) → R5(−5) ⊕ R(−4) → R3(−4) ⊕ R2(−2) → J → 0

because the two generators of degree 2 splitoff while the Koszul ghost term does not sp
off.

SinceJ contains a complete intersection of type(2,2,4), it certainly contains one o
type(4,4,4) as well. Linking again, this time by a complete intersection of type(4,4,4),
we get an algebraA as above. After splitting off the three quartics the mapping c
procedure provides that its minimal free resolution has the form

0 → R2(−10) → R(−8) ⊕ R5(−7) → R(−6) ⊕ R(−5) ⊕ R3(−4) → J → 0.

3. Minimal free resolution of relatively compressed Gorenstein Artinian algebras

In the previous section we discussed what the “expected” behavior should be f
Hilbert function of a relatively compressed level algebra, and how this is sometime
achieved. We now begin our study of the following problem:

Problem 3.1. To determine the “generic” graded Betti numbers in the minimal freeR-
resolution of Artinian level graded algebras of embedding dimensionn, socle degrees and
socle dimensionc and relatively compressed with respectto a general complete intersectio
a ⊂ R.

In this section we consider the minimal freeR-resolution of Gorenstein Artinian grade
algebras of embedding dimensionn that are relatively compressed with respect to the id
a ⊂ k[x1, . . . , xn] of a general complete intersection of type(d1, . . . , dr ), r � n. We con-
sider the case of even socle degree and odd socle degree separately. For even soc
we completely determine the minimal freeR-resolution. We also show that all redunda
(“ghost”) terms that appear are due to Koszul syzygies (or are forced by duality
Koszul syzygies). For odd socle degree we do not have quite as clean a statement
show in Example 3.10 that this is the best we could hope for.
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We begin with even socle degree. We will see that once we fixn, t and(d1, . . . , dr) all
have the same graded Betti numbers (there is no need for a “generic” choice). Th
known only for compressed level algebras of even socle degree:

Proposition 3.2. LetA be a compressed Gorenstein Artinian graded algebra of embed
dimensionn and socle degree2t . ThenA has a minimal freeR-resolution of the following
type:

0 → R(−2t − n) → R(−t − n + 1)αn−1 → ·· · → R(−t − p)αp → ·· ·
→ R(−t − 2)α2 → R(−t − 1)α1 → R → A → 0,

where

αi =
(

t + i − 1

i − 1

)(
t + n

n − i

)
−

(
t − 1+ n − i

n − i

)(
t − 1+ n

i − 1

)
for i = 1, . . . , n − 1.

Proof. Because the socle degree is even, in factA is a so-calledextremely compresse
Artin level algebra. Then the result follows from [4, Proposition 3.6] or [14, Propos
tion 4.1]. �
Remark 3.3. The above result is also a special case of [20, Theorem 8.14]. This latter
has the extra hypothesis thatA has the Weak Lefschetz Property (i.e., that multiplicat
by a general linear form, from any component to the next, has maximal rank). Howe
was noted in [18, Remark 3.6(c)] that in the situation of compressed Gorenstein al
of even socle degree, this property is automatically satisfied.

Note also that the formula forαi given above is not presented in the same way as
in [20, Theorem 8.14], but a calculation shows that they are equivalent.

From now on, when we say thatA is a Gorenstein Artinian graded algebra of emb
ding dimensionn, even socle degree 2t and relatively compressed with respect to a gen
complete intersection ideala ⊂ k[x1, . . . , xn] of typed1 � · · · � dr we will assume with-
out loss of generality thatdr � t ; otherwiseA is a Gorenstein Artinian graded algeb
of embedding dimensionn, even socle degree 2t and relatively compressed with respe
to a general complete intersection idealb ⊂ k[x1, . . . , xn] of type d1 � · · · � dj where
dj = max1�i�r {di � t}.

We first fix some notation that we will use from now on.

Notation 3.4.

(1) Given a complete intersection ideala = (G1, . . . ,Gr) ⊂ R = k[x1, . . . , xn] with r � n

andd1 = deg(G1) � · · · � dr = deg(Gr), we denote byKi(d1, . . . , dr) (or, simply,
Ki(d) if d = (d1, . . . , dr)) theith module of syzygies ofR/a. So, we have

Ki(d1, . . . , dr ) = Ki(d) :=
i∧(

r⊕
R(−di)

)

i=1
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and the minimal freeR-resolution ofR/a:

0 → Kr(d) → Kr−1(d) → ·· · → K2(d) → K1(d) → R → R/a → 0.

(2) For any freeR-moduleF = ⊕
t∈Z

R(−t)αt and any integery ∈ Z, we set

F�y :=
⊕
t�y

R(−t)αt .

Theorem 3.5. Let A = R/I be a Gorenstein Artinian graded algebra of embedding
mensionn and socle degree2t , whereR = k[x1, . . . , xn] and k has characteristic zero
Assume thatA is relatively compressed with respect to a general complete interse
ideala = (G1, . . . ,Gr), r � n anddeg(G1) = d1, . . . ,deg(Gr) = dr . Setd = (d1, . . . , dr).
Then,A has a minimal freeR-resolution of the following type:

0 → R(−2t − n) → R(−t − n + 1)αn−1(d,n,t) ⊕ Kn−1(d)�t+n−2 ⊕ K1(d)∨(−2t − n)

→ R(−t − n + 2)αn−2(d,n,t) ⊕ Kn−2(d)�t+n−3 ⊕ (
K2(d)�t+1)∨(−2t − n) → ·· ·

→ R(−t − 2)α2(d,n,t) ⊕ K2(d)�t+1 ⊕ (
Kn−2(d)�t+n−3)∨(−2t − n)

→
r⊕

j=1

R(−dj ) ⊕ R(−t − 1)α1(d,n,t) ⊕ (
Kn−1(d)�t+n−2)∨(−2t − n)

→ R → A → 0,

where

αi(d,n, t) = αn−i (d, n, t) for i = 1, . . . , n − 1,

andαi(d,n, t) is completely determined by the Hilbert function ofA.

Proof. Sincea ⊂ I andA is relatively compressed with respect toa, we havehA(ν) =
min{dim(R/a)ν,dim(R/a)2t−ν} (thanks to [15, Theorem 4.16]). Thusaν = Iν for all
ν � t . We deduce thatA has a minimal freeR-resolution of the following type:

0 → R(−2t − n) → Fn−1 → Fn−2 → ·· · → F2 → F1 → R → R/I → 0, (2)

where

Fi =
⊕

m�t+i

R(−m)αi,m(d,n,t) ⊕ Ki(d)�t+i−1,

d = (d1, . . . , dr), Ki(d) = Ki(d1, . . . , dr) andα1,t+1(d,n, t) is completely determined b
the Hilbert function ofA. More precisely,α1,t+1(d,n, t) = dim(R/a)t+1 − dim(A)t+1.

Recall that the minimal freeR-resolution of a Gorenstein Artinian algebra is self-d
(up to shift). Dualizing (2) and twisting byR(−2t − n), we get
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into
0 → R(−2t − n) → F∨
1 (−2t − n) → F∨

2 (−2t − n) → ·· ·
→ F∨

n−2(−2t − n) → F∨
n−1(−2t − n) → R → A = R/I → 0.

Therefore, for all 1� i � n − 1, we have the isomorphism

Fi =
⊕

m�t+i

R(−m)αi,m(d,n,t) ⊕ Ki(d)�t+i−1 ∼= F∨
n−i (−2t − n)

=
⊕

m�t+n−i

R(m − 2t − n)αn−i,m(d,n,t) ⊕ (
Kn−i (d)�t+n−i−1)∨

(−2t − n). (3)

We first consideri = 1. We rewrite the third line of (3) as follows:

[
R(−t − 1)αn−1,t+n−1(d,n,t) ⊕ R(−t)αn−1,t+n(d,n,t) ⊕ · · ·]
⊕ [(

Kn−1(d)�t+n−2)∨(−2t − n)
]

and observe that each summand on the first line is of the formR(−i) for somei � t + 1,
while each summand on the second line is of the formR(−i) for somei � t +2. It follows
that ⊕

m�t+n−1

R(m − 2t − n)αn−1,m(d,n,t) = K1(d)�t ⊕ R(−t − 1)α1,t+1(d,n,t) and

(
Kn−1(d)�t+n−2)∨(−2t − n) =

⊕
m�t+2

R(−m)α1,m(d,n,t),

and we conclude that

F1 = K1(d)�t ⊕ R(−t − 1)α1(d,n,t) ⊕ (
Kn−1(d)�t+n−2)∨(−2t − n) and

Fn−1 = (
K1(d)�t

)∨
(−2t − n) ⊕ R(−t − n + 1)α1(d,n,t) ⊕ Kn−1(d)�t+n−2,

whereα1(d,n, t) := α1,t+1(d,n, t).
SubstitutingF1 andFn−1 in the exact sequence (2) and using again the Hilbert func

of A, we determineα2,t+2(d,n, t). Moreover, an analogous numerical analysis taking
account thatF2 ∼= F∨

n−2(−2t − n) gives us

F2 = K2(d)�t+1 ⊕ R(−t − 2)α2(d,n,t) ⊕ (
Kn−2(d)�t+n−3)∨

(−2t − n) and

Fn−2 = (
K2(d)�t

)∨
(−2t − n) ⊕ R(−t − n + 2)α2(d,n,t) ⊕ Kn−2(d)�t+n−3,

whereα2(d,n, t) := α2,t+2(d,n, t).
Going on and using the isomorphismFi

∼= F∨
n−i (−2t − n) for all i = 1, . . . , n − 1, we

obtain that

Fi = Ki(d)�t+i−1 ⊕ R(−t − i)αi(d,n,t) ⊕ (
Kn−i (d)�t+n−i−1)∨(−2t − n),
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whereαi(d,n, t) = αn−i (d, n, t) for all i = 1, . . . , n − 1 andαi(d,n, t) is determined by
the Hilbert function ofA. �
Remark 3.6. The equality in the first line of the proof of Theorem 3.5 follows from
assumption that the complete intersection is general, as well as the assumption
characteristic. We remark that the assumptions can be weakened somewhat.

As we saw in Section 2, the factthat the Gorenstein algebraA has the expected Hilbe
function (i.e., that it is relatively compressed with respect toa) is directly related to the
Fröberg conjecture, in this case forn + 1 forms. This in turn is equivalent to the so-call
Maximal Rank Property, namely thatR/a have the property that for anyd and anyi,
a general formF of degreed induces a map of maximal rank from(R/a)i to (R/a)i+d .
And this follows from the Strong Lefschetz Property. Now, it was shown in [15] (base
the proof of Fröberg’s conjecture forn+ 1 forms inn variables in [23] and [25]) that all o
these hold for a monomial complete intersection (hence for a general complete inters
provided that eitherk has characteristic zero or thatk has characteristicp, assuming tha
certain numerical conditions hold. More precisely, they assume that either char(k) = 0 or
else that char(k) > j , a = (f1, . . . , fa), a � n, fi = x

di

i , and that there exist nonnegati
integerst, u, v with j = u + v, and ifa = n thenj �

∑
di − n. Hence Theorem 3.5 is als

true with these assumptions on the characteristic.
Note that in fact it is unknown if the Strong Lefschetz Property holds forall complete

intersections, even in characteristic zero. However, it is true that over fields of charac
zero all complete intersections in 3 variables have the Weak Lefschetz Property, due

Example 3.7. Let A be a general Gorenstein Artinian graded algebra of embedding di
sion 4, socle degree 10 and relatively compressed with respect to the ideala = (F,G,H)

of a complete intersection set of pointsP ⊂ P3 of type(3,3,4). Theh-vector ofA is

1 4 10 18 26 32 26 18 10 4 1

and the “expected” minimal freeR-resolution is

0 → R(−14) → R(−8)9 ⊕ R(−11)2 ⊕ R(−10) → R(−7)20 ⊕ R(−8) ⊕ R(−6)

→ R(−6)9 ⊕ R(−3)2 ⊕ R(−4) → R → A → 0.

It is known that such algebras exist [15], and the precise resolution comes from
orem 3.5. However, to illustrate our technique from the previous section we exp
construct it. To this end, we consider a subsetX ⊂ P ⊂ P3 of 32 points ofP that truncate
the Hilbert function. Theh-vector ofX is thus

1 3 6 8 8 6 0

andI (X) has a minimal freeR-resolution of the following type:

0 → R(−8)6 → R(−7)10 ⊕ R(−6) → R(−6)3 ⊕ R(−4) ⊕ R(−3)2

→ R → R/I (X) → 0
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(as can be verified, for example, by linkage).
The canonical moduleωX of R/I (X) can be embedded as an idealωX(−10) ⊂ R/I (X)

of initial degree 6 and we have a short exact sequence

0→ ωX(−10) → R/I (X) → A → 0,

where A is a Gorenstein Artinian graded algebra of codimension 4, socle degre
h-vector

1 4 10 18 26 32 26 18 10 4 1.

So, it is relatively compressed with respect toa = (F,G,H), deg(F ) = deg(G) = 3 and
deg(H) = 4. Moreover, applying once more themapping cone process, we get thatA has
the following minimal freeR-resolution:

0 → R(−14) → R(−8)9 ⊕ R(−11)2 ⊕ R(−10) → R(−7)20 ⊕ R(−8) ⊕ R(−6)

→ R(−6)9 ⊕ R(−3)2 ⊕ R(−4) → R → A → 0.

So, it has the expected minimal freeR-resolution in the sense that the graded Betti nu
bers are the smallest consistent with the Hilbert function of such relatively compr
Gorenstein algebra.

We see that the summandR(−6) does not split off because it is a Koszul relation amo
the two cubic generators. The summandR(−8) doesnot correspond to a Koszul syzyg
However, it is forced by the self duality property (up to twist) of the minimal freeR-
resolution of an Artinian Gorenstein graded algebra. So, in the minimal free resol
the ghost terms are forced to be there (directly and then indirectly) by the Koszul rel
among the generators.

Remark 3.8. Theorem 3.5 shows that the observation at the end of the last example
in general: in the minimal free resolution of an Artinian Gorenstein algebra of even
degree, relatively compressed with respect to a general complete intersection, th
ghost terms that appear are forced to be there by Koszul relations among the genera
by duality because of such Koszul relations.

A more difficult situation is when the Artinian Gorenstein graded algebra has odd
degree. The technique of the previous section only gives a partial result, not the p
resolution. Indeed, it is no longer true that the Hilbert function alone determines the g
Betti numbers. (For instance see [18, Example 3.12].)

Theorem 3.9. Let A = R/I be a Gorenstein Artinian graded algebra of embedding
mensionn and socle degree2t +1, whereR = k[x1, . . . , xn] andk has characteristic zero
Assume thatA is relatively compressed with respect to a general complete interse
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ideala = (G1, . . . ,Gr), r � n anddeg(G1) = d1, . . . ,deg(Gr) = dr . Setd = (d1, . . . , dr).
Then,A has a minimal freeR-resolution of the following type:

0 → R(−2t − 1− n) → Fn−1 → ·· · → F2 → F1 → R → A → 0,

whereFi
∼= F∨

n−i (−2t −1−n) for all i = 1, . . . , n−1. Moreover, ifn is even(sayn = 2p),
then

Fi = R(−t − i − 1)yi+1 ⊕ R(−t − i)αi(d,n,t)+yi

⊕ Ki(d)�t+i−1 ⊕ (
Kn−i (d)�t+n−i−1)∨(−2t − 1− n) for i = 2, . . . , p − 1,

F1 =
r⊕

j=1

R(−dj ) ⊕ (
Kn−1(d)�t+n−2)∨(−2t − 1− n) ⊕ R(−t − 1)α1(d,n,t)

⊕ R(−t − 2)y2, and

Fp = R(−t − p − 1)αp(d,n,t)+yp ⊕ R(−t − p)αp(d,n,t)+yp ⊕ Kp(d)�t+p−1

⊕ (
Kp(d)�t+p−1)∨(−2t − 1− n),

whereαi(d,n, t), i = 1, . . . , p, is completely determined by the Hilbert function ofA.
If n is odd(say,n = 2p + 1), then

F1 =
r⊕

j=1

R(−dj ) ⊕ (
Kn−1(d)�t+n−2)∨

(−2t − 1− n) ⊕ R(−t − 1)α1(d,n,t)

⊕ R(−t − 2)y2 and

Fi = R(−t − i − 1)yi+1 ⊕ R(−t − i)αi (d,n,t)+yi

⊕ Ki(d)�t+i−1 ⊕ (
Kn−i (d)�t+n−i−1)∨

(−2t − 1− n) for i = 2, . . . , p,

whereαi(d,n, t), i = 1, . . . , p, is completely determined by the Hilbert function ofA.

Proof. Analogous to the proof of Theorem 3.5. See also Remark 3.6 concerning t
sumption on the characteristic.�
Example 3.10. This example shows that in fact a relatively compressed Gorenstein algeb
of odd socle degree can have ghost terms that are not forced by Koszul relations
the generators, even taking duality into account. It was verified bymacaulay [2], but
the calculations can be done by hand as well. LetI be an ideal of general forms of d
grees 4,4,4,4,11 in four variables. LinkI using a general complete intersection of ty
(4,4,4,11). The residual is a Gorenstein idealG, which is relatively compressed sinceI

is an ideal of general forms. The Hilbert functions are
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deg 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1
CI 1 4 10 20 32 44 54 60 63 64 64 63 60 54 44 32 20 10 4

G 1 4 10 20 32 44 54 60 60 54 44 32 20 10 4 1

The Betti diagram of G is

Total: 1 7 12 7 1

0: 1 – – – –
1: – – – – –
2: – – – – –
3: – 3 – – –
4: – – – – –
5: – – – – –
6: – – 3 – –
7: – 3 3 1 –
8: – 1 3 3 –
9: – – 3 – –

10: – – – – –
11: – – – – –
12: – – – 3 –
13: – – – – –
14: – – – – –
15: – – – – 1

The three copies ofR(−8) in the second free module represent Koszul syzygies, h
the corresponding “ghost” terms are forced by Koszul relations. However, the co
R(−9) in the second free module does not come from Koszul relations among gene
It illustrates that things are very different in the case of odd socle degree.

Remark 3.11. The two preceding examples illustrate the difference between the ca
even socle degree and odd socle degree. In fact, Theorem 3.5 shows that there
“ghost” terms in the minimal free resolution of a relatively compressed Gorenstein Ar
algebra of even socle degree, relatively compressed with respect to a general comp
intersection, apart from those corresponding to Koszul relations or forced from the K
ones by duality.

Now we introduce a new technique, which gives the precise resolution at leas
special case.

Example 3.12. Let A be a general Gorenstein Artinian graded algebra of embeddin
mension 4, socle degree 9 and relatively compressed with respect to the ideala = (F ) of a
smooth quadricQ = V (F) ⊂ P3. Theh-vector ofA is

1 4 9 16 25 25 16 9 4 1

and the expected minimal freeR-resolution is
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0 → R(−13) → R(−11) ⊕ R(−8)11 → R(−6)11 ⊕ R(−7)11 → R(−2) ⊕ R(−5)11

→ R → A → 0.

Let us explicitly construct such an algebra. To this end, we consider 30 general
X ⊂ P3 on the quadricQ ⊂ P3. Theh-vector ofX is 1 3 5 7 9 5 andI (X) has a minimal
freeR-resolution of the following type [11]:

0 → R(−8)5 → R(−6)5 ⊕ R(−7)6 → R(−2) ⊕ R(−5)6 → R → R/I (X) → 0.

By [3, Theorem 3.2], the canonical moduleωX of R/I (X) can be embedded as an ide
ωX(−9) ⊂ R/I (X) of initial degree 5 and we have a short exact sequence

0 → ωX(−9) → R/I (X) → A → 0,

whereA is a Gorenstein Artinian graded algebra of embedding dimension 4, socle deg
h-vector

1 4 9 16 25 25 16 9 4 1

and relatively compressed with respect toa = (F ). Moreover, applying the mapping con
process, we get thatA has the following minimal freeR-resolution:

0 → R(−13) → R(−11) ⊕ R(−8)11 → R(−6)11 ⊕ R(−7)11 → R(−2) ⊕ R(−5)11

→ R → A → 0.

The following result from [11] is crucial if we want to generalize the above example

Proposition 3.13. Let X be a set ofN general points on a smooth quadricQ ⊂ P3. Write
N = i2 + h with 0< h � 2i + 1. Then, theh-vector ofX is

1 3 5 7 · · · 2i − 1 h 0

andI (X) has a minimal freeR-resolution of the following type:

0→ R(−i − 2)max(0,−δi+2) ⊕ R(−i − 3)h → R(−i − 1)max(0,δi+1) ⊕ R(−i − 2)max(0,δi+2)

→ R(−i)2i+1−h ⊕ R(−i − 1)max(0,−δi+1) ⊕ R(−2) → R → R/I (X) → 0,

whereδn := �4hX(n) (the fourth difference of the Hilbert function ofX).

Proof. See [11, §4]. �
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Proposition 3.14. Let A be a general Gorenstein Artinian graded algebra of embedd
dimension4 and socle degree2t +1. Assume thatA is relatively compressed with respect
a = (F ) with deg(F ) = 2 andF general. If2 � t , thenA has a minimal freeR-resolution
of the following type:

0 → R(−2t − 5) → R(−t − 4)2t+3 ⊕ R(−2t − 3) → R(−t − 2)2t+3 ⊕ R(−t − 3)2t+3

→ R(−t − 1)2t+3 ⊕ R(−2) → R → A → 0.

Proof. We will explicitly construct a Gorenstein Artinian graded algebraA of embed-
ding dimension 4, socle degree 2t + 1, relatively compressed with respect toa = (F ),
deg(F ) = 2, and with the expected graded Betti numbers. To this end, we consider a
(t + 1)2 + (t + 1) general pointsX ⊂ P3 lying on a smooth quadricQ = V (F) ⊂ P3. The
h-vector ofX is

1 3 5 · · · 2t + 1 t + 1 0

andI (X) has a minimal freeR-resolution of the following type:

0 → R(−t − 4)t+1 →
R(−t − 3)t+2

⊕
R(−t − 2)t+1

→
R(−t − 1)t+2

⊕
R(−2)

→ R → R/I (X) → 0.

By Proposition 3.13, such a set of pointsX exists.
By [3, Theorem 3.2], the canonical moduleωX of R/I (X) can be embedded as an ide

ωX(−2t − 1) ⊂ R/I (X) of initial degreet + 1 and we have a short exact sequence

0 → ωX(−2t − 1) → R/I (X) → A → 0,

whereA is a Gorenstein Artinian graded algebra of codimension 4, socle degree 2t + 1,
h-vector

1 4 9 25 · · · (t + 1)2 (t + 1)2 · · · 25 9 4 1.

So, it is relatively compressed with respect toa = (F ), deg(F ) = 2. Moreover, applying
the mapping cone process, we get thatA has the following minimal freeR-resolution:

0 → R(−2t − 5) → R(−t − 4)2t+3 ⊕ R(−2t − 3) → R(−t − 2)2t+3 ⊕ R(−t − 3)2t+3

→ R(−t − 1)2t+3 ⊕ R(−2) → R → A → 0.

So it has the expected minimal freeR-resolution in the sense that the graded Betti nu
bers are the smallest consistent with the Hilbert function of such relatively compr
Gorenstein graded algebra.�

The approach used in Proposition 3.14 suggests that there is a close relation between
Minimal Resolution Conjecture (MRC) for points on a projective variety due to Mustǎ
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(see [21, p. 64]) and the existence of relatively compressed Gorenstein algebrasA of odd
socle degree and with the “expected resolution” in the sense that the graded Betti n
are the smallest consistent with the Hilbert function ofA. We will end this section by
writing down this relation.

Definition 3.15. Let X ⊂ Pn be a projective variety of dim(X) � 1. A setΓ of δ distinct
points onX is in general positionif

hR/I (Γ )(t) = min{hR/I (X)(t), δ}.

If X = Pn, then the Minimal Resolution Conjecture predicts the graded Betti num
of points in general position. It has been proved if the number of points is large compa
n by Hirschowitz and Simpson [13], but may fail for a small number of points as show
Eisenbud and Popescu [5]. IfX �= Pn one has to modify the “expectations.” In [21, p. 6
Mustaţǎ states the Minimal Resolution Conjecture (MRC) for points on a projective va
Let us recall it.

Conjecture 3.16. Let X ⊂ Pn be a projective variety withd = dim(X) � 1, reg(X) = m

and with Hilbert polynomialPX . Letδ be an integer withPX(r −1) � δ < PX(r) for some
r � m + 1 and letΓ be a set ofδ points onX in general position. Let

0→ Fn → Fn−1 → ·· · → F2 → F1 → R → R/I → 0

be a minimal freeR-resolution ofR/I (X). ThenR/I (Γ ) has a minimal freeR-resolution
of the following type:

0 → Fn ⊕ R(−r − n + 1)a
n
r+n−1 ⊕ R(−r − n)a

n
r+n

→ Fn−1 ⊕ R(−r − n + 2)a
n−1
r+n−2 ⊕ R(−r − n + 1)a

n−1
r+n−1 → ·· ·

→ F2 ⊕ R(−r − 1)a
2
r+1 ⊕ R(−r − 2)a

2
r+2

→ F1 ⊕ R(−r)a
1
r ⊕ R(−r − 1)a

1
r+1 → R → R/I (Γ ) → 0

with ai
r+ia

i+1
r+i = 0 for i = 1, . . . , n − 1.

Example 3.17. The MRC holds forδ � 0 points on a general smooth rational quintic cu
C ⊂ P3 [21].

For the purposes of this paper, it would be enough to know that the MRC holds
complete intersection variety.

Proposition 3.18. Let A = R/I be a general Gorenstein Artinian graded algebra of e
bedding dimensionn and socle degree2t + 1. Assume thatA is relatively compressed wit
respect to a general complete intersection ideala = (G1, . . . ,Gr) ⊂ k[x1, . . . , xn], r �
n−2, anddeg(G1) = d1, . . . ,deg(Gr) = dr . Setm = reg(X) whereX = V (G1, . . . ,Gr) ⊂
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Pn−1 and d = (d1, . . . , dr ). If t � m and MRC holds for points on complete intersect
projective varieties, thenA has a minimal freeR-resolution of the following type:

0 → R(−2t − 1− n) → Fn−1 → ·· · → F2 → F1 → R → A → 0,

whereFi
∼= F∨

n−1(−2t −1−n) for all i = 1, . . . , n−1. Moreover, ifn is even(say,n = 2p),
then

Fi = R(−t − i)αi(d,n,t) ⊕ Ki(d) ⊕ Kn−i (d)∨(−2t − 1− n) for i = 1, . . . , p − 1 and

Fp = R(−t − p − 1)αp(d,n,t) ⊕ R(−t − p)αp(d,n,t) ⊕ Kp(d) ⊕ Kp(d)∨(−2t − 1− n),

whereαi(d,n, t), i = 1, . . . , p, is completely determined by the Hilbert function ofA.
If n is odd(say,n = 2p + 1), then

Fi = R(−t − i)αi(d,n,t) ⊕ Ki(d) ⊕ Kn−i (d)∨(−2t − 1− n) for i = 1, . . . , p,

whereαi(d,n, t), i = 1, . . . , p, is completely determined by the Hilbert function ofA.

Proof. We will only prove the casen even and we leave to the reader the casen odd. To
this end, we will explicitly construct a Gorenstein Artinian graded algebraA of embedding
dimensionn, socle degree 2t + 1, relatively compressed with respect toa = (G1, . . . ,Gr)

and with the expected graded Betti numbers.
By hypothesis the complete intersection projective varietyX = V (G1, . . . ,Gr) ⊂ Pn−1

satisfies MRC for any set ofδ points onX in general position withPX(s − 1) � δ < PX(s)

for somes � m+1. Hence, sincet � m, for a suitableδ with PX(t) � δ < PX(t +1), a set
Γ of δ general points onX has a minimal freeR-resolution of the following type:

0 → Kn−1(d) ⊕ R(−t − n)a
n−1
t+n → Kn−2(d) ⊕ R(−t − n + 1)a

n−2
t+n−1 → ·· ·

→ Kn/2(d) ⊕ R

(
−t − n

2

)a
n/2
t+n/2 ⊕ R

(
−t − n

2
− 1

)a
n/2
t+n/2+1 → ·· ·

→ K2(d) ⊕ R(−t − 2)a
2
t+2 → K1(d) ⊕ R(−t − 1)a

1
t+1 → R → R/I (Γ ) → 0. (4)

Dualizing and twisting the exact sequence (4), we get a minimal freeR-resolution of
the canonical moduleωΓ (−2t − 1) of Γ :

0 → R(−2t − 1− n) → R(−t − n)a
1
t+1 ⊕ K1(d)∨(−2t − 1− n)

→ R(−t − n + 1)a
2
t+2 ⊕ K2(d)∨(−2t − 1− n) → ·· ·

→ R

(
−t − 1− n

2

)a
n/2
t+n/2 ⊕ R

(
−t − n

2

)a
n/2
t+n/2+1 ⊕ Kn/2(d)∨(−2t − 1− n) → ·· ·

→ R(−t − 2)a
n−2
t+n−1 ⊕ Kn−2(d)∨(−2t − 1− n)

→ R(−t − 1)a
n−1
t+n ⊕ Kn−1(d)∨(−2t − 1− n) → ωΓ (−2t − 1) → 0. (5)
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By [3, Theorem 3.2], the canonical moduleωΓ of R/I (Γ ) can be embedded as an ide
ωΓ (−2t − 1) ⊂ R/I (Γ ) of initial degreet + 1 and we have a short exact sequence

0→ ωΓ (−2t − 1) → R/I (Γ ) → A → 0, (6)

whereA is a Gorenstein Artinian graded algebra of codimensionn, socle degree 2t + 1.
A straightforward computation using the exact sequences (4)–(6) gives ushA(λ) =
min{hR/a(λ),hR/a(2t + 1 − λ)}. Therefore,A is relatively compressed with respect
a = (G1, . . . ,Gr). Moreover, using the exact sequences (4)–(6) and applying the ma
cone process, we get thatA has the following minimal freeR-resolution:

0 → R(−2t − 1− n) → R(−t − n)a
1
t+1+an−1

t+n ⊕ Kn−1(d) ⊕ K1(d)∨(−2t − 1− n)

→ R(−t − n − 1)a
2
t+2+an−2

t+n−1 ⊕ Kn−2(d) ⊕ K2(d)∨(−2t − 1− n) → ·· ·

→ R

(
−t − n

2

)a
n/2
t+n/2+a

n/2
t+n/2+1 ⊕ R

(
−t − n

2
− 1

)a
n/2
t+n/2+a

n/2
t+n/2+1 ⊕ Kn/2(d)

⊕ Kn/2(d)∨(−2t − 1− n) → ·· ·
→ R(−t − 2)a

2
t+2+an−2

t+n−1 ⊕ K2(d) ⊕ Kn−2(d)∨(−2t − 1− n)

→ R(−t − 1)a
1
t+1+an−1

t+n ⊕ K1(d) ⊕ Kn−1(d)∨(−2t − 1− n) → R → A → 0.

So A has the expected minimal freeR-resolution in the sense that the graded B
numbers are the smallest consistent with the Hilbert function of such relatively comp
Gorenstein algebra and there are no non-Koszul ghost terms.�

4. Unexpected behavior for the minimal free resolution of relatively compressed
level algebras of socle dimension c ��� 2: “ghost” terms

We saw in Section 2 that the Hilbert function of a relatively compressed algebra ca
to be the “expected” one. In this section we consider the question of when (if at a
minimal free resolution of a relatively compressed level algebra must have redund
“ghost”) terms that are not computable only from the Hilbert function.

We first give two examples of levelc � 2 algebras relatively compressed with resp
to a complete intersectionc, with fixed socle degrees, embedding dimension 3 and wi
the “expected” minimal freeR-resolution.

The first example involves amacaulay [2] computation, while the second does not

Example 4.1. We setR = k[x, y, z]. Let A be a level 2 graded algebra of embedd
dimension 3, socle degree 15 and relatively compressed with respect to a complet
section ideala = (F1,F2,F3), deg(Fi) = 9 for i = 1,2,3. Note that the Hilbert function
of R/a is

1 3 6 10 15 21 28 36 45 52 57 60 61 60 57 52 45 36 28 21 15 10 6 3 1.
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The expectedh-vector ofA (according to the discussion preceding Example 2.14) is

1 3 6 10 15 21 28 36 45 52 42 30 20 12 6 2; (7)

and the expected minimal freeR-resolution is

0 → R(−18)2 → R(−11)15 ⊕ R(−12)4 → R(−9)3 ⊕ R(−10)15 → R → A → 0.

Let us explicitly construct it. To this end, we consider the idealJ = a + (F4,F5) where
F4 andF5 are two general forms of degree 9. We know the Hilbert function ofR/J thanks
to [1] (using a calculation similar to that in Example 2.16):

1 3 6 10 15 21 28 36 45 50 51 48 41 30 15.

Usingmacaulay, we compute a minimal freeR-resolution ofJ and we get

0→ R(−17)15 → R(−16)15 ⊕ R(−15)4 → R(−9)5 → R → R/J → 0.

The ideala links J to an idealJ ′ := [a : J ] and it is easily seen thatA = R/J ′ is a
level 2 graded algebra of embedding dimension 3 and socle degree 15. One quickly
that its Hilbert function is the one predicted above in (7), soA is relatively compresse
with respect to a complete intersection ideala = (F1,F2,F3), deg(Fi) = 9 for i = 1,2,3.
Using the standard mapping cone construction we get thatA has the following minima
freeR-resolution:

0 → R(−18)2 → R(−11)15 ⊕ R(−12)4 → R(−9)3 ⊕ R(−10)15 → R → A → 0.

So, it has the expected minimal freeR-resolution in the sense that the graded Betti num
are the smallest consistent with the Hilbert function of such relatively compressed
graded algebras of socle dimension 2. Notethat the only place where we needed the a
of the computer was to confirm the expected minimal free resolution of an ideal o
general forms of degree 9.

Example 4.2. We setR = k[x, y, z]. Let A be a level graded algebra of socle dimensio
and embedding dimension 3, socle degree 5 and relatively compressed with respe
ideala = (F ), deg(F ) = 2. Theh-vector ofA is 1 3 5 7 9 4; and the expected minimal fr
R-resolution is

0 → R(−8)4 → R(−6)8 ⊕ R(−7)3 → R(−2) ⊕ R(−5)7 → R → A → 0.

Let us explicitly construct it. To this end, we consider a set of 29 general pointsX ⊂ P3

lying on a smooth quadric surfaceQ ⊂ P3. Theh-vector ofX is 1 3 5 7 9 4; andI (X) ⊂
S := k[x0, x1, x2, x3] has a minimal freeS-resolution of the following type (cf. [11]):

0 → S(−8)4 → S(−6)8 ⊕ S(−7)3 → S(−2) ⊕ S(−5)7 → S → S/I (X) → 0.
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The Artinian reduction ofS/I (X) is a level graded Artinian algebraA of socle dimen-
sion 4 and embedding dimension 3, socle degree 5 and relatively compressed with
to an ideala = (F ) ⊂ k[x, y, z], deg(F ) = 2. Theh-vector ofA is 1 3 5 7 9 4; and the
minimal freeR-resolution ofA is

0 → R(−8)4 → R(−6)8 ⊕ R(−7)3 → R(−2) ⊕ R(−5)7 → R → A → 0.

Again, it has the expected minimal freeR-resolution in the sense that the graded B
numbers are the smallest consistent with the Hilbert function of such relatively comp
level graded algebra with socle dimension 2.

In the next example we show that sometimes there must be redundant terms
minimal free resolution of a relatively compressed level algebra.

Example 4.3. We work in four variables,R = k[x1, x2, x3, x4]. Let I1 be a general idea
with h-vector 1 2, so its minimal free resolution is

0 → R(−5)2 → R(−4)7 → R(−3)8 ⊕ R(−2) → R(−1)2 ⊕ R(−2)3 → I1 → 0.

Linking with a complete intersection of type(3,3,3,3), we get an idealI2 with h-vector

1 4 10 16 19 16 10 2

and minimal free resolution

0 →
R(−11)2

⊕
R(−10)3

→
R(−9)12

⊕
R(−10)

→
R(−8)7

⊕
R(−6)6

→
R(−7)2

⊕
R(−3)4

→ I2 → 0

(that you can compute from that ofI1 with the mapping cone).I2 is an ideal of genera
forms of degrees 3,3,3,3,7,7, and its minimal free resolution has a non-Koszul gh
term R(−10). This approach for finding ideals of general forms with non-Koszul g
terms was developed in [19].

Now we link I2 with a complete intersectionc of type(3,3,7,7). The Hilbert function
of c is

1 4 10 18 27 36 45 52 55 52 45 36 27 18 10 4 1.

Letting I3 be the residual, its Hilbert function is

1 4 10 18 27 36 45 52 55 50 35 20 8 2.

Note first thatI3 does not “look” relatively compressed inc:

deg 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
c 1 4 10 18 27 36 45 52 55 52 45 36 27 18 10 4
I3 1 4 10 18 27 36 45 52 55 50 35 20 8 2
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The 35 “should” be a 36, and the 50 “should” be 52. But given any relatively compre
level algebra of socle dimension 2 and socle degree 13 inside a complete intersec
type (3,3,7,7), the residual is an ideal generated by six forms, of degrees 3,3,3,3,7,7.
The smallest Hilbert function of such an ideal is given by ourI2 (general forms), so th
biggest (i.e., relatively compressed) for the level algebra is the one above.

But now we consider minimal free resolutions. First note that in the resolutionI2
above, all the copies ofR(−6) are Koszul. We know the resolution ofc (the Koszul reso-
lution). The mapping cone gives the following. Note that we split off not only gener
of degrees 3,3,7,7, but also one first syzygyR(−6), namely the Koszul one. Studying th
mapping cone carefully, we see that there is no other possible splitting. We get:

0 → R(−17)2 →
R(−12)7

⊕
R(−14)5

→

R(−11)12

⊕
R(−10)5

⊕
R(−6)

→

R(−10)3

⊕
R(−9)2

⊕
R(−7)2

⊕
R(−3)2

→ I3 → 0.

Note that four of the copies ofR(−10) in the second free module are Koszul, but the fi
one is not. So we have a relatively compressed level algebra with a non-Koszul gho
at the beginning of the resolution.

The following result generalizes the last example. It is based on [19, Theorem 3.3

Proposition 4.4. Let R = k[x1, . . . , xn] and letc′ = (F1, . . . ,Fn) be a complete intersec
tion of forms of degreed1, . . . , dn, respectively. We do not assume thatd1 � · · · � dn,
but we do assume that eachdi > 2. Suppose thatd1 = · · · = dp = a (say) for some
1 � p � n − 2. Letd = d1 + · · · + dn and choose general formsFn+1, . . . ,Fn+p all of de-
greed − n− 1. Letc be the complete intersection(Fp+1, . . . ,Fn,Fn+1, . . . ,Fn+p) and let
J = (F1, . . . ,Fn+p). Lete = ∑n

i=p+1 di + p(d − n − 1). Then the residual idealI = c : J
is a level algebra of socle dimensionp and socle degreee − n − a, andR/I is relatively
compressed inR/c. Furthermore, the minimal free resolution ofR/I

0 → Fn → ·· · → F2 → F1 → R → R/I → 0

has ghost terms betweenFj andFj+1 for 1 � j � n − p − 1.

Proof. Clearly,R/J has a minimal free resolution

0 → Gn → ·· · → Gp+2 → Gp+1 → ·· · → G1 → R → R/J → 0,

whereG1 = R(−a)p ⊕ ⊕n
i=p+1 R(−di) ⊕ R(−d + n + 1)p . Furthermore, by [19, Theo

rem 3.3], forj = p + 1, . . . , n − 1 there is a ghost termR(−d + n + 1 − j) betweenGj
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andGj+1 that does not arise from Koszul syzygies. Note also that since the socle d
of R/J is d − n − 1, the largest twist of anyGj (includingGn) is

R(−d + 1− n + j) = R(−d1 − · · · − dn + 1− n + j)

= R(−pa − dp+1 − · · · − dn + 1− n + j).

Consider the minimal free (Koszul) resolution ofc

0
↓

0 → Kn → ·· · → Kp+2 → Kp+1 → ·· · → K1 → c → 0
↓ ↓ ↓ ↓ ↓

0 → Gn → ·· · → Gp+2 → Gp+1 → ·· · → G1 → J → 0.

Using the mapping cone procedure, we obtain a free resolution forR/I . We include the
obvious splitting of the termsR(−a)p betweenK1 andG1:

0 → R(−e + a)p → G∨
2 (−e) → ·· · → G∨

n (−e) ⊕ K∨
n−1 → R → R/I → 0.

It is clear that no further terms split fromR(−e + a)p (by the minimality of the resolution
of J ). Since the ghost terms of the minimal free resolution ofR/J are not Koszul and
since the generators ofc are taken from the generators ofJ , it is clear that no splitting will
remove these terms after taking the mapping cone, so they remain (suitably twisted
minimal free resolution ofR/I . �
Example 4.5. In Proposition 4.4 we concluded that under certain hypotheses we ca
a relatively compressed level algebra with non-Koszul ghost terms at the beginn
the resolution. Following [19, Corollary 3.13], we can even arrange some splitting
beginning of the resolution,leaving ghost terms only in the middle. Note that (accord
to the observation following [19, Corollary 3.13]) this will only work forn = 4,5,6. Here
is one example.

Let n = 5 and start with a quotient ofR with Hilbert function 1 1 (it is a complete inte
section of type(1,1,1,1,2)). We link using a complete intersection of type(2,4,4,4,4)

to obtain an ideal with generators of degrees 2,4,4,4,4,12, with “expected” Hilbert func-
tion. We link this in turn using generators of degrees 2,4,4,4,12 to obtain a Gorenstei
idealJ with Hilbert function

1 5 14 30 52 76 98 114 123 123 114 98 76 52 30 14 5 1.
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The minimal free resolution ofJ can be computed (although it is very tedious). It is

0→ R(−22) →

R(−20)
⊕

R(−18)3

⊕
R(−13)4

→

R(−16)3

⊕
R(−14)3

⊕
R(−12)6

⊕
R(−11)4

⊕
R(−10)3

→

R(−12)3

⊕
R(−11)4

⊕
R(−10)6

⊕
R(−8)3

⊕
R(−6)3

→

R(−9)4

⊕
R(−4)3

⊕
R(−2)

→ J → 0.

Then we point out first that there are no ghost terms, Koszul or otherwise, between t
free module and the second. Furthermore, there are some copies ofR(−10) between the
second and third modules, but the three copies ofR(−10) in the third module are Koszu
But now consider the copies ofR(−12) between the second and third modules. Non
the copies ofR(−12) in the second module come because of Koszul syzygies, and
third module at most one copy ofR(−12) is Koszul. So even after accounting for that,
have non-Koszul ghost terms between the second and third modules in the resolutio

Example 4.6. Whenn = 3 we are not aware of any relatively compressed level alge
of socle dimensionc � 2 that have non-Koszul ghost terms. However, forc = 1 these
do exist. We heavily use the results of [18]. First note that ifI = (G1,G2,G3,G4) is an
ideal of general forms in 3 variables, and ifc is a complete intersection defined by a
three of the four generators, then the residualc : I = G is a Gorenstein ideal. Furthermor
we claim that it is relatively compressed with respect toc. Indeed, any Gorenstein ide
containing a complete intersection of the same degrees, and having the same socle
will be linked by that complete intersection to an ideal of four forms of the same de
asG1,G2,G3,G4. SinceR/I has the smallest possible Hilbert function among all s
ideals, by linkageR/G has the largest Hilbert function among all Gorenstein ideals
that socle degree, containing a complete intersection of that type.

In the case where degG1 � · · · � degG4 andc = (G1,G2,G3), it was shown in [18,
Proposition 4.1] that there appears a non-Koszul ghost term if and only if either

(i) d2 + d3 < d1 + d4 + 3 andd1 + d2 + d3 + d4 is even, or
(ii) d2 + d3 � d1 + d4 + 3 andd1 + d2 + d3 + d4 is even.

In particular, such examples exist.

We believe that “most of the time,” a relatively compressed level quotient of a com
intersection has only Koszul ghost terms. We believe, furthermore, that the only coun
amples arise through linkage, as special casesof Proposition 4.4. More precise conjectur
are the following.
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Conjecture 4.7. Let c be a general complete intersection of fixed generator degree
a polynomial ringR = k[x1, . . . , xn], and letA = R/I be a relatively compressed lev
quotient ofR/c of socle degree� 2 and socle dimensionc � 1. Assume that eithern = 3
andc � 2 or elsen � 4. If the minimal free resolution ofR/I has non-Koszul ghost term
thenI is linked in two steps, first byc and then by a “predictable” complete intersectio
to an ideal containing at least two independent linear forms.

Note that the ideals in Example 4.3 andProposition 4.4 have this property of bei
linked in two steps to an ideal containing at least two independent linear forms. Indee
Koszul relations of this latter ideal are what produce the non-Koszul relations of the
ideal.

Conjecture 4.8. Assume thatc is a complete intersection generated by forms all of
same degree. LetA be a relatively compressed level Artinian quotient ofR/c of socle
dimensionc and socle degree� 2, and assume that eithern = 3 andc � 2, or n � 4. Then
the minimal free resolution ofA has no ghost terms(Koszul or otherwise).

Remark 4.9. The assumptions in Conjecture 4.8 are necessary. In the case of soc
gree 1, a counterexample would be any algebra with Hilbert function 1t 0 for t � n − 2.
In the case of Gorenstein algebras of height 3, we have from [18, Proposition 4.1] th
general forms all of the same degree arealwayslinked (using three of the four generato
to a Gorenstein ideal whose minimal free resolution has a non-Koszul ghost term. Th
ideal is relatively compressed follows, for instance, from [18, Lemma 2.6].

Remark 4.10. Let R = k[x1, . . . , xn] be a polynomial ring where the Fröberg conject
holds (equivalently, where Maximal Rank Property holds—cf. [19]). For instance, th
true for n = 2,3 and conjecturally for alln. Let I be an ideal minimally generated b
r � n + 1 general forms of degreesa1 � a2 � · · · � ar . In particular, we are assuming th
none of these generators is redundant. LetJ be the complete intersection defined by
first three generators. ThenR/I is a quotient ofR/J , and in particular (sincehR/J (a1 +
a2 + · · · + an − n) = 1), the socle degree,δ, of R/I is strictly less than that ofR/J . That
is

δ + n < a1 + a2 + · · · + an.

It follows that if the minimal free resolution ofR/I is

0→ Fn → Fn−1 → ·· · → F1 → R → R/I → 0

then no summand ofFn corresponds to a Koszul(n − 1)st syzygy among any of the ge
erators, since the highest twist ofFn is R(−δ − n).

Proposition 4.11. Let R = k[x1, . . . , xn] and assume thatR satisfies the Fröberg conjec
ture (i.e., any ideal of general forms satisfies the Maximal Rank Property). LetA be a level
quotient ofR of socle dimensionc � 2. (The casec = 1 is the Gorenstein case that w
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have already discussed in Example4.6.)Assume thatA has socle degrees and is relatively
compressed with respect to a general complete intersectionc = (F1,F2, . . . ,Fn) ⊂ R.
Setdi = deg(Fi), and d = d1 + d2 + · · · + dn. Let I be the ideal generated byc and
c general forms of degreed − s − n, and setδ to be the socle degree ofR/I . Let
G = R(−d1) ⊕ R(−d2) ⊕ · · · ⊕ R(−dn) ⊕ R(s + 3 − d)c and letKt = ∧t G. Finally,
let F = R(−d1) ⊕ · · · ⊕ R(−dn) and letLt = ∧t F.

ThenA has a freeR-resolution of the following type:

0→ R(−s − n)c →

R(δ + 1− d)z2

⊕
R(δ + 2− d)w2

⊕(
(K2)�δ

)∨
(−d)

→

R(δ + 2− d)z3

⊕
R(δ + 3− d)w3

⊕(
(K3)�δ+1)∨

(−d)

⊕
(L2)∨(−d)

→ ·· · →

R(δ + n − 1− d)zn

⊕
R(δ + n − d)wn

⊕
R(−d1)

⊕
.
.
.

⊕
R(−dn)

→ R → A → 0,

wherewn andz2 are determined by the Hilbert function ofA.

Proof. We havec = (F1,F2, . . . ,Fn), I = (c,G1, . . . ,Gc) with deg(Gj ) = d − s − n for
all j = 1, . . . , c. Note that the socle degreeδ is determined byd1, d2, . . . , dn, c andd−s−n

because we have assumed that an ideal of general forms inR satisfies the Maximal Ran
Property.

By [19, Theorem 3.15] and Remark 4.10 above,I has a freeR-resolution of the follow-
ing type:

0→
R(−δ − n + 1)zn

⊕
R(−δ − n)wn

→

R(−δ − n + 2)zn−1

⊕
R(−δ − n + 1)wn−1

⊕
(Kn−1)�δ+n−3

→ ·· · →

R(−δ − 1)z2

⊕
R(−δ − 2)w2

⊕
(K2)�δ

→

R(s + n − d)c

⊕
R(−d1)

⊕
.
.
.

⊕
R(−dn)

→ I → 0. (8)

Note thatc has a minimal free (Koszul) resolution

0→ Ln → Ln−1 → ·· · → L1 → c → 0,
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whereLn = R(−d). Applying the mapping cone process we get thatJ = [c : I ] has a free
R-resolution of the following type:

0→ R(−s − n)c →

R(δ + 1− d)z2

⊕
R(δ + 2− d)w2

⊕(
(K2)�δ

)∨
(−d)

→

R(δ + 2− d)z3

⊕
R(δ + 3− d)w3

⊕(
(K3)�δ+1)∨

(−d)

⊕
(L2)∨(−d)

→ ·· · →

R(δ + n − 1− d)zn

⊕
R(δ + n − d)wn

⊕
R(−d1)

⊕
.
.
.

⊕
R(−dn)

→ J → 0

as claimed. �
Remark 4.12. It is natural to wonder how close the resolution in Proposition 4.11
being minimal. The first consideration is whether (4.11) is minimal. The minimalit
the first free module is completely determined by the Maximal Rank Property, sinc
forms are general. When the redundant generators are removed, it is then possible
given example) to determine how much splitting occurs in the mapping cone. So in
the only unknowns concern the values of the graded Betti numbers in redundant
We conjecture that whenn = 3, one or the other must always be zero (i.e.,yz = 0 in the
following result), so there are no non-Koszul ghost terms. However, forn � 4 we have seen
in Example 4.3 that this is not true.

Corollary 4.13. Let R = k[x, y, z] and let A be a level quotient ofR of socle dimen-
sion c � 2. (The casec = 1 is the Gorenstein case that we have already discusse
Example4.6.) Assume thatA has socle degrees and is relatively compressed with r
spect to a general complete intersectionc = (F1,F2,F3) ⊂ R. Setdi = deg(Fi), andd =
d1+d2+d3. LetI be the ideal generated byc andc general forms of degreed − s −3, and
setδ to be the socle degree ofR/I . LetF = R(−d1)⊕R(−d2)⊕R(−d3)⊕R(s + 3− d)c

and letK2 = ∧2 F.
ThenA has a freeR-resolution of the following type:

0 → R(−s − 3)c →

R(δ + 1− d)x

⊕
R(δ + 2− d)y

⊕(
(K2)

�δ
)∨

(−d)

→

R(δ + 2− d)z

⊕
R(δ + 3− d)w

⊕
R(−d1)

⊕
R(−d2)

⊕
R(−d3)

→ R → A → 0,

wherew andx are determined by the Hilbert function ofA.
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Proof. This follows from Proposition 4.11 sincek[x, y, z] satisfies Fröberg’s conjectu
(cf. [1]). �

5. Applications to ideals of general forms

In this section, as an application of Theorem 3.5, we get new results about the g
graded Betti numbers of an almost complete intersection ideal. The idea (which is not ne
is to link an Artinian Gorenstein graded algebraR/G, relatively compressed with respe
to a complete intersection ideala = (G1, . . . ,Gr) ⊂ k[x1, . . . , xn], to an almost complet
intersection ideal(a,Gr+1, . . . ,Gn,Gn+1) via a complete intersection(a,Gr+1, . . . ,Gn)

whereGr+1, . . . ,Gn are suitably chosen.
Let R = k[x1, . . . , xn] and letI = (G1, . . . ,Gn+1) be the ideal ofn + 1 general forms

of degreesd1 = deg(G1) � · · · � dn+1 = deg(Gn+1). The Hilbert function ofR/I is well
known (at least in characteristic zero—see Remark 3.6), coming from a result of R. Stanle
[23] and of J. Watanabe [25] which implies that a general Artinian complete interse
has the Strong Lefschetz Property, and a very long-standing problem in Commutat
gebra is to determine the minimal free resolution ofR/I . In [18], the first and secon
author gave the precise graded Betti numbers ofR/I in the following cases:

• n = 3.
• n = 4 and

∑5
i=1 di is even.

• n = 4,
∑5

i=1 di is odd andd2 + d3 + d4 < d1 + d5 + 4.
• n is even and all generators have the same degree,a, which is even.
• (

∑n+1
i=1 di) − n is even andd2 + · · · + dn < d1 + dn+1 + n.

• (
∑n+1

i=1 di) − n is odd,n � 6 is even,d2 + · · · + dn < d1 + dn+1 + n andd1 + · · · +
dn − dn+1 − n � 0.

As a nice application of Theorem 3.5, we will enlarge the above list. Since the c
lations are somewhat complicated, we illustrate the method with an example befo
proceed to the general statement.

Example 5.1. Let n = 5,d1 = 2, d2 = d3 = d4 = 4, d5 = 5, andd6 = 6. Consider a genera
Gorenstein Artinian graded algebraR/G of embedding dimension 5, socle degree 8
relatively compressed with respect to a complete intersection ideala = (G1,G2,G3,G4)

with deg(G1) = 2, deg(G2) = 4, deg(G3) = 4 and deg(G4) = 4. By Theorem 3.5,A has a
minimal freeR-resolution of the following type:

0 → R(−13) → R(−8)46 ⊕ R(−11) ⊕ R(−9)3 → R(−7)149→ R(−6)149

→ R(−5)46 ⊕ R(−2) ⊕ R(−4)3 → R → R/G → 0.

Hence, there exists a complete intersectionJ ⊂ G with generators of degrees 2,4,4,4,5.
By a standard mapping cone argument, the residualI = [J : G] is an almost complete in
tersection of type(2,4,4,4,5,6) and with the following minimal freeR-resolution:
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0 → R(−14)45 → R(−13)146→ R(−12)150⊕ R(−11)3 ⊕ R(−10)3

→ R(−6)3 ⊕ R(−7) ⊕ R(−8)4 ⊕ R(−9)3 ⊕ R(−10)3 ⊕ R(−11)46

→ R(−2) ⊕ R(−4)3 ⊕ R(−5) ⊕ R(−6) → R → R/I → 0. (9)

Since there are no non-Koszul ghost terms and the graded Betti numbers are the s
consistent with the Hilbert function 1 5 14 30 52 75 92 95 79 45 0 of the general a
complete intersection of type(2,4,4,4,5,6), the exact sequence (9) gives us the minim
freeR-resolution of the general almost complete intersection of type(2,4,4,4,5,6).

The idea behind Example 5.1 leads to the following result.

Theorem 5.2. Let I = (G1, . . . ,Gn+1) be a general almost complete intersection inR =
k[x1, . . . , xn], with di = degGi , 2 � d1 � d2 � · · · � dn � dn+1 � (

∑n
i=1 di) − n (the

latter condition only assures thatI is not a complete intersection) and
∑n+1

i=1 di − n even.
Then,R/I has a minimal freeR-resolution of the form

0 → F∨
1 (−d) →

K1
(
d
)∨

(−d)

⊕
F∨

2 (−d)

→
K2

(
d
)∨

(−d)

⊕
F∨

3 (−d)

→ . . . →
Kn−2

(
d
)∨

(−d)

⊕
F∨

n−1(−d)

→
n+1⊕
i=1

R(−di) → R → R/I → 0,

whered = (d1, . . . , dn), d := d1 + · · · + dn, Ki(d) = Ki(d1, . . . , dn) and

Fi = Ki(d)�(c/2)+i−1 ⊕ R
(−(c/2) − i

)αi (d,n,c/2) ⊕ (
Kn−i (d)�(c/2)+n−i−1)∨(−c − n)

with c = (
∑n

i=1 di) − dn+1 − n, r = min(n,max{i/di � c/2}) d = (d1, . . . , dr), Ki(d) =
Ki(d1, . . . , dr), αi(d,n, c/2) = αn−i (d, n, c/2) and αi(d,n, c/2) determined by the
Hilbert function ofR/(G1, . . . ,Gr).

Proof. Consider a general Gorenstein Artinian graded algebraR/G of embedding dimen
sionn, socle degreec = (

∑n
i=1 di) − dn+1 − n and relatively compressed with respect

a complete intersection ideala = (G1, . . . ,Gr) with deg(Gi) = di andr = min(n,max{i |
di � c/2}). So,hR/G(t) = min{hR/(G1,...,Gr )(t), hR/(G1,...,Gr )(c − t)}.

Since by hypothesis the socle degreec of R/G is even, we can apply Theorem 3.5 a
we get thatR/G has a minimal freeR-resolution of the following type:

0 → R(−c − n) → Fn−1 → ·· · → F2 → F1 → R → R/G → 0,

where for alli = 1, . . . , n − 1, we have

Fi = Ki(d)�(c/2)+i−1 ⊕ R
(−(c/2) − i

)αi (d,n,c/2) ⊕ (
Kn−i (d)�(c/2)+n−i−1)∨(−c − n)
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with αi(d,n, c/2) = αn−i (d, n, c/2) andαi(d,n, c/2) is determined by the Hilbert func
tion of R/G.

Hence, there exists a complete intersectionJ ⊂ G with generators of degreesd1, . . . , dn.
The minimal freeR-resolution ofR/J is given by the Koszul resolution:

0 → Kn

(
d
) → Kn−1

(
d
) → ·· · → K2

(
d
) → K1(d) → R → R/J → 0.

By a standard mapping cone argument applied to the diagram

0 → R(−d) → Kn−1
(
d
) → ·· · → K2

(
d
) → K1

(
d
) → R → R/J → 0

↓ ↓ ↓ ↓ ↓ ↓
0 → R(−c − n) → Fn−1 → ·· · → F2 → F1 → R → R/G → 0

the residualI = [J : G] is an almost complete intersection of type

(
d1, . . . , dn,−c − n +

n∑
i=1

di

)
= (d1, . . . , dn, dn+1)

and with the following minimal freeR-resolution:

0 → F∨
1 (−d) →

K1
(
d
)∨

(−d)

⊕
F∨

2 (−d)

→
K2

(
d
)∨

(−d)

⊕
F∨

3 (−d)

→ ·· · →
n+1⊕
i=1

R(−di)

→ R → R/I → 0. (10)

Since there are no non-Koszul ghost terms and the graded Betti numbers are the s
consistent with the Hilbert function

hR/I ′(
) =
[
hR/J

((
n∑

i=1

di

)
− n − 


)
− hR/J

((
n∑

i=1

di

)
− n − 
 − dn+1

)]
+

(where[x]+ denotes the maximum ofx and 0) of the general almost complete inters
tion ideal I ′ ⊂ k[x1, . . . , xn] of type (d1, . . . , dn, dn+1), the exact sequence (10) giv
us the minimal freeR-resolution of the general almost complete intersection of
(d1, . . . , dn, dn+1). �
Remark 5.3. We point out that there are many new cases covered by Theorem 5.2
were not known previously (and in particular not in the list at the beginning of Sectio
The most natural remaining open question is to determine the minimal free resolut
an ideal ofn+ 1 general forms of degreea in n variables, when eithern is odd orn is even
anda is odd.
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