
Theoretical
Computer Science

Theoretical Computer Science 2 18 (1999) 4 l-59

Lyndon words and singular factors of sturmian words

Guy Melanqon *,l

L&RI, UMR 5800 CNRS, Universit6 Bordeaux I, France

Abstract

Two different factorizations of the Fibonacci infinite word were given independently in Wen
and Wen (1994) and MelanCon (1996). In a certain sense, these factorizations reveal a self-
similarity property of the Fibonacci word. We first describe the intimate links between these
two factorizations. We then propose a generalization to characteristic sturmian words. @ 1999
Elsevier Science B.V. All rights reserved.

Deux factorisations du mot de Fibonacci ont & don&es dans deux articles indkpendants, Wen
and Wen (1994) and MelanGon (1996). Ces factorisations dkivent, d’une certaine manike, une
proprikttc d’auto-similar&k du mot de Fibonacci. Nous dkrivons d’abord les liens Btroits entre ces
deux factorisations. Puis nous proposons une g6nkralisation aux mots sturmiens cara&ristiques.
@ 1999 Elsevier Science B.V. All rights reserved.

Keywords: Lyndon words; Sturmian words; Singular words

1. Introduction

The numerous aspects under which the combinatorial properties of the Fibonacci

word have been studied are amazing. A huge set of different notions in algebraic

combinatorics on words2 may be illustrated by using this infinite word as an example.

The Fibonacci word is a well-known example of a huge family of infinite words called

sturmian words. These words have been studied from many different points of view,

geometrical, combinatorial, algebraic, etc. (see Remark 3.2). They naturally appear in

fields such as number theory, quasicrystals, computational complexity, to name only

a few (see [l]). The combinatorial structure of an infinite word is often revealed by

*Correspondence address: CWI, Information systems, Kruislaan 413, P.O. Box 94079, 1090 GB
Amsterdam, Netherlands. E-mail: guy.melancon@cwi.nl.

’ Work partially supported by Conseil Rhgional d’Aquitaine.
2 This is the title of tbe forthcoming book by Lothaire.

0304-3975/99/%-see front matter @ 1999 Elsevier Science B.V. All rights reserved.
PII: SO304-3975(98)00249-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82672934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

42 G. Melancon I Theoretical Computer Science 218 (1999) 41-59

the study of the set of its factors: that is, the finite words appearing within it. As far

as sturmian words are concerned, this is well illustrated by the work of Berstel and

de Luca [2].

Wen and Wen [lo] have looked at a particular set of factors of the Fibonacci word,

they call singular factors. They are the consecutive factors of the Fibonacci word of

lengths F&F1 , F2, etc, where (F,), >a is the Fibonacci sequence given by FO = Ft = 1

and F n+l = F, + F,_l (n B 1). Our work started from a remark by Jean Berstel link-

ing these singular factors to the Lyndon words appearing in the Lyndon factorization

of the Fibonacci word we gave in [6] (see also [S]). Our investigation not only con-

firmed the remark made by Berstel but also lead us to a full description of the link

between the singular factors and the Lyndon factors of the Fibonacci word. Indeed,

Proposition 2.10 gives a description of the Lyndon factors in terms of singular factors

and, as a consequence, new proofs of [10, Theorems 1 and 21.

A striking fact common both to our work [6] and that in [lo] is the discovery

of a self-similarity property of the Fibonacci word. Let us briefly describe it here.

The W and W factorization in [lo, Theorem l] and the Lyndon factorization in [6,

Proposition 1 l] rely on the computation of a set of consecutive factors of the Fibonacci

word. In both cases, these factorizations are self-similar ([lo, Theorems 2, 2.111); that

is, the Fibonacci word over the original alphabet {a, b} (almost) coincides with itself

computed over a two-word alphabet selected among the set of singular or Lyndon

factors. As far as singular factors are concerned, this is explained by a particularity

they have with respect to conjugation of words, and to the fact that they are ylon-

overlapping (see [lo, Lemma 2, Property 21).

Many results concerning the Fibonacci word (Section 2) naturally generalize to char-

acteristic sturmian words. The Lyndon factorization of characteristic sturmian words

was given in [8]. Again, this factorization is self-similar: Theorem 3.4 shows how

to compute a given characteristic sturmian word using a two-word alphabet selected

among its Lyndon factors. Moreover, it is possible to define singular factors of a given

characteristic sturmian word (Definition 4.1) and give combinatorial properties of these

words. In particular, Lemma 4.2 shows that as in the Fibonacci case, general singular

factors hold a special place with respect to conjugation. Proposition 4.4 links general

singular factors to Lyndon factors of a given characteristic sturmian word. This, com-

bined with the non-overlapping property of the singular factors (Lemma 4.7), leads to

a formulation of the self-similarity property in terms of the singular factors, analog to

[lo, Theorem 21 (Corollary 4.6).

The paper is structured as follows. Section 1 briefly describes the results in [lo]

concerned with the present work. More precisely, we define the singular factors of the

Fibonacci word, list some of their properties and state the two main theorems in [lo].

We then recall the Lyndon factorization of the Fibonacci word given in [6] and study

the link between singular factors and Lyndon factors of the Fibonacci word. Expressing

Lyndon words in terms of the singular factors leads to Theorem 2.11 from which we

are able to deduce the two main results in [101 (Section 2.4). We then show self-

similarity of the Lyndon factorization in the general case of a characteristic sturmian

G. Melangon I Theoretical Computer Science 218 (1999) 41-59 43

word (Theorem 3.4). Lemma 4.2 and Proposition 4.3 in the last section confirm the

words introduced in Definition 4.1 as the proper generalization for singular factors

of characteristic sturmian words. Corollaries 4.5 and 4.6 reinforce the links with the

Lyndon factorization (Theorem 3.4) and propose a generalization of the self-similarity

property [10, Theorem 21.

2. Singular factors and the Fibonacci word

This first section introduces basic notations and definitions, and describes two cen-

tral results in [lo]. Throughout the paper, we only consider the two-letter alphabet

A = {a,b}. We totally order A by a < b and extend this order to the set A* of all

words lexicographically. The notations we use are those usual in theoretical computer

science (see [5]). We shall make great use of the notation +~a-~, denoting the word

obtained from w by deleting the letter CI E A at the end of w (if possible). Let us start

by recalling the definition of the Fibonacci word.

Definition 2.1. Let fo = b, fi =a and define fn+r =&J--l, for n> 1. The words fn

(n 20) are usually called the Jinite Fibonacci words. Hence, e.g., fz = ab, f3 = aba,
f4 = abaab, and so on. The (right) infinite word

f=Jicf,= b b b b b b b b..- a aa a aa aa a aa a

is called the (infinite) Fibonacci word.

For more details on the Fibonacci word, the reader is referred to Berstel’s recent

survey on sturmian words [11.

Remark 2.2. (1) The length of fn is the nth Fibonacci number F, (where the Fibonacci

sequence isdefinedbyFs=Fr=l andF,+l=F,+F,_l, forn>l).

(2) Moreover, for all n22, we have (Ifnla,Ifnlb)=(Fn-l,F,_z).
(3) For all n 3 1, the word f&, ends with ab and the word _&+I ends with ba.

Definition 2.3 (Wen and Wen [lo, p. 5891). Let n>2 and suppose fn ends with UP

(where CI, fi E A and CI # /3). We define the word w, by w,, = afnb-‘. The word w, is

a factor of the Fibonacci word f and is called the nth singular factor of f. We also

define wg = a, WI = b; it is useful to set w-1 = E (the empty word).

Hence, we have w2 = aa, w3 = bab, w4 = aabaa, ws = babaabab, and so forth.

Remark 2.4. We collect here some remarks from [lo].

(1) The length of w, is the nth Fibonacci number F,. Let us verify that w, is indeed

a factor of f. As is known, any conjugate of a factor of f is also a factor

of f. Hence, the word afz,, f2,,+la-’ is a factor of f, since it is conjugated to

44 G. Melancon I Theoretical Computer Science 218 (1999) 41-59

f 2n+2. Thus, wzn and wz,,+t are factors of f since they are consecutive factors of

af2nf2n+K1 = (Qfinb-l >(bf2n+K’>.

(2) Note that, for all nB0, we have

((_&+1,lfn(b-1) ifn is even,

(‘Wn’a”Wn’b)= { (Ifnlo - 1,]fn]b + 1) if n is odd.

(3) As a consequence, w, is not conjugated to fn. In [lo], it is shown that w, is the

only factor of f of length F, that is not conjugated to fn (see Lemma 4.2).

(4) Observe that the words wzn (resp. wzn+t) always end with au (resp. b).

We are now able to formulate [101’s first fundamental result:

Theorem 2.5 (Wen and Wen [lo, Theorem 11). We have

f =]&j.

That is,

f = (u)(b)(ua)(bub)(aabuu)(babaabub)

The set of factors of the Fibonacci word has received great attention from a large

number of authors (again, see [l]; see also [2]). From this point of view, the next

fundamental result of [lo] is the following:

Theorem 2.6 (Wen and Wen [lo, Theorem 21). Two occurrences of the singular fac-
tor w, (m > 0) never overlap. Denote these occurrences by w$_!‘, w$‘, wg’, and so forth

(jiiom left to right). Then we have

m-1

f = () JJ Wj (W(‘)ZI Wc2)Z2 Wc3)Z3 ’ . ‘), m m m
j=O

where zk E {w,,,+l,w,,,_l}, for all ka 1, and ~1~2~3 ... is the Fibonacci word over the
alphabet {w,+l, w,,_l}.

For example, with m = 2, we have w, = au, wm+l = bab and w,,,_~ = b. Thus,

f =(a b)(~bab~b~bab~bab~...).

Note that the theorem is true also for m = 0 (recall that w-1 = E). The word ~1~2~3 . . .

is then equal to the Fibonacci word over the “alphabet” {&a}.

2.1. Lyndon factorization

This section introduces Lyndon words and links Theorems 2.5 and 2.6 to results in

[8]. Lyndon words are words strictly smaller than their proper right factors. Although

these may be defined over an arbitrary alphabet, we shall restrict ourselves to the

G. Melancon I Theoretical Compuier Science 218 (1999) 41-59 45

a

/r,

a b

a b b

Fig. I The Lyndon tree associated with G = aababb.

two letter alphabet A = {a, b}. We denote by L the set of Lyndon words (over A).

For instance, letters are Lyndon words. The words ab,abb,aab,aabb, etc, are Lyndon

words. More generally, given U, u E L, we have uv E L H u <v 14, Proposition 1.31.

Hence, e.g., aababb is a Lyndon word. For more details concerning Lyndon words,

the reader is referred to [5, Ch. 51.

Any Lyndon word e of length at least two is a product of two Lyndon words u, v with

U<ZI. For example, we have aababb = (a)(ababb), but also aababb = (aab)(abb) =

(aabab)(b). The standard factorization of 8 is obtained by taking v of maximal

length. We usually denote the standard factorization of G by e =L’L”. Hence, e.g.,

(aababb)‘= a and (aababb)” = ababb. The Lyndon tree associated with the Lyndon

word C is the (planar rooted binary) tree obtained by computing, recursively down to

letters, the standard factorization of 8’ and d”, and that of (e’)‘, and (f’)” and so on.

Fig. 1 shows the Lyndon tree associated with 8 = aababb. Note that each Lyndon tree

is complete, that is, every interior vertex has both a right and left son. We will only

deal with complete planar rooted binary trees, having their leaves labelled by letters

of A, which will simply be called trees from now on.

The fundamental result concerning Lyndon words is the factorization theorem:

Theorem 2.7 (Chen et al. [3], see also Lothaire [5]). Any non-empty word is a

unique product of non-increasing Lyndon words. That is, given any non-empty word

WEA”, there exist e,,...,/,EL (nal), with [I> ... at, such that w=4,...,&

For example, we have abaababaabaababaabab = (ab)(aabab)(aabaababaabab).

Theorem 2.7 extends to right infinite words. We shall not detail this extension here,

but refer the reader to [9] (see also [7]). The next proposition describes the Lyndon

factorization of the Fibonacci word.

Proposition 2.8 (Melancon [8, Proposition 3.21). Let cp : A* + A* be the morphism

defined by a H aab and b H ab. DeJine words by lo = ab and &, = VP(&), for n 2 0.

Then (&),,a~ is a sequence of decreasing Lyndon words and we have

f =%e,. (1)

46 G. Melancon I Theoretical Computer Science 218 (1999) 41-59

b

a b

Fig. 2. The tree structure of 8, is preserved by cp.

Thus, we have f = (ab)(aabab)(aabaababaabab)

Remark 2.9. (1) The length of t$ is Fz,,+z. This is easily verified by using the mor-

phism cp and by noting that Iv(w)], = 2]& + IV+, and]q(w)lb =]wJ, + (wlb.

(2) Berstel had pointed out that the Lyndon words & tr, 4,. . . were concatenation of

two consecutive singular factors, i.e. 8s = ab = (a)(b) = WOWI, 81 = aabab = (aa)(bab) =

~2~3, etc. This is in accordance with the fact that I& = Fzn+2 = Fzn+l +Fzn =]wzn+r I +
lwzn I. Now, the word & is also equal to afz,, fzn+,a-‘, as may be directly verified.

Hence, Berstel’s claim is correct since af2nf2n+la-1 = (af2nb-1)(bf2n+la-L), as noted

in Remark 2.4(1).

(3) As a consequence, Eq. (1) reproves Theorem 2.5 ([10, Theorem 11).

(4) Note that, from the definition of the words t%, we find: wzn+z = q(w2n)b-’ and

w2n+3 = bdw2n+l) (n 20).

(5) The morphism cp preserves the standard factorization of the words 8,. More

precisely, we have /,‘+r = cp(8;) and e,l+, = cp(.$‘). This property has a geometrical

interpretation: to obtain the Lyndon tree of &+I one only needs to replace in that of

/, the leaves labelled by a by the Lyndon subtree (a,(a, b)) and those labelled by b
by the Lyndon subtree (a, b) see Fig. 2.

2.2. L-R operators

Remark 2.9(2), proving 8,, = w~,,w~,,+I, may be refined. For this, we need to define

operators L and R corresponding to paths in a tree. The idea we describe here is

intuitively clear and is best described with pictures (see the figures), although we do

need to translate it with proper notations. Let it be understood that L and R act on

a given tree and let x be an interior vertex of that tree. Then, we denote by L.x
(resp. R.x) the let? (resp. right) son of x.

We will use sequences of operators L and R always acting from the root of Lyndon

trees. We will denote both the Lyndon word and the tree associated with that word

by e. For example, Fig. 3 illustrates the effect of the operator RLR over the Lyndon tree

associated with the Lyndon word aabaabab. Note that any sequence of L-R operators

G. Melaqon I Theoretical Computer Science 218 (1999) 41-59 41

Fig. 3. Operators R and L acting on trees.

‘. x ‘\ ‘\
‘.

#’
a ,’

ab 1’

a:qb
A

a b

Fig. 4. The decomposition induced by an R-L operator.

is of the form RaoLal . . . Rn2n-zLnzn-1 (with ao, azn_l 2 0 and ai > 0 for all 1 < i 6 2n - 2)

and acts from the right; that is,

RnOLa’L . . . jp-zL@n- *f = . . . (p(% J) . . .)) . . .)

For any vertex x of a tree, there is a unique path going from the root down to x

described by a unique sequence of operators RaOLal . . . Ra2@Lazn-l. Suppose that x is

an interior vertex of the tree associated with e; then, the L-R path going from the root

down to x determines a unique decomposition of / as a product e = UU, with u, v E A*

non-empty. We write RnOLa’ . . . RaZn--ZLu2n--l . t = (u, v). The decomposition illustrated in

Fig. 4 is precisely (RLR).aabaabab = (aabaa, bab). Note that, with this convention,

the identity operator gives the decomposition (P,s”) cutting the Lyndon tree 8 at its

root.

Proposition 2.10. We have: (RL)“.t, = (wzn, WZ~+~) and (RL)“-‘R.l,’ = (wZn, w~,+_~),

for all n> 1.

The two statements are proved similarly; so we shall only prove the first one. More-

over, the proof is best understood using pictures; see the figures. We proceed by

induction. Suppose (RL)“.& = (wzn, wa,+l) and that, moreover, the left and right sons

of the vertex (RL)“.& are leaves (Fig. 5).

48 G. Melan~onITheoreticaI Computer Science 218 (1999) 41-59

Fig. 5. (RL)“.& =(wz~.wz~+~).

a bi

(P(w2n) q(w2n + I)

Fig. 6. (R.L)“~,+I = (RL)“q(L) = (dwn--I), (P(m?l)).

The tree associated with &+I is obtained from that associated with e, by replacing

the leaves labelled by a’s with (a,(~, b)) and those labelled by b’s with (a, b) (cf.

Remark 2.9(5)). Hence, the factorization induced by the operator (RL)” on &+I is

W)“.e,,l = (dW2n), cp(~2~+1)) (Fig. 6). Now, recall from Remark 2.4 that ~2, ends

with au; thus, the left subtree attached to the vertex (RL)“&+i is (a,(~, b)).

Since w2,,+2 = q(wzn)b-’ and ~2~+3 = bcp(wzn+l) (cf. Remark 2.9(4)), we see that

the decomposition (~2~+2,w2~+3) is obtained by going down this 1eR subtree following

the path ZU. Thus (wzn+2, ~2~+3) = RL (RL)“.&+l = (I?L)“+‘.r$+l (Fig. 7).

2.3. Self-similarity

In this section, we exhibit a self-similarity property of factorization (1) which leads,

as a corollary, to a new proof of Theorem 2.6 [lo, Theorem 21.

G. Mekm~oon I Theoretical Computer Science 218 (1999) 41-59 49

“‘zn+ 2 = cP(w2Jb- i b’p(w2, + I) = w2” + 3

Fig. 7. (RI,) “+‘.4l+l = (Wn+Z,Wn+3)

Theorem 2.11. We have
1.

(2)

Moreover, cp”(f) is equal to the Fibonacci word over the alphabet {$, e,ll}.

2. Furthermore, cp”(f) is also equal to the Fibonacci word over the alphabet l&,8;‘,‘).

For example, with n = 1, we have 6’: = aab and 8: = ab. And Eq. (2) reads

f = (ab) (aab)(ab)(aab)(aab)(ab)(aab)(ab)(aab)(aab)

Proof of Theorem 2.11. An easy induction shows that, for any n 20, @(a) = 8,’ and
q?(b) = e,“, from which we find cp”(ab) = 8,. Let man; then e; = @(@“-“(a)) and
8: = cp”(cpm-“(b)), so & = cp”(&_,); this shows fl,,, & = q”(f). This proves part 1.
Part 2 follows from the fact that the morphism a++ ab, b ++ a leaves f invariant.
To see this observe that the sequence (fn)n,t is obtained using the same recurrence
fn+l = fn f&l using as initial terms fi = a, f2 = ab. That is, f is equal to the Fibonacci
word over the alphabet {ab, a}.

2.4. A new proof of Theorem 2.6

Recall that & = wZnw2,,+l and that, by Proposition 2.10, we have e,l= w~~w~~_I; so
e,ll= w2,+_2~2~-t since e,ll= /,_I (use Remark 2.9(5)). Denote by j&r) the Fibonacci
word over the alphabet {x, y}. Thus in case 1 of Theorem 2.11, Eq. (2) reads

50 G. Melancon i Theoretical Computer Science 218 (1999) 41-59

Note that this is also equal to

2n-2

f = () II wj W2n-lf{Wz,W2n-l,wzn-~~~“-,},
j=O

Thus, ~W*“W2”-l,WZn-2Wtn-I) is obtained by first forming the Fibonacci word over the
alphabet {wz,,, w~~-z} and then inserting the word wzn-i before each occurrence of
w2,, or w2,,-2. This is precisely what says Theorem 2.6, for m = 2n - 1 odd.

In case 2 of Theorem 2.11, Eq. (2) reads

provides a proof for m = 2n even.

3. Characteristic sturmian words

The Fibonacci word is a famous and important example of a general family of infinite
words called sturmiun words. Consequently, it is natural to look for a generalization
of results in Sections 2 and 2.1.

Definition 3.1. Let (~,),~a be a sequence of integers satisfying co 2 0 and c, > 0, for
n>O. Define so = b, s1 =a and sn+i =s~-~s~-~. Then s = lim,,, s, is a well-defined
infinite word.

The sequence (c,),,~o is called the directive sequence of s. Moreover, s is a char-
acteristic sturmian word.

Remark 3.2. The Fibonacci word is a special case of a sturmian word having c, = 1,
for all n > 0. General sturmian words may be defined geometrically: let y = CYX + fl be
a line, with c1 z=- 0 irrational. Consider the grid formed by the lines y = p, x = q where
p, q are integers satisfying p, q 80. Denote by a’s and b’s the horizontal and vertical
crossings of the line y = ax + /? on this grid (since CI is irrational the line crosses the
grid in at most one point with integer coordinates). This infinite word thus obtained
is the sturmian word associated with the line y = CIX + 8. One may show that two
sturmian words associated to lines having equal slopes have the same set of factors.
Hence, as far as factors of sturmian words are concerned, it is sufficient to study those
having fi = 0. In that case, if IX has its simple continued fraction equal to [CO, cl,. . .]

then the word s in Definition 3.1 is the sturmian word associated to the line y = ax.
For more details, the reader may see [I J.

Remark 3.3. Observe that CO = 0 implies s2 =sa; consequently, the sturmian word as-
sociated with the sequence (c~)~~o with CO = 0 is obtained from the sturmian word
associated to the sequence (~:),,~a with CL = c,+i by exchanging all letters a and b.

From now on, we shall only consider sequences satisfying CO >O.

G. Melaqonl Theoretical Computer Science 218 (1999) 41-59 51

In [8], we gave the Lyndon factorization of any general characteristic sturmian word

s; more precisely, we proved

M
s = n [(us~n+la-l)Cz”-‘as~nS2n+lu-l]c~,+l,

n=O

where ((as~n+~~-l)Cz.-‘as~,s~n+~u-’)nB~ is a sequence of strictly decreasing Lyndon

words. We write

4 = (US2n+lU
-1 ch-1

) ~S2nS2n+l a
-1 -1 and u, = as2ns2nflu .

For instance, we have &O = acob, et = (a(uQb)c’)“(uQb), and so forth. The word U,

is a Lyndon word. Moreover, we have U; = u~2~+ta-‘, so that e,, = (~k,cZ.-’ u,. This

a key fact when proving that (&)ng~ is a sequence of decreasing Lyndon words (see

PI).
We shall make use of two formulas borrowed from [8, Eqs. (5) and (6)]; they are

recurrence relations that describe the tree structure of U, and u;, hence of t,, (n > 1).

They are:

u,+1 = (us*n+@-‘)[(us2 +p-’ y’ --1 cz.+1+~
n uS2nS2n+la 1

= (. . * ccqn,, tn>. . . eg,
czn+1+1

I

%x+1 = (as~n+~u~1)[(as~n+~u~1)C2”~1us~ns~n+~u~1]CZn+’

= (. . . ((qn,, Lt. . . $1.

%+I

Moreover, we have f$ = uI, = usz,,+t a-’ and

& = (Ui,(. . . (&u,). . .)).
. /

%I-1

We may formulate a self-similarity property analog to Theorem 2.11.

(3)

(4)

(5)

Theorem 3.4. We have

n-1

s= ,z p+’ x s; ()
where S is the sturmiun word with directive sequence (d,,,)mao over the alphabet

{I.& uf}, with d, = cm+2,,. Moreover, the word S is also equal to the Sturmiun word
with directive sequence (dk),,,>o with db =do - 1 and dk = d, (ma 1) over the ul-
phubet {a;, an}.

Again, {z&,u~} and {z&u,} may be considered as alphabets (codes) (cf. the proof of

Theorem. 2.11). Denote by tl the sturmian word over {a, b} with directive sequence

52 G. Melangon I Theoretical Computer Science 218 (1999) 41-59

(&)m>o. Denote by (&‘)“>,,,I the Lyndon words in the Lyndon factorisation of tt and
consider the morphism y sending a I+ uI, and b ++ ui. We claim that [,,,+2,, = y(&)).
This is easily shown by induction using Eqs. (12):(14) and proves the first statement.
Similarly, consider the sturmian word t2 with directive sequence (dk),>o and denote
by (&?),,o the Lyndon words in the Lyndon factorization of t2. Again, an induction
shows that tm+2n = 0(&‘) where 0 is the morphism sending a H U; and b H u,. This
proves the second statement.

4. General singular factors

This section introduces general singular factors (of a given characteristic sturmian
word) and contains results generalizing those in [lo].

Definition 4.1. Suppose the sequence (c~)~~o is given. Let II 22 and suppose s, ends
with c$ (where CC, /3 E A and a # /I). We define the word w,, by w,, = as,,/?-‘. We also

define wo = a, WI = b.

Hence, e.g., w2 = acO+‘, w3 = b(aQb)c’, and so on (since s2 = sfoss = acob, sg = sg’sl =

(uCOb)CIa, etc.). Let us first verify that w, is indeed a factor of s. Again, any conjugate
of the word s, is a factor of s. So, the fact that WZ,, and w~,,+t are factors of s follows
from as2,~2~+ta-’ = (us2nb-1)(bs2n+~a-‘). Observe also that u, = ~2~~2~~1.

4.1. Properties of general singular factors

Section 4.1 contains results that generalize those given in [lo, Lemma 2, Property 21
for the Fibonacci word and confirms the words w,, as the proper generalization of
singular factors of the word s (associated with (c,)~~o). At the time of writing we
were not able to determine if the authors of [lo] had already proposed a generalization
of their work, and if so, whether their methods compare to the ones we expose in this
subsection. Denote by qn the length of the word s,. That is, we have qo = q1 = 1 and
q,+l = c,-lq, + qn_l. Denote by %?k(u) the conjugate of order k of the word U. That
is, if u = uouo with [usI = k, then %?k(u) = ~0~0. Note that indices are taken mod (~1, so
we may allow negative indices and write, for instance, V-t(u) = uoz if u =zug, with
ZEA. Observe also that U_t(uJ’)=Kt(u)P.

Lemma 4.2. (1) The factor w, is not a proper conjugate of s,.

(2) The set of factors of length qn of s,,-IS, is equal to {%k(%) 1 Obk,<q,-I -

2) u 1%).

The first statement is clear since

(Is,], - 1, I%Zlb + 1) if n is odd,
(]““]Q, lwlb) =

((%I, + 1, IsnIb - 1) if n is even.

G. Melanconl Theoretical Computer Science 218 (1999) 41-59 53

Suppose n is given and that s,,+i ends with c$ (a, /I E A, CY # fi). We claim

S,+la-‘p-loIB=S~-l-lS,-1S,,

s,&+,c?p-‘$I =s,+is,.

Proceed by induction. First, we have

%+1~ -lp-lap = s~-~s,-l~-lp-‘cg3

= ~~-~-l(~f;~~s,_2)s~-~~-l~-l~~

= sc”_‘-lsc.-2
n n_lsn-l&l-2

(we use the induction and apply second equality (6))

=s~-+n_,s);~;sn_,

= scA-i
n &I-I%.

(6)

Second, we use the equality just proved,

Wn+l a -‘/?-‘a/? =sn(sc,“-‘-ls,_p,) =s,+1s,.

We may now prove point 2. Suppose s, ends with c$; applying Eq. (6) we find

Sn-i%~ -‘fl-‘c$ = s,s,_i. Thus, the first factors (of length qn) of s,_is, are the con-

jugates %k(s,) with 16k bq,_l - 2. The next factor is just /Is,c(-~ = w,. The last one

1s Wqn(sn) = %$(s,) = s,.

Before continuing on with properties of the words w,, we need to introduce words

v,, n 20, defined by

v, = Msc,;T1snp-l, (7)

where tx and ,f3 have appropriate values according to the parity of n. That is, v,, differs

from w,+z by a factor s,+i. It is useful to set v-1 = E (cf. Corollary 4.6). Observe that

vn =K_I(s,+l)cn-lwn (8)

(so v, = w, if cn = 1). Similarly, note also that

w,+i =%?-_I(s,)c”-‘w,_i. (9)

Proposition 4.3. (1) For all n 2 0, the words v, and w, are palindromes and we have

v,=(w~v,_~)c”-~w,=w~(v,_~w~)~“-~ (n>l), (10)

w, = (w,-2v,-3)- w,-2 = W,-2(V,-3W,_2)CQ-z (n 2 3). (11)

Moreover, for all n 22, w, = v,,_~w,_~~-~N = c&‘w,_iv,_2, where ct = a if n is even
and u=b zj”n is odd.

(2) The words v,, w,, start and end with ucO+’ if n is even, and with b if n is odd

(n22).

54 G. Melan~onl Theoretical Computer Science 218 (1999) 41-59

As a consequence, for any n 22, no proper conjugate of v,, or w, is a factor of s.

Moreover, the words v,’ and w,’ are not factors of s.

(3) For all n>O, the word w,, is not a factor of the word w,+l.
(4) The word w,, is not the product of two non-empty palindromes. As a conse-

quence, it is primitive,

(5) We have
C~n_,-l(Sn~=~-l~~,-l~C”-2-1~,-*~~-~,

C4”__1(S,) = w,_l~_l(s,_*)Q-2-‘w,-2.
Consequently,
the word w,_2 is a factor of %&(s#) if and only if 0 <k <c,_2qn_l - 1;
the word w,_l is a factor of $?&(s,) tf and only zfq,,_l - 1 <k<q, - 1.

(6) We have w,, = cx + (flizi ok) = (n;zi &,-2-k) + a, where CI = a if n is even and

a=b tfn is odd (na2).

1. We claim that for any pB0, %_l(s,_l)rw,_~ is a palindrome and prove it by
induction on n. The claim is trivially true for n = 2 since wo = si = a. We have

V-i(s,)Pw+* = (crS,cC’)PW,_i = (as;~;“_&X-l)Pw,_i

-1 c,_z-1
= [WI-l((wl-la) WI-2)IPwn- 1.

So, the claim is proved and the fact that v, and w, are palindromes follows from
Eqs. (8) and (9). Finally, for Eq. (lo), observe that by virtue of Eq. (8) it suffices to
show V- 1 (s,+,) = w,v,_ 1. This follows from

Eq. (11) is proved similarly. As for the last equality, we use Eq. (7) together with the
preceding result to get

w, = cts*/?-’ = a(&$-‘a-‘~+X-‘~-‘LY

= (Cc(s~~I-1sn_2B-‘)(8sn_la-‘>p-‘cr

= v,_2w,-ip-‘a.

The last equality follows from the fact that w, is a palindrome.
2. Recall that CO >O (cf. Remark 3.3): It is easy to observe that s, starts with aCo,

for n 22, and that it ends with b for n even, and with a for n odd. Hence, the first
statement follows from the definitions for w,, and v,, and from the fact that they are
palindromes. The other statements are immediate since aco+2 and bb are not factors
of s, since they are not factors of s,,, for any n 20.

3. First observe that w,, is not a factor of s,+i. Indeed, this follows from Lemma 4.2
(1) since any factor of s,+i =s?-‘sn_i is conjugated to s,. Suppose that s,,+i ends
with /3. Then w, is not a factor of s,+i/P1. Now, since w, = /?sncC1 and w,+i =
CLS~+I~-~ (with a, B E {a, b} and c1# /?), we find that w, cannot be a factor of w,+ 1.

4. Suppose that w,, = uv with u, v palindromes. Since w, is a palindrome, we would
have w, = VU contradicting Lemma 4.2(1). If w, is not primitive, then there exists an

G. Melanqon I Theoretical Computer Science 218 (1999) 41-59 55

integer p > 2 and a non-empty word u such that w,, = up. Then, by point 1, u must be

a palindrome; but this contradict point 2 (with u = UP-~).

5. The equalities are easily derived from

The last part of the statement then follows from points 2 and 3.

6. First note that s, =s~s&-~s~ . . . s;:;1-‘s,,_-2. So,

= a(as~-‘s~p)a(j?s~-lsp-‘) * *. (aS;:;-1Sn_2fi-‘)

(with appropriate values for tl and /3 according to the parity of n). So the identity

follows from definition (7) of the words v,. The second identity follows from point 1.

4.2, Self-similarity revisited

This section links Lyndon factors u, and 8, to singular factors w,, of a given sturmian

word s, and states corollaries generalizing results in [lo] (and in Section 2.2).

Proposition 4.4. For all n B 1, we have

RQL= . . . RC2n--2LC*n-’ . u, = (wzn, w~~+~), (12)

RCOLC’ . . . RC2n-ZLc2n-1-1 . u; = (Wan, v~+~), (13)

RCOLC1 . . . Lb. I R”n - ’
. & = (u2n, WZn+l 1. (14)

We shall make use of Eqs. (3)-(5) introduced earlier. We proceed by induction. Eq. (3)

leads to

R”LC1 . . . RCZnL%t+l
. %+1 = #po, yoep+)

with (x0, yo) = RCOLCI . . . L%-IRQ~-~ .8,. Consequently, the result follows by induction

together with the identities u;v~,, =(w2,,v2,,_r)vzn = w2,,+2 and w2,,+rt;f211+’ = w~,,+r

(V2nW2n+l P+’ = WZ~+~ (use Proposition 4.3.1).

Similarly, Eq. (4) gives RcOLcl . . . RC2nLCb+l-1 . u;+~ = (u;xo, y~@“+‘-~) with (x0,
yo) =R=oLCl . . . RC2.-1 . tn. Hence, induction together with Proposition 4.3.1 applied to

24;~~~ = w~,JJ~~_~zI~~ = w2,,+2 and ~2~+r(u2~~2,,+r)c~l+~-~ = uzn+r gives the result.

Finally, using Eq. (5) we find

R”OLC1 . . . ,5CZn+l R%+2 - 1 8 - (u’$2-‘xo, yo) . n+l-

with (x0, yo) = RQLC1 . . . RCZnLCZn+l . u,+l . The result follows by induction using the
IQn+z - 1 identity v2,,+2 = u n+l W2n+2.

56 G. Melaneonl Theoretical Computer Science 218 (1999) 41-59

As a corollary, Eq. (14) leads to an identity generalizing that in Thmeorem 2.5.

Corollary 4.5. We have

s = fy(v*jMQj+, p+I = fi Vj.

j=O j=O

The first equality is clear. The second one follows from Proposition 4.3.1. Indeed, we

have (v2jw2j+i)cb+’ = v2jw2j+i(V2jw~j+r)czi+l-r = v2jv2j+r.

The next corollary generalizes the identity given in [lo, Theorem 21 (Theorem 2.6),

although we still have to prove the nonoverlapping property for the words w,. Let

(d,),ao and (dh)ma~ be as in Theorem 3.4.

Corollary 4.6. The sturmian word s may be written as
1.

where zlz2~3 . . . is the sturmian word with directive sequence (d,),a~ over the
alphabet {wz,,, 112~4) and I$~_~ = qn_l ifzi = WZ,, and I?$_~ = w2,,_1 ifzi = ~~-2,

for all i> 1;

2. or,

n-1

S= fl (V2jW2j+l)cy+’ (W!$)Zl Wzn Z2 Wc’Z3 ’ * ‘)
41)

j=O

where ~1~2~3 . . . is the sturmian word with directive sequence (da),,,>0 over the
alphabet { vzn_ 1, wz,,+l } and Gfi = w2,, for all i > 0.

Moreover, given n 30, any two occurences of w,, in s are separated either by v,_l
or by w,,+~. Consequently, these above expansions may be obtained by locating the
non-ovelapping occurences of w, in s.

Let us first look at an example, with n = 1, to illustrate case 2 of the corollary. We

have w2 = acaf’, VI = b(acOb)“l-l and w3 = b(aQb)c' . We compute s5 as an approxima-

tion for s:

s =(((a”Ob)“’ a)‘* acob)c3 (acob)cl a.. . .

Writing this as

(a”0 b)“’ . [(a@+’ b(acOb)c’-1)C2-1 acofl b(a”Ob)Q]Qa.. .

=(v~wl)~’ . [(w2 ~1)~; w2 w31dia...

we get the beginning of the expansion predicted by Corollary 4.6.

G. Melangon I Theoretical Computer Science 218 (1999) 41-59 51

Proof of Corollary 4.6. Statements 1 and 2 in the corollary are proved as in Sec-

tion 2.4, by rewriting the identity in Theorem 3.4 using Eqs. (12)-(14) of Proposi-

tion 4.4. Indeed, we have by virtue of Theorem 3.4

n-1

s = ,z q’+’ x ~{u:,uy}, ()
where ?I~:,, u:, 1 denotes the sturmian word associated with (d,),as over the alphabet

{u~,u~}. Observe that M: = {,_I (cf. Eq. (5)). Hence, according to Proposition 4.4,

this is equal to

(
n-1

n (QjWj+1)
C&+1

j=O
1 -

x S{WZnUZn-1,Yn-2W2n-l}.

That is, S(,~nV2n_,,VZn_2W2n_,} is obtained by first forming the sturmian word associated

with (dm)m3c over the alphabet {wz~, uzn_-2} and then insert Q__L (resp. w~,,_i) after

each occurence of wzn (resp. ~~-2). This is precisely what says part 1 of the corollary.

Using part 2 of Theorem. 3.4 gives a proof for the second statement.

Hence, we may concentrate on the last statement concerning the non-overlapping

property of the word w,, which follows from the next lemma. We will say that a word

u overlaps the product xy if xy =x’uy’ where x’, y’ non-empty are such that Ix’/ < 1x1

and ly’l < lyl (where x,y,x’,y’ are words).

Lemma 4.7. (1) The word w, is not a factor of the word u,-1
(2) The word w,, does not overlap neither w,,v,_l, nor II,-lw,.

(3) The word w,, does not overlap neither w,w,+l, nor w,+lw,,.
(4) The product nkBn (vz~w~~+I)C2k+l may be uniquely expressed in terms of VZ,,- 1,

w2,, and wz,,+l only. Moreover, this expression is completely determined by locating
the occurences of wzn in (v~kw2k+l)CZk+‘.

1. Suppose on the contrary that w, is a factor of v,_i . Then, it is a factor of

~(n;l,’ Q)u,_~. But this last expression is equal to w,+i, by Proposition 4.3(6) (with

appropriate value for a); so we get a contradiction since w, is not a factor of w,+i,

by Proposition 4.3(3).

2. We have w,v,_i = cl(n~~,‘vk)u+i and ZJ,-iw, = z~~_i(n~~~ un-2-k)a, by

Proposition. 4.3(6). If w, were to overlap w,v,_i or u,_iw, then it would be a fac-

tor of (n;z,” t$)u~._i or ~,+_~(n;~~ &_2-k) hence of w,+i. But, again, this contradicts

Proposition 4.3(3).

3. Write

58 G. Melan~onl Theoretical Computer Science 218 (1999) 41-59

(with appropriate values for a, p where CI # p). Observe that Iu,_I I= q,+l -qn = (c~__~ -

l)q, +qn_l. Then, either c,_1>2 and then [v,_~I>Iw,l or c,_l = 1 and v,_~ =w,_~.

Suppose first that v,_l = w,_l; then we cannot have w,, =xv,_l y since, by Proposi-

tion 4.3, w,_l is not a factor of IV,. Suppose now that Iv,_1 I > I w,, 1. Then, if w, were to

overlap w,w,+l it would have to be a factor of <l-I;:: uk)z),_l or ~~_~(n;~~ v,,__~-~),

hence of w,,+~. So we may conclude as in case 2. We only need to exchange CI and B

to obtain a proof for w,,+l w,.

4. We first prove the existence and unicity of the expansion for any factor

(VZkWZk+l)c=+‘. We proceed by induction together with Eqs. (10) and (11) of Propo-

sition 4.3(1) to show, in addition, that vZk__l, VZk, W2k and W2k+l may be expressed in

terms of v~+l, wzn and 1~2~~1 only, and that, moreover,

l v2k and W2k start and end with wzn,

l U2k-l and W2k+l start and end with wz,,+l.

For k = n we have

(VZnWZn+l Y2.+’ = [(Wzn%l-1)Czn-1W2nW2n+llCZn+‘~

Recall that by virtue of Proposition 4.3(2), each occurence of ~2~ in the expansion is

necessarily followed by either vzn_ 1 or wzn+l. The unicity of the expansion follows from

points l-3. Indeed, since Iv2,+_1 I = qzn+l - qzn # qzn+l = Iwzn+l 1, any other expansion

would provide a situation where either wzn is a factor of VZ~_~, or else overlaps one

of ~2~~2+1, UZ~--IWZ,, wznwzn+l or wzn+lwzn. We use Proposition 4.3(1) and compute,

for kan:

(V2k+2W2k+3)Ca+’ = [(WZk+2VZk+l)C2C+Z-1~2k+2(~2k+1~2k~1~2k+llC2t+3.

Combine this with Eqs. (11) and (10) applied to WZk+Z and uZk+l. This shows the exis-

tence of the predicted expansion. Unicity again follows from points l-3. The fact that

the expansion is unique for each factor (Zi2kWZk+l) Q~+I implies, by virtue of points l-3

again, that it is unique also for the infinite product &gn(VZkWZk+l)c%+l. Hence part 4

of the lemma is established, which ends the proof of Corollary 4.6.

References

[l] .I. Berstel, Recent results in stormian words, Invited paper to DLT’95, World Scientific, Singapore, to
be published. http://www-igm.univ-mlv.fr/wberstel/, 1996.

[Z] J. Berstel, A. de Luca, Sturmian words, Lyndon words and trees, Theoret. Comput. Sci. 178 (1997)
171-203.

[3] K.T. Chen, R.H. Fox, R.C. Lyndon, Free differential calculus, IV - the quotient groups of the lower
central series, Ann. Math., 68 (1958) 81-95.

[4] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363-381.
[5] M. Lotbaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
[6] G. MelanGon, Lyndon factorization of infinite words, in: C. F’uech, R. Reischuk (Eds.), STACS ‘96,

13th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science,
vol. 1046, Springer, Berlin, 1996, pp. 147-154.

G. Melancon I Theoretical Computer Science 218 (1999) 41-59 59

[7] G. Melaneon, Viennot factorizations of infinite words, Inform. Process. Lett., 60 (1996) 53-57.

[8] G. Melangon, Lyndon factorization of sturmian words, Discrete Math., in: D. Stanton, P. Leroux (Eds.),

Special Issue for FPSAC’96, 8th Int. Conf. on Formal Power Series and Algebraic Combinatorics, to

appear.

[9] R. Siromoney, L. Matthew, V.R. Dare, K.G. Subramanian, Infinite lyndon words, Inform. Process. Lett.

50 (1994) 101-104.

[lo] Z.-X. Wen, Z.-Y. Wen, Some properties of the singular words of the Fibonacci word, European

J. Combin. 15 (1994) 587-598.

