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Abstract 

Two different factorizations of the Fibonacci infinite word were given independently in Wen 
and Wen (1994) and MelanCon (1996). In a certain sense, these factorizations reveal a self- 
similarity property of the Fibonacci word. We first describe the intimate links between these 
two factorizations. We then propose a generalization to characteristic sturmian words. @ 1999 
Elsevier Science B.V. All rights reserved. 

Deux factorisations du mot de Fibonacci ont & don&es dans deux articles indkpendants, Wen 
and Wen (1994) and MelanGon (1996). Ces factorisations dkivent, d’une certaine manike, une 
proprikttc d’auto-similar&k du mot de Fibonacci. Nous dkrivons d’abord les liens Btroits entre ces 
deux factorisations. Puis nous proposons une g6nkralisation aux mots sturmiens cara&ristiques. 
@ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The numerous aspects under which the combinatorial properties of the Fibonacci 

word have been studied are amazing. A huge set of different notions in algebraic 

combinatorics on words2 may be illustrated by using this infinite word as an example. 

The Fibonacci word is a well-known example of a huge family of infinite words called 

sturmian words. These words have been studied from many different points of view, 

geometrical, combinatorial, algebraic, etc. (see Remark 3.2). They naturally appear in 

fields such as number theory, quasicrystals, computational complexity, to name only 

a few (see [l]). The combinatorial structure of an infinite word is often revealed by 
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the study of the set of its factors: that is, the finite words appearing within it. As far 

as sturmian words are concerned, this is well illustrated by the work of Berstel and 

de Luca [2]. 

Wen and Wen [lo] have looked at a particular set of factors of the Fibonacci word, 

they call singular factors. They are the consecutive factors of the Fibonacci word of 

lengths F&F1 , F2, etc, where (F,), >a is the Fibonacci sequence given by FO = Ft = 1 

and F n+l = F, + F,_l (n B 1). Our work started from a remark by Jean Berstel link- 

ing these singular factors to the Lyndon words appearing in the Lyndon factorization 

of the Fibonacci word we gave in [6] (see also [S]). Our investigation not only con- 

firmed the remark made by Berstel but also lead us to a full description of the link 

between the singular factors and the Lyndon factors of the Fibonacci word. Indeed, 

Proposition 2.10 gives a description of the Lyndon factors in terms of singular factors 

and, as a consequence, new proofs of [ 10, Theorems 1 and 21. 

A striking fact common both to our work [6] and that in [lo] is the discovery 

of a self-similarity property of the Fibonacci word. Let us briefly describe it here. 

The W and W factorization in [lo, Theorem l] and the Lyndon factorization in [6, 

Proposition 1 l] rely on the computation of a set of consecutive factors of the Fibonacci 

word. In both cases, these factorizations are self-similar ([lo, Theorems 2, 2.111); that 

is, the Fibonacci word over the original alphabet {a, b} (almost) coincides with itself 

computed over a two-word alphabet selected among the set of singular or Lyndon 

factors. As far as singular factors are concerned, this is explained by a particularity 

they have with respect to conjugation of words, and to the fact that they are ylon- 

overlapping (see [lo, Lemma 2, Property 21). 

Many results concerning the Fibonacci word (Section 2) naturally generalize to char- 

acteristic sturmian words. The Lyndon factorization of characteristic sturmian words 

was given in [8]. Again, this factorization is self-similar: Theorem 3.4 shows how 

to compute a given characteristic sturmian word using a two-word alphabet selected 

among its Lyndon factors. Moreover, it is possible to define singular factors of a given 

characteristic sturmian word (Definition 4.1) and give combinatorial properties of these 

words. In particular, Lemma 4.2 shows that as in the Fibonacci case, general singular 

factors hold a special place with respect to conjugation. Proposition 4.4 links general 

singular factors to Lyndon factors of a given characteristic sturmian word. This, com- 

bined with the non-overlapping property of the singular factors (Lemma 4.7), leads to 

a formulation of the self-similarity property in terms of the singular factors, analog to 

[lo, Theorem 21 (Corollary 4.6). 

The paper is structured as follows. Section 1 briefly describes the results in [lo] 

concerned with the present work. More precisely, we define the singular factors of the 

Fibonacci word, list some of their properties and state the two main theorems in [lo]. 

We then recall the Lyndon factorization of the Fibonacci word given in [6] and study 

the link between singular factors and Lyndon factors of the Fibonacci word. Expressing 

Lyndon words in terms of the singular factors leads to Theorem 2.11 from which we 

are able to deduce the two main results in [ 101 (Section 2.4). We then show self- 

similarity of the Lyndon factorization in the general case of a characteristic sturmian 
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word (Theorem 3.4). Lemma 4.2 and Proposition 4.3 in the last section confirm the 

words introduced in Definition 4.1 as the proper generalization for singular factors 

of characteristic sturmian words. Corollaries 4.5 and 4.6 reinforce the links with the 

Lyndon factorization (Theorem 3.4) and propose a generalization of the self-similarity 

property [ 10, Theorem 21. 

2. Singular factors and the Fibonacci word 

This first section introduces basic notations and definitions, and describes two cen- 

tral results in [lo]. Throughout the paper, we only consider the two-letter alphabet 

A = {a,b}. We totally order A by a < b and extend this order to the set A* of all 

words lexicographically. The notations we use are those usual in theoretical computer 

science (see [5]). We shall make great use of the notation +~a-~, denoting the word 

obtained from w by deleting the letter CI E A at the end of w (if possible). Let us start 

by recalling the definition of the Fibonacci word. 

Definition 2.1. Let fo = b, fi =a and define fn+r =&J--l, for n> 1. The words fn 

(n 20) are usually called the Jinite Fibonacci words. Hence, e.g., fz = ab, f3 = aba, 
f4 = abaab, and so on. The (right) infinite word 

f=Jicf,= b b b b b b b b..- a aa a aa aa a aa a 

is called the (infinite) Fibonacci word. 

For more details on the Fibonacci word, the reader is referred to Berstel’s recent 

survey on sturmian words [ 11. 

Remark 2.2. (1) The length of fn is the nth Fibonacci number F, (where the Fibonacci 

sequence isdefinedbyFs=Fr=l andF,+l=F,+F,_l, forn>l). 

(2) Moreover, for all n22, we have (Ifnla,Ifnlb)=(Fn-l,F,_z). 
(3) For all n 3 1, the word f&, ends with ab and the word _&+I ends with ba. 

Definition 2.3 (Wen and Wen [lo, p. 5891). Let n>2 and suppose fn ends with UP 

(where CI, fi E A and CI # /3). We define the word w, by w,, = afnb-‘. The word w, is 

a factor of the Fibonacci word f and is called the nth singular factor of f. We also 

define wg = a, WI = b; it is useful to set w-1 = E (the empty word). 

Hence, we have w2 = aa, w3 = bab, w4 = aabaa, ws = babaabab, and so forth. 

Remark 2.4. We collect here some remarks from [lo]. 

( 1) The length of w, is the nth Fibonacci number F,. Let us verify that w, is indeed 

a factor of f. As is known, any conjugate of a factor of f is also a factor 

of f. Hence, the word afz,, f2,,+la-’ is a factor of f, since it is conjugated to 
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f 2n+2. Thus, wzn and wz,,+t are factors of f since they are consecutive factors of 

af2nf2n+K1 = (Qfinb-l >(bf2n+K’>. 

(2) Note that, for all nB0, we have 

((_&+1,lfn(b-1) ifn is even, 

(‘Wn’a”Wn’b)= { (Ifnlo - 1, ]fn]b + 1) if n is odd. 

(3) As a consequence, w, is not conjugated to fn. In [lo], it is shown that w, is the 

only factor of f of length F, that is not conjugated to fn (see Lemma 4.2). 

(4) Observe that the words wzn (resp. wzn+t) always end with au (resp. b). 

We are now able to formulate [101’s first fundamental result: 

Theorem 2.5 (Wen and Wen [lo, Theorem 11). We have 

f =]&j. 

That is, 

f = (u)(b)(ua)(bub)(aabuu)(babaabub) . . . . 

The set of factors of the Fibonacci word has received great attention from a large 

number of authors (again, see [l]; see also [2]). From this point of view, the next 

fundamental result of [lo] is the following: 

Theorem 2.6 (Wen and Wen [lo, Theorem 21). Two occurrences of the singular fac- 
tor w, (m > 0) never overlap. Denote these occurrences by w$_!‘, w$‘, wg’, and so forth 

(jiiom left to right). Then we have 

m-1 

f = ( ) JJ Wj (W(‘)ZI Wc2)Z2 Wc3)Z3 ’ . ‘), m m m 
j=O 

where zk E {w,,,+l,w,,,_l}, for all ka 1, and ~1~2~3 ... is the Fibonacci word over the 
alphabet {w,+l, w,,_l}. 

For example, with m = 2, we have w, = au, wm+l = bab and w,,,_~ = b. Thus, 

f =(a b)(~bab~b~bab~bab~...). 

Note that the theorem is true also for m = 0 (recall that w-1 = E). The word ~1~2~3 . . . 

is then equal to the Fibonacci word over the “alphabet” {&a}. 

2.1. Lyndon factorization 

This section introduces Lyndon words and links Theorems 2.5 and 2.6 to results in 

[8]. Lyndon words are words strictly smaller than their proper right factors. Although 

these may be defined over an arbitrary alphabet, we shall restrict ourselves to the 
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a b 
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Fig. I The Lyndon tree associated with G = aababb. 

two letter alphabet A = {a, b}. We denote by L the set of Lyndon words (over A). 

For instance, letters are Lyndon words. The words ab,abb,aab,aabb, etc, are Lyndon 

words. More generally, given U, u E L, we have uv E L H u <v 14, Proposition 1.31. 

Hence, e.g., aababb is a Lyndon word. For more details concerning Lyndon words, 

the reader is referred to [5, Ch. 51. 

Any Lyndon word e of length at least two is a product of two Lyndon words u, v with 

U<ZI. For example, we have aababb = (a)(ababb), but also aababb = (aab)(abb) = 

(aabab)(b). The standard factorization of 8 is obtained by taking v of maximal 

length. We usually denote the standard factorization of G by e =L’L”. Hence, e.g., 

(aababb)‘= a and (aababb)” = ababb. The Lyndon tree associated with the Lyndon 

word C is the (planar rooted binary) tree obtained by computing, recursively down to 

letters, the standard factorization of 8’ and d”, and that of (e’)‘, and (f’)” and so on. 

Fig. 1 shows the Lyndon tree associated with 8 = aababb. Note that each Lyndon tree 

is complete, that is, every interior vertex has both a right and left son. We will only 

deal with complete planar rooted binary trees, having their leaves labelled by letters 

of A, which will simply be called trees from now on. 

The fundamental result concerning Lyndon words is the factorization theorem: 

Theorem 2.7 (Chen et al. [3], see also Lothaire [5]). Any non-empty word is a 

unique product of non-increasing Lyndon words. That is, given any non-empty word 

WEA”, there exist e,,...,/,EL (nal), with [I> ... at, such that w=4,...,& 

For example, we have abaababaabaababaabab = (ab)(aabab)(aabaababaabab). 

Theorem 2.7 extends to right infinite words. We shall not detail this extension here, 

but refer the reader to [9] (see also [7]). The next proposition describes the Lyndon 

factorization of the Fibonacci word. 

Proposition 2.8 (Melancon [8, Proposition 3.21). Let cp : A* + A* be the morphism 

defined by a H aab and b H ab. DeJine words by lo = ab and &, = VP(&), for n 2 0. 

Then (&),,a~ is a sequence of decreasing Lyndon words and we have 

f =%e,. (1) 
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b 

a b 

Fig. 2. The tree structure of 8, is preserved by cp. 

Thus, we have f = (ab)(aabab)(aabaababaabab) . . . . 

Remark 2.9. (1) The length of t$ is Fz,,+z. This is easily verified by using the mor- 

phism cp and by noting that Iv(w)], = 2]& + IV+, and ]q(w)lb = ]wJ, + (wlb. 

(2) Berstel had pointed out that the Lyndon words & tr, 4,. . . were concatenation of 

two consecutive singular factors, i.e. 8s = ab = (a)(b) = WOWI, 81 = aabab = (aa)(bab) = 

~2~3, etc. This is in accordance with the fact that I& = Fzn+2 = Fzn+l +Fzn = ]wzn+r I + 
lwzn I. Now, the word & is also equal to afz,, fzn+,a-‘, as may be directly verified. 

Hence, Berstel’s claim is correct since af2nf2n+la-1 = (af2nb-1)(bf2n+la-L), as noted 

in Remark 2.4( 1). 

(3) As a consequence, Eq. (1) reproves Theorem 2.5 ([ 10, Theorem 11). 

(4) Note that, from the definition of the words t%, we find: wzn+z = q(w2n)b-’ and 

w2n+3 = bdw2n+l) (n 20). 

(5) The morphism cp preserves the standard factorization of the words 8,. More 

precisely, we have /,‘+r = cp(8;) and e,l+, = cp(.$‘). This property has a geometrical 

interpretation: to obtain the Lyndon tree of &+I one only needs to replace in that of 

/, the leaves labelled by a by the Lyndon subtree (a,(a, b)) and those labelled by b 
by the Lyndon subtree (a, b) see Fig. 2. 

2.2. L-R operators 

Remark 2.9(2), proving 8,, = w~,,w~,,+I, may be refined. For this, we need to define 

operators L and R corresponding to paths in a tree. The idea we describe here is 

intuitively clear and is best described with pictures (see the figures), although we do 

need to translate it with proper notations. Let it be understood that L and R act on 

a given tree and let x be an interior vertex of that tree. Then, we denote by L.x 
(resp. R.x) the let? (resp. right) son of x. 

We will use sequences of operators L and R always acting from the root of Lyndon 

trees. We will denote both the Lyndon word and the tree associated with that word 

by e. For example, Fig. 3 illustrates the effect of the operator RLR over the Lyndon tree 

associated with the Lyndon word aabaabab. Note that any sequence of L-R operators 
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Fig. 3. Operators R and L acting on trees. 

‘. x ‘\ ‘\ 
‘. 

#’ 
a ,’ 

ab 1’ 

a:qb 
A 

a b 

Fig. 4. The decomposition induced by an R-L operator. 

is of the form RaoLal . . . Rn2n-zLnzn-1 (with ao, azn_l 2 0 and ai > 0 for all 1 < i 6 2n - 2) 

and acts from the right; that is, 

RnOLa’L . . . jp-zL@n- *f = . . . (p(% J) . . .)) . . .) 

For any vertex x of a tree, there is a unique path going from the root down to x 

described by a unique sequence of operators RaOLal . . . Ra2@Lazn-l. Suppose that x is 

an interior vertex of the tree associated with e; then, the L-R path going from the root 

down to x determines a unique decomposition of / as a product e = UU, with u, v E A* 

non-empty. We write RnOLa’ . . . RaZn--ZLu2n--l . t = (u, v). The decomposition illustrated in 

Fig. 4 is precisely (RLR).aabaabab = (aabaa, bab). Note that, with this convention, 

the identity operator gives the decomposition (P,s”) cutting the Lyndon tree 8 at its 

root. 

Proposition 2.10. We have: (RL)“.t, = (wzn, WZ~+~) and (RL)“-‘R.l,’ = (wZn, w~,+_~), 

for all n> 1. 

The two statements are proved similarly; so we shall only prove the first one. More- 

over, the proof is best understood using pictures; see the figures. We proceed by 

induction. Suppose (RL)“.& = (wzn, wa,+l ) and that, moreover, the left and right sons 

of the vertex (RL)“.& are leaves (Fig. 5). 
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Fig. 5. (RL)“.& =(wz~.wz~+~). 

a bi 

(P(w2n ) q(w2n + I) 

Fig. 6. (R.L)“~,+I = (RL)“q(L) = (dwn--I), (P(m?l)). 

The tree associated with &+I is obtained from that associated with e, by replacing 

the leaves labelled by a’s with (a,(~, b)) and those labelled by b’s with (a, b) (cf. 

Remark 2.9(5)). Hence, the factorization induced by the operator (RL)” on &+I is 

W)“.e,,l = (dW2n), cp( ~2~+1)) (Fig. 6). Now, recall from Remark 2.4 that ~2, ends 

with au; thus, the left subtree attached to the vertex (RL)“&+i is (a,(~, b)). 

Since w2,,+2 = q(wzn)b-’ and ~2~+3 = bcp(wzn+l) (cf. Remark 2.9(4)), we see that 

the decomposition (~2~+2,w2~+3) is obtained by going down this 1eR subtree following 

the path ZU. Thus (wzn+2, ~2~+3) = RL (RL)“.&+l = (I?L)“+‘.r$+l (Fig. 7). 

2.3. Self-similarity 

In this section, we exhibit a self-similarity property of factorization (1) which leads, 

as a corollary, to a new proof of Theorem 2.6 [lo, Theorem 21. 
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“‘zn+ 2 = cP(w2Jb- i b’p(w2, + I) = w2” + 3 

Fig. 7. (RI,) “+‘.4l+l = (Wn+Z,Wn+3 ) 

Theorem 2.11. We have 
1. 

(2) 

Moreover, cp”( f) is equal to the Fibonacci word over the alphabet {$, e,ll}. 

2. Furthermore, cp”( f) is also equal to the Fibonacci word over the alphabet l&,8;‘,‘). 

For example, with n = 1, we have 6’: = aab and 8: = ab. And Eq. (2) reads 

f = (ab) (aab)(ab)(aab)(aab)(ab)(aab)(ab)(aab)(aab) . . . . 

Proof of Theorem 2.11. An easy induction shows that, for any n 20, @(a) = 8,’ and 
q?(b) = e,“, from which we find cp”(ab) = 8,. Let man; then e; = @(@“-“(a)) and 
8: = cp”(cpm-“(b)), so & = cp”(&_,); this shows fl,,, & = q”(f). This proves part 1. 
Part 2 follows from the fact that the morphism a++ ab, b ++ a leaves f invariant. 
To see this observe that the sequence (fn)n,t is obtained using the same recurrence 
fn+l = fn f&l using as initial terms fi = a, f2 = ab. That is, f is equal to the Fibonacci 
word over the alphabet {ab, a}. 

2.4. A new proof of Theorem 2.6 

Recall that & = wZnw2,,+l and that, by Proposition 2.10, we have e,l= w~~w~~_I; so 
e,ll= w2,+_2~2~-t since e,ll= /,_I (use Remark 2.9(5)). Denote by j&r) the Fibonacci 
word over the alphabet {x, y}. Thus in case 1 of Theorem 2.11, Eq. (2) reads 
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Note that this is also equal to 

2n-2 

f = ( ) II wj W2n-lf{Wz,W2n-l,wzn-~~~“-,}, 
j=O 

Thus, ~W*“W2”-l,WZn-2Wtn-I) is obtained by first forming the Fibonacci word over the 
alphabet {wz,,, w~~-z} and then inserting the word wzn-i before each occurrence of 
w2,, or w2,,-2. This is precisely what says Theorem 2.6, for m = 2n - 1 odd. 

In case 2 of Theorem 2.11, Eq. (2) reads 

provides a proof for m = 2n even. 

3. Characteristic sturmian words 

The Fibonacci word is a famous and important example of a general family of infinite 
words called sturmiun words. Consequently, it is natural to look for a generalization 
of results in Sections 2 and 2.1. 

Definition 3.1. Let (~,),~a be a sequence of integers satisfying co 2 0 and c, > 0, for 
n>O. Define so = b, s1 =a and sn+i =s~-~s~-~. Then s = lim,,, s, is a well-defined 
infinite word. 

The sequence (c,),,~o is called the directive sequence of s. Moreover, s is a char- 
acteristic sturmian word. 

Remark 3.2. The Fibonacci word is a special case of a sturmian word having c, = 1, 
for all n > 0. General sturmian words may be defined geometrically: let y = CYX + fl be 
a line, with c1 z=- 0 irrational. Consider the grid formed by the lines y = p, x = q where 
p, q are integers satisfying p, q 80. Denote by a’s and b’s the horizontal and vertical 
crossings of the line y = ax + /? on this grid (since CI is irrational the line crosses the 
grid in at most one point with integer coordinates). This infinite word thus obtained 
is the sturmian word associated with the line y = CIX + 8. One may show that two 
sturmian words associated to lines having equal slopes have the same set of factors. 
Hence, as far as factors of sturmian words are concerned, it is sufficient to study those 
having fi = 0. In that case, if IX has its simple continued fraction equal to [CO, cl,. . .] 

then the word s in Definition 3.1 is the sturmian word associated to the line y = ax. 
For more details, the reader may see [I J. 

Remark 3.3. Observe that CO = 0 implies s2 =sa; consequently, the sturmian word as- 
sociated with the sequence (c~)~~o with CO = 0 is obtained from the sturmian word 
associated to the sequence (~:),,~a with CL = c,+i by exchanging all letters a and b. 

From now on, we shall only consider sequences satisfying CO >O. 
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In [8], we gave the Lyndon factorization of any general characteristic sturmian word 

s; more precisely, we proved 

M 
s = n [(us~n+la-l)Cz”-‘as~nS2n+lu-l]c~,+l, 

n=O 

where ((as~n+~~-l)Cz.-‘as~,s~n+~u-’ )nB~ is a sequence of strictly decreasing Lyndon 

words. We write 

4 = (US2n+lU 
-1 ch-1 

) ~S2nS2n+l a 
-1 -1 and u, = as2ns2nflu . 

For instance, we have &O = acob, et = (a(uQb)c’ )“(uQb), and so forth. The word U, 

is a Lyndon word. Moreover, we have U; = u~2~+ta-‘, so that e,, = (~k,cZ.-’ u,. This 

a key fact when proving that (&)ng~ is a sequence of decreasing Lyndon words (see 

PI). 
We shall make use of two formulas borrowed from [8, Eqs. (5) and (6)]; they are 

recurrence relations that describe the tree structure of U, and u;, hence of t,, (n > 1). 

They are: 

u,+1 = (us*n+@-‘)[(us2 +p-’ y’ --1 cz.+1+~ 
n uS2nS2n+la 1 

= (. . * ccqn,, tn>. . . eg, 
czn+1+1 

I 

%x+1 = (as~n+~u~1)[(as~n+~u~1)C2”~1us~ns~n+~u~1]CZn+’ 

= (. . . ((qn,, Lt. . . $1. 

%+I 

Moreover, we have f$ = uI, = usz,,+t a-’ and 

& = (Ui,(. . . (&u,). . .)). 
. / 

%I-1 

We may formulate a self-similarity property analog to Theorem 2.11. 

(3) 

(4) 

(5) 

Theorem 3.4. We have 

n-1 

s= ,z p+’ x s; ( ) 
where S is the sturmiun word with directive sequence (d,,,)mao over the alphabet 

{I.& uf}, with d, = cm+2,,. Moreover, the word S is also equal to the Sturmiun word 
with directive sequence (dk),,,>o with db =do - 1 and dk = d, (ma 1) over the ul- 
phubet {a;, an}. 

Again, {z&,u~} and {z&u,} may be considered as alphabets (codes) (cf. the proof of 

Theorem. 2.11). Denote by tl the sturmian word over {a, b} with directive sequence 
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(&)m>o. Denote by (&‘)“>,,,I the Lyndon words in the Lyndon factorisation of tt and 
consider the morphism y sending a I+ uI, and b ++ ui. We claim that [,,,+2,, = y(&)). 
This is easily shown by induction using Eqs. (12):( 14) and proves the first statement. 
Similarly, consider the sturmian word t2 with directive sequence (dk),>o and denote 
by (&?),,o the Lyndon words in the Lyndon factorization of t2. Again, an induction 
shows that tm+2n = 0(&‘) where 0 is the morphism sending a H U; and b H u,. This 
proves the second statement. 

4. General singular factors 

This section introduces general singular factors (of a given characteristic sturmian 
word) and contains results generalizing those in [lo]. 

Definition 4.1. Suppose the sequence (c~)~~o is given. Let II 22 and suppose s, ends 
with c$ (where CC, /3 E A and a # /I). We define the word w,, by w,, = as,,/?-‘. We also 

define wo = a, WI = b. 

Hence, e.g., w2 = acO+‘, w3 = b(aQb)c’, and so on (since s2 = sfoss = acob, sg = sg’sl = 

(uCOb)CIa, etc.). Let us first verify that w, is indeed a factor of s. Again, any conjugate 
of the word s, is a factor of s. So, the fact that WZ,, and w~,,+t are factors of s follows 
from as2,~2~+ta-’ = (us2nb-1)(bs2n+~a-‘). Observe also that u, = ~2~~2~~1. 

4.1. Properties of general singular factors 

Section 4.1 contains results that generalize those given in [lo, Lemma 2, Property 21 
for the Fibonacci word and confirms the words w,, as the proper generalization of 
singular factors of the word s (associated with (c,)~~o). At the time of writing we 
were not able to determine if the authors of [lo] had already proposed a generalization 
of their work, and if so, whether their methods compare to the ones we expose in this 
subsection. Denote by qn the length of the word s,. That is, we have qo = q1 = 1 and 
q,+l = c,-lq, + qn_l. Denote by %?k(u) the conjugate of order k of the word U. That 
is, if u = uouo with [usI = k, then %?k(u) = ~0~0. Note that indices are taken mod (~1, so 
we may allow negative indices and write, for instance, V-t(u) = uoz if u =zug, with 
ZEA. Observe also that U_t(uJ’)=Kt(u)P. 

Lemma 4.2. (1) The factor w, is not a proper conjugate of s,. 

(2) The set of factors of length qn of s,,-IS, is equal to {%k(%) 1 Obk,<q,-I - 

2) u 1%). 

The first statement is clear since 

(Is,], - 1, I%Zlb + 1) if n is odd, 
(]““]Q, lwlb) = 

((%I, + 1, IsnIb - 1) if n is even. 
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Suppose n is given and that s,,+i ends with c$ (a, /I E A, CY # fi). We claim 

S,+la-‘p-loIB=S~-l-lS,-1S,, 

s,&+,c?p-‘$I =s,+is,. 

Proceed by induction. First, we have 

%+1~ -lp-lap = s~-~s,-l~-lp-‘cg3 

= ~~-~-l(~f;~~s,_2)s~-~~-l~-l~~ 

= sc”_‘-lsc.-2 
n n_lsn-l&l-2 

(we use the induction and apply second equality (6)) 

=s~-+n_,s);~;sn_, 

= scA-i 
n &I-I%. 

(6) 

Second, we use the equality just proved, 

Wn+l a -‘/?-‘a/? =sn(sc,“-‘-ls,_p,) =s,+1s,. 

We may now prove point 2. Suppose s, ends with c$; applying Eq. (6) we find 

Sn-i%~ -‘fl-‘c$ = s,s,_i. Thus, the first factors (of length qn) of s,_is, are the con- 

jugates %k(s,) with 16k bq,_l - 2. The next factor is just /Is,c(-~ = w,. The last one 

1s Wqn(sn) = %$(s,) = s,. 

Before continuing on with properties of the words w,, we need to introduce words 

v,, n 20, defined by 

v, = Msc,;T1snp-l, (7) 

where tx and ,f3 have appropriate values according to the parity of n. That is, v,, differs 

from w,+z by a factor s,+i. It is useful to set v-1 = E (cf. Corollary 4.6). Observe that 

vn =K_I(s,+l)cn-lwn (8) 

(so v, = w, if cn = 1). Similarly, note also that 

w,+i =%?-_I(s,)c”-‘w,_i. (9) 

Proposition 4.3. (1) For all n 2 0, the words v, and w, are palindromes and we have 

v,=(w~v,_~)c”-~w,=w~(v,_~w~)~“-~ (n>l), (10) 

w, = (w,-2v,-3)- w,-2 = W,-2(V,-3W,_2)CQ-z (n 2 3). (11) 

Moreover, for all n 22, w, = v,,_~w,_~~-~N = c&‘w,_iv,_2, where ct = a if n is even 
and u=b zj”n is odd. 

(2) The words v,, w,, start and end with ucO+’ if n is even, and with b if n is odd 

(n22). 
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As a consequence, for any n 22, no proper conjugate of v,, or w, is a factor of s. 

Moreover, the words v,’ and w,’ are not factors of s. 

(3) For all n>O, the word w,, is not a factor of the word w,+l. 
(4) The word w,, is not the product of two non-empty palindromes. As a conse- 

quence, it is primitive, 

(5) We have 
C~n_,-l(Sn~=~-l~~,-l~C”-2-1~,-*~~-~, 

C4”__1(S,) = w,_l~_l(s,_*)Q-2-‘w,-2. 
Consequently, 
the word w,_2 is a factor of %&(s#) if and only if 0 <k <c,_2qn_l - 1; 
the word w,_l is a factor of $?&(s,) tf and only zfq,,_l - 1 <k<q, - 1. 

(6) We have w,, = cx + (flizi ok) = (n;zi &,-2-k) + a, where CI = a if n is even and 

a=b tfn is odd (na2). 

1. We claim that for any pB0, %_l(s,_l)rw,_~ is a palindrome and prove it by 
induction on n. The claim is trivially true for n = 2 since wo = si = a. We have 

V-i(s,)Pw+* = (crS,cC’)PW,_i = (as;~;“_&X-l)Pw,_i 

-1 c,_z-1 
= [WI-l((wl-la ) WI-2 )IPwn- 1. 

So, the claim is proved and the fact that v, and w, are palindromes follows from 
Eqs. (8) and (9). Finally, for Eq. (lo), observe that by virtue of Eq. (8) it suffices to 
show V- 1 (s,+, ) = w,v,_ 1. This follows from 

Eq. (11) is proved similarly. As for the last equality, we use Eq. (7) together with the 
preceding result to get 

w, = cts*/?-’ = a(&$-‘a-‘~+X-‘~-‘LY 

= (Cc(s~~I-1sn_2B-‘)(8sn_la-‘>p-‘cr 

= v,_2w,-ip-‘a. 

The last equality follows from the fact that w, is a palindrome. 
2. Recall that CO >O (cf. Remark 3.3): It is easy to observe that s, starts with aCo, 

for n 22, and that it ends with b for n even, and with a for n odd. Hence, the first 
statement follows from the definitions for w,, and v,, and from the fact that they are 
palindromes. The other statements are immediate since aco+2 and bb are not factors 
of s, since they are not factors of s,,, for any n 20. 

3. First observe that w,, is not a factor of s,+i. Indeed, this follows from Lemma 4.2 
(1) since any factor of s,+i =s?-‘sn_i is conjugated to s,. Suppose that s,,+i ends 
with /3. Then w, is not a factor of s,+i/P1. Now, since w, = /?sncC1 and w,+i = 
CLS~+I~-~ (with a, B E {a, b} and c1# /?), we find that w, cannot be a factor of w,+ 1. 

4. Suppose that w,, = uv with u, v palindromes. Since w, is a palindrome, we would 
have w, = VU contradicting Lemma 4.2( 1). If w, is not primitive, then there exists an 
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integer p > 2 and a non-empty word u such that w,, = up. Then, by point 1, u must be 

a palindrome; but this contradict point 2 (with u = UP-~). 

5. The equalities are easily derived from 

The last part of the statement then follows from points 2 and 3. 

6. First note that s, =s~s&-~s~ . . . s;:;1-‘s,,_-2. So, 

= a(as~-‘s~p)a(j?s~-lsp-‘) * *. (aS;:;-1Sn_2fi-‘) 

(with appropriate values for tl and /3 according to the parity of n). So the identity 

follows from definition (7) of the words v,. The second identity follows from point 1. 

4.2, Self-similarity revisited 

This section links Lyndon factors u, and 8, to singular factors w,, of a given sturmian 

word s, and states corollaries generalizing results in [lo] (and in Section 2.2). 

Proposition 4.4. For all n B 1, we have 

RQL= . . . RC2n--2LC*n-’ . u, = (wzn, w~~+~), (12) 

RCOLC’ . . . RC2n-ZLc2n-1-1 . u; = (Wan, v~+~), (13) 

RCOLC1 . . . Lb. I R”n - ’ 
. & = (u2n, WZn+l 1. (14) 

We shall make use of Eqs. (3)-(5) introduced earlier. We proceed by induction. Eq. (3) 

leads to 

R”LC1 . . . RCZnL%t+l 
. %+1 = #po, yoep+ ) 

with (x0, yo) = RCOLCI . . . L%-IRQ~-~ .8,. Consequently, the result follows by induction 

together with the identities u;v~,, =(w2,,v2,,_r)vzn = w2,,+2 and w2,,+rt;f211+’ = w~,,+r 

(V2nW2n+l P+’ = WZ~+~ (use Proposition 4.3.1). 

Similarly, Eq. (4) gives RcOLcl . . . RC2nLCb+l-1 . u;+~ = (u;xo, y~@“+‘-~ ) with (x0, 
yo) =R=oLCl . . . RC2.-1 . tn. Hence, induction together with Proposition 4.3.1 applied to 

24;~~~ = w~,JJ~~_~zI~~ = w2,,+2 and ~2~+r(u2~~2,,+r )c~l+~-~ = uzn+r gives the result. 

Finally, using Eq. (5) we find 

R”OLC1 . . . ,5CZn+l R%+2 - 1 8 - (u’$2-‘xo, yo) . n+l- 

with (x0, yo) = RQLC1 . . . RCZnLCZn+l . u,+l . The result follows by induction using the 
IQn+z - 1 identity v2,,+2 = u n+l W2n+2. 
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As a corollary, Eq. (14) leads to an identity generalizing that in Thmeorem 2.5. 

Corollary 4.5. We have 

s = fy(v*jMQj+, p+I = fi Vj. 

j=O j=O 

The first equality is clear. The second one follows from Proposition 4.3.1. Indeed, we 

have (v2jw2j+i )cb+’ = v2jw2j+i(V2jw~j+r )czi+l-r = v2jv2j+r. 

The next corollary generalizes the identity given in [lo, Theorem 21 (Theorem 2.6), 

although we still have to prove the nonoverlapping property for the words w,. Let 

(d,),ao and (dh)ma~ be as in Theorem 3.4. 

Corollary 4.6. The sturmian word s may be written as 
1. 

where zlz2~3 . . . is the sturmian word with directive sequence (d,),a~ over the 
alphabet {wz,,, 112~4) and I$~_~ = qn_l ifzi = WZ,, and I?$_~ = w2,,_1 ifzi = ~~-2, 

for all i> 1; 

2. or, 

n-1 

S= fl (V2jW2j+l )cy+’ (W!$)Zl Wzn Z2 Wc’Z3 ’ * ‘) 
41) 

j=O 

where ~1~2~3 . . . is the sturmian word with directive sequence (da),,,>0 over the 
alphabet { vzn_ 1, wz,,+l } and Gfi = w2,, for all i > 0. 

Moreover, given n 30, any two occurences of w,, in s are separated either by v,_l 
or by w,,+~. Consequently, these above expansions may be obtained by locating the 
non-ovelapping occurences of w, in s. 

Let us first look at an example, with n = 1, to illustrate case 2 of the corollary. We 

have w2 = acaf’, VI = b(acOb)“l-l and w3 = b(aQb)c' . We compute s5 as an approxima- 

tion for s: 

s =(((a”Ob)“’ a)‘* acob)c3 (acob)cl a.. . . 

Writing this as 

(a”0 b)“’ . [(a@+’ b(acOb)c’-1)C2-1 acofl b(a”Ob)Q]Qa.. . 

=(v~wl)~’ . [(w2 ~1)~; w2 w31dia... 

we get the beginning of the expansion predicted by Corollary 4.6. 
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Proof of Corollary 4.6. Statements 1 and 2 in the corollary are proved as in Sec- 

tion 2.4, by rewriting the identity in Theorem 3.4 using Eqs. (12)-( 14) of Proposi- 

tion 4.4. Indeed, we have by virtue of Theorem 3.4 

n-1 

s = ,z q’+’ x ~{u:,uy}, ( ) 
where ?I~:,, u:, 1 denotes the sturmian word associated with (d,),as over the alphabet 

{u~,u~}. Observe that M: = {,_I (cf. Eq. (5)). Hence, according to Proposition 4.4, 

this is equal to 

( 
n-1 

n (QjWj+1) 
C&+1 

j=O 
1 - 

x S{WZnUZn-1,Yn-2W2n-l}. 

That is, S(,~nV2n_,,VZn_2W2n_,} is obtained by first forming the sturmian word associated 

with (dm)m3c over the alphabet {wz~, uzn_-2} and then insert Q__L (resp. w~,,_i) after 

each occurence of wzn (resp. ~~-2). This is precisely what says part 1 of the corollary. 

Using part 2 of Theorem. 3.4 gives a proof for the second statement. 

Hence, we may concentrate on the last statement concerning the non-overlapping 

property of the word w,, which follows from the next lemma. We will say that a word 

u overlaps the product xy if xy =x’uy’ where x’, y’ non-empty are such that Ix’/ < 1x1 

and ly’l < lyl (where x,y,x’,y’ are words). 

Lemma 4.7. (1) The word w, is not a factor of the word u,-1 
(2) The word w,, does not overlap neither w,,v,_l, nor II,-lw,. 

(3) The word w,, does not overlap neither w,w,+l, nor w,+lw,,. 
(4) The product nkBn (vz~w~~+I )C2k+l may be uniquely expressed in terms of VZ,,- 1, 

w2,, and wz,,+l only. Moreover, this expression is completely determined by locating 
the occurences of wzn in (v~kw2k+l)CZk+‘. 

1. Suppose on the contrary that w, is a factor of v,_i . Then, it is a factor of 

~(n;l,’ Q)u,_~. But this last expression is equal to w,+i, by Proposition 4.3(6) (with 

appropriate value for a); so we get a contradiction since w, is not a factor of w,+i, 

by Proposition 4.3(3). 

2. We have w,v,_i = cl(n~~,‘vk)u+i and ZJ,-iw, = z~~_i(n~~~ un-2-k)a, by 

Proposition. 4.3(6). If w, were to overlap w,v,_i or u,_iw, then it would be a fac- 

tor of (n;z,” t$)u~._i or ~,+_~(n;~~ &_2-k) hence of w,+i. But, again, this contradicts 

Proposition 4.3(3). 

3. Write 
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(with appropriate values for a, p where CI # p). Observe that Iu,_I I= q,+l -qn = (c~__~ - 

l)q, +qn_l. Then, either c,_1>2 and then [v,_~I>Iw,l or c,_l = 1 and v,_~ =w,_~. 

Suppose first that v,_l = w,_l; then we cannot have w,, =xv,_l y since, by Proposi- 

tion 4.3, w,_l is not a factor of IV,. Suppose now that Iv,_1 I > I w,, 1. Then, if w, were to 

overlap w,w,+l it would have to be a factor of <l-I;:: uk)z),_l or ~~_~(n;~~ v,,__~-~), 

hence of w,,+~. So we may conclude as in case 2. We only need to exchange CI and B 

to obtain a proof for w,,+l w,. 

4. We first prove the existence and unicity of the expansion for any factor 

(VZkWZk+l )c=+‘. We proceed by induction together with Eqs. (10) and (11) of Propo- 

sition 4.3( 1) to show, in addition, that vZk__l, VZk, W2k and W2k+l may be expressed in 

terms of v~+l, wzn and 1~2~~1 only, and that, moreover, 

l v2k and W2k start and end with wzn, 

l U2k-l and W2k+l start and end with wz,,+l. 

For k = n we have 

(VZnWZn+l Y2.+’ = [(Wzn%l-1 )Czn-1W2nW2n+llCZn+‘~ 

Recall that by virtue of Proposition 4.3(2), each occurence of ~2~ in the expansion is 

necessarily followed by either vzn_ 1 or wzn+l. The unicity of the expansion follows from 

points l-3. Indeed, since Iv2,+_1 I = qzn+l - qzn # qzn+l = Iwzn+l 1, any other expansion 

would provide a situation where either wzn is a factor of VZ~_~, or else overlaps one 

of ~2~~2+1, UZ~--IWZ,, wznwzn+l or wzn+lwzn. We use Proposition 4.3( 1) and compute, 

for kan: 

(V2k+2W2k+3)Ca+’ = [(WZk+2VZk+l )C2C+Z-1~2k+2(~2k+1~2k~1~2k+llC2t+3. 

Combine this with Eqs. (11) and (10) applied to WZk+Z and uZk+l. This shows the exis- 

tence of the predicted expansion. Unicity again follows from points l-3. The fact that 

the expansion is unique for each factor (Zi2kWZk+l) Q~+I implies, by virtue of points l-3 

again, that it is unique also for the infinite product &gn(VZkWZk+l )c%+l. Hence part 4 

of the lemma is established, which ends the proof of Corollary 4.6. 
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