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A generalization of a nonlinear integral equation governing the spread of certain 
infectious diseases with almost periodic contact rate is shown to have almost 
periodic positive solutions. I( 1991 Academic Press, Inc 

1. INTRODUCTION 

In the study of periodic outbreaks of infectious diseases such as chicken- 
pox, mumps, and measles [ 1,7], researchers have been lead to consider 
the nonlinear integral equation 

x(t) = j’ .f(& x(s)) & (1.1) 
1 T 

in which, x(t) is the proportion of infectious individuals present in the 
population at time t, T is the length of time an individual remains infective, 
andf(t, x(t)) is the proportion of new infective individuals per unit of time. 

Since its introduction (1.1) has been studied by various authors. Using 
degree theoretical arguments in cones, they have been able to conclude the 
existence of positive solutions for sufficiently large values of the delay 7. 

Nussbaum [S, 6,7] and Smith [S] in particular have demonstrated 
the bifurcation of positive periodic solutions from the zero solution for 
sufficiently large 7, provided f is periodic in t. Fink and Gatica [2] have 
shown the existence of nontrivial almost periodic solutions, by assuming 
that f is a suitable almost periodic function and 7 is large. 

In this note we shall simplify and extend a result of Fink and Gatica [2], 
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regarding the existence of positive almost periodic solutions for ( 1.1) to 
include the more general equation 

x(t)= j' .f(s, -4s)) ds. 
f-T(f) 

(1.2) 

Unlike the case in whichf( ., x) is w-periodic, and r( .) is J-periodic, with 
w/1 a rational number, the operator 

ACxl(t) ~2 j,‘pTI,,fC~~ x(s)) ds (1.3) 

does not have the compactness necessary for a degree theoretical argument 
to apply. Thus, an adaptation of a devise developed by Fink and Gatica 
[3] to handle (1.1) must be employed; in the process we obtain slightly 
more general results than they did. 

2. PRELIMINARY RESULTS, ASSUMPTIONS, AND NOTATION 

Throughout this work IR denotes the real line. V([w) denotes the Banach 
space of continuous bounded functions f: R ---f Iw with the norm 

llfll = sup If(t 
reR 

Recall that a function f~ W(R) is almost periodic if the hull off, 

ff(f)b {f,:.L(t)=f(t+a), =q, 

is relatively compact in W([w). An equivalent form is that from every 
sequence a = {a,,} one can extract a subsequence {a,,} for which the limit 

TJ a lim f(t +a,,,) 
12’ + xl 

exists uniformly on R. If f( t) is almost periodic then f has a Fourier series, 

f(t)- f a,eC’““‘, 
n=l 

where { 2,} is a countable set of 3,‘s for which 
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The 0,‘s are determined by the formula 

The module off, mod(f), is the smallest subgroup of (R, + ) containing the 
set {I.,). When working with the space of almost periodic functions, 
AP(R), theorems such as Arzela-Ascoli’s or Dini’s, fail to provide informa- 
tion about uniform convergence on all of R. The following result will 
provide us with a useful characterization of almost periodicity. 

LEMMA 2.1 [Z]. A function f E AP( R) if and only if from every pair of 
sequences CI and fi we can extract common subsequences CC’ c a and 8’ c /I for 
which 

T xi + ,r.f = T,, Tl,,.f (2.1) 

pointwise. 

LEMMA 2.2. Zf t, x E AP(R) and 

then y E AP(R). 

Proof Let { y(t+a,)}, {x(t +a,,)} and {r(t +c.x~)} be sequences of 
translates corresponding, respectively, to y(r), x(t), and z(t). Since x(t) and 
t(t) are almost periodic, there exists a common subsequence {CC:} c {a,} 
such that 

x(t + a,.) + z(r) and z(t + an,) + B(t) 

uniformly on R. Then 

Y(t+a,,)-j’ z(s) ds 
r-!%fl 

II 

f 
= x(s + a,,) ds - J’ z(s) ds 

r-1(1+1,.) r B(l) 

< Ix(s+a.,)-z(s)ldsl+l~‘-B”’ z(s) ds 
r-T(r+z,.) 

G 114. +a,,,)-z(.)II IId + ll4.H Ils(. +a,,,)-K.)Il. 
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Hence 

z(s) ds 

uniformly on R. This shows that the hull of y is compact in the uniform 
topology of’W( IR) and y is almost periodic. 1 

LEMMA 2.3. Zf z, b E AP(R) and CI is a given sequence, then 

I 
sup J 

b(s) ds < 1 =z. sup 
IER f-T(I) rtIW I 

I 
T,b(s) ds < 1. (2.2) 

I - T,T(f) 

Proof: After extracting a subsequence of ~1, if necessary, we may assume 
that 

r(t + 01,) + z-,s(t) and 

uniformly on R. If E > 0 is such that 

i 

r 

b(s) ds + E < 1, 
,-T(l) 

then 

s , b(s + a,) ds < 1 -E, n = 1, 2, . . . . 
t-r(t+a,) 

By the proof of Lemma 2.2 

s , b(s+a,,)ds+- T,&) ds, 
l-r(f+Y.) I- 7-*1(l) 

and the lemma is proved. 1 

DEFINITION 2.4. A bounded function a: R + R + is said to be of the 
class 9 provided: 

(j) a(t)<a(s) if -cc < t<s<O; and 
fjj) a(t)>a(s) if O<tbs< +co. 

A bounded function 6: R + R + is of the class X if 

(k) b(t)ab(s) if -co<t<s<O; and 
(kk) b(t)<b(s) if O<t<s< +co. 
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3. EXISTENCE OF SOLUTIONS 

Letf’:RxR+ +lR+ and t: R + R +. Throughout this paper, f’ and T are 
assumed to satisfy one (or more) of the following conditions: 

H, : f( ., x) is almost periodic uniformly for .Y in compact subsets of 
R and z( .) is almost periodic on R; 

H, : There exists an almost periodic function a % : R + R + , 

i 

i 
sup n,(s) ds< 1 
,tR I-i(l) 

(3.1) 

such that 

(3.2) 

uniformly for t E R; and 

H, : f( t, . ) is continuously differentiable with f, (t, q) uniformly con- 
tinuous for (t, V)E Rx [0, qO] for some qO>O, f,(t,-)>O with f(t, O)=O 
and 

s I inf .f;(S,O)dS> 1. (3.3) It118 , T(Il 

It is well known that iffsatisfies H, and possesses the smoothness required 
by H,, then fY(s, 0) is almost periodic and it has positive mean value [2]; 
that is to say 

uniformly in t. Hence, 

I 
f 

inf fib, 0) ds > 1 
r‘?W I i(I) 

(3.5) 

provided 

s(t) a to, V’tER 

for some z0 sufficiently large. 
A close inspection of assumptions H, shows that the delay term, r(t), in 
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(1.2) is bounded away from zero; indeed, one sees that (3.3) forces z to 
satisfy 

T(t) ’ 
1 

max,..fy(s,O)’ 
(3.6) 

In addition to H, , H,, and H,, we shall also need the following 

H:: f is continuous on R x tR +; r is continuous on Iw and there exist 
positive numbers w and L such that f(t + w, x) = f(r, X) and r(t + A) = r(t) 

for all t E KY. 
HT : There exists a continuous class 9 function a, : [w + R +, 

s I sup a,(s) dcy < 1 (3.1)’ 
,tR r--r(,) 

such that 

lim supfgX)g a,(f) ._ 

uniformly for t E R. 
H;: 

lim f(t’ x, = 0 
r;-+^J[ x 

(3.2) 

(3.2)” 

uniformly for t E R. 
H; : f (t, .) is continuously differentiable with JY(t, 9) uniformly 

continuous for (t, q) E R x [0, qO] for some q0 > 0, and f(t, 0) = 0. 

Remark 3.1. It should be pointed out that our condition H, is weaker 
than Fink and Gatica’s condition H, [3]. 

We are now in position to state the main results. 

THEOREM 1. Let f and T satisfy H,, H,, and H,, then (1.2) has an 
almost periodic solution XLT, such that 

inf Xfir(t) > 0. (3.7) 1eR 

Furthermore, if mod(z) c mod(f), then 

mod(.?,,) c mad(f ). (3.8) 
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THEOREM 2. Let f and 5 satisfy H , and H; Then there exists T * > 0 jtir 
which Eq. (1.2) does not have continuous nonnegative solutions of arhitrari!,* 
small norm, other than x(t) = 0, tj 

sup t(t) <z*. 
1ER 

THEOREM 3. Let f and T satisfy H: and HF. If for some a > 0 and a 
continuous class X function b(t) for which 

s I inf b(s) ds > a, VtER 
rtR ,-7(I) 

(3.9) 

f is such that 

.f(t, x) 2 h(t), VtER, x>a (3.10) 

then (1.2) has a nontrivial continuous solution, x,,~, whose infimum satisfies 

inf x,,(t)>a. 
,tR 

When r(t) = I*, and b(t) is periodic, more may be concluded about the 
solutions of Eq. (1.1). 

THEOREM 4. If, in addition to Hi, ,f is o-periodic and satisfies 

H,: There exists a > 0 and a continuous periodic function b: [w -+ [w +, 
b(t) & 0, for which 

.f(4 x) 3 b(t), Vt E R, x > a, (3.11) 

then there exists m > 0 such that for each t 2 m Eq. (1.1) has a nontrivial 
to-periodic solution x(t) whose irzfimum satisfies 

inf x(t) 3 a. 
IEIW 

Remark 3.2. Unlike Theorem 1, where the monotonicity of f in its 
second variable provides the necessary tools to conclude the almost 
periodicity of maximal solutions of (1.2) (see [3]), we have not been able 
to conclude the almost periodicity of solutions under the assumptions of 
Theorem 3. 
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4. PROOF OF THEOREM 1 

The proof of Theorem 1 is modeled after Fink and Gatica’s proof of a 
similar result. Let 

94 {x~AP(R):x(t)30 for all PER}. 

LEMMA 4.1. Let f and z be as in Theorem 1, then (1.2) has a continuous 
bounded solution x(t). Furthermore, 

x(t) = lim x,?(t), 
?I-= 

where {x,(t) } c 9’ is a uniformly bounded increasing sequence. 

Proof Let A: g(R) + V(R) be the operator defined by 

A[x](r)PI’ f(s,x(s))ds. 
I- I(I) 

Because of H,, H,, and Lemma 1.1 

A(9)c9? 

Furthermore, 

J;p;,,lf(s,x)ds=j’ Cfkx)-.f(s,O)lds r-r(r) 

= 

(4.1) 

(4.2) 

(4.3) 

Given E > 0, by the uniform continuity off, ( .,.) on R x [0, b,], we can 
conclude the existence of 6 = 6(s) > 0 for which 

IfYk u)-f,(s, O)l + 

for O<u<6 and SER. Hence, for O<x<6 
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3 ,fy(s, 0) ds - E 
I 

x 

f 
f, (s, 0) ds - e 1. 

T(l) 1 

For E sufficiently small, we then conclude that 

s ,’ ~,,, .f’b x) ds 3 x 

(4.4) 

(4.5) 

for 0 < x < 6. Let x,(t) E 6/2. Clearly, the sequence 

-5,(t) e A CT, 1 l(f), n = I) 2, . ..) 

is increasing. Furthermore, given p > 0 there exists x0* > 0 such that 

Choosing p small enough, and using (3.1) it is possible to conclude that 

I 
I 

sup ~(,) .f(s, -y) ds 6 x, vx 3 x(y (4.6) 
rtR f 

and then 

By Lebesgue’s Monotone Convergence theorem, the pointwise limit 

lim .u,(t)&x(t) 
n - % 

is a continuous solution of 

-u(l)=j’ .fb, x(s)) ds I i,,, 
(4.8 1 
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Finally, from (4.7) 

inf x(t)>i>O, 
IER (4.9) 

concluding the proof of Lemma 4.1. 1 

To prove that (1.2) has a nontrivial almost periodic solution, we proceed 
as in [3]. Hereafter, x$ shall be exclusively used to denote the greatest 
lower bound of those x’s for which 

f(t, Y) d [a,(t) + El .Y 

for all y > x. 
The following two lemmata are trivial adaptations of Fink and Gatica’s 

results [3, Lemmas 1 and 23. We include a few details for the reader’s 
convenience. 

LEMMA 4.2. Let f and T satisfy H, , H,, and H,. Then there is a solution 
-f,,z of (1.2), 

such that 

x(t) <q:,(t), V’tER 

for any solution x(t) of (1.2) whose range is contained in [d/2, ~$1. 

Proof: As in [3] let 

Y={xE%‘(R): xsolves Eq.(1.2)andx(t)E[6/2,x,*], te[W} 

and 

z(t) = sup x(t). 
%-ES 

Then 

for each x E Y. Thus A [z]( t) b z(t), and as in Lemma 4.1, Ak[z] converges 
to an element XL7 of Y. Hence, ,f,;,(t)=A[Z,,](t) is then the maximal 
solution. 1 



520 RICARDO TORREJi)N 

LEMMA 4.3. Letf; T, g, and p .satisfy H,, H,. and H,. Let 

and 

v(t) = ‘%,,C.Yl(t) L2 1’ g(.c Y(S)) ds (4.11) 
r-P(r) 

have solutions in 9, both A,, and A*,/! mapping {x: 0 <x(t) <x$1 into 
itseZf Zff( t, x) 6 g( t, x) and r(t) 6 u(t) for all t E R and 0 < x 6 x0*, then the 
maximal solution Xt.r of (4.10) is less or equal to the maximal solution xX+ 
oj(4.11). 

Proof As in [3], 

A,,,hl(t) b ?” f(s, i,,r(s)) ds 
~-P(r) 

Therefore, the iteration Ai ~ [X,; ,] (t) converges to a solution y(t) of (4.11) 
and 

This completes the proof of the lemma. 1 

To complete this sequence of preparatory lemmas, we now prove 

LEMMA 4.4. Let f, z satisfy H, and H,, let I# be such that 0 < 4(t) d xz _ 
Zf c( is a sequence for which T,f( t, x), T,z( t), T,aco( t) exist untformly on R, 
and T,& t) exists untformly on compact subsets of R, then 

T, j-'-rlrjfCs, 40)) ds = j-' T,f(s> TAs))dst I- T,r(1) 
(4.12) 

lim sup Taft& xl 
= T,a,(t) uniformly for t E R (4.13) 

* + 02 X 

and 

s I sup T%a,(s) ds < I. (4.14) 
,eR r-- T,TiI) 
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Proof: The proof of (4.12) follows from estimates similar to those 
obtained in the proof of Lemma 2.2 (see Appendix). To prove (4.13), let E 
be an arbitrary positive real number, x a sufficient large real number and 
pick a positive integer n such that 

and 

for t E R. Then, 

r,f(t,x)~[Ca,(t+a,)+E]X+E 

6 [T,am(t)+2E] XSE 

for x > x$ and all t E R. Since E was arbitrary, (4.13) is proved. The proof 
of (4.14) is a consequence of Lemma 2.3. 1 

Remark 4.1. An immediate consequence of Lemma 4.4 is the estimate 

I 
f 

Tzf(s, d(s)) ds d x,7 > (4.15) 
I- T,r(t) 

if O<&t)<x,* for all tE[W. 

We now conclude the proof of the theorem. First, for f and r, let XrJt) 
denote the maximal solution of (1.2) whose existence is guaranteed by 
Lemma 4.2. Then, for a given 6 > 0 

f”(t,X)~T,f(t,X)~f(t+C(,,X)+C) 

T”(t) G T,r(r) d z(t + a,J + 6 

for all n > N and all t E R. Now, if 0 6 d(t) 6 .x0* 

i 

I 

Cfb + a,, d(s)) + 81 ds tGr(r+r,)-6 

[j 

f 
+ a,(s)ds+& x$<x;, 

I -- T(I) 1 
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for appropriate values of 6. From Lemma 4.3, and the previous calcula- 
tions, we see that 

where ~,6,(t,~)=f(t+~1,,~)+6 and rb(t)=r(t+a,,)+6. Also, formula 
(4.12) tells us that T,.f,z, t solves 

x(t) = j’ .f% -x(.s)) 4 
I ryr1 

hence, 

Further use of Lemma 4.3 yields 

I,I,rZ(t)<i,n ,(t)<Xp o(t)+p, ,,“fl “.T” 

But 

Thus 

and 

The almost periodicity of X,,*(t) now follows from Lemma 2.1. To prove 
the module containment (3.8), let {x’} c {u> be such that T, f =,f and 
T,. z = z. Then 

T,.X,%, =X Tz f, 7% * = -Yt, 7 

Now (3.8) follows from [2, Theorem 4.51. 1 
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Remark 4.2. A dual argument, starting with x,,(t) z x$, may be used to 
obtain an almost periodic minimal solution s:f.f whose range is contained 
in [h/2, x,*1. 

A simple modification of the previous argument will apply in case 
f:RxR+-+1R+,t:R+R+,and1~0aresuchthat 

G, : f( t, x) is monotone nondecreasing on [.?-, + oo), i.e., if 
x, HEW and i<x(t),< y(t), thenjlt, x(t))<f(t, y(t)); 

G,: ,f is uniformly continuous on R x [a, i + v,,] for some q,, > 0; 
and 

G,: 

THEOREM 4.5. Letf, z, and f he such that H,, H,, G,, G2, and G, are 
satisfied. Then Eq. (1.2) has an almost periodic solution X,,r whose infimum 
is such that 

inf Z,,,(t)>.?. 
1sR 

Sketch of Proof Let E > 0 be such that 

Then, by G,, there exists 6 > 0 such that 

If(t, x(t))-f(C T)l <E, V’tER 

if IIx - ill < 6. Hence 

Now the proof of Theorem 1, with x,(t) = & applies. 1 
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5. PROOF OF THEOREM 2 

Let us begin with the following observation (see [3]) 

PROPOSITION 5.1. Let f satisfy H, and H:. Then, there exists z* > 0 for 
which (1.1) does not have continuous nonnegative solutions qf arhitrarill 
small norm, other than x(t) E 0, if z < z*. 

Proqf: Let E = Ilf,( ., O)ll + 1, and 

4~) = ;yi jt’pr Cf& 0) + ~1 ds. (5.1) 

Because of our assumptions on f, the function 4: R + + lF&’ + is well defined, 
and 

l f$(O)=O; 

l ~+4 is bounded below by an increasing function; and 

l d(T)+ +co as z+ sm. 

Since 

I?’ 
[‘rfx(s, 0 W-j- .f,(s,O)ds ~Ilf,(.>O)ll IT-PI f ~ p 

for each t E R, it follows that 

l f$ is continuous on R +. 

If not, there exist rO, a sequence {zk}, 

lim T~=z~, 
k-r 

and a positive number 6 for which 

sup ,tIW I :,, C.fx(~,O)+~l ds+hvj-’ rcaB 1~~~1 Cfyh 0)+&l ds. 
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for some rk. Hence, 

a contradiction. 
If z* is defined by 

r*=inf{z:&z)= 1) 

then 

9(T) < 1, tlT < T*, 

and the conclusion of the proposition follows from the estimate 

< I ,‘~ C.L(s, 0) + ~14s) ds 

which is satisfied by all nonnegative continuous functions of suffkiently 
small norm. 1 

Let T* be as in PrOpOSitiOn 5.1. If T: KY + R is continuous and satisfies 
? 

SUP T(t) < T < T*. 
/tW 

Then 

d ‘lxll i:, =(,) [Ifv(s, 0) + ~1 ds 

G II.4 j-’ C.L(st 0) +&I A ,-T 

6 llxll d(T), 

and the proof of the theorem is completed. 1 

409:156/2-I5 
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Minor adjustments in the proof of Proposition 7.1 are needed to prove 
the following. 

THEOREM 5.2. Let ,f and 7 satisfjl H, . [f; in addition, f is such that 

H,: For some continuous bounded ,function a,,: R + R +, 

lim sup’fHf’an,,(t) 
r-o+ I 

uniformly for t E R, then, there exists z* > 0 for which ( 1.2) does not have 
continuous nonnegative solutions qf arbitrarily small norm, !f 

sup 5(t) < z*. 
iEW 

Proof: It is sufficient to define 

#(t)=sup/’ [a,(s)+&] ds 
reliB 1-7 

with E an arbitrarily chosen positive number. 1 

6. PROOF OF THEOREM 3 

Fundamental to the proof of Theorem 3 is the following result 

PROPOSITION 6.1 [9]. Assumef‘and T satisfy H2 and H,, with 

w P -=- 
i. q’ 

P>9EN. 

If in addition, there exist a > 0 and a nonnegative continuous function b( t ) ,for 
which 

s I inf b(s) ds > a, VJtER (6.1) l+ER r-r(r) 
and 

f(f, x) 3 b(t), VtER, x>a (6.2) 

then ( 1.2) has a nontrivial qw-periodic solution x(t) such that 

inf .x(t) > a. 
rsR 

(6.3) 
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With this proposition in mind, we now define a sequence of approximate 
problems, 

whereT,:R+R+ andf,,:[WxR+-+R+ aredefined by 

fn(t3x)=f +2,x , ( 1 r,,(t) = 7 (2 (* ) ;t ‘n 
with w,, and A,, satisfying 

(i) 1 < (A/&) < (u/o,), lim, _ I*J III,, = cr), lim,, 5 %, = I; and 

(ii) w/L = pJqnp pn, qn E N. 

LEMMA 6.2. Let b: R + R+ be a continuous class X function. For each 
nEN let 

Then, for sufficiently large n, , I 
inf s b(s) ds > a - inf s b,(s) ds > a. 
(t-l2 I-I(I) (ER I-Sri(f) 

ProoJ: Let p >O be such that 

For t E R and n E N let t, = (A/An) t, then 

s I f - mco 
b,(s)ds= j’ 

f Tll(f) 

A, *n 

% In-sirn) s 
b(r) dr 

> a‘ 

(6.5) 
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provided /1,, is such that 

ir<+.!!<~, 1 
a+p i. 

LEMMA 6.3. Let u: [w --t R + be a continuous duss 9 ,function. /j 

I 
sup I I 

a,(s) ds < sup a(s) ds. 
,‘zR r-r,(r) rtlW s I-- r(t) 

Proof: Let t, be as in the proof of the previous lemma. 

s 

I 

r-T”(l) 
o,,(r)~s~j,‘~~“(,,o(~s)ds 

E 
5 

In 
6’” 

2. 
a(s) ds 

ItI T(fn) 

(6.6) 

Then 

Having taken care of these preparatory details, we now turn our atten- 
tion to the actual proof of the theorem. Let us first note that f, (resp. r,) 
is o,-periodic (resp. &,-periodic). By Proposition 6.1, Lemma 6.2, and 
Lemma 6.3, Eq. (6.4) has (for sufficiently large n) a q,w,-periodic solution, 
x,(t), satisfying 

inf x,(t) > a. (6.7) 
1ER 

Clearly, 

lim supf;‘(l’ < a,,,(t) 

.1;- fX X 

with am,n (t) = a,((w/w,)t), uniformly for t E R. Hence 

fn(t, xl< C~wz(t)+~l x+87 vx30, (6.8) 

where 
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Lemma 6.3, in conjunction with (6.8), yields the uniform boundedness of 

{x,(t): n > N}. 

Also, 

[fn (r, x, (~1) -BY, x, (r))l dr 

5 + Cf(r, x,(r)) -f,;(r, x,(r))1 dr . 
r-T,,(J) 

Using the uniform continuity on compact subsets of both z and f we 
conclude that {x,(t) } is equicontinuous on compact subsets of R. The 
conclusion of the theorem is now consequence of (6.7) and the Arzela- 
Ascoli’s theorem. 1 

7. PROOF OF THEOREM 4 

As it was observed in Section 3, if h(t) f 0, its mean 

M{b)g lim ‘lr b(s) ds > 0 
r-mt ,-x 

uniformly in t. Consequently, there exists m > 0 for which 

, 
inf I b(s) ds 3 a 
reR ,-* 

for all t 2 m. Hence 

inf I ’ f(s,x(s))ds>a 
rsr& 1-T (7.1) 

for all t 3 m and each continuous function x(t) whose i&mum satisfies 

inf x(t) 2 a. 
IER 
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Let $,, be the cone of nonnegative o-periodic functions on W, and 
A, : .T$, --t q,, be the completely continuous operator 

Because of Hi 

where 

Let us choose R>x,* so that 

{xE%:adx(t)bR, V~E[W 

and define 

Clearly, 

(7.2) 

>. 

and the conclusion follows from Schauder’s fixed point theorem. 1 

8. CONSEQUENCES 

In this section we shall present a few consequences of the results 
previously proved and compare them with already known facts. We begin 
with 

PROPOSITION 8.1. LA f satisfy H 1 and Hi. Assume that 

H8: there exists i > 0 for which ,f( ., a) $0, and f(t, x) is non- 
decreasing on [a, + co); i.e., ifx,y E V([w) ure such that 2 < x(t) < y(t), then 
f(t, x(t)) <At, At)). 

Then there exists z* such that for all z 2 z *, Eq. ( 1.1) has an almost periodic 
solution with positive infimum. 

Proof. Let 

u=M(f(., a)}. 
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Clearly, a > 0. Conditions H, and H, will then yield the existence of r* > 0 
for which 

j;; j,‘- r f(s, i) ds 2 i 

if T > z*. But, 

inf 1 
’ f(s, x(s)) ds 2 inf 

fER I--r 

whenever x(t) > i for all t E R. 
Hence 

in! j,‘* f(s, x(s)) ds b i. 

Now, the proof of Theorem 1, with z(t) = z, applies. 1 

Remark 8.1. Proposition 8.1 was proved in [3] under the stronger 
hypothesis: 

Hi : f( t, .) is continuously differentiable with fr( t, ye) uniformly con- 
tinuous for (t, q) E R! x [0, qO] for some q0 > 0, f,(t, .) > 0 with f(t, 0) = 0 
andf,(t, O)$O. 

PROPOSITION 8.2. Let f and T satisfy H,, H,. Assume that 

H,: there exists ,i! > 0 for which f ( ., ..i-) & 0, and f(t, x) is non- 
decreasing and uniformly concave on [I.?, + 03); i.e., tf1. E (0, 1) then there is 
an n>Osuch thatf(t,ix)>%(l+n)f(t,x), V~E[W andx>.$ or 

H,: there exists i > 0 forwhich f ( ., a) & 0, f( t, x) is nondecreasing 
and homogeneous on [a, + bo); i.e., there exists an LX E (0, 1) such that 
f(t,Ax)>A’f(t,x)for %,E(O, l), tell& andx>x. 

Then there exists z* such that ij” inf,, R z(t)>r*, Eq. (1.2) has exactly one 
almost periodic solution, x,;~, whose infimum satisfies 

inf xr;,(t)>k 
rtlW 

Proof: See [3] or [4]. 1 

APPENDIX 

In this appendix we shall give a detailed proof of formula (4.12). Our 
proof hinges heavily on the use of subtle properties of AP(R). For the 
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reader’s convenience we survey the one that is most relevant to our 
purpose. 

For a function f~ AP( R), let 

(A.11 

and, if 9 c AP(R) let 

U(T)ii SUP U/(T). 
fE.P 

(A.2) 

DEFINITION A.l. A family 9 c %7( R) is said to be uniformly almost 
periodic (u.a.p.) if and only if 

. 9 is bounded in g(R); and 

. V(Z) is almost periodic. 

It follows from this definition that all u.a.p. families are pre-compact in 
the topology of uniform convergence on compact subsets of R. Further- 
more, one can prove the following. 

PROPOSITION A.2 [2]. If 9 is a u.a.p. family then, given E > 0 and a 
sequence CC’ there is a subsequence a c a’ and an integer N(E) so that 
If(t+a,)-f(t+a,)j<sforn,m>N(E), allt~Randallf~~. 

The following result shall also be useful to us. 

PROPOSITION A.3. A family F c AP(R) is compact iff it is closed and 
uniformly almost periodic. 

We now prove formula (4.12). Let a, L z, and q5 be as in Lemma 4.4. Let 

f”(t, x)6 T,(t,x), Y(t)Li T,z(t), and O”(t) ii TAt), 

For each n E N, let t,, = t + an, s,, = s + a,,. Then 

< 
/r 

,;TI,,.f(~n, d(r.,))ds-i'*~i~if(r,,, d(s.))ds~ 
n 

14 

, 
+ Cf(s,, 4(s,)) -f(s,, 4”(s))l ds 

I T’(l) 

+ [f(s,,4x(s))-ffl(s, b”(s))1 ds . 
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Clearly, 

To estimate the last two terms, let us first note that, because of H,, for 
each E > 0 there exists 6(~) so that x, y E [0, ~$1 and Ix - yl < 6 implies 
that 

I.f(c xl -Ah Y)l < 69 VfER. 

But, 

lim d(s + CI,,) = qY(.r) 
n-* 

uniformly on [t - r’(t), t]. Therefore, 

for each IZ > N(E) and each s E [t - t’(t), t]. From this we conclude that 

Finally, the continuity of 4” on [t - r”(t), t], in conjunction with H, imply 
that the family 

gP {f(~,qqs)):sE [t-s”(t), r]) 

is compact. By Proposition A.2, there exists N(E) so that 

lf(r + a,, 4W)) -f(r + a,, &(.~))I < 8 

for all n, m 2 N(E), each SE [r-?(t), t], and each r E R. Letting m + co, 

If(r+ a,, 4Ys)) -f”(r, d”(s))l GE, 

for all n 3 N(E), each r E R, and each s E [t - t”(t), t]. Thus 
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Putting all these estimates together 

and the proof (4.12) is now complete. 1 
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