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We consider decision problems of the following type. Given a language L and two 

homomorphisms h1 and ha, one has to determine to what extent h, and hz agree on L. 
For instance, we say that h1 and h, are equivalent on L if h,(w) = h,(w) holds for each 
w EL. In our main theorem we present an algorithm for deciding whether two given 
homomorphisms are equivalent on a given context-free language. This result also gives an 
algorithm for deciding whether the translations defined by two deterministic gsm mappings 
agree on a given context-free language. 

1. INTRODUCTION 

Although homomorphism is a very simple and, at least from the point of view of 
mathematics, the most important operation defined for languages, some of the very basic 
questions concerning homomorphisms have turned out to be very difficult or are still 
unanswered. The best example of the former is the DOL equivalence problem (cf. [l, 21) 

which was open for a long time. This paper investigates problems of the latter type. 
The basic setup is as follows. We are given a language L (belonging to some specified 

family of languages) over an alphabet Z and two homomorphisms I& and h, mapping P 
into 27,*, where ZI is a possibly different alphabet. We want to know to what extent h, 
and h, “agree” on L. More specifically, we want to know whether or no the equation 

holds (i) for some w EL, (ii) for infinitely many w EL, (iii) for all w EL, (iv) for all but 
finitely many w EL. Questions (i)-(iv) give rise to four decision problems for each 
particular family of Ianguages we are considering. It is easy to see that the HDOL 
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(sequence) equivalence problem is simply problem (iii) stated for the family of DOL 
languages. We feel that solutions to problems of the kind described often give important 
information concerning the structure of the languages considered. 

A brief outline of the contents of this paper follows. After the basic definitions and 
preliminary results presented in Section 2 we consider in Section 3 the problems (i)-(iv) 
for regular and context-sensitive languages. Section 4 deals with the same problems for 
the family of context-free languages. In particular, we show that problem (iii) is decidable 
for this family. This main result of our paper, we feel, is rather surprising because 
several reJated problems are undecidable, as will be pointed out. The results in the final 
Section 5 concern problems slightly different from (i)-(iv) in that, in Section 5, iterated 
homomorphisms will be considered. However, they can be viewed as problems similar 
to (i)-(iv) for DTOL languages. 

2. PRELIMINARIES 

We assume that the reader is familiar with the fundamental theory of formal languages 
including the basics of L systems, cf. [4]. However, L systems will be referred to only in 
some parts of the paper. For convenience, some of the definitions will be given here. 

A DOL system is a triple G = (2, h, w), where Z is an alphabet, h is a homomorphism 
on P and w is a nonempty word over Z. The language (resp. sequence) generated by G 
is defined by 

L(G) = {hi(w) 1 i 2 O} (resp. S(G) = w, h(w), P(w) ,... ). 

An HDOL system Gi consists of a DOL system G and another homomorphism h, 
mapping .P into Zf, for some a 1 p habet .Z1. The language and sequence defined by G1 are 
obtained from L(G) and S(G) by an application of the homomorphism h, . 

A DTOL system is a tuple 

G = (& h, ,..., h, , 4, 111 3 1, 

where (2, hi , w) is a DOL system for each i. The language generated by the DTOL 
system G consists of all words of the form 

h,hj, a*. h,(w), k 2 0, 1 <ji<tn. 

The Zength of a word w is denoted by 1 w /. For the empty word X, 1 X [ = 0. 
We now introduce the basic notions of this paper. 
Assume that L is a language over the alphabet 2, and that hi and h, are homomorphisms 

on Z:*. Then we say that 

(i) h, and h, are compatible on L if, for some w EL, h,(w) = h(w); 

h( I@) h1 
and h, are strongly compatible on L if, for infinitely many w EL, h,(w) = 

aw; 
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(iii) /zl and h, are epuk~~lent on L if, for all w EL h,(w) = ha(w); 

(iv) h, and h, are ultimately equivalent on L if there is only a finite number of words 
w EL such that h,(w) f h,(eo). 

As an example, consider the alphabet ,Z = (a, b, c, d) and homomorphisms h, and h, 
defined by 

hl(a) = abu, WJ) = b, h,(c) = dd, h(d) = ab 

h,(a) = b(b) = h,(c) = ub, h&z) = cc. 

Then h, and h, are ultimately equivalent (but not equivalent) on the language L(G), where 
G is the DOL system G = (21, h, , abc). 

Clearly, this implies that h, and h, are strongly compatible on L(G), such an implication 
being valid with respect to any infinite language. 

The four notions introduced above define in a natural way four decision problems with 
respect to every effectively specified language family. Thus, we may speak of the “homo- 
morphism compatibility problem” for regular languages. If there is no danger of confusion, 
we may drop the word “homomorphism” when discussing these problems. 

It should be emphasized already at this point that the problem of homomorphism 
equivalence is not the same as the problem of deciding whether or not h,(L) = h,(L) 
holds for a language L in the family we are considering. Indeed, the latter problem is 
undecidable for context-free languages. (This can be shown as follows. Consider arbitrary 
context-free languages L, and L, , By providing all letters in the terminal alphabet 
of L, with a bar, we construct the “barred version” Es of L, . We define now 

L = L1& ) h,(a) = h&i) = A, h,(n) = h,(a) = a, 

for all letters a. Then h,(L) = h,(L) ‘f 1 an d only if L, = L, .) However, in Section 4 we 
shall prove that the problem of homomorphism equivalence is decidable for context-free 
languages. 

A very important tool in the proofs below will be the notion of balance defined as 
follows. 

Consider two homomorphisms hr and h, defined on Z* and a word w E P. Then the 
balance of w is defined by 

(Thus /3(w) is an integer depending, apart from w, also on h, and h, . However, we write 
it simply /3(w) because the homomorphisms, as well as their ordering, will always be 
clear from the context.) Note that the balance of w in [2] was defined as j p(w)1 in our 
notation. 

It is an immediate consequence of the definition that 



166 CULIK AND SALOMAA 

A repeated application of this equation shows that the balance of a word w depends only 
on the Parikh vector of w. 

We say that the pair (h, , h,) has bounded balance on a given language L if there exists 
a constant C such that 

holds for all initial subwords w of the words in L. 
The property of having bounded balance gives a method of deciding homomorphism 

equivalence. More specifically, we can state this as follows. 
We call a family &’ of languages smooth if each of the following conditions (i)-(iii) is 

satisfied: 

(i) Y is effectively closed under deterministic gsm mappings; 

(ii) The emptiness problem is decidable for languages in 9; 

(iii) For each language L in dp and each pair of homomorphisms (hI , h,), whenever 
hI and h, are equivalent onL, then (h, , h,) has bounded balance on L. 

(We assume a certain fixed finite representation method for languages in 9.) 
An obvious modification of the proof of Theorem 2.1 in [l] gives now the following 

THEOREM 2.1. The problem of homomorphism equivalence is decidable for any smooth 
family 9. 

As an example, consider the family of regular languages. That it is smooth follows 
directly from the proof of Theorem 5 in [2]. This can be established also by the following 
argument. Consider a regular language L and two homomorphisms h, and h, equivalent 
on L. We consider the minimal finite deterministic automaton accepting L. Any word w 
causing a loop in the automaton (i.e., mapping some state into itself) must satisfy 

j?(w) = 0. 

(Otherwise, we would have /3(wrw~w,) # 0 and wrw~wz EL, for some words eo, and ws 
and some sufficiently large number n. Hence, we would have 

h&w%) f h,(w,w’%), 

a contradiction.) Thus, an upper bound for the balance of initial subwords of the words 
in L can be computed by considering such words w only which cause a transition from 
the initial state to one of the final states without loops. Clearly, the number of such 
words w is finite, 

On the other hand, the family of context-free languages is not smooth. A simple example 
showing this is provided by the language 

L = {anb* J n > 1) 
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and homomorphisms h, and h, defined by 

h,(a) = h,(b) = au, h,(a) = h,(b) = a. 

Clearly, h, and h, are equivalent on L but the balance on initial subwords un is unbounded. 
We will show in Section 4 that, in spite of the fact that the family is not smooth, the 

homomorphism equivalence problem is still decidable for the family of context-free 
languages. The argument will show that situations (like the one in the example above) 
caused by the Pumping Lemma are, in fact, the only ones where the balance may grow 
unbounded. 

We note, finally, that the family of DOL languages does not satisfy condition (iii) 
given in the definition of smoothness. (This is really the essential condition. The other 
two conditions can be modified in various ways without affecting the validity of 
Theorem 2.1.) However, it is an open problem whether or not homomorphism 
equivalence is decidable for the family of DOL languages. As regards this problem, it is 
easy to verify the following reduction result. 

THEOREM 2.2. Homomorphism equivalence is decidable for the fumily of DOL languages 
if and only if sequence equivalence is decidable for HDOL systems. 

3. DECIDABILITY RESULTS FOR REGULAR AND CONTEXT-SENSITIVE LANGUAGES 

The following two sections establish the decidability status of the four decision problems, 
mentioned in Section 2, for the language families in the Chomsky hierarchy. We consider 
the hierarchy up to deterministic context-sensitive languages only because already at this 
level all problems become undecidable. As corollaries we obtain also some related results, 
for instance, concerning the equivalence of two deterministic gsm mappings on a given 
language L. 

Intuitively, decision problems concerning homomorphism compatibility are more 
difficult than those concerning homomorphism equivalence. Also deciding ultimate 
equivalence is harder than deciding equivalence. The rest&s below show that this is 
indeed the case. From the undecidability of the Post correspondence problem it follows 
immediately the following 

THEOREM 3.1. The problems of homomorphism compatibility and strong compatibility 
are undecidable for the family of regular languages. 

The following result is easy to establish using the standard techniques. 

THEOREM 3.2. The problems of homomorphism equivalence and ultimate equivalence 
are undecidable for the family of deterministic context-sensitive languages. 

THEOREM 3.3. The problems of homomorphism equivalence and ultimate equivalence 
are decidable for the family of regular languages. 
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Proof. The statement concerning equivalence follows by Theorem 2.1. The decida- 
bility of ultimate equivalence is shown by the argument presented in Section 2 to show 
the smoothness of the family of regular languages. In fact, if h, and A2 are ultimately 
equivalent on a regular language L then /I(w) = 0 for all words w causing a loop in the 
automaton accepting L. Rhus, h, and h, are ultimately equivalent on L if and only if they 
are equivalent on the regular language L, obtained from L by removing all words of a 
length smaller than the number of states in the automaton. i 

We conclude this section by a result showing how the decidability of homomorphic 
equivalence implies the decidability of deterministic gsm equivalence. More specifically, 
we say that two deterministic gsm’s MI and M, are equivalent on a language L if M,(w) = 
M,(w) holds for all w EL. Given a family 9 of languages, we can in a natural way speak 
about the deterministic gsm equivalence problem for 9. 

THEOREM 3.4. Assume that 9 is a family of languages with the following properties: 

(i) Y is eflectively closed under deterministic gsm mappings; 

(ii) the emptiness problem for 8 is decidable; 
(iii) the homomorphism equivalence problem for 2’ is decidable. 

Then the deterministic gsm equivalence problem is decidable for 8. 

Proof. Consider an arbitrary L E 9, L C .Z* and two deterministic gsm’s MI and M2 
with input alphabet .Z’ and output alphabet A. Let Ri = dom Mi , i = 1,2, and R3 
is the symmetric difference of RI and R, . Clearly, Ri is regular, i = 1,2, 3. Now, MI 
and M, are equivalent on L iff they are equivalent on L’ = L n RI n R, and L n R3 = O. 
Since intersection of L with a regular set can be expressed as the result of a deterministic 
gsm mapping applied to L we have L’ E 9’ and L n R3 E 2. Since the emptiness problem 
for 9 is decidable, we can check whether L n R, = 0, if so we proceed to check the 
equivalence of MI and M, on L’. We remind that L’ E 8 and M, , M, are defined 
(M,(w) # ia,i= 1,2)foreachwEL’. 

Now, we provide the output letters of M, with primes, yielding the alphabet A’, 
and assume without loss of generality that 2, A and A’ are pairwise disjoint. We then 
replace MI by the deterministic gsm M; obtained from MI as follows. Each instruction 
@I Y a; w, ss) is replaced by (sr , a; aw, ss). (The instruction (sl , a; w, s2) means: in the 
state s1 when scanning the input letter a, go to the state ss and output the word w.) Thus, 
the input alphabet of M; is Z, output alphabet being ,Z u A. Finally, we replace M, by the 
deterministic gsm Mi obtained from M2 as follows. For each state s of M, and each 
letter a of A, the instruction (s, a; a, s) is added. Thus, the input alphabet of M,’ is 
Z u A, output alphabet being A u A’. 

Consider now the language L, = Mi(M;(L’)) over the alphabet A u A’. By the assump- 
tion, L, is in the family 9’ and can be effectively constructed. Define two homomorphims 
h, and h, by 

h,(a) = h,(a’) = a, h,(a’) = &(a) = X for aEA. 

Then M, and M, are equivalent on L’ if and only if h, and h2 are equivalent on L, . 1 
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The following result is an immediate consequence of Theorems 3.3 and 3.4. It can be 
obtained also directly using the fact that the equivalence of deterministic gsm’s is decidable. 

THEOREM 3.5. The deterministic gsm equivalence problem is decidable for the family 
of regular languages. 

Applying Theorem 3.5 to the language 2’” we get another proof of the fact that the 
equivalence of deterministic gsm’s is decidable. 

4. HOMOMORPHISM EQUIVALENCE FOR CONTEXT-FREE LANGUAGES 

We have already settled the decidability status of our four problems for the language 
families in the Chomsky hierarchy, with the exception of the homomorphism equivalence 
and ultimate equivalence problems for the family of context-free languages. Both problems 
will be shown decidable in this section. The following theorem is our main result. 

THEOREM 4.1. The problem of homomor phism equivalence is decidable for the farnib 
of context-free languages. 

To establish Theorem 4.1, it suffices to prove the following 

THEOREM 4.2. For each context-free language L over the alphabet 2 and all homomor- 
phisms h, and h, defined on Z*, we can effectively comtruct a context-free language L’ over 
the alphabet 2’ and two homomorphisms hi and hl on Z’* such that 

(i) If h, and h, are equivalent on L then so are hi and h;l on L’ and, furthermore, 
the pair (hi , hi) has bounded balance on L’; 

(ii) If hi and h; are equivalent on L’, then so are h, and h, on L. 

Indeed, the fact that Theorem 4.1 is a consequence of Theorem 4.2 is seen by exactly 
the same argument as in the proof of Theorem 2.1 in [l] : We run concurrently two semi- 
algorithms, one for nonequivalence and the other for equivalence. The former is obvious. 
The latter consists of checking for K = 0, 1, 2,..., whether or not hi and hi are equivalent 
on L’ with balance bounded by k. This can be done by deciding the emptiness of the 
context-free language M,(c), where MI, is a deterministic gsm with a “buffer” of length 
k in its finite control. 

We now begin the proof of Theorem 4.2. Without loss of generality, we assume that L 
is an infinite language, generated by a reduced context-free grammar G, where every 
nonterminal generates an infinite language and there are no productions of the form 
A - B with A and B nonterminals. 

The following observation will be used throughout the proof without explicit mention- 
ing. When analyzing G, if we meet a situation showing that h,(w) # h,(w) for some 
w E L, we may stop the construction immediately (and choose L = L’). Thus, we may 
assume that such situations do not arise during our construction. 
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The following simple lemma is of basic importance. 

LEMMA 4.3. Assume that B a* VBX is a derivation according to G, where v and x 
are terminal words. Then ,6(vx) = 0, or else h, and h, are not equivalent on L. 

Lemma 4.3 is established as follows. For some u, w, y, all words 

P, = uvnwxny 

are in L. Thus, /I # 0 implies that p(P,J # 0, for all sufficiently large KZ. 1 

By Lemma 4.3 and the observation preceding it, we assume that in all situations 
encountered in our process we actually have /3(vx) = 0. 

LEMMA 4.4. For every nonterminal B of G, /I( w as constant for all terminal words w ) 
such that B =s* w (or else h, and h, are not equivalent on L). This constant, say ,8(B), 
can be computedfrom any terminal wordgeneratedfrom B. 

The proof of Lemma 4.4 is obvious. Also the following lemma is easily established 
by the “shifting” argument used in [I]. (In fact, the situation here is much simpler 
than the one considered in the proof of Theorem 3.2 in [l].) 

LEMMA 4.5. Assume that B =s* vBx and B(v) # 0. Denote by LB the language 
generated by B. Then there is a wordp (referred to as a period of B) and words q, q’, r and r’ 
such that 

h&L) C qp*r, k&W C qY*r’, 

and either q = E or q’ = E (or else h, and h, are not equivalent on L). 

Using Lemma 4.5, we shall classify nonterminals of G as “periodic” or “nonperiodic.” 
Lemma 4.5 shows that in recursive situations B =R* VBX we can have p(v) # 0 (or 
/I(x) # 0; cf. Lemma 4.3) only in connection with a periodic nonterminal B. In our 
algorithm we will test nonterminals for periodicity in all simple derivation loops. Non- 
terminals found to be periodic and consistent with the assumption that h, and ha are 
equivalent on L are finally replaced by their periods, yielding the language L’ of Theorem 
4.2. 

To describe the algorithm more formally, we introduce some terminology. Consider the 
given context free grammar G = (N, 2, P, S). We say that the derivation 

B S-+ UBV 

where u, v E .Z* is a simple recurrence situation (SRS for short) for nonterminal B if in 
the derivation tree corresponding to this derivation there are no more than three occur- 
rences of the same nonterminal on any path from the root to a leaf. 

Thus, if B -+ aBaBB is a production of G it would induce many but still a finite 
number of SRS for B. 
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With each nonterminal B we associate two languages, the language La = {w E 2” 1 
B a * W> and the finite language FB consisting of terminal words derived from B without 
loops, i.e., no path in the derivation tree contains two occurrences of the same nonterminal. 

sow, we execute the following algorithm, when we encounter STOP we have “non- 
equivalence.” 

Step 1. For each B, verify that for all w in FB p(w) is constant, if not STOP. 

Step 2. For each B E N consider all the SRS’s B =s+ uBw. 

If for any one of them /I # 0, then STOP. 

If there is a SRS with /3(u) < 0 let rr, = &, = A, let qB be the shortest word of h,(L,) 
(which is unique), let r; be the shortest word of ha&) (which is unique), let pa be the 
shortest period of h,(o), and let pj be the shortest period of ha(~); otherwise if there is a 
SRS with p(u) > 0 let ri = qe = A, let rB be the shortest word in hl(LB) and let 4; be 
the shortest word in h,(L,), let P, be the shortest period of h,(u) and p; the shortest 
period of h,(w). In both the above cases we say that B is properly periodic. For each such B 
verify that lz&&) C qBpgrB and h&5,) _C &pB B ‘*Y’ where p; is a circular shift of p, . 
If the verification fails, then STOP, otherwise add new terminals a, , b, and cB to Z and 
extend homomorphisms hi , ha to hj , h; by: /ai = qB , hL(b,) = q; , hl(ug) = p, , 
hi(uB) = p; , h;(cB) = ra and h6(cB) = r; . If for some B in N for all SRS B =>f UBV we 
have /3(u) = 0, then there is no transformation related to this B. 

Step 3. Let Np = {A E N j A is properly periodic} and let Zp = {a, , bs , c, / B E N,}, 
_q == {B I B E Npf, are new symbols. We construct context free grammar G’ = (N u N, 
2: u Zp , P’, S) where P’ = P n (N - Np) x (N u T)* u (B -+ b,B, B -+ a$, - 
B --t cB j B E X,) and choose L’ = L(G). 

If hi and hi are equivalent on L’ then the pair (hi , /r.$ has bounded balance on L’. 
This follows because we have eliminated all situations where the balance might grow 
unbounded; the balance is different from zero only in the finitely many situations essen- 
tially corresponding to derivations without loops. In more detail, if there are no properly 
periodic nonterminals, then there exists constants rti , na > 0 so that every string u 
in 1,’ can be reduced to a string w in L’, 1 ZI 1 < n i , by omitting substrings of balance zero 
and length no more than n2 . Therefore the balance p(w) of every prefix w of L’ is clearly 
bounded by C, 1 C, , where Ci is the bound on the balance of the prefixes of the finite 
language (X E z’“: ; .z^j ,<nJ,fori=1,2. 

It follows from the notion of a properly periodic nonterminal and Lemma 4.5 that h, 
and h, are equivalent on L if and only if hi and h; are equivalent on L’. 1 

We omit the proof of the following theorem. It is essentially the same as the proof 
above, the basic observation being that the discussions concerning properly periodic 
nonterminals remain unaltered. Thus, the finite number of exceptions to the equation 
h,(w) = AX(w), w EL, must occur for words w whose derivation does not involve properly 
periodic nonterminals. The only difference is now that we have to check the finiteness 
(instead of the emptiness) of a language obtained by applying a deterministic gsm to a 
context-free language. 
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THEOREM 4.6. The problem of homomorphism ultimate equivalence is decidable for 
the family of context-free languages. 

The following table summarizes our results. 

deterministic 
context- 

regular context-free sensitive 

Compatibility undecidable undecidable undecidable 
Strong 

compatibility undecidable undecidable undecidable 

Equivalence decidable decidable undecidable 

Ultimate 
equivalence decidable decidable undecidable 

Theorem 3.4 now yields immediately the following strengthening of Theorem 3.5. 

THEOREM 4.7. The deterministic gsm equivalence problem is decidable for the family 
of context-free languages. 

Since deterministic gsm mappings can be viewed as translations, we have here a 
decidability result concerning the equivalence of such translations of context-free 
languages. 

5. ITERATED HOMOMORPHISMS 

In this final section, the problems considered will be slightly different from those 
discussed above. 

Consider two finite languages 

F = {q ,..., wm>, F’ = {w; ,..., wh} 

of the same cardinality m and over, the same alphabet 2, and two n-tuples of homo- 
morphisms 

(h, ,..., h,,), and (hi ,..., hk) 

defined on Z*. Thus, each element of F together with the n-tuple (h, ,..., h,) defines 
a DTOL system. The whole set F together with this n-tuple defines a so-called DTOL 
system with finitely many axioms or, shortly, FDTOL system. Call the two FDTOL 
systems obtained in this fashion G and G’. 

We call G and G’ compatible, strongly compatible, (sequence) equivalent, and ultimately 
equivalent if the equation 

hIhi *.- hik(wj) = hflh;, .+. h;,(w;) 
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holds for one choice of the sequence ili, ... i, and number j, for infinitely many such 
choices, for all choices of the sequence i,i, . . * i, and number j, and for all but finitely many 
choices, respectively. When we in this section speak of compatibility and equivalence 
problems, we mean problems in this setup. 

Note that, for m = n = 1, the equivalence and ultimate equivalence problem defined 
above coincide with the equivalence and ultimate equivalence problem for DOL sequences. 
For m = 1 and general n, the equivalence problem may be viewed as the equivalence 
problem for DTOL sequences. In this case the equivalence problem is also related to the 
homomorphism equivalence problem (in the sense of the previous sections of this paper) 
for the family of DTOL languages. 

Our starting point above is two finite languages. We could also start, for instance, from 
two regular languages with a l-to-l correspondence between their words. 

We shall prove that thecompatibility and strong compatibility problems areundecidable, 
whereas the status of the equivalence and ultimate equivalence problems remains open; 
we only give some reduction results for these problems. We strongly suspect that the 
equivalence problem is decidable, at least if the homomorphisms are assumed to be 
nonerasing. One reason for this is that the techniques showing undecidability (such as 
those in [S]) all seem to fail because one is not able to keep track of the “matching” of 
the two sets of homomorphisms. Note also that the equivalence problem for DTOL 
languages is known to be undecidable but, the equivalence problem for DTOL sequences 
remains open. In the case of DOL systems, we can reduce either one of these problem 
to the other; cf. [3]. This reduction does not work for DTOL systems. 

THEOREM 5.1. The compatibility and strong compatibility problems for FDTOL 
systems are undecidable, even when restricted to the case where m = 1 (DTOL systems) and 

n = 2 (two tables). 

Proof. Consider an arbitrary instance PCP(B+ ,..., cik), (& ,..., jgk) of the Post Corre- 
spondence Problem. We choose 

w1 = A, w; = B 

and define two pairs of homomorphisms as follows: 

h,(A) = A,, h;(B) = B, , 

4%) = A,+1 , Wi) = 841 , I .<i<IZ-1, 

&(A;) = A;,, , h;(B;) = B,‘+l , 1 <i<k-1, 

4%) = A, , h;(B,) = B, , 

h,(A;) = 4 hi(B,) -1 A, 

h&4<) = h,(A;) = CX~A; , h;(BJ = h;(B;) = /3,B; , 

for 1 < i < K. For all other letters x, 

h,(x) = h;(x) = h,(x) = h;(x) = x. 
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(It is assumed that the alphabet of PCP does not contain any of the A’s and B’s introduced 
above.) Then PCP has a solution (resp. infinitely many solutions) if and only if the systems 
(wl , hl , h2) and (wi , hi, hl) are compatible (resp. strongly compatible). a 

THEOREM 5.2. The sequence equivalence problem for FDTOL systems is decidable if and 
only if it is decidable for systems with m = 1 (DTOL systems) and n = 2 (two tabZes). 

Proof. The “only if” part is obvious. To prove the “if” part, we note first that assuming 
m = 1 does not restrict generality. If we have an algorithm for the case, where both of 
the systems have two homomorphisms, we can extend this algorithm to the general case 
by introducing “idle steps” as follows. Suppose we want to have an algorithm for deciding 
the equivalence of the systems 

(~1, h, , 4 , h, , b), (~1, h; , h; , h; , hi>. 

We then define two systems 

(Wl Y&?& (Wl ,s; ,A?) 

as follows. For each letter a of the original alphabet, we introduce two new letters a’ and 
a” and define 

g&) = g@> = a’, g&4 = &(a> = a”, 

&‘) = Ma), g&“) = M4 &‘) = h&), 

g&f) = h&h gX4 = hX4, gX4 = h&4, 

g&4 = h&4, g;(a”) = h;(a). 

Clearly, the original systems are equivalent if and only if the new ones are. An obvious 
inductive argument now generalizes the result to the case of arbitrary many homo- 
morphisms. 1 

The following result is easy to verify. 

THEOREM 5.3. The decidability of the (sequence) equivalence problem for FDTOL 
systems implies the decidability of the HDOL sequence equivalence problem. 

6. OPEN PROBLEMS 

The most interesting open problem in the discussions above is the decidability of the 
equivalence problem introduced in Section 5. We conjecture the problem to be decidable, 
at least if the homomorphisms are assumed to be nonerasing. 

An interesting problem area is to study to what extent Theorem 4.7 remains valid 
for other language families. It might be still valid for EOL, ETOL, or even indexed 
languages. 
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