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ARTICLE INFO ABSTRACT

Article history: Living cardiac tissue slices, a pseudo two-dimensional (2D) preparation, have received less attention than

Available online 11 August 2014 isolated single cells, cell cultures, or Langendorff-perfused hearts in cardiac biophysics research. This is,
in part, due to difficulties associated with sectioning cardiac tissue to obtain live slices. With moderate
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Mechano-electric feedback cardiac tissue slices have several advantages for studying cardiac electrophysiology. The trans-membrane
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potential (Vi) has, thus far, mainly been explored using multi-electrode arrays. Here, we combine tissue
slices with optical mapping to monitor Vi, and intracellular Ca?* concentration ([Ca®*];). This combi-
nation opens up the possibility of studying the effects of experimental interventions upon action po-
tential (AP) and calcium transient (CaT) dynamics in 2D, and with relatively high spatio-temporal
resolution.

As an intervention, we conducted proof-of-principle application of stretch. Mechanical stimulation of
cardiac preparations is well-established for membrane patches, single cells and whole heart prepara-
tions. For cardiac tissue slices, it is possible to apply stretch perpendicular or parallel to the dominant
orientation of cells, while keeping the preparation in a constant focal plane for fluorescent imaging of in-
slice functional dynamics. Slice-to-slice comparison furthermore allows one to assess transmural dif-
ferences in ventricular tissue responses to mechanical challenges. We developed and tested application
of axial stretch to cardiac tissue slices, using a manually-controlled stretching device, and recorded Vi,
and [Ca®*); by optical mapping before, during, and after application of stretch.

Living cardiac tissue slices, exposed to axial stretch, show an initial shortening in both AP and CaT
duration upon stretch application, followed in most cases by a gradual prolongation of AP and CaT
duration during stretch maintained for up to 50 min. After release of sustained stretch, AP duration (APD)
and CaT duration reverted to shorter values.

Living cardiac tissue slices are a promising experimental model for the study of cardiac mechano-
electric interactions. The methodology described here can be refined to achieve more accurate control
over stretch amplitude and timing (e.g. using a computer-controlled motorised stage, or by synchro-
nising electrical and mechanical events) and through monitoring of regional tissue deformation (e.g. by
adding motion tracking).

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Living cardiac tissue slices as an ex vivo model system for the
study of cardiac biophysics and biology have been gaining popu-
larity in recent years. Recent examples include the study of cardiac
electrophysiology, mechanics, and pharmacology (Bussek et al.,
2009; Camelliti et al., 2011; Brandenburger et al., 2012). Cardiac
tissue slices have unique advantages over other cardiac prepara-
tions, as they combine partial preservation of tissue morphology
with improved control and observation of structure-function re-
lations (de Boer et al., 2009). Their pseudo-two-dimensional (2D)
nature makes them a promising candidate also for studying cardiac
mechano-electrics using optical techniques. Here, we illustrate in a
proof-of-principle study that optical mapping of trans-membrane
potential (V) and intracellular ‘free’ Ca®* concentration ([Ca”],-)
can be conducted in live ventricular tissue slices, and be combined
with mechanical stimulation to assess mechano-electric feedback
(MEF) effects through comparing action potentials (AP) and Ca®*
transients (CaT) before, during, and after application of stretch.

1.1. Investigation of mechano-electric feedback: preparations and
methodologies

MEF is the process whereby a change in the mechanical envi-
ronment influences the electrical signal in excitable tissues or cells
(Lab, 1996, 1999; Kohl et al., 1999; Kohl et al., 2006); as recently
reviewed in a focussed issue of PBMB (Kohl et al., 2012). Distur-
bances in the normal mechanical activity of the heart, whether
acute (e.g. due to a precordial impact (Kohl et al., 2001; Maron et al.,
2002)) or sustained (e.g. in ventricular volume overload (Eckardt
et al.,, 2001; Quinn, 2014)), can result in stretch-induced arrhyth-
mias. Interestingly, mechanically induced cardioversion has also
been reported upon acute pre-cordial stimulation (Madias et al.,
2009; Pellis et al., 2009), or by (temporary) removal of sustained
stretch of the chronically overloaded heart (Waxman et al., 1980),
highlighting the clinical relevance of cardiac MEF research. Further
studies into the effects of stretch on the electrophysiological
properties of cardiac tissue are needed to unlock additional insight
into the mechanisms of cardiac mechano-electric cross-talk.

Ex vivo research into cardiac MEF has been carried out on
different experimental models. The most commonly used prepa-
rations are single isolated cardiomyocytes (e.g. (Le Guennec et al.,
1991)), cell cultures (e.g. (Zhang et al., 2008)), trabecular and
papillary muscle preparations (e.g. (Nakagawa et al., 1988)), and
Langendorff perfused whole hearts (e.g. (Pathak, 1957)). Scaling up
from single cell to whole heart, preparations reflect the in situ
setting more closely, albeit at the cost of (i) a reduction in the ability
to ‘pin-point’ underlying structural substrates and mechanisms,
and (ii) reduced experimental control over the biophysical
environment.

A number of methods for mechanical stimulation have been
developed, in a preparation-dependent manner. For single isolated
cells, stretch can be achieved by attaching carbon fibres (Le Guennec
et al.,, 1990; Le Guennec et al., 1991) to both ends of a cell and
stretching the cell by increasing the distance between the fibres
(Belus and White, 2003; Iribe et al., 2009), potentially even
mimicking intra-cardiac force-length loop behaviour (Iribe et al.,
2007; Bollensdorff et al., 2011). Single cardiomyocytes can also be
mechanically manipulated by a pair of glass pipettes (Tung and Zou,
1995; Zeng et al., 2000), a glass pipette and a glass stylus (Kamkin
et al., 2000), or be glued to a pair of glass rods (Prosser et al.,
2011). For cell cultures, cells can be seeded and cultured on
deformable elastomers, where mechanical manipulation is achieved
by deforming (stretching) the membrane (Gopalan et al., 2003;
Camelliti et al., 2006; Zhang et al., 2008). Isolated trabecular and

papillary muscle can be suspended between actuator/force trans-
ducer pairs for stress-strain control in single (Allen and Kurihara,
1982; Allen and Kentish, 1988; ter Keurs et al., 2008) and paired
muscle preparations (Markhasin et al., 2003; see also Solovyova et al.
2014). In Langendorff perfused whole heart, fluid-filled balloons,
inserted into the ventricle, have been used to control ventricular
loading conditions (Zabel et al., 1996). More classically, stretch can
be applied to the isolated whole heart by attaching weights or a force
transducer to the apex (Langendorff, 1895; Botchway et al., 2003).
Alternatively, localized tissue impact equipment has been developed
to study mechanisms of mechanically-induced sudden cardiac arrest
in the isolated whole heart (Cooper et al., 2006).

1.2. MEF-related changes in action potential shape and duration in
different preparations

Extensive studies have been carried out on all ex vivo prepara-
tions mentioned above, from single cell to whole heart, to inves-
tigate the effects of mechanical stimulation on AP shape and
duration (APD). A selection of key results, grouped by preparation,
is summarised below.

1.2.1. Isolated cardiomyocytes

Cardiomyocytes, isolated from ventricular or atrial tissue of
different species, have been used to study MEF. Vy, was monitored
via patch clamp (White et al., 1993; Tung and Zou, 1995; Kamkin
et al, 2000; Zeng et al., 2000; Zhang et al., 2000; Belus and
White, 2003; Riemer and Tung, 2003; Kohl et al., 2006) or optical
mapping (Nishimura et al., 2006).

In guinea pig ventricular myocytes (stretch applied by carbon
fibres), both prolongation (by 9%) (Belus and White, 2003) or
shortening (by 4%) (White et al., 1993) of APD were reported after
stretch. The difference between these observations may be caused
by different temperatures used in the experiments (Belus and
White, 2003), or by diverse effects on sub-cellular mechano-sen-
sors (e.g. stretch-activated ion channels [SAC] or Ca’>* handling)
which can be affected differentially by various recording techniques
(ruptured patch vs. permeabilised patch vs. sharp electrodes (Kohl
et al., 1998)). In another study where stretch was applied with a
patch pipette and a glass stylus (Kamkin et al., 2000), cross-over of
AP repolarisation was observed after stretch, with a decrease in APD
at 20% repolarisation (APD20) and an increase in APD at 90% repo-
larisation (APD90). This highlights that the level of AP repolarisation,
at which stretch effects are analysed, can affect observed outcomes.

Stretch parameters may affect findings as well. Thus, an increase
in APD at 50% repolarisation (APD50) and APD90 was observed in
rat cardiomyocytes (both ventricular and atrial) when stretching
cells with a pair of glass pipettes (Zeng et al., 2000; Zhang et al.,
2000). In a subsequent study on rat ventricular myocytes, timing
and speed of stretch were tightly controlled, and it was observed
that timing relative to the AP cycle, amplitude of stretch, and the
speed at which stretch is applied all influence results. Here, stretch
applied only during the early phase of an AP did not change APD,
while stretch at later stages prolonged APD. Also, a positive corre-
lation between the level of depolarisation and the speed of stretch
application was identified (Nishimura et al., 2006).

Partially contrasting results were reported for frog ventricular
myocytes. Shortening (Tung and Zou, 1995), prolongation (in 3 out
of 252 stretch trials), and no significant change in APD (249 out of
252 stretch trials) were observed after application of uniaxial
stretch (Riemer and Tung, 2003).

Stretch application to isolated sino-atrial node pacemaker cells
identified a reduction in the absolute values of maximum systolic
and maximum diastolic potentials, combined with an increase in
spontaneous diastolic depolarization and early systolic
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repolarization rates (Cooper et al., 2000). This could explain species
differences in SAN pacemaker responses to stretch, as the relative
durations of spontaneous diastolic depolarization and early repo-
larization vary as a function of background AP shape (Cooper and
Kohl, 2005).

1.2.2. Cell culture

Compared to other preparations, a relatively small number of
investigations involved acute stretch of cell cultures during elec-
trophysiological research. Cultures from cardiac tissue explants are
usually based on neonatal rat ventricular myocytes. In this model
system, an increase in APD after stretch was described (Zhang et al.,
2008). Another study used HL-1 (cardiomyocyte-like) cells, and
also found a slight prolongation in APD with stretch (Tsai et al.,
2011). Using a fluid-jet based approach and observing responses
by voltage-sensitive dye application, the lab of Les Tung showed
that mechanical stimulation can give rise to focal excitation and re-
entry (Kong et al., 2005). More recently, the same team explored
MEEF in cell cultures by relying on the cell's intrinsic activity as a
mechanical stimulus, concluding that the interaction of myocytes
and non-myocytes may provide additional pathways for mechan-
ical modulation of cardiac conduction, in particular in injured tissue
(Thompson et al., 2011).

1.2.3. Trabecular and papillary muscles

A number of studies investigated MEF in trabecular and papil-
lary muscle preparations. In these studies, sharp electrodes are
commonly used to monitor Vi, (Kaufmann et al., 1971b; Lab, 1980).
Both shortening and prolongation of the AP were observed in cat
papillary muscle, where it was shown that the effect of stretch upon
the AP may depend on the mode of contraction, with increased APD
during isotonic shortening, and APD reduction in isometric tension
development (Kaufmann et al., 1971b). A clear shortening of APD
was seen in frog ventricular tissue strips after application of stretch
(Lab, 1980). During sustained stretch, dynamic changes in APD are
observed in muscle preparations, with an initial drop in APD shortly
after stretch application, followed by a gradual prolongation during
sustained distension, associated with the so-called ‘slow force
response’ (see section 1.3.2 and (Allen, 1975, 1977)). Interestingly,
the ‘duplex’ model of two mechanically interacting cardiac tissue
preparations shows that in situ even more complex patterns of APD
(and contractility) changes have to be expected, depending on the
highly dynamic interactions between ventricular regions that are
exposed to heterogeneous stress-strain dynamics (Markhasin et al.,
2012) and (Solovyova et al. 2014).

1.2.4. Isolated whole heart

In isolated rabbit heart, an increase in APD at 80% repolarisation
(APD80) was observed by optical mapping when stretching the left
ventricle (LV) with a liquid-filled balloon (Sung et al., 2003).
Increased APD90 was also reported in canine hearts, when
stretching the LV with a similar method (Franz et al., 1989). Inter-
estingly, the former (rabbit heart) study reported no change in
APD20, while the latter (canine) report demonstrated a reduction
in APD20. In contrast, stretch-induced reductions in both APD50
and APD90 were seen in canine (Lerman et al., 1985, 2001) and frog
hearts (Lab, 1978).

When applying stretch to the heart via increasing intra-
ventricular balloon volume in a time-controlled manner, it was
found that stretch during the plateau phase of the AP leads to
transient repolarisation, while stretch applied late in systole or
early in diastole can result in membrane depolarisation (Zabel et al.,
1996). One study on embryonic fish heart showed that direction-
ality of stretch application may also matter: AP prolongation was
observed with stretch applied in parallel to the main atrio-

ventricular axis, while transverse stretch had no effect on APD
(Werdich et al., 2012). This suggests that, in addition to temporal
parameters, spatial properties of mechanical stimulation may
contribute to inconsistencies in the published results.

MEF has also been studied in rabbit hearts whose right ventricle
(RV) was cut open to form a tissue flap composed of RV free wall
(one side remained attached to the LV, the other was attached to an
actuator). In this study, stretch induced excitation which could lead
to ventricular re-entrant arrhythmias (Seo et al., 2010).

Thus, reported stretch-effects on the AP vary, with possible ex-
planations linked to differences in background AP shape (species
and myocardial cell type differences), stretch properties (amplitude
and rate of change, directionality relative to cardiac tissue),
experimental conditions (temperature, electrophysiological
recording techniques), repolarisation level at which APD changes
are reported (APD50 vs. APD80), and timing of observations (acute
or steady-state), to name but a few.

1.3. Postulated mechanisms

In keeping with the varied results on stretch-induced changes in
AP shape and duration, underlying mechanisms are also a subject of
debate. We briefly review in the following subsections the two
most frequently implicated contributors, whose activity can best be
explored using approaches that combine V, and [Ca®*]; recordings.

1.3.1. Mechanisms involving stretch activated ion channels

Stretch activated channels (SAC) are a group of ion channels
whose gating is regulated mainly by the mechanical environment.
They were first discovered in chick skeletal muscle (Guharay and
Sachs, 1984), and subsequently confirmed in mammalian heart
(Craelius et al., 1988). Cardiac SAC are believed to play important
roles in changing electrophysiological properties of myocytes in
response to mechanical stretch (Bustamante et al., 1991; Hu and
Sachs, 1997; Kohl and Sachs, 2001). Single channel and whole cell
studies suggest that the SAC populations involved in cardiac MEF
responses in healthy tissue preferentially conduct cations, although
in a non-selective manner, and have voltage-independent activa-
tion (Sasaki et al., 1992; Zhang et al., 2000), with reversal potentials
between 0 and -15 mV (Zeng et al., 2000). Other groups of cardiac
mechano-sensitive ion channels include potassium-selective SAC
(Kim, 1992) with reversal potentials negative to myocyte resting
potentials, and cell-volume activated channels (Baumgarten and
Clemo, 2003) such as chloride-selective channels with a reversal
potential close to zero. Both potassium-SAC (Van Wagoner and
Lamorgese, 1994) and cell volume-activated channels
(Baumgarten and Clemo, 2003) are likely to become more impor-
tant in pathological conditions, including myocardial ischaemia (for
more detailed reviews, please see (Baumgarten, 2000) and (Reed
et al,, 2014)).

Activation of cation non-selective SAC at negative V, (e.g. dur-
ing diastole) induces an inward current that can depolarise the cell
membrane (if SAC-activation is large enough). At positive Vy, (e.g.
during the AP plateau), an outward current is generated, which can
speed-up the initial repolarisation phase (Zabel et al., 1996;
I[senberg et al., 2005). Activation of these SAC during the early or
the late phase of the AP can therefore lead to differential effects.
This may explain early AP shortening, cross-over of AP repolarisa-
tion, and prolongation of the late AP, as well as the effects on
pacemaker cell Vi, described above.

These considerations are largely based on conceptual or compu-
tational projection (Kohl et al., 1998; Trayanova et al., 2004; Healy and
McCulloch, 2005; Xie et al., 2009; Zhan and Xia, 2013) from SAC single
channel properties, studied in expression systems, immature, or atrial
cardiomyocytes, as well as in cardiac non-myocytes (Kamkin et al.,
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2010) which may be electrically coupled to heart muscle cells
(Camelliti et al., 2004; Kohl and Gourdie, 2014). ‘The’ cardiac SAC has
remained elusive in studies of freshly isolated ventricular myocytes. It
has been suggested, therefore, that SAC in mature cardiomyocytes of
the ventricles may be hidden in membrane areas that are difficult to
reach by patch-clamp approaches, such as the t-tubular system,
caveolae, or the intercalated discs (Sachs, 2011).

That said, the theoretical projections are fully in keeping with
data from research using pharmacological block of SAC, confirming
their direct involvement in acute cardiac MEF effects. Blockers used
include Gd3* (Yang and Sachs, 1989), streptomycin (Belus and
White, 2003), and GsMTx4 (Suchyna et al., 2000). Both Gd>* and
streptomycin are non-specific and can also block L type Ca®* cur-
rents, Na*/Ca>* exchanger, or delayed rectifier K™ currents (Ward
et al., 2008). As a further note of caution, the efficacy as SAC-
blockers in isolated cells and cultures, both of Gd3* (Caldwell
et al.,, 1998) and of streptomycin (Cooper and Kohl, 2005), may
not be maintained in native tissue preparations, either because of
precipitation in physiological buffer systems (Gd3*), or because of
apparent access restrictions to the site of action on/near SAC
(streptomycin).

1.3.2. Mechanisms mediated by calcium handling pathways

Another mechanism for stretch-induced changes in cardiac
electrophysiological properties is mechanical modulation of intra-
cellular Ca®* handling. Intracellular Ca®>* affects ion channel
behaviour underlying currents such as the L-type Ca®* current, the
delayed rectifier K* current, or the Na>*/Ca®* exchanger, which in
turn affect excitability, AP profile, and conduction (Lee et al., 1985;
Lerman et al., 1985; Tohse, 1990; duBell et al., 1991; Janvier and
Boyett, 1996). Stretch is known to alter Ca?* handling in myo-
cytes (Calaghan et al, 2003) and non-myocytes of the heart
(Kiseleva et al., 1996), and this is regarded as another key contrib-
utor to cardiac MEF (McCulloch et al., 2013).

Studies in guinea pig ventricular myocytes, stretched by carbon
fibres, have shown an increase in resting [Ca>*]; (Le Guennec et al.,
1991; White et al., 1993; Gannier et al., 1996). Similar research in rat
atrial and ventricular myocytes found no influence of stretch on
[Ca*]; (Hongo et al.,, 1996; Tavi et al.,, 1998; Alvarez et al., 1999).
These opposite findings may be due to species differences, or in-
consistencies in Ca®>* sensitive fluorescent dyes that were used to
monitor [Ca%*];. This later can be the case because altered cytosolic
Ca®* buffering affects [Ca®*];. Buffer capacity is affected not only by
the uptake/release balance of the sarcoplasmic reticulum, Ca®*
pump and Na?*/Ca®* exchanger (Youm et al., 2005), and Ca’**-
binding to contractile filaments (Moss and Fitzsimons, 2002), but
also by the addition of fluorescent reporter dyes with their different
Ca®* affinities (Konishi and Berlin, 1993).

In terms of systolic behaviour, the ‘classic’ Frank-Starling effect
of an immediate stretch-induced increase in contractility is
generally assumed to not involve any significant change in CaT
(Shiels and White, 2008). However, maintained stretch gives rise to
an increase in CaT, and this is regarded as the mechanism under-
lying the slow force response — a further increase in contractility
over time beyond the immediate Frank-Starling response (Allen
and Kurihara, 1982).

A delicate interplay between Ca’" mediated mechanism and
sarcolemmal SAC has been reported. Both L-type Ca®* channels
(Belus and White, 2003) and intracellular Na™ are involved in this
(Youm et al.,, 2005). A decrease in L-type Ca®* current was observed
upon addition of the Ca?*-chelator BAPTA (1,2-bis(o-amino-
phenoxy)ethane-N,N,N’,N’-tetraacetic acid) and of streptomycin,
suggesting links between L-type Ca®* current and SAC activation
(Belus and White, 2003). Furthermore, increased intracellular free
Na™ concentration ([Na'];) was seen upon mechanical stimulation

of cardiomyocytes, and this has been attributed to SAC (Alvarez
et al., 1999; Isenberg et al., 2003). This increase in [Na']; may
help to raise [Ca®*]; via indirect effects on the transport balance of
the Na*/Ca®* exchanger (Gannier et al., 1994; Youm et al., 2005).

Finally, it is important to realise that SAC are not necessarily
restricted to the sarcolemma. Both the sarcoplasmic reticulum
(Iribe and Kohl, 2008; Iribe et al., 2009) and mitochondria
(Belmonte and Morad, 2008a, 2008b) of cardiomyocytes appear to
contain ion transport pathways that respond acutely to external
mechanical stimuli. Other intracellular membrane compartments,
such as the nuclear envelope, may be ‘mechano-sensitive’, too.

Thus, stretch affects cardiac Ca®* handling, not only via sarco-
lemmal SAC-mediated ion flux alterations that can (directly or
indirectly) alter [Ca®*]; but also via direct mechanical effects on
internal fluxes and buffer capacities. An added complication is the
fact that observation of [Ca**]; requires addition of fluorescent
dyes, which themselves are Ca®>-buffers that alter the dynamics of
the observed parameter.

1.4. Aim of this study

The range of varying results for stretch-induced changes in APD
makes it difficult to establish the exact mechanisms underlying
cardiac electrophysiological responses to mechanical stimulation.
Variations in published results can be, in part at least, attributed to
different techniques and experimental conditions used, as well as
to type of stretch stimulus and species differences. Beyond these
considerations, there is a chasm between the desire to study MEF in
experimental models that are ‘as physiological as possible’, and the
need to link functional observations to structural information in
experimental models that are ‘as simple as one can get away with’
(Garny et al., 2005). In this study we explore, therefore, the suit-
ability of live cardiac tissue slices as models for studying MEF, and
establish a method to investigate the effects of axial stretch on Vi,
and CaT using multi-parametric optical mapping.

2. Material and methods
2.1. Heart preparation

New Zealand White rabbits (male, 1-2 kg) were humanely kil-
led using an overdose of anaesthetics (70 mg/kg pentobarbital) in
accordance with schedule 1 of the UK Home Office Animals (Sci-
entific Procedures) Act of 1986. Hearts were quickly excised and
perfused in Langendorff mode, at a rate of 15—20 mL/min, with
bicarbonate-buffered solution (containing, [in mmol/L]: NaCl 123,
CaCl; 1.8, KCl 5.4, MgCl; 1.2, NaH,PO4 1.4, NaHCO3 24, Glucose 10;
bubbled with carbogen [95% 0,/5% CO]; pH 7.4 at 35 + 2 °C). Prior
to commencement of interventions, hearts were allowed to
accommodate and reach a regular beating rate, usually of about 240
beats per minute.

2.2. Dye loading

The fluorescent dyes, di-4-ANBDQPQ (stock solution: 29 mmol/L
in ethanol; University of Connecticut Health Center, USA) and
Rhod-2 AM (stock solution: 1 mg/mL in DMSO; AAT Bioquest Inc.,
Sunnyvale, USA) were used to image Vi, and CaT, respectively. The
heart was loaded with the dyes by adding 20 uL of di-4-ANBDQPQ
and 200 uL Rhod-2-AM stocks to the perfusion solutions, close to
the aortic cannula. Dyes were applied in small volume steps over a
period of 5 min. To ensure proper loading of the Ca** dye, the
perfusate was re-circulated over a period of 40—60 min. In addition,
0.5 mmol/L probenicid, an anion exchanger blocker (Di Virgilio
et al., 1990), was used. No reperfusion was necessary for the Vy,
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dye, but 2 pL of Pluronic F-127 (20% stock solution in DMSO; Life
Technologies, Paisley, UK) was added for enhancement of dye up-
take. The whole heart was imaged just prior to cutting of live tissue
slices, to confirm proper dye loading and signal quality.

2.3. Slice preparation

Before tissue slicing, while continuing Langendorff perfusion,
the bicarbonate buffered solution was replaced by HEPES buff-
ered solution (containing [in mmol/L]: NaCl 140, CaCl, 1.8, KCl
5.4, MgCly 1, Glucose 11, HEPES 5, BDM 10, probenecid 0.5,
bubbled with medical grade 99.9% oxygen). For complete electro-
mechanical uncoupling, 10 umol/L blebbistatin was added in
addition to BDM, and the heart was gently cooled down to room
temperature. The LV and RV free walls were dissected and
trimmed to fit the slicing stage of a high precision vibratome
(7000smz tissue slicer; Campden Instruments Ltd., Lough-
borough, UK). Tissue blocks were glued onto the slicing stage,
with the endocardium facing down, using a histoacryl tissue
adhesive (Braun, Melsungen, Germany). Slices were cut at
350 um thickness, near-parallel to the epicardial plane. During
sectioning, the tissue was kept in ice-cold oxygenated HEPES
buffered solution (pH = 7.4 at 4 °C). All slices were collected on
PDMS blocks (polydimethylsiloxane Sylgard 184; Dowcorning,
Midland, USA), and secured by tailor-made fine mesh covers, to
keep track of the original slice orientation. Tissue sections were
then returned to room temperature in blebbistatin-containing
bicarbonate buffered solution (pH 7.4 at room temperature)
allowing them to adapt for ~10 min. Finally, slices were gently
warmed back up to body temperature (35 + 2 °C) in blebbistatin-
containing bicarbonate buffered solution, and incubated in these
conditions for at least one hour to allow full recovery and sta-
bilisation (for a more detailed description of the protocol and
important technical hints see (Wang et al., 2014).

A reference Vy, signal was taken from each slice before
mounting onto the stretching device (Fig. 1A). For mounting, slices
were placed on two (single-use) plastic sheets which were fixed
onto the surface of a micromanipulator (one attached to the static,
the other to the movable part). After placing the tissue slice in the
desired direction, opposite edges of the slice were placed on a line
of tissue glue (Braun, WPI, Hitchin, UK) on top of the plastic sheet.
The assembly was then re-submerged into blebbistatin-containing

A)
Top view

Temperature Probe

«—————— Area to glue the slice
+~———1}— Static part

Scale bar
+—— Area to glue the slice

Dl

+—————— Moveable part

L~

l <« Bath filled with physiological solution

Manual control to move part back and forth

bicarbonate buffered solution. During mounting, care was taken to
keep slices at their ‘slack’ length, maintaining them moist at all
times to avoid additional tissue damage. A scale-bar, mounted be-
side the slice, was used for quantification of stretch.

2.4. Optical mapping

Fig. 1B shows a schematic of the mapping set-up. For optical
recordings, an EMCCD camera with 128 x 128 pixels (Evolve 128
Photometrics, Tucson, USA) was mounted above the stretching
device on a height-adjustable holder. For illumination, we used
two different sources: a red LED (LED-CBT-90-R; Chroma Tech-
nology, Bellows Falls, USA) with band-pass filter D640/20x
(Chroma Technology) to excite the Vi, dye, and a white LED (LED-
CBT-90-W; Luminus Devices) with band-pass filter $555/25x
(Chroma Technology) for the Ca®* sensitive dye. For collection of
fluorescent emission, a combination of two filters was used
(ET585/50-800/200; Chroma Technology; and a 561 nm long-pass
filter, BLPO1-561R-25; Semrock, Rochester, USA) to ensure non-
overlapping spectral bands for exclusion of excitation light and
collection of emitted fluorescent signals. The Vy, and Ca®* mea-
surements were taken in consecutive frame sequences at maximal
resolution (128 x 128 pixels) and frame rate (525 Hz). Data were
acquired with PVCAM Version 1.0.7 (courtesy of Prof Stefan Luther
and Johannes Schroder-Scheteling, University of Gottingen,
Germany).

The chamber accommodating the stretching device was kept in
a larger heated bath to ensure temperature stability. The solution in
the tissue chamber was bubbled with carbogen between mea-
surements, to sustain oxygen content and pH.

2.5. Pacing approach

Tissue slices were stimulated with 2 platinum field-stimulation
electrodes, placed on opposite sides of the tissue (direction of
electrodes parallel to the direction of stretch).

Pacing was applied using a Myopacer (Ionoptix, Dublin, Ireland)
with bipolar pulses of 2 ms duration, at voltages 1.5 times above
threshold, usually between 5 and 20 V. The pacing frequency was
set to 2 Hz. Stimulation was started before measurements to allow
slices to adjust to the pacing rate. Usually two consecutive mea-
surements were taken, and where possible both measurements
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Fig. 1. Schematic illustration of the stretch chamber design with manual micromanipulator (A) and the optical mapping setup (B). The contact area between stretcher and slice was
covered by plastic tape to avoid direct contact between tissue and metallic parts of the manipulator.
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Table 1
Overview of cardiac tissue slices included in the analysis.

Slice Rabbit Preparation Slice location

Time between stretch and first measurement

% Stretch Stretch direction vs. main fibre direction

1 i A RV <1 min
2 ii B LV sub-epicardial 3 min

3 ii C LV mid-myocardial <1 min
4 iii D LV sub-epicardial ~0.5 min
4 iii E LV sub-epicardial <1 min
5 iii F LV mid-myocardial <1 min
6 il G LV mid-myocardial <1 min
7 iii H LV sub-endocardial ~0.5 min
8 il | RV <1 min

4.5 Not identified

8.5 Perpendicular

6.9 Parallel

9.8 Perpendicular

8.2 Perpendicular
18.8 Perpendicular

6.5 Parallel

6.9 Perpendicular
12.8 Not identified

were included the data analysis. Measurements in which data was
distorted by external motion (e.g. gas bubbles breaking the fluid
surface), or in which the pacing protocol failed to reliable capture
the tissue at the desired frequency, were excluded.

2.6. Stretch protocol

After mounting a tissue slice onto the stretcher, a recovery
period of 25—50 min was given to reach steady state. Stretch was
applied manually, with amplitudes listed in Table 1 (note that the
absolute amount of stretch varied, taking into account differences
in the length of ‘free tissue’ between tissue attachment areas.
Measurements of Vy, and [Ca®*]; were taken before, and shortly
after stretch application (usually <1 min), and then every
~5—10 min, up to 50 min total duration (time intervals varied be-
tween preparations), to allow capture of dynamic changes in AP
and CaT characteristics over time. Measurements were also taken
shortly after release of stretch (<1 min). Fig. S1 in the online sup-
plement shows a schematic of the stretch protocol.

Data analysed in this report is from 8 slices of 3 rabbits; one of
the slices was stretched twice. In these proof-of-principle experi-
ments, we used ventricular tissue from both LV and RV free wall
(see Table 1 for overview).

For most slices, prevailing cell orientation (henceforth ‘fibre
direction’) could be visually identified (Fig. 2A). Fibre direction was
subsequently confirmed by light-microscopic scan after histologi-
cally processing (5 pwm sections, Trichrome-stained; Fig. 2B).
Although native tissue and histologically processed sections are not
identical, this allows one to reconfirm the dominant fibre orienta-
tion, as this parameter does not rotate significantly over the
thickness of the slice. For RV slices, we were unable to identify a

single dominant fibre direction as cells were aligned more het-
erogeneously (stretch vs. cell alignment labelled as ‘not identified’
in Table 1).

2.7. Histological processing

After a slice was removed from the micromanipulator, it was
sandwiched between a sponge and a glass coverslip, placed in a
slotted tissue processing cassette, and fixed using the fast-acting
Karnovsky's fixative (2% formaldehyde, 2.5% glutaraldehyde in
cacodylate buffer, Solmedia Limited, Shrewsbury, UK). Tissue
samples were stored in Karnovsky's until wax embedding. Wax-
embedded tissue was cut into 5 um thick sections using a rotary
microtome (Leica RM2125; Milton Keynes, UK). These sections
were then stained with Masson's trichrome. The protocol of wax
embedding and Masson's trichrome staining has been described
elsewhere (Plank et al., 2009). Stained sections were imaged
(Fig. 2B) with a digital scanner (40x objective, Scanscope CS2,
Aperio Ltd, Oxford, UK).

2.8. Data analysis

Data sets generated by optical mapping were analysed with an
in-house semi-automatic data analysis tool (Wang et al., 2014)
coded in Matlab® (The MathWorks; Natick, USA). Recorded signals
(Vi and [Ca®*];) were processed to reduce noise distortion before
relevant parameters were extracted. For this study, we focus on
investigating the influence of stretch on APD and CaT duration.
APD80 and APD50 and CaT at 80% and 50% decay (CaT80 and CaT50,
respectively) were analysed.

Fig. 2. LV mid-myocardial slice (preparation G) mounted for application of stretch in parallel to prevailing cell orientation. A) Photograph of the slice on the stretching device at
control length. B) Digitized microscopy image of the same slice after fixation, sectioning at 5 pm thickness, and trichrome-staining.
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For each pixel yielding a sufficiently strong fluorescent signal,
APD and CaT were temporally averaged over 10 cardiac cycles to
extract APD80, APD50, CaT80 and CaT50 for the location of that
pixel. Maps and histograms based on these values were constructed
(see Figs. 3—6). Mean and standard deviation (SD) values were
calculated from the maps (e.g. mean APD80 shown in Fig. 3C). We
did not exclude any parts of the map to avoid selection bias (i.e. the
glued part of the tissue was not excluded, since there is no clearly
identifiable ‘contour’ of the glued tissue in the fluorescent data).
Pixels containing tissue with insufficient signal intensity are shown
in grey in the parameter maps. APD80 and CaT80 were used instead

of APD90 and CaT90 to reduce calculation error due to baseline
noise. CaT amplitude was not analysed, as it was measured non-
ratiometrically.
3. Results
3.1. Changes in AP after stretch

Both Vi, and CaT were mapped before and during stretch, as

well as after release. Steady-state APD and CaT durations before
stretch (control) were compared with APD and CaT duration
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Fig. 3. Influence of stretch on the AP (preparation D in Table 1). A) Visible light images of the slice before and after application of stretch (top) and AP traces, averaged over the
whole slice, before (red) and immediately after application of stretch (blue); B) Histogram of APD80, measured from the slice before (red) and immediately after application of
stretch (blue); C) APD80, normalised to the control value (T1) at different time points after application of stretch; D) APD80 maps of this slice at 5 time points (T1 to T5 identified in
subfigure C) show an initial stretch-induced decrease in APD8O0, followed by recovery and increase beyond control levels, in particular in the mid-are of the tissue, which would be
maximally exposed to stretch (as opposed to the glued contact regions at the top and bottom of the slice, which will be less affected). Grey areas indicate tissue with insufficient

fluorescent signal intensity (also in Figs. 4—6).
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5 time points (T1 to T5, identified in subfigure A). As in Fig. 3, the initial drop in APD50 is followed by gradual increase beyond control values, present mainly in the central stretched

part of the slice.

immediately after stretch (measured normally within less than one
minute), and with subsequent changes occurring during sustained
stretch (up to 50 min).

Fig. 3 contains an example of the data analysed. Fig. 3A shows
the camera image of the slice before and after stretch, as well as the
spatially averaged (over the whole slice) and normalised Vy, trace
from control and the first time point after application of stretch
(here ~30 s), when APD shortening is observed. This shortening is
present both at early (APD50) and late repolarisation (APD80).
Fig. 3B shows a histogram of APD80 measured (over 10 cycles)
before and immediately after application of stretch (note that the
entire APD80 distribution shifts to lower values). A similar overall
shortening immediately after application of stretch was seen for
APD50 in all slices. APD80 and APD50 (see Table 2), observed in all 9
cases, were reduced by 10.7% and 11.4%, respectively. The averages
shown in Table 2 (as well as in Tables 3—5) are spatially averaged
values. Pair-wise t-test was preformed to assess whether there is a
significant difference between APD (APD80 and APD50) immedi-
ately after stretch as compared to control (with the null hypothesis
that the difference between control values and that immediately
after stretch has a mean equal to zero). P-values of 0.001 and 0.002
were found for APD80 and APD50, respectively, indicating a sig-
nificant difference (at 5% significant level) between pre-stretch
controls and the value shortly after stretch.

To investigate whether further APD changes occur during
maintained stretch, a series of measurements at different time
points was taken (up to 50 min). In Fig. 3C, mean APD80 (nor-
malised to control values) at different time points after stretch is
shown. The pre-stretch control value (set to 1 as the reference value
for the normalisation) is shown by a red circle, while the data
points collected during stretch are indicated by black asterisks.
After the initial reduction in APD8O0, a gradual increase is seen over
time, approaching a new steady state, here with longer APD80 than
in control. A similar pattern can be observed for APD50 (Fig. 4A,
same slice). In Figs. 3D and 4B, maps of APD80 and APD50 are
shown for five time points (T1 to T5, marked in the time-plot
panels, with T1 = control, T2 = immediate response: ~30 s after
application of stretch, and T3 to T5 = later time points during
maintained stretch). The initial decrease in APD50 and APD80 over
the whole slice after stretch (T2) is followed by gradual recovery

from T2 to T5, yielding an increase in APD50 and APD80 compared
to control. A similar response in APD50 and APD80 to stretch was
seen in most slices; however the rate and amount of changes
differed from case to case (see on-line Figs. S2 and S3).

3.2. Change in CaT after stretch

Results of stretch-induced changes in CaT duration are sum-
marised in a similar fashion as APD. Fig. 5A shows the visible light
image of a slice (same slice as in Figs. 3 and 4) before and after
stretch (top), and the CaT trace, averaged over the whole slice.
Fig. 5B shows the histogram of CaT80 distribution, measured before
and immediately after application of stretch. A slight shortening of
CaT80 and CaT50 (by 6.0%, and 5.3%, respectively), compared to
control, can be observed (see also Fig. 6A). Table 3 summarises
mean and SD of CaT80 and CaT50 before and immediately after
application of stretch for the slices (CaT duration for preparations A
and C are not shown as they did not yield a sufficient Ca®* signal).
Pair-wise t-test was also performed on CaT durations (CaT80 and
CaT50) measured before and immediately after application of
stretch. P-values of 0.001 and 0.003 were found for CaT80 and
CaT50, respectively, indicating a significant difference (at 5% sig-
nificant level). The shortening in CaT80 and CaT50 immediately
after stretch is followed by gradual recovery, echoing APD changes,
albeit with less pronounced relative amplitudes.

The initial reduction in CaT80 and CaT50 is followed by gradual
recovery, occasionally exceeding control values. This is shown in
Figs. 5C and 6A, where CaT80 and CaT50, normalised to the control
value, are plotted at different time points. Figs. 5D and 6B show
CaT80 and CaT50 maps at 5 time points (T1 = control, T2 = 30 s
after application of stretch, T3—T5 = subsequent time points during
stretch, as identified in Figs. 5C and 6A). Figs S4 and S5 in the online
supplement summarise similar changes in CaT80 and CaT50 for
most of the other slices.

3.3. Influence of stretch-release on APD and CaT
Upon release of stretch (measured within 1 min), both APD and

CaT duration reversed to lower values, as summarised in Table 4
(APD) and Table 5 (CaT). The average shortening of the
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Fig. 5. Influence of stretch on CaT (preparation D in Table 1): A) visible light image of the slice before and after application of stretch (top) and plot of CaT traces, averaged over the
whole slice, before (red) and immediately after application of stretch (blue); B) Histogram of CaT80 measured before (red) and immediately after application of stretch (blue); C)
CaT80, normalised to control (T1) at different time points after stretch, showing a decrease in CaT80 immediately after stretch, followed by gradual recovery; D) CaT80 map of this

slice at 5 different time points (T1 - T5, indicated in subfigure C).

(previously increased by sustained stretch) APD80 and APD50 were
6.7% and 7.9%, respectively. Pair-wise t-test performed on the APD
(APD80 and APD50) measured shortly before and after releasing
stretch show significant change (at 5% significant level) in both
parameters (P-values: 0.004 and 0.002 respectively). For CaT
duration, the decrease was more subtle, with an average shortening
of CaT80 and CaT50 by 1.9% and 2.0%, respectively. Preparations A
and B were excluded from analysis (see exclusion criteria in section
2.5); preparations C had a poor CaT signal and was excluded from
Ca?* analysis; CaT was not measured for preparation F after stretch-
release. Significant differences in CaT durations (CaT80 and CaT50)
measured before and shortly after releasing stretch were found
with a pair-wise t-test (P values: 0.028 and 0.020 respectively).

4. Discussion
4.1. Transient stretch-induced reduction in APD and CaT duration

Data collected from rabbit ventricular tissue slices in this study
show a decrease in both APD and CaT duration during the initial
phase immediately following application of stretch (as shown in
Figs. 3 and 4 and Table 2 for APD, and Figs. 5 and 6 and Table 3 for
CaT).

Although the profiles of responses (amount of change, rate of
recovery) in APD and CaT duration exhibit individual differences,
the partial reversal of that reduction, i.e. a re-lengthening of both
APD and CaT duration at subsequent time points, was generally
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seen. In slices where new steady states in APD and CaT duration
were reached, these could be longer than control values (e.g. Figs. 3
and 5). In the supplemental material, Figs. S2—S5 provide individ-
ual time lines for all slices.

These findings support the view that changes in APD and CaT
duration during stretch are dynamic, while the acute response to
stretch is shortening. This is in keeping with classic reports on the
dynamic nature of both parameters, observed for APD (Allen, 1977)
and CaT (Allen and Kurihara, 1982).

4.2. AP vs CaT

There is a qualitative correlation between the responses to
stretch of APD and CaT duration, as described before (Kaufmann
et al., 1971a), though the relative change in CaT duration is
smaller than that of APD.

Stretch can co-affect both parameters through several mecha-
nisms. Immediate SAC activation could drive the initial reduction in
APD, with CaT following ‘passively’, while at later time points, the

Table 2

Comparison of APD80 and APD50 measured before (control) and immediately after stretch application (see Table 1 for timing information). Post-stretch values for both

parameters differ significantly from control (p < 0.002).

Prep. Control APD80O Stretch APD80 APDB8O stretch/control % Control APD50 Stretch APD50 APD50 stretch/control %
mean (ms) mean (ms) mean (ms) mean (ms)
A 129.2 + 141 1269 + 13.8 98.2 104.8 + 13.3 103.2 + 11.8 98.5
B 2483 + 284 1955 + 12.6 78.7 213.0 + 36.0 166.6 + 16.3 78.2
C 210.5 £ 15.5 182.2 + 22.0 86.6 179.8 + 16.6 152.1 £ 233 84.6
D 1823 + 114 150.5 + 10.2 82.6 1525+ 123 122.2 + 100 80.1
E 2304 + 25.1 213.1 +£22.0 92.5 190.5 + 26.3 176.6 + 214 92.7
F 220.7 +19.8 203.6 + 225 923 181.5+ 273 168.1 + 25.7 92.6
G 2353+ 193 216.7 + 17.8 92.1 201.9 + 195 185.2 +17.7 91.7
H 255.1 + 424 2195 + 478 86.1 2139+ 46.3 179.2 £ 514 83.8
1 209.0 +38.9 197.0 = 33.5 94.2 1619 + 434 154.1 + 39.2 95.2
Average 89.3 Average 88.6
SD 6.2 SD 71
Table 3
Comparison of CaT80 and CaT50 measured before and immediately after application of stretch. Post-stretch values for both parameters differ significantly from control
(p < 0.004).
Prep. Control CaT80 mean Stretch CaT80 mean CaT80 stretch/control % Control CaT50 mean Stretch CaT50 mean CaT50 stretch/control %
(ms) + SD (ms) + SD (ms) + SD (ms) + SD
B 223.0 + 18.0 199.3 + 12.6 89.4 165.8 + 154 151.6 + 9.8 914
D 2328 +11.1 2181+ 11.2 93.7 163.3 + 8.0 150.6 + 7.1 92.2
E 2419 + 203 235.1 +£19.2 97.2 1745 + 15.6 171.1 £ 14.2 98.1
F 242.1 +15.6 226.3 + 195 93.5 1731 £ 125 163.3 + 15.8 94.3
G 2343 +193 216.7 £ 17.8 92.5 201.1 = 19.5 1852 +17.7 92.1
H 248.7 + 249 2353 +21.6 94.6 1759 + 18.8 171.0 + 18.2 97.2
1 2446 + 22.6 237.4 +20.7 97.1 177.7 £ 21.9 173.7 £ 19.0 97.8
Average 94.0 94.7
SD 2.7 29
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Table 4

Comparison of APD80 measured before and immediately after stretch-release. Post-release values for both parameters differ significantly from pre-release values (p < 0.004).

Prep. Stretch APD80 mean Release APD80 mean

APD8O release/stretch %

Stretch APD50 mean Release APD50 mean APD50 release/stretch %

(ms) + SD (ms) + SD (ms) + SD (ms) + SD

C 187.2 + 249 181.1 £ 219 96.7 154.0 = 26.0 148.2 + 234 96.2
D 201.2 +£23.0 178.9 + 19.9 88.9 164.8 + 25.6 144.3 + 22.5 87.5
E 213.1 £22.0 2025 +17.5 95.0 176.6 + 214 165.8 + 17.7 93.9
F 2175 +36.3 212.6 +29.9 97.7 180.0 + 36.7 1714 + 340 95.2
G 229.6 +37.9 221.7 +38.1 96.6 187.5 +48.2 179.5 +45.9 95.7
H 189.5 + 73.0 172.8 + 65.6 91.2 150.2 + 704 136.3 + 63.8 90.8
I 217.6 + 34.2 189.9 + 34.0 87.3 174.3 + 39.7 148.6 + 35.6 85.3

Average 933 Average 92.1

SD 4.2 SD 43

increased CaT that is associated with the slow force response (von
Lewinski et al., 2005) could drive the recovery of APD.

An alternative explanation for the transient nature of stretch-
induced reductions in APD and CaT duration is partial tissue re-
covery, by re-lengthening of viscous elements (Kohl et al., 1999).
This could reduce the mechanical stimulus, effective at the cellular
level, and should be monitored in future (for example using fluo-
rescent beads on the slice surface to assess regional strain patterns).

To explore the interplay, between Vi, and CaT, simultaneous Vi,
and [Ca®*]; mapping would be a valuable extension. This is a rela-
tively easy add-on to the here presented set-up, for example using
the approach by Lee et al. (2012). Also, alternative interventions
targeting either SAC or Ca?* handling to perturb the system (e.g. via
pharmacological manipulation) may help in revealing more of the
mechanisms underlying the dynamic APD and CaT duration re-
sponses to stretch.

4.3. Stretch-release

Similar to the contradictory observations on stretch-induced
changes in APD and CaT duration, the effects of stretch-release
are debated. They, too, appear to depend on time of observation,
contractile state of the tissue, amplitude and dynamics of re-
shortening, and other experimental environment parameters
(Hennekes et al., 1977; Lab, 1980, 1982). Our measurements show
that APD decreased right after release of stretch, which is in
keeping with data published by Sung et al. (2003). Assuming that
the moderate prolongation of APD and CaT duration after the initial
stretch-induced drop was related to a slow force response mech-
anism, it is reasonable to expect that after termination of the
stretch, APD and CaT duration could return to their initial control
value, as described by Lab (Lab, 1980). This would be expected to
occur over roughly the same period of time as slow force response
development during stretch, thus identifying an additional target
for further research. Again, changes in APD are more pronounced
than those in CaT duration (Tables 4 and 5). It would be interesting
to investigate their dynamics over a longer period of time after
stretch-release, to capture long-term and steady-state effects.

Table 5

4.4. Utility of living tissue slices as a model for cardiac MEF research

Cardiac tissue slices with their locally preserved cell—cell con-
nections and cell-type distribution (including both myocytes and
non-myocytes) combine moderate complexity with the potential
for effective experimental control (input) and observation (output).
Of note, they are amenable to use on human cardiac tissue
(Camelliti et al., 2011; Brandenburger et al., 2012). Compared to
whole heart, although the electrical coupling in the third dimen-
sion is severely reduced, and extracellular spaces are less preserved
(Anyukhovsky et al., 1999), this reduced complexity can be bene-
ficial. Thus, electrical activation, for example, occurs in a much
simpler fashion, allowing better control over pacing rate and site,
and directionality of conduction. As an experimental model system,
slices also offer the opportunity to collect multiple tissue samples,
and tissue from different regions, of one heart (e.g. LV free wall vs.
RV free wall; sub-epicaridal, mid-myocaridal or sub-endocardial
layers) allowing multiple experimental investigations from the
same sample, and exploration of regional difference in behaviour.
Although we did not explore this aspect in detail here, we show
that it is possible to collect multiple slices with decent Vi, and CaT
signal from various transmural layers of LV tissue, and of the RV,
from one and the same heart.

Tissue slices have been used acutely for up to 8—9 h after
sectioning (Burnashev et al., 1990; Camelliti et al., 2011) and have
also been used after weeks' of culturing (Brandenburger et al.,
2012). All our experiments were conducted within a time win-
dow of 5 h. This is a period during which maintained ultrastructural
integrity has been confirmed for the protocols used here (Wang
et al.,, 2014).

Since the dominant fibre direction in tangentially cut (parallel to
epicardial plane) cardiac tissue slices can, in most cases, be iden-
tified with ease, stretch can be applied in principle using the
dominant fibre direction as a reference (e.g. perpendicular, parallel,
or at any desired angle relative to fibre orientation). This allows
investigation of potential difference between stretch effects on cells
depending on their orientation relative to the main direction of
stretch.

Comparison of CaT80 and CaT50 before and immediately after stretch-release Post-release values for both parameters differ significantly from pre-release values (p < 0.03).

Prep. Stretch CaT80 mean Release CaT80 mean CaT80 release/stretch/% Stretch CaT50 mean Release CaT50 mean CaT50 release/stretch %
(ms) + SD (ms) + SD (ms) + SD (ms) + SD
D 2432 + 15.8 2343 +16.2 96.3 1722 + 135 165.1 + 13.0 95.9
E 2374 + 188 234.2 + 19.1 98.7 1724 + 133 169.5 + 13.9 98.3
G 231.8 +15.0 2303 + 14.7 99.3 166.8 + 12.6 165.2 + 13.1 99.1
H 216.6 + 35.8 2125+ 334 98.1 154.1 + 29.6 151.7 + 28.8 98.5
I 2452 + 214 241.1 £ 20.2 98.3 180.8 + 19.1 177.6 + 184 98.2
Average 98.1 Average 98.0
SD 1.1 SD 1.2
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Although the cutting of cardiac tissue slices in parallel to the
epicardial plane yields sections with a high proportion of in-plane
fibres (Yasuhara et al., 1996; Bussek et al., 2009), this orderly
alignment becomes less pronounced as one approaches sub-
endocardial layers. When point stimulation is used to pace slices
with clear fibre direction, a conduction map showing pronounced
anisotropy can be captured. With algorithm such as developed by
Bayly et al. (1998), conduction velocities can be estimated for each
point. This makes it potentially easy to capture conduction velocity
changes during and after stretch. However, conduction from point-
stimulation sites is affected by uneven source-sink distribution, and
this can yield contradictory results in one and the same tissue slice,
depending on stimulation site (Wang et al., 2014). For this reason,
we focussed our analysis here on field stimulation. The use of point
stimulation to capture conduction velocity changes during and/or
after stretch (Dominguez and Fozzard, 1979; Zhang et al., 2008) is
an interesting topic for further study in cardiac slices.

4.5. Utility of optical mapping

Electrophysiological behaviour of cardiac tissue slices has
mainly been explored using multi-electrode arrays (Bussek et al.,
2009). These monitor Vy, without capturing AP shape, and at
relatively low spatial resolution. Optical mapping addresses these
limitations, and allows one to extend the study of MEF to other
parameters, such as [Ca®*];, and hence to capture two highly rele-
vant parameters for cardiac electro-mechanics research.

Optical mapping can be also combined with motion/deforma-
tion tracking, for example using structured light (Laughner et al.,
2012) or fluorescent beads (McCulloch et al., 2005). This can pro-
vide information about local slice deformation, including acute and
possible delayed effects (e.g. viscous re-lengthening). This data
would be useful for assessing the homogeneity (or lack thereof) of
stretch effects on the tissue, and for a more careful interrelation of
local stretch, APD and CaT changes.

4.6. Study limitations

This study was a proof-of-principle attempt to investigate the
utility of living cardiac tissue slices as an experimental model for
MEF studies, involving optical mapping of both Vy, and [Ca?*];. In
addition to the outlined benefits, above, our experiments identified
several limitations with the current methodology.

i) Amount, timing and speed of stretch may influence effects
on APD and CaT duration (Le Guennec et al., 1991; Zabel et al.,
1996; Nishimura et al., 2006); this study was not designed to
investigate their influences. To do so, the manual stretcher
should be replaced by a computer-controlled motorised de-
vice, to improve spatial and temporal control over the
intervention.

ii) Monitoring of local deformation should be added, to allow
correlation of local changes in mechanics, electrics, and ion
handling.

iii) CaT amplitude is an important parameter that is known to be
affected by maintained stretch. This can be studied, using
ratiometric Ca®* measurements. A dual and ratiometric Vm/
Ca®* mapping system has been developed (Lee et al., 2011),
and will be used in future studies. In this context, it is
important to note that the Ca®* sensitive dye used (Rhod-2)
has a relatively high affinity for Ca**. High affinity dyes may
suffer from saturation (Woods et al., 2004), and therefore
would not capture real CaT peak amplitudes. The ratiometric
studies proposed above should therefore include a low-

affinity Ca®* dye (e.g. Rhod-ff), or use two dyes (e.g. Rhod-
2 and Rhod-ff) for comparison.

iv) The use of tissue glue has several advantages: it can be used
to mount tissue onto the stretcher, regardless of slice shape,
it acts quickly, holds the slice down relatively strongly, and
does not give rise to foci of excess point deformation (as, for
example, pins would). However, there are disadvantages, as
the glue may influence the vitality of the tissue, in particular
where glue is applied (limited perfusion/access to oxygen).
Also, in spite of all efforts, it cannot be excluded that during
the attachment process, slices are exposed to mechanical
deformation or pre-stretch. Finally, once glued down,
correction of slice position or rotation is not possible without
high risk for tissue damage.

5. Conclusions

Living cardiac tissue slices constitute a 2D organotypic model of
myocardium, which can be combined successfully with multi-
parametric optical mapping, and used to investigate the effects of
axial stretch on Vi, and CaT. Their use opens up new possibilities for
the study of cardiac biophysics in general, and the dynamic in-
terrelations of cardiac structure, mechanics, and electrics in particular.

Editors’ note

Please see also related communications in this issue by
Solovyova et al. (2014) and Iribe et al. (2014).
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