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Abstract

We show that several versions of Floyd and Rivest’s algorithm SELECT for finding the kth smallest of
n elements require at most n +min{k, n —k} +o(n) comparisons on average and with high probability.
This rectifies the analysis of Floyd and Rivest, and extends it to the case of nondistinct elements. Our
computational results confirm that SELECT may be the best algorithm in practice.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The selection problem is defined as follows: Given a set X := {x;}_, of n elements,
a total order < on X, and an integer 1 <k <n, find the kth smallest element of X, i.e., an
element x of X for which there are at most k — 1 elements x; < x and at least k elements
xj <x. The median of X is the [n/2]th smallest element of X. (Since we are not assuming
that the elements are distinct, X may be regarded as a multiset.)

Selection is one of the fundamental problems in computer science. It is used in the
solution of other basic problems such as sorting and finding convex hulls. For good reviews
of its literature, see, e.g., [6-8] and [21, Section 5.3.3]. We only stress that most references
employ a comparison model (in which a selection algorithm is charged only for comparisons
between pairs of elements), assuming that the elements are distinct. Then, in the worst case,

* Tel.: +48 22 8364414; fax: +48 22 8372772.
E-mail address: kiwiel @ibspan.waw.pl.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.06.032


https://core.ac.uk/display/82672439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:kiwiel@ibspan.waw.pl

K.C. Kiwiel / Theoretical Computer Science 347 (2005) 214238 215

selection needs at least (2 + &)n comparisons [8], whereas the pioneering algorithm of
[3] makes at most 5.43n, its first improvement [29] needs 3n + o(n), and the most recent
improvement in [7] takes 2.95n 4 o(n). Thus a gap of almost 50% still remains between
the best lower and upper bounds in the worst case.

The average case is better understood. Specifically, for k< [n/2], at least n + k — 2
comparisons are necessary [5,21, Exercise 5.3.3-25], whereas the best upper bound is
n+k+0m"2'?n) 21, Eq. (5.3.3.16)]. Yet this bound holds for a hardly implementable
theoretical scheme [21, Exercise 5.3.3-24], whereas a similar frequently cited bound for the
algorithm SELECT of [10] does not have a full proof, as noted in [21, Exercise 5.3.3-24] and
[27]. Significantly worse bounds hold for the classical algorithm FIND of [13], also known
as quickselect, which partitions X by using the median of a random sample of size s > 1. In
particular, for k = [n/27, the upper bound is 3.39n +o(n) fors = 1 [21, Exercise 5.2.2-32]
and 2.75n + o(n) for s = 3 [12,15], whereas for finding an element of random rank, the
average cost is 3n + o(n) for s = 1, 2.5n 4+ o(n) for s = 3 [15], and 2n + o(n) when s —
00, s/n — 0 asn — oo [23]. In practice FIND is most popular, because the algorithms
of [3,29] are much slower on the average [26,31]. For the general case of nondistinct
elements, little is known in theory about these algorithms, but again FIND performs well in
practice [16,31].

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of
[10, Section 2.1] (the versions of [10, Section 2.3] and [9] are addressed in [19,18]). We
show that SELECT performs very well in both theory and practice, even when equal elements
occur. To outline our contributions in more detail, we recall that SELECT operates as follows.
Using a small random sample, two elements u and v almost sure to be just below and above
the kth are found. The remaining elements are compared with u and v to create a small
selection problem on the elements between u and v that is quickly solved recursively. By
taking a random subset as the sample, this approach does well against any input ordering,
both on average and with high probability.

First, we revise SELECT slightly to simplify our analysis. Then, without assuming that the
elements are distinct, we show that SELECT needs at most n+min{k, n—k}+0(n?> In'/3 n)
comparisons on average; this agrees with the result of [10, Section 2.2] which is based on
an unproven assumption [27, Section 5]. Similar upper bounds are established for versions
that choose sample sizes as in [9,24,28] and [25, Section 3.3]. Thus the average costs of
these versions reach the lower bounds of 1.5z 4+ o(n) for median selection and 1.25n + o(n)
for selecting an element of random rank (yet the original sample size of [10, Section 2.2]
has the best lower order term in its cost). We also prove that nonrecursive versions of
SELECT, which employ other selection or sorting algorithms for small subproblems, require
at most n + min{k, n — k} 4+ o(n) comparisons with high probability (e.g., 1 — 4n—2
for a user-specified f > 0); this extends and strengthens the results of [11, Theorem 1],
[24, Theorem 2] and [25, Theorem 3.5].

Since theoretical bounds alone need not convince practitioners (who may worry about
hidden constants, etc.), a serious effort was made to design a competitive implementation
of SELECT. Here, as with FIND and quicksort [30], the partitioning efficiency is crucial.
In contrast with the observation of [10, p. 169] that “partitioning X about both « and v [is]
an inherently inefficient operation”, we introduce a quintary scheme which performs well
in practice.
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Relative to FIND, SELECT requires only small additional stack space for recursion, be-
cause sampling without replacement can be done in place. Still, it might seem that random
sampling needs too much time for random number generation. (Hence several popular im-
plementations of FIND do not sample randomly, assuming that the input file is in random
order, whereas others [31] invoke random sampling only when slow progress occurs.) Yet
our computational experience shows that sampling does not hurt even on random inputs,
and it helps a lot on more difficult inputs (in fact our interest in SELECT was sparked by the
poor performance of the implementation of [9] on several inputs of [31]). Most importantly,
SELECT beats quite sophisticated implementations of FIND [16,17,31] in both comparison
counts and computing times even for examples with relatively low comparison costs. To
save space, only selected results are reported in Section 7.3 and [16,17], but our experience
on many other inputs was similar. In particular, empirical estimates of the constants hidden
in our bounds were always quite small. Further, the performance of SELECT is extremely
stable across a variety of inputs, even for small input sizes (cf. Section 7.3). A theoretical
explanation of these features will be undertaken elsewhere. For now, our experience sup-
ports the claim of [10, Section 1] that “the algorithm presented here is probably the best
practical choice”.

The paper is organized as follows. A general version of SELECT is introduced in
Section 2, and its basic features are analyzed in Section 3. The average performance of
SELECT is studied in Section 4. High probability bounds for nonrecursive versions are
derived in Section 5. Partitioning schemes are discussed in Section 6. Finally, our compu-
tational results are reported in Section 7.

Our notation is fairly standard. | A| denotes the cardinality of a set A. In a given probability
space, P is the probability measure, and E is the mean-value operator.

2. The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

SELECT picks a small random sample S from X and two pivots u and v from § such that
u < x; <v with high probability, where x; is the kth smallest element of X. Partitioning X
into elements less than u, equal to u, between u and v, equal to v, and greater than v, SELECT
either detects that u or v equals x;, or determines a subset X of X and an integer k such that

x; may be selected recursively as the kth smallest element of X.
Below is a detailed description of the algorithm.

Algorithm 2.1.

SELECT(X, k) (Selects the kth smallest element of X, with 1 <k <n := |X])

Step 1 (Initiation). If n = 1, return x1. Choose the sample size s <n — 1 and gap g > 0.
Step 2 (Sample selection). Pick randomly a sample S := {y1, ..., ys} from X.

Step 3 (Pivot selection). Set i, := max{[ks/n — g1, 1}, i, := min{[ks/n + g7, s}. Let
u and v be the i, th and i, th smallest elements of S, found by using SELECT recursively.
Step 4 (Partitioning). By comparing each element x of X to u and v, partition X
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molL : ={xeX:x<ul,U =xeX: x=u},M :={xeX  u<ux < v}
={xeX:x=v},R:={xe X :v<x}.Ifk <n/2,xis compared to v first, and to

uonlyifx <vandu < v.If k >n/2, the order of the comparisons is reversed.

Step 5 (Stopping test). If |[L| < k<|L U U], return u; else if |LUU U M| < k<n — |R|,

return v.

Step 6 (Reduction). Ifk<|L| set X = =L and k := k; else if n — IR| <k, set X := R and

k—k—n+|R| elsesetX—Mandk—k—|LUU| Setn := |X|

Step 7 (Recursion). Return SELECT(X , k).

Our revision of the original version of SELECT [10, Section 2] has two features. First, the
form of pivot ranks i, and i, at Step 3 will allow us to handle more general choices of the
sample size s and gap g. Second, for distinct keys and u < v, the original version worked
with just three sets: L, U U M U V and R; in contrast, partitioning into five sets at Step 4 is
needed when equal keys occur. Still, our revision inherits the following general properties,
formulated as numbered remarks to ease future references.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from
the following observations. The returns of Steps 1 and 5 deliver the desired element. At
Step 6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of X,and /i < n (since u, v ¢ )A(). Also | S| < n for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the positions
of the elements of X relative to u (or v). For instance, if X is stored as an array, its k smallest
elements may be placed first via interchanges at Step 4 (cf. Section 6). Hence after Step 3
finds u, we may remove from S its first i, smallest elements before extracting v. Further,
Step 4 need only compare u and v with the elements of X \ S.

(c) The following elementary property is needed in Section 4. Let ¢,, denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at most
¢s + cs—i, comparisons with s < n, Step 4 needs at most 2(n — s), and Step 7 takes at most
¢; with 1 < n, by induction ¢, < oo for all n.

3. Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1. Outline of main proof techniques

Since our analysis involves many technicalities, we now outline the main strategy.

We wish to show that for sample sizes and gaps such that s, gn/s and ne=28"5 are o(n),
SELECT needs on average at most n + min{k, n — k} 4+ o(n) comparisons. For an inductive
proof, because the cost of Step 3 is at most twice 1.5s + o(n) from s < n, we only need to
show that the cost of Step 4 is at most n + min{k, n — k} 4+ o(n) and the cost of Step 7 is
o(n), since adding these three costs yields the desired estimate.

Our bounds on the costs of Steps 4 and 7 stem from bounds on the ranks of # and v in
the input set X. Specifically, denote by x]k <---<x¥and yi‘ < -+ <y} the sorted elements
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of the input set X and the sample set S, respectively. Thus x; is the kth smallest element of
X, whereas u = y;‘; and v = yl.*v at Step 3. Hence for i, ~ ks/n — g and i, ~ ks/n + g,
the positions of # and v in the sorted input should not deviate much from k — gn/s and
k + gn/s, respectively. Indeed, for the bounding indices

k; = max {[k —2gn/s],1} and k, := min{[k + 2gn/s], n}, 3.1

each of the unfavorable events u < x, x < u, v < xj, x; < v has probability at
k> Tk k> k.

most e 2875 (bounded as the tail of the hypergeometric distribution; cf. Fact 3.1 below).
Hence, by the Boole—Benferroni inequality, the favorable event x,’(“l Su<xf<v <x,’§r has

probability at least 1 — 4e 28 “/s . Our bound for Step 4 stems from the fact that for k < n/2
and v ix,fr, at most k, — 2 elements x < v are compared to u, whereas for k >n/2 and
x,’(“[ <u, at most n — k; — 1 elements x > u are compared to v. Similarly, at Step 7 for the

favorable event, at most k, — k; — 1 elements x,fl <x < x,’(" comprise X. In each case,
.

expected values are bounded via the Chebyshev inequality (cf. Fact 3.2).

Unfortunately technical complications muddle the picture. First, separate treatment is
needed for k < gn/s or k > n — gn/s (when either u or v becomes redundant; cf. Remark
3.7). Second, to get sharper estimates for specific choices of s and g, our bounds for Steps

4 and 7 employ s, gn/s and ne=28 %5 instead of the simpler o(n) notation.
3.2. Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution
established in [14] and rederived shortly in [4].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r are red,
and r' be the random variable representing the number of red balls drawn. Let p := r/n.
Then

P[r'>ps+g] <e %7 vg=0. (3.2)

We shall also need a simple version of the (left) Chebyshev inequality [22, Section 2.4.2].

Fact 3.2. Let 7 be a nonnegative random variable such that P[z <{] = 1 for some constant
{.Then Ez<t + (P[z > t] for all nonnegative real numbers t.

3.3. Pivot ranks

By intepreting the unfavorable events described below (3.1) in the setting of Fact 3.1, we
now bound their probabilities via (3.2). Recall thatu = y;' and v = y; for yj < --- <yy.

Lemma 3.3. (a) P[x; < ul<e™2%7% ifi, = [ks/n — g].
(b) Plu < xi]1<e 27,
(©) Plv < x}1<e 27 ifiy, = [ks/n + g].
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(d) Plx} < v]<e 27,
(€)iu # Thks/n —gliffk<gn/s;iy # Tks/n+ gl iffn <k +gn/s.

Proof. (a) If x| < y?;, at least s — i, + 1 sample elements y; satisfy
yiZxjy withji=max{j : x] = x}.

In the setting of Fact 3.1, we have r := n — jred elements x; >x7, |, ps = s — js/n and

I+
r'>2s —i,+1.Since i, = [ks/n — g < ks/n— g+ 1and 7>k, we get

r'>ps+G—ks/n+g=ps+g.

Hence P[x} < u]< Plr'>ps + g] <e_2g2/s by (3.2).
(b) If y;t‘ < x,fl, at least i, sample elements y; satisfy

Vi <x

¥ with r := max{j :x;’f < x,’f]}.

Thus we have r red elements x; <x;, ps = rs/n and r'>i,. Now, 1 <r <k; — 1 implies
2<r+1<k; = [k—2gn/s1by(3.1)and thusk; < k—2gn/s+1,s0 —rs/n > —ks/n+2g.
Hence

iy—ps—g=ks/n—g—rs/n—g >0,

ie.,r’ > ps+ g;invoke (3.2) as before.
(o If yl?z < x;/, at least i, sample elements are at most x;°, where r := max, < j. Thus

we have r red elements x; <x;*, ps = rs/n and r'>i,. But
iy—ps—g=2ks/n+g—rs/n—g=0
implies ' > ps + g, so again (3.2) yields the conclusion.

(d) If x,’; < yl.*U , at least s — i, + 1 sample elements are at least xj* 1> where
7= max,r—x J. Thus we have r := n — j red elements x; >x3*+1, ps = s —Js/n and
r'>zs —iy+ 1.Now, iy, < ks/n+g+ 1and 7>k, >k + 2gn/s (cf. (3.1)) yield

s—iy+1l—ps—g=js/n—ks/n—g—14+1—g>0.

Thus x; < v implies r' > ps + g; hence Plx; <vl< Plr'>ps + gl ge—Zgz/s by (3.2).
(e) Follows immediately from the properties of [-] [20, Section 1.2.4]. O

3.4. Partitioning cost
We may now estimate the partitioning cost of Step 4. We assume that only necessary

comparisons are made as in Remark 2.2(b) (but it will be seen that up to s extraneous
comparisons may be accomodated in our analysis; cf. Remark 5.4(a)).
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Lemma 3.4. Let ¢ denote the number of comparisons made at Step 4. Then

Plc<é]=1—e"25 and Ec<é+ 20 —s)e 2875 with (3.32)
c:=n-+min{k,n —k} —s +2gn/s. (3.3b)
Proof. Consider the event A := {¢<¢} and its complement A" := {¢ > ¢}. f u = v,

the elements of X \ S are compared to v (or u) only, so ¢ = n — s <c; hence P[A'] =
P[A' N {u < v}], and we may assume u < v below.
First, suppose k < n/2. Then each element x in X \ S is compared to v first, and then to
uonlyifx < v, so
c=n—s+|{xeX\S:x <v}.
In particular, c<2(n — 5). Since k <n/2,c=n+k —s +2gn/s. If vgx,fr, then
xeX\S:x<viCf{xe X : x<v}\{u,v}

yields [{x € X\ S:x < v}|<kr —2,50c<n —s +k, —2;since k, < k+2gn/s+ 1by
(3.1), we get

c<n+k—s+2gn/s —1<c.

Thus u < v<x; implies A. Therefore, A N {u < v} implies (X <vin{u < v} so

PlA N{u < v}]<P[x,’fr < v]éefzgz/s
(Lemma 3.3(d)). Hence we have (3.3), since by Fact 3.2 (with z := ¢, { := 2(n — ¥)),
Ec<G+20n —s)Plc > E1<&+2(n — s)e 2875

Next, suppose k >n /2. Then each element x in X \ S is compared to « first, and to v only
ifu < x, so

c=n—s+|{xeX\S:u<ux}.

If x,flgu,then
xeX\S:tu<x}C{xeX ux}\{u,v}

yields [{x € X\ S :u < x}|<n —k; — 1; hence k; >k — 2gn/s (cf. (3.1)) gives
c<n—s+m—k)+2gn/s —1<c.

Thus A’ N{u < v}implies {u < x,’(‘l}ﬂ{u < v}, s0 PLA N{u < v}]<Plu < x;:]]ge_zgz/s
(Lemma 3.3(b)), and we get (3.3) as before. [
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3.5. Size of the selected set

The following result will imply that, for suitable choices of s and g, the set X selected at
Step 6 will be “small enough” with high probability and in expectation; we let X := {J and
n := 0 if Step 5 returns u or v, but we do not consider this case explicitly.

Lemma 3.5. P[i <4gn/s| >1— 4672815 and Ef <dgn/s + dne=2875.

Proof. The first bound yields the second one by Fact 3.2 (with z := 7 < n). In each case
below, we define an event £ that implies the event B := {n < 4gn/s}.

First, consider the middle case of gn/s < k<n — gn/s, where i, = [ks/n — g] and
iy = [ks/n + g] (Lemma 3.3(e)). Denote the favorable event by

£ = {x,’:[ gugx,’févgx,fr} .
By Lemma 3.3 and the Boole—Benferroni inequality, its complement £ has P[£'] <4e 28 Ys ,
so P[E]>21 — 42875, By the rules of Steps 4-6, the bracketing property u <x; <v of
& implies X = M, whereas the bound x;:] <u<v gx,fr yields n <k, — k; + 1 — 2; since
kr < k+2gn/s+ 1and k; >k —2gn/s by (3.1), we get n < 4gn/s. Hence £ C B and
thus P[B]> P[£&].

Next, consider the left case of k< gn/s, i.e., i, # [ks/n — g] (Lemma 3.3(e)). If i, #
[ks/n + g1, thenn < k + gn/s (Lemma 3.3(e)) gives 1 < n < k + gn/s<2gn/s; take
& :={n < k + gn/s}, acertain event. For i, = [ks/n + g1, let £ := {x] <v<x,’<"r}; again
PlE]1>1— 2e—287/s by Lemma 3.3(c,d). Now, x; <v implies X C L UM, whereas v <x,fr
givesn<k, — 1 < k+2gn/s<3gn/s; therefore £ C B.

Finally, consider the right case of k > n—gn/s,i.e.,i, # [ks/n+g].1fi, # [ks/n—g],
the inequality k < gn/s givesn < n < 2gn/s;take £ := {k<gn/s}. Fori, = [ks/n — g1,
the event £ = {x,’:l Su<x{} has P[E]>1 — De—287/s by Lemma 3.3(a,b). Now, u <x;
implies X C M U R, whereas x,fl <u yields n<n — k; with k; >k — 2gn/s and thus
n<3gn/s.HenceE CB. O

The following stronger version of Lemma 3.5 is needed in Section 5.
Corollary 3.6. P [c<and i <4gn/s| >1— 4e 2875,

Proof. Check that £ implies A in the proofs of Lemmas 3.4 and 3.5; note that n <2gn/s
yields ¢ <2(n — 5) <c (cf. (3.3b)) in the left and right subcases. [

The proof of Lemma 3.5 reveals that u plays a relatively minor rdle in the left case;
similarly for v in the right case. This motivates the following modification.

Remark 3.7. Suppose Step 3 resets i, := iy if k<gn/s,ori, =i, ifk > n — gn/s,
finding a single pivot u = v in these cases. The preceding results remain valid.
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Table 1
Sample size f(n) := n2/3101/3 1 and relative sample size ¢(n) := f(n)/n

n 103 104 10° 100 5x 100 107 5% 107 108

f(n) 190.449 972.953 4864.76 23995.0 72287.1 117248 353885 568986
¢n) 0.190449  0.097295  0.048648  0.023995  0.014557  0.011725  0.007078  0.005690

4. Analysis of the recursive version
In this section we analyze the average performance of SELECT for various sample sizes.
4.1. Floyd—Rivest’s samples

For positive constants o and f3, consider choosing s = s(n) and g = g(n) as
s :=min{[af(n)],n — 1} and g := (BsInn)'/? with f(n) :=n* Wm'BPn.  @.1)
This form of g gives a probability bound e 28 /s = n=2F for Lemmas 3.4-3.5. To get more
feeling, suppose o = f = l and s = f(n). Let ¢p(n) := f(n)/n. Thens/n = g/s = Pp(n)

and 71/ n is at most 4¢(n) with high probability (at least 1 —4/ n?),i.e., ¢(n) is a contraction
factor; note that ¢(n) ~ 2.4% for n = 10° (cf. Table 1).

Theorem 4.1. Let C, denote the expected number of comparisons made by SELECT for s
and g chosen as in (4.1) with > 1/6. There exists a positive constant y such that
Coe<n+min{k,n —k} +vyf(n) VIi<k<n. “4.2)
Proof. The main idea of our inductive proof is simple: add the costs of Steps 3, 4, 7 and
simplify to get (4.2). To this end, however, we need a few preliminary facts.
The function ¢(t) := f(¢)/t = (In t/t)l/3 decreases to 0 on [e, 00), whereas f (¢) grows
to infinity on [2, 00). Let 6 := 4(f/a)'/%. Pick i1 >3 large enough so that e — 1 <a.f (1) <

n—lande<df(n). Let & := oo+ 1/f (7). Then, by (4.1) and the monotonicity of f and ¢,
we have forn>n

s<af(n) and f(s)<ap@af(n)fn), (4.3)
FOfm) <P f () fn). 4.4)

Indeed, for instance, the first inequality of (4.3) yields f(s) < f(af(n)), whereas
f@fm) =agp@f(n)fmn<ap@fm)fn).

Also for n>n, we have s = [of(n)] = af(n) + ¢ with ¢ € [0, 1) in (4.1). Writing
s =af(n)witha := a4+ ¢/f(n) € [o, ), we deduce from (4.1) that

gn/s = B/ f) < B/ * f (n). 4.5)
In particular, 4gn/s <0 f (n), since o := 4(f/a)'/2. For f>1/6, (4.1) implies

ne—2g2/s <n1—2ﬁ — f(n)n1/3—2ﬂ ln—1/3 n. (4.6)
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Using the monotonicity of ¢ and fon [e, 00), increase 7 if necessary to get
2ap G f (7)) + 5P (i) + 4 ()i’ >~ 1n=13 7<0.95. 4.7

By Remark 2.2(c), there is y such that (4.2) holds for all n <#7; increasing y if necessary,
we have

25426 + 8PP 1013 7<0.05y. (4.8)

Let n’ > 7. Assuming (4.2) holds for all n <n’, we will inductively prove that it holds for
n=n+1.

The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively
toStofindu = yi’; , and then extract v = yi*v from the elements y;‘; 41> -+ Vs (assuming
iy < Iy;otherwise v = u). Since s <n’, the expected number of comparisons is

1.5s +9yf(s) 4+ 1.5(s —i,) +yf(s —iy)

Csi, +Cs—i,iy—iy, <
<35 — 1L5+291(s). (4.9)

u

The partitioning cost of Step 4 is estimated by (3.3) as
Ec<n+min{k,n —k} —s +2gn/s + 2ne=2875. (4.10)
The cost of finishing up at Step 7 is at most
Cip <150 +7f ().
But by Lemma 3.5, P[i >4gn/s]<4e~2¢/5 and i < n, so (cf. Fact 3.2 with z := 1.54 +
7 f (@A)
E[150 4+ 7/ ()] <1.5-4gn/s +7f (4gn/s) + [1.5n +7f(n)] 4e~2¢75.
Since 4gn/s <9 f (n), fis increasing, and f(n) = ¢(n) - n above, we get
£ <6gn/s + £ f() + [L.5+y¢(n)] 4ne=287s, 4.11)
Add the costs (4.9), (4.10) and (4.11) to get
Cot <35 — 1.5429(s) +n +minfk, n — k} — s + 2gn/s + 2ne =287
+6gn/s + 7S F )+ [1.5+ y(n)] dne=2875,
< n+minfk, n — k} + [zs +8gn/s + Sne—ZgZ/S] (4.122)
+7 [2f(s) + f(0f(n) + 4ne_2g2/s¢(n)] ) (4.12b)

By (4.3)—(4.6), the bracketed term in (4.12a) is at most 0.057y f (rn) due to (4.8), and that in
(4.12b) is at most 0.95 f (n) from (4.7); thus (4.2) holds as required. [

EC

n

We now indicate briefly how to adapt the preceding proof to several variations on (4.1);
choices similar to (4.13) and (4.17) are used in [24] and [9], respectively.
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Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1):

s :=min{[af(n)],n — 1} and g := (BsIn0s)"/? with f(n) :=n*3In'n, 4.13)
provided that > 1/4, where 0 > 0. Indeed, the analogue of (4.5) (cf. (4.1), (4.13))

gn/s = (B/a)'* f(m)(nbs/Inn)' > < (B/a)'/? f(n)(In s/ Inn)'/? (4.14)
works like (4.5) for large n (since lim,,_, o In s /In n = 2/3), whereas replacing (4.6) by

ne 2675 = n(05) 2P < f(n) (00) AP 10120/, (4.15)

we may replace al/3-2p by (a@)_zﬁﬁ(l_4ﬁ)/3 in (4.7)—(4.8).
(b) Theorem 4.1 holds for the following modification of (4.1):

s :=min{[af(n)],n — 1} and g := (Bs In® n)'/? with f(n) := n*>1In%/3 n, (4.16)

provided eitherg; = 1 and > 1/6,0r¢ > 1.Indeed, since (4.16)=(4.1) forg; = 1, suppose
g > 1. Clearly, (4.3)—(4.5) hold with o) = S (#)/t. For an arbitrary p >0, choosing
ﬁ> 1/6, for n large enough we have g%/s = f1n n> ,Bln n; hence, replacing 28 by 2,8 and
In~1/3 by In™% /3 in (4.6)—(4.8), we may use the proof of Theorem 4.1.

(¢) Theorem 4.1 remains true if we use §>1/6,

s := min{[an>37,n — 1}, g:=(Ps Inn)'/? and f(n) = n*3 ' n. 4.17)

Again (4.3)—(4.5) hold with ¢ (1) := f(¢)/t, and In"'/? replaces In~'/3 in (4.6)—(4.8).
(d) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).

4.2. Reischuk’s samples

For positive constants o and f3, consider using
s:=min{[on®],n —1} and g:= (Bsn®)"/?> with (4.18a)

n:=max{l + (¢ — &)/2, &} < 1 forsome fixed 0 < ¢ < &. (4.18b)

Theorem 4.3. Let Cy denote the expected number of comparisons made by SELECT for s
and g chosen as in (4.18). There exists a positive constant y, such that for all k <n

Cok <n +min{k, n —k} + v, fy(n)  with f(n) := n'. (4.19)
Proof. We only show how to modify the proof of Theorem 4.1.
The function f;(¢) := t" grows to oo on (0, co), whereas (]f)n(t) = f®/t = -1

decreases to 0, so f;; and qﬁn may replace f and ¢ in the proof of Theorem 4.1. Indeed,
picking 71 > 1 such that ain® <7 — 1, for n >7n we may use

s =an® <afy(n) witha<a<o:=1+1/a%
to get analogues of (4.3)—(4.4) and the following analogue of (4.5)

gn/s = (B/a) P82 L (Bro)l2 £, (n). (4.20)
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Table 2
Relative sample sizes @.(n) and probability bounds e’
n @,(n) == (t/Inn)/3 exp(—2n°)
10° 106 5x10° 107 10° 100 5 x 100 107
e 1/4 116 132 145 152 3.6x10710 34x10728 84x107%2 14x107%

1/6  0.840 0.898 0.946 0969 12x107° 21x107? 44x10712 18x 10712
1/9 0.678 0695 0.711 0719 7.6x107%  93x1070  15x107°  62x107°

Since g%/s = pn® by (4.18), and re=2P"} " decreases to 0 for ¢ >ty = (1 - n/2pe)l/e,
we may replace (4.6) by

ne—28%/5 _ ne—Zﬁnggﬁl—ﬂe—Zﬁﬁ*’fn(n) Vn>ii>t. (4.21)

Hence, with 7i'~e2b"" replacing a2 10137 in (4.7)~(4.8), the proof goes
through. O

We now compare Floyd and Rivest’s choice of (4.1) with Reischuk’s choice of (4.18).

Remarks 4.4. (a) For a fixed ¢ € (0, 1), minimizing # in (4.18b) yields the optimal sample
size parameter

&= (24¢)/3 withnp=2g >2/3 and f,(n) =n>/3; (4.22)

note that if s = an® in (4.18a), then g = (af)'/?n® with &g 1= (1+42¢)/3. To compare the
bounds (4.2) and (4.19) for this optimal choice, let @.(r) := (1% Int)!/3, so that &,(r) =
f@®/f@) = d)n(t)/d)(t). Since lim;,_, o P¢(n) = o0, the choice (4.1) is asymptotically
superior to (4.18). However, @.(n) grows quite slowly, and @,(n) < 1 even for fairly large
n when ¢ is small (cf. Table 2). On the other hand, for small ¢ and § = 1, the probability

bound e~2875 = ¢=21° of (4.18) is weak relative to e=2¢"s = =2 ensured by (4.1).
(b) A tightly related variant of (4.18) consists in using

s:=min{[on®],n — 1} and g := (af)'/?n%
with 0 < &, < & such that
e:=2¢ —& >0 and n:=max{l +¢; — &, &} < L.

Theorem 4.3 covers this choice. Indeed, the equality 1 + &, — &g = 1 + (¢ — &)/2 shows
that (4.18b) remains valid, and we have the following analogues of (4.20) and (4.21):

gn/s = () Pn T2 (B2 (), (4.23)
ne 2675 Ll e 2B £y iz [(1 - ma/Qape'’, (4.24)

so compatible modifications of (4.7)—(4.8) suffice for the rest of the proof. Note that
= (2 4+ ¢)/3 by (a); for the choice &, = 1/2, &, = 7/16 of [28], ¢ = 3/8 and n = 15/16.
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4.3. Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifi-
cation. For a fixed cut-off parameter n¢y > 1, let sSelect(X, k) be a “small-select” routine
that finds the kth smallest element of X in at most C¢y < 00 comparisons when | X | <neyg
(even bubble sort will do). Then SELECT is modified to start with the following:

Step 0 (Small file case): If n := | X| <ncu, return sSelect(X, k).

Our preceding results remain valid for this modification. In fact it suffices if C¢,; bounds
the expected number of comparisons of sSelect(X, k) for n <ny. For instance, (4.2) holds
for n <neye and y > Ceyt, and by induction as in Remark 2.2(c) we have C,; < oo for all n,
which suffices for the proof of Theorem 4.1.

Another advantage is that even small n¢, (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X, k:=k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach n¢y.
For example, for the choice of (4.1) with o = 1 and n¢, = 600, at most four recursive
levels occur for n <231 ~ 2.15 x 10°.

5. Analysis of nonrecursive versions

In this section we prove that nonrecursive versions of SELECT, in which Steps 3 and 7
employ other selection or sorting algorithms with suitable worst-case performance, require
at most n + min{k, n — k} + o(n) comparisons with high probability. In this setting our
analysis is simpler than that of Section 4, because the costs of Step 3 are deterministic,
whereas Corollary 3.6 yields high probability bounds for the outcomes of Steps 4 and 7.

First, consider a nonrecursive version of SELECT in which Steps 3 and 7, instead of SELECT,
employ a linear-time routine (e.g., PICK [3]) that finds the ith smallest of m elements in at
most y pm comparisons for some constant yp > 2.

Theorem 5.1. Let c,,; denote the number of comparisons made by the nonrecursive version
of SELECT for a given choice of s and g. Suppose s <n — 1.
(a) For the choice of (4.1) with f(n) := n?3 '3 n, we have

Ple<n+minfk, n — k) +9p f()]=1—4n"2F  with (5.1a)

p = @Eyp + 2B/ + Q2yp — Dix+ 1/ (], (5.1b)
also with f(n) in (5.1b) replaced by f(3) > 2 (since n >3). Moreover, if > 1/6, then

Ecpr <n+min{k,n —k} + §p + 4yp +2) f(n). (5.2)

(b) For the choice of (4.13), if Os<n, then (5.1a) holds with n—2b replaced by
(020)~2Pn=4B/310=2P3 1. Moreover, if f=1/4, then (5.2) holds with 4yp + 2 replaced
by (4yp +2)(26) %P,

(c) For the choice of (4.18), (5.1) holds with f (n) replaced by f,(n) := n'l and n—2p by
e 2" Moreover, ifnl_”e_m"s <1, then (5.2) holds with f replaced by f.
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Proof. We start with some general estimates. Since Step 3 takes at most 2y ps comparisons,
Step 4 makes ¢ comparisons, and Step 7 takes at most y p2 comparisons, the total cost satisfies

Cnk <27ps + €+ 7 pi.

By Corollary 3.6, the event C := {¢<¢,n < 4gn/s} has probability P[C]>1 — 4285,
If the event C occurs, bounding ¢ by ¢ (cf. (3.3b)) and 7 by 4gn /s above gives
cnk < n+min{k,n —k} —s +2gn/s +2yps + ypldgn/s]
gn—l—min{k,n—k}+(4yp+2)gn/s+(2yp—l)s. (5.3)

Similarly, the average total cost satisfies
Ecnie<2yps+ Ec+ypEn,
so bounding E¢ via Lemma 3.4 and E7 via Lemma 3.5 yields
Ecpe < n+minfk,n —k} + (4yp +2) gn/s + (2yp — 1) s
+ (4yp +2) ne 275, (5.4)

We now spell out consequences of (5.3)—(5.4) for the three cases of our theorem.

(a) Since e=2¢75 = 2B, 5 = [0 f(n)] <af(n) froms < n — 1 and (4.3), and gn/s is
bounded by (4.5), (5.3) implies (5.1). Then (5.2) follows from (4.6) and (5.4).

(b) Proceed as for (a), invoking (4.14)—(4.15) instead of (4.5) and (4.6).

(c) Argue as for (a), using the proof of Theorem 4.3, in particular (4.20)-(4.21).

Corollary 5.2. The nonrecursive version of SELECT requires n + minfk, n — k} + o(n)
comparisons with probability at least 1 — 4n~2F for the choice of (4.1), at least 1 —
4(a0)~2Pn=4B13 for the choice of (4.13), and at least 1 — 4e=2P"" for the choice of (4.18).

The following remarks sketch extensions of our preceding results to several modifications
of SELECT, including the use of sorting algorithms at Steps 3 and 7.

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort S and X by any algorithm that takes
at most yg(s In s +7 In7) comparisons for a constant yg. This cost is at most (s + 1)y Inn,
because s, 1 < n, so we may replace 2y p by ygInn and 4y p by 4y¢Inn in (5.3)~(5.4), and
hence in (5.1)—(5.2). For the choice of (4.1), this yields

Plen<n+min{k,n —k} + 95 f(n)Inn]=>1—4n"2F  with (5.5a)
b= yg + 2"ty (B/a)? + (g —In~ L) [a+ 1/ ()], (5.5b)
Ecp<n +min{k, n — k} + (s + 475 +2In"" n) f(n) Inn, (5.6)

where In"! n may be replaced by In~! 3, and (5.6) still needs p>1/6; for the choices (4.13)
and (4.18), we may modify (5.3)—(5.6) as in Theorem 5.1(b, ¢). Corollary 5.2 remains valid.

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., FIND [1, Section 3.7],
[13]) for which the expected number of comparisons to find the ith smallest of m elements
is at most ypm (then Ecnr <2yps + Ec + yp Ef is bounded as before).
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(c) Suppose Step 6 returns to Step 1 if 7 >4gn/s. By Corollary 3.6, such loops are finite
with probability 1, and do not occur with high probability, for n large enough.

(d) Our results improve upon [11, Theorem 1], which only gives an estimate like (5.1a),
but with 4n~2F replaced by O (n'~2P/3), a much weaker bound. Further, the approach of
[11] is restricted to distinct elements.

We now comment briefly on the possible use of sampling with replacement.

Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since
the tail bound (3.2) remains valid for the binomial distribution [4,14], Lemma 3.3 is not
affected. However, when Step 4 no longer skips comparisons with the elements of S, —s in
(3.3) and (4.10) is replaced by O (cf. the proof of Lemma 3.4), 2s in (4.12a) by 3s and 22 in
(4.8) by 3a. Similarly, adding s to the right sides of (5.3)—(5.4) boils down to omitting —1
in (5.1b) and — In"! 7 in (5.5b). Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for S. This is inconve-
nient for the recursive version, but tolerable for the nonrecursive ones because the sample
sizes are relatively small (hence also (3.3) with —s omitted is not too bad).

(c) Our results improve upon [25, Theorem 3.5], corresponding to (4.18) with ¢ = 1/4
and § = 1, where the probability bound 1 — O(n~'/#) is weaker than our 1 — 46_2"1/4,
sampling is done with replacement and the elements are distinct.

(d) Our results subsume [24, Theorem 2], which gives an estimate like (5.2) for the choice
(4.13) with = 1, using quickselect (cf. Remark 5.3(b)) and sampling with replacement in
the case of distinct elements.

6. Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as
an array x[1: n]. We need the following notation to describe its operations in more detail.

Each stage works with a segment x[/: r] of the input array x[1: n], where 1 <I<r<n
are such that x; < x; fori = 1:1 — 1, x, < x; fori = r + 1:n, and the kth smallest
element of x[1:n] is the (k — [ + 1)th smallest element of x[I: r]. The task of SELECT is
extended: given x[l:r] and [ <k <r, SELECT(x, [, r, k, k_, k;) permutes x[/: r] and finds
I<k_<k<ky<rsuchthatx; < xi forallI<<i < k_, x; = xj forall k_ <i <ky,x; > xi
for all k+ < i <r. The initial call is SELECT(x, 1, n, k, k_, ky).

A vector swap denoted by x[a: b] <> x[b + 1: c] means that the first d := min(b + 1 —
a, c — b) elements of array x[a: c] are exchanged with its last d elements in arbitrary order
if d > 0; e.g., we may exchange x,y; <> Xx.—; for 0<i < d, or x44; < Xc—g+1+i for
0<i <d.

6.1. Ternary partitions

For a given pivot v := x; from the array x[/: r], the following fernary scheme partitions
the array into three blocks, with x,,, < v for/<m < a, x,, = v fora<m<d, x,, > v for
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d < m<r. The basic idea is to work with the five inner parts of the array

]x<v|ic:v|x<v|?|x>v|x:')|x>“‘ (6.1)
l ] p ij q r r

until the middle part is empty or just contains an element equal to the pivot
’fzle<le:le>le:li‘ (6.2)

l pJ i q r

(i.e., j =i —1or j =i — 2), then swap the ends into the middle for the final arrangement

S ) .
a r

Al. [Initialize.] Set v := x; and exchange x; <> xj. Seti := =1, p=Il+1,qg:=r—1
and j:=r :=r.If v < x,,setr :=¢q.If v > x,, exchange x; <> x, and set] = p.

A2. [Increase i until x; > v.] Increase i by 1; then if x; < v, repeat this step.

A3. [Decrease j until x; <v.] Decrease j by 1; then if x; > v, repeat this step.

A4. [Exchange.] (Here x; <v<x;.) If i < j, exchange x; <> x;; thenif x; = v, exchange
X; <> x), and increase p by 1;if x; = v, exchange x; <> x; and decrease ¢ by 1; return
to A2.If i = j (sothat x; = x; = v), increase i by 1 and decrease j by 1.

AS. [Cleanup.] Seta := I+j—p+1landd := f—q—}—i—l.Exchangex[l_: p—1] < x[p:j]
and x[i:q] < x[qg + 1:7].

Step Al ensures that x; <v < x,, so steps A2 and A3 do not need to test whether i < j;
thus their loops can run faster than those in the schemes of [2, Prog. 6] and [20, Exercise
5.2.2-41] (which do need such tests, since, e.g., there may be no element x; > v).

6.2. Preparing for quintary partitions

At Step 1, r — I 4 1 replaces n in finding s and g. At Step 2, it is convenient to place the
sample in the initial part of x[/: r] by exchanging x; <> X; {rand(-—i) for! <i <ry :=I[+s5—1,
where rand(r — i) denotes a random integer, uniformly distributed between O and r — i.

Step 3 uses k, := max{[l—1+is/m—g],l}and k, := min{[/ — 1+is/m+g], rs} with
i :=k—I[+1andm := r—I+1 for therecursive calls. If SELECT(x, [, rs, k., k,,, k;f) returns
kF >ky, wehave v := u := xi,, so we only setk := ky, k} := k;" andresetk;| =k, — 1.
Otherwise the second call SELECT(x, k| + 1, ry, ky, k;, ki) produces v := x, .

After u and v have been found, our array looks as follows:

’x<u|x=u|u <x<v|x=v|x>v|?‘.

[ k., k;‘ ky kl'f re r

(6.4)
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Setting [ ==k, p:==kf + 1, F:=r —ro+kj.q:=F—k[ +k; — 1, we exchange
xlk + 1:rg] <> x[ry + 1:r] and then x[k; : k; ] <> x[k;” 4 1:7] to get the arrangement

’x<u|ic=u|u<x<v| ?_|x=1i|x>v‘. (6.5)

[ [ p ky, q r r

The third part above is missing precisely when u = v; in this case (6.5) reduces to (6.1)
with initial p := p,q :=¢q,i := p— 1 and j := g + 1. Hence the case of u = v is handled
via the ternary partitioning scheme of Section 6.1, with step A1l omitted.

6.3. Quintary partitions

Forthe case of k < [(r+1)/2] and u < v, Step 4 may use the following quintary scheme
to partition x[/: r] into five blocks, with x,, < u forl<m < a, x,, = ufora<m < b,
u<xy <vforb<m<ec,x, =vforc <m<d,x,, > vford < m<r. The basic idea is
to work with the six-part array stemming from (6.5)

’x=u|u<x<v|x<u|?|x>v|x=v‘

x ' . (6.6)
I p P ij q r

until 7 and j cross
’f=u|u_<x<v|x<u|x>v|x=li" (6.7)
I p p Jji q r

we may then swap the second part with the third one to bring it into the middle
’x:u|x<u|u<x<le>v|)€:v‘ (6.8)

l p b ci q r

and finally swap the extreme parts with their neighbors to get the desired arrangement

’x<u|x=u|u<x<v|x=v|x>v‘.

(6.9)

l a b c d r

BI. [Initialize.] Set p :=k,,q :=¢q,i :=p—1land j =g + 1.

B2. [Increase i until x; >v.] Increase i by 1. If x; > v, go to B3. If x; < u, repeat this step.
(At this point, u <x; < v.)If x; > u, exchange x; <> x,; otherwise exchange x; <> x,,
and x,, <> x5 and increase p by 1. Increase p by 1 and repeat this step.

B3. [Decrease j until x; < v.] Decrease j by 1. If x; > v, repeat this step. If x; = v,
exchange x; < x,, decrease ¢ by 1 and repeat this step.

B4. [Exchange.] If i > j, go to B5. Exchange x; < x;. If x; > u, exchange x; <> x, and
increase p by 1; otherwise if x; = u, exchange x; <> x, and x, <> x; and increase p
and p by 1. If x; = v, exchange x; <> x, and decrease ¢ by 1. Return to B2.
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B5. [Cleanup.]Seta :=[+i—p,b:=a+p—1,d :=F—qg+jandc :=d—F+q.Swap
x[p:p—1] < x[p:j], x[l_:ﬁ — 1] < x[p:b — 1], and finally x[i: q] < x[q + 1:7].

For the case of k> | (r +1)/2] and u < v, Step 4 may use the following quintary scheme,
which is a symmetric version of the preceding one obtained by replacing (6.6)—(6.8) with

’x=u|x<u|?|x>v|u<x<v|x=v‘7

; (6.10)
I p ij q q r
’f:u|x<u|x>v|u<x<v|x:v" (6.11)
I P Jji q q r
’x=u|x<u|u<x<v|x>v|x:v‘. (6.12)

] p jb c q F

Cl. [Initialize.] Set p := p,q :=q —k, +k +1,i := p—1and j:=qg + 1, and swap
x[p:k, —1] < x[k; : ql.

C2. [Increase i until x; > u.] Increase i by 1. If x; < u, repeat this step. If x; = u, exchange
X; <> Xp, increase p by 1 and repeat this step.

C3. [Decrease j until x; <u.] Decrease j by 1. If x; <u, go to C4. If x; > v, repeat this
step. (At this point, ¥ < x; <v.) If x; < v, exchange x; <> x,; otherwise exchange
xj <> x4 and x4 <> x5 and decrease g by 1. Decrease ¢ by 1 and repeat this step.

C4. [Exchange.] If i > j, go to C5. Exchange x; < x;. If x; = u, exchange x; <> x, and
increase p by 1. If x; < v, exchange x; <> x, and decrease g by 1; otherwise if x; = v,
exchange x;j <> x4 and x; <> x; and decrease g and g by 1. Return to C2.

CS. [Cleanup.] Seta :=[+i—p,b:=a+p—1,d :=r—qg+jandc:=d—r+g.Swap
x[I: p— 11 < x[p: jl, x[i: q] < x[q + 1: q] and finally x[c + 1: q] <> x[q + 1:7].

To make (6.3) and (6.9) compatible, the ternary scheme may setb :=d +1,c :=a — 1.

After partitioning / and r are updated by setting [ := b if a<<k, then! :=d + 1 if ¢ < k;

r:=cifk<d,thenr :=a—1ifk < b.If] >r, SELECT may return k_ := k4 := kifl =r,

ko :=r+land kg :=1—1ifl > r. Otherwise, instead of calling SELECT recursively,
Step 6 may jump back to Step 1, or Step 0 if sSelect is used (cf. Section 4.3).
A simple version of sSelect is obtained if Steps 2 and 3 choose u# := v := x; when

r — 1 4+ 1< ney (this choice of [9] works well in practice, but more sophisticated pivots
could be tried); then the ternary partitioning code can be used by sSelect as well.

7. Experimental results
7.1. Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook PC
(Pentium M 755 2 GHz, 1.5 GB RAM) under MS Windows XP. The input set X was specified

as a double precision array. For efficiency, the tail recursion was removed and small arrays
with n < ney were handled by Steps 2 and 3 choosing u := v := xy; the resulting version of
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sSelect (cf. Sections 4.3 and 6.3) typically required less than 3.5n comparisons. The choice
of (4.1) was employed, with the parameters o = 0.5, § = 0.25 and n¢,; = 600 as proposed
in [9]; future work should test other sample sizes and parameters.

For comparisons we employed the implementation of QUICKSELECT from [16, Section
6.1], with median-of-3 pivots and the binary partitioning scheme of [16, Sections 2.1
and 4]. Apparently our implementation represents the state-of-the-art; see [16, Section 6.3]
for comparisons with other partitioning schemes, and note that the results of [17, Section 7.3]
suggest that the RISELECT algorithm of [31] tends to be less efficient.

7.2. Testing examples

We used minor modifications of the input sequences of [31], defined as follows:
Random. A random permutation of the integers 1 through n.
Onezero. A random permutation of [7/2] ones and |n/2] zeros.
Sorted. The integers 1 through 7 in increasing order.
Rotated. A sorted sequence rotated left once; i.e., (2,3,...,n, 1).
Organpipe. The integers (1,2, ...,n/2,n/2,...,2,1).

m3killer. Musser’s “median-of-3 killer” sequence withn = 4 and k = n/2:

1 2 3 4 oo k=2 k=1 k k+1 ... 2k—=2 2k—1 2k
I k+1 3 k+3 ... 2k—=3 k-1 2 4 oo 2k=2 2k—1 2k )

Twofaced. Obtained by randomly permuting the elements of an m3killer sequence in posi-
tions 4|log, n| through n/2 — 1 and n/2 + 4|log, n| — 1 through n — 2.
For each input sequence, its (lower) median element was selected for k := [n/2].

These input sequences were designed to test the performance of selection algorithms
under a range of conditions. In particular, the onezero sequences represent inputs con-
taining many duplicates [30]. The rotated and organpipe sequences are difficult for many
implementations of quickselect. The m3killer and twofaced sequences are hard for imple-
mentations with median-of-3 pivots (their original versions [26] were modified to become
difficult when the middle element comes from position k instead of k + 1).

7.3. Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, 20 runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table 3,
where the average, maximum and minimum solution times are in milliseconds, and the
comparison counts are in multiples of ; e.g., column six gives Cayg/n, where Cayg is the
average number of comparisons made over all instances. Thus Vavg = (Cavg — 1.5n)/f (n)
estimates the constant y in the bound (4.2); moreover, we have Cayg ~ 1.5Layg, Wwhere Lyyg
is the average sum of sizes of partitioned arrays. Further, P,y is the average number of
SELECT partitions, whereas N,y is the average number of calls to sSelect and payg is the
average number of sSelect partitions per call; both Py and Naye grow slowly with Inn.
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Table 3
Performance of SELECT on randomly generated inputs

Sequence Size  Time (ms) Comparisons (n) Vavg Lavg  Pavg  Navg Pavg  Savg
n (n) (Inn) (Inn) (%n)

Avg Max Min Avg Max Min

Random 50K 0 0 0 181 185 1.77 523 122 046 101 7.62 411
100K 0 0 0 L72 176 1.65 450 115 045 099 805 320
500K 8 10 0 1.62 163 1.60 414 108 059 127 759 1.86
M 18 20 10 159 1.60 1.57 393 1.06 064 135 8.18 147

2M 36 40 30 1.57 158 1.56 373 1.04 076 159 7.67 1.16
4M 70 81 60 156 156 1.55 361 1.03 094 194 721 091
8M 137 141 130 154 1.55 1.54 345 1.03 098 199 745 0.72
16M 247 251 240 153 154 1.53 344 102 099 202 755 057
Onezero 50K 0 0 0 151 152 1.50 024 102 028 027 117 341
100K 2 10 0 151 151 1.50 023 101 026 025 114 272
500K 9 11 0 151 151 151 026 101 023 023 117 1.6l
M 18 20 10 151 151 1.51 026 101 022 022 120 129
2M 35 41 30 151 151 1.50 026 101 028 027 114 1.03
4M 72 80 70 150 1.50 1.50 026 100 033 026 116 0283
8M 142 151 140 150 1.50 1.50 026 100 038 025 111 0.66
16eM 270 281 260 1.50 1.50 1.50 026 100 036 024 111 0353
Twofaced 50K 1 10 0 180 185 1.74 499 121 046 101 753 411
100K 0 0 173 1.76  1.69 467 1.16 043 09 823 320
500K 10 0 1.62 163 1.61 4.07 1.08 0.61 130 7.85 1.87
M 18 20 10 159 1.60 1.58 382 1.06 0.67 140 7.86 147
2M 37 41 30 1.57 158 1.56 366 1.04 075 158 798 1.16
4M 71 80 70 156 1.56 1.55 360 1.03 095 196 736 092
8M 136 141 130 1.54 155 1.54 348 1.03 09 198 748 0.72
16M 251 251 241 153 154 1.53 338 1.02 1.00 206 7.74 0.57

=)
(=]

Finally, savg is the average sum of sample sizes; sayg/f (1) drops from 0.68 for n = 50K to
0.56 for n = 16M on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero
inputs, whereas the initial s/f(n) ~ o = 0.5. The average solution times grow linearly
with n (except for small inputs whose solution times could not be measured accurately),
and the differences between maximum and minimum times are fairly small (and also partly
due to the operating system). Except for the smallest inputs, the maximum and minimum
numbers of comparisons are quite close, and Caye nicely approaches the theoretical lower
bound of 1.5n; this is reflected in the values of 7,,,. Note that the results for the random
and twofaced sequences are almost identical, whereas the onezero inputs only highlight the
efficiency of our partitioning.

Table 4 exhibits similar features of SELECT on the deterministic inputs. The results for
the sorted and rotated sequences are almost the same, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The performance of QUICKSELECT on the same inputs is described in Tables 5 and 6. On
the random sequences, the expected value of Cayg is 2.75n + o(n) [15]. Twenty random
instances of each size yield fairly accurate estimates, since the values of C,y, in Table 5 are
within 7% of 2.75n; Table 7 shows what happens when 1000 instances are used for each
size. The results for the onezero sequences confirm that binary partitioning may handle
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Table 4
Performance of SELECT on deterministic inputs

Sequence  Size  Time (ms) Comparisons () Vavge Lavg Pavg Navg Pavg Savg
n (n) (Inn) (Inn) (%on)

Avg Max Min Avg Max Min

Sorted 50K 1 20 0 180 1.88 1.71 492 121 044 098 780 4.08
100K 3 30 0 173 176 1.71 476 1.16 044 097 783 321
500K 6 11 0 162 163 1.61 409 1.08 060 127 791 1.86
IM 11 20 10 1.60 1.61 1.58 402 1.06 063 134 805 146

2M 20 20 10 1.57 158 1.57 375 1.04 077 160 746 1.16
4M 35 40 30 1.56 1.56 1.55 359 1.03 095 195 745 091
8M 58 61 50 154 155 1.53 350 1.03 099 203 755 0.72
IeM 105 111 100 1.53 1.54 1.53 337 1.02 1.00 204 7.65 057
Rotated 50K 4 30 0 180 191 1.71 499 121 044 098 790 4.08
100K 2 30 0 174 176 1.70 483 1.16 044 096 791 321
500K 6 10 0 1.62 163 1.61 409 1.08 060 128 801 1.86
IM 11 20 10 1.60 1.60 1.59 403 1.06 064 135 814 147
2M 18 21 10 1.57 158 1.56 374 1.04 076 159 754 1.16
4M 30 31 30 156 1.56 1.55 359 1.03 094 193 726 091
8SM 58 61 50 154 155 1.53 347 1.03 099 202 743 0.72
I6eM 104 111 100 1.53 1.54 153 335 1.02 100 204 7.61 0.57
Organpipe 50K 1 10 0 180 1.84 1.70 504 121 046 1.01 759 4.11
100K 5 30 0 174 176 1.71 488 1.16 045 098 803 322
500K 5 10 0 162 163 1.60 404 108 062 132 775 1.87
IM 14 20 10 1.59 160 1.57 387 1.06 066 139 772 147
2M 27 30 20 1.57 158 1.56 369 1.04 074 156 7.66 1.16
4M 50 51 50 156 1.56 1.55 357 1.03 097 199 722 092
8SM 97 101 90 155 155 1.54 358 1.03 097 199 738 0.72
IeM 169 171 160 1.53 1.54 1.53 339 1.02 099 202 7.68 0.57
m3killer 50K 3 30 0 184 227 1.76 561 123 047 104 769 421
100K 3 10 0 174 177 1.70 483 1.16 044 097 7779 321
500K 8 20 0 1.63 1.64 1.61 424 1.08 058 123 779 1.86
IM 15 20 10 1.59 160 1.58 392 1.06 0.67 140 7.87 147
2M 31 40 30 1.57 158 1.56 3.67 1.04 075 157 785 1.16
4AM 60 61 60 156 156 1.55 364 1.03 096 196 733 092
8SM 117 120 110 154 155 1.54 351 1.03 096 197 739 0.72
IeM 219 221 210 1.53 154 153 337 1.02 097 198 7.64 0.57

equal keys quite efficiently [30]. The results for the remaining inputs are quite good, since
some versions of quickselect may behave poorly on these inputs [31].

As always, limited testing does not warrant firm conclusions, but a comparison of SELECT
and QUICKSELECT is in order, especially for the random sequences, which are most fre-
quently used in theory and practice for evaluating sorting and selection algorithms. On
the random inputs, the ratio of the expected numbers of comparisons for QUICKSELECT
and SELECT is asymptotically 2.75/1.5 ~ 1.83, whereas the ratio of their computing
times approaches 2.3 in Fig. 1. Note that SELECT is not just asymptotically faster; in fact
QUICKSELECT is about 80% slower even on middle-sized inputs. Similar slow-downs oc-
cur on the onezero and twofaced sequences. The slow-downs are less pronounced on the
organpipe and m3killer inputs, but they are still significant even for the “easiest” sorted
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Table 5
Performance of QUICKSELECT on randomly generated inputs
Sequence Size Time (ms) Comparisons (n) Lavg Payg
n (n) (Inn)
Avg Max Min Avg Max Min
Random 50K 1 10 0 2.60 4.07 1.56 2.60 1.44
100K 2 10 0 2.69 3.98 1.63 2.69 1.51
500K 11 20 0 2.61 4.04 1.78 2.61 1.51
M 32 41 20 2.78 4.04 1.77 2.78 1.56
2M 67 100 50 2.70 3.92 1.91 2.70 1.51
aM 135 180 90 2.56 3.46 1.70 2.56 1.59
8M 283 411 200 2.59 3.96 1.78 2.59 1.64
16M 568 751 431 2.57 3.46 1.93 2.57 1.57
Onezero 50K 1 10 0 2.72 2.85 2.67 2.72 1.77
100K 1 10 0 2.74 2.88 2.68 2.74 1.79
500K 12 20 10 2.70 2.73 2.68 2.70 1.82
M 30 40 20 2.75 2.88 2.68 2.75 1.84
2M 69 80 60 2.71 2.85 2.68 2.71 1.84
iM 148 171 140 2.73 3.21 2.68 2.73 1.84
8M 307 330 300 2.73 2.92 2.68 2.73 1.86
16M 621 631 610 2.70 2.79 2.68 2.70 1.87
Twofaced 50K 3 31 0 2.65 443 1.72 2.65 1.50
100K 0 0 0 2.62 3.71 1.75 2.62 1.53
500K 12 20 10 2.63 4.18 1.79 2.63 1.51
M 29 41 20 2.66 4.41 1.76 2.66 1.56
2M 67 90 40 2.67 3.71 1.73 2.67 1.57
4M 144 190 100 2.77 3.83 2.02 2.77 1.57
8M 300 481 190 2.86 4.83 1.68 2.86 1.56
16M 572 921 370 2.60 4.62 1.66 2.60 1.68
600 - QUICKSELECT. 3.0 . QUICKSELECT
500 - . 2.5 ) tt . e
8400 1 ) . 20
g * < SELECT
‘;‘ 300 . 2 SELECT U; 1.5 {--2-9-2.9.@.0.2.0..0.0.0.0..a.0..0.0
g ¢ o °
& 200 A ' o g ™ 1.0
L] o o
100 A * o2 0.5
o
0 0 n
0 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
M] [M]

Fig. 1. Average running times and comparisons per element on random inputs.

and rotated inputs. Note that, relative to QUICKSELECT, the solution times and comparison
counts of SELECT are much more stable across all the inputs. This feature may be important
in applications.
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Performance of QUICKSELECT on deterministic inputs
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Sequence Size Time (m s) Comparisons (1) Lavg Payg
n (n) (Inn)
Avg Max Min Avg Max Min
Sorted 50K 0 0 0 2.94 3.68 2.27 2.94 1.55
100K 0 0 0 2.89 4.63 2.23 2.89 1.62
500K 8 10 0 2.88 4.56 1.96 2.88 1.63
IM 13 20 0 2.96 4.44 1.82 2.96 1.59
2M 29 41 20 3.02 4.44 2.06 3.02 1.54
4M 44 70 30 2.76 4.10 1.99 2.76 1.56
&M 88 120 60 2.80 3.62 1.89 2.80 1.65
16M 175 241 120 2.75 3.74 1.87 2.75 1.63
Rotated 50K 0 0 0 2.82 3.95 1.87 2.82 1.57
100K 9 30 0 2.77 3.79 1.84 2.77 1.55
500K 8 20 0 2.80 4.39 1.74 2.80 1.68
IM 13 20 10 2.87 4.68 1.92 2.87 1.62
2M 23 31 20 2.55 3.44 1.75 2.55 1.56
4M 45 70 20 2.72 4.22 1.61 2.72 1.57
&M 92 161 60 2.85 5.16 1.89 2.85 1.59
16M 177 251 110 2.78 3.97 1.65 2.78 1.57
Organpipe 50K 8 30 0 2.60 3.71 1.73 2.60 1.52
100K 2 10 0 2.71 3.62 2.03 2.71 1.60
500K 9 10 0 2.76 4.77 1.72 2.76 1.53
IM 21 30 10 2.74 4.77 2.00 2.74 1.49
2M 46 60 30 2.83 4.18 1.85 2.83 1.62
4M 92 110 70 2.74 3.73 2.17 2.74 1.54
&M 181 250 120 2.64 4.10 1.77 2.64 1.53
16M 372 470 270 2.61 3.49 1.94 2.61 1.62
m3Kkiller 50K 1 10 0 2.60 3.47 1.88 2.60 1.60
100K 2 10 0 2.89 3.96 1.85 2.89 1.50
500K 10 20 0 2.83 4.90 1.83 2.83 1.59
IM 24 31 10 2.79 3.85 1.90 2.79 1.55
2M 54 70 40 3.06 4.47 1.93 3.06 1.65
4M 102 130 60 2.81 4.06 1.63 2.81 1.60
&M 193 261 150 2.75 443 1.87 2.75 1.63
16M 409 480 320 2.87 3.94 1.87 2.87 1.58
Table 7
Numbers of comparisons per element made on small random inputs
Size 1000 2500 5000 7500 10,000 12,500 15,000 17,500 20,000 25,000
SELECT Avg 280 252 225 215 2.09 2.05 1.99 1.97 1.94 1.90
Max 4.16 334 279 255 286 2.33 2.25 2.47 2.14 2.29
Min 205 199 191 186 179 1.83 1.77 1.77 1.79 1.76
QUICKSELECT Avg 275 272 275 271 273 2.72 2.73 2.76 275 2.72
Max 528 501 6.00 535 5.61 4.66 5.38 5.65 5.42 4.80
Min 1.00 159 158 1.61 1.60 1.59 1.60 1.55 1.59 1.59
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