Nataliya Chekhova
Institut de Mathématiques de Luminy, CNRS - UPR 9016, Case 930-163 avenue de Luminy, F13288 Marseille Cedex 9, France

Received March 1997; Revised September 1997
Communicated by D. Perrin

Abstract

For an irrational rotation, we use the symbolic dynamics on the sturmian coding to compute explicitly, according to the continued fraction approximation of the argument, the measure of the largest Rokhlin stack made with intervals, and the measure of the largest Rokhlin stack whose levels have one name for the coding. Each one of these measures is equal to one if and only if the argument has unbounded partial quotients. (C) 2000 Elsevier Science B.V. All rights reserved

Keywords: Combinatorics on words; Symbolic dynamics; Arithmetics

0. Introduction

In this paper, we use symbolic dynamics and combinatorics on words to solve some open problems in ergodic theory.

The rotations on the torus \mathbb{T}_{1}, defined by $R_{\alpha} x=x+\alpha \bmod 1$, are among the simplest dynamical systems to conceive, and to study for their properties in ergodic theory and topological dynamics. However, the various dynamical invariants which can be used for this study (measure-theoretic or topological entropy, symbolic complexity and more recently measure-theoretic complexity, see [9]), fail to distinguish between R_{α} and $R_{\alpha^{\prime}}$, even when α and α^{\prime} have very different arithmetic properties.

We propose here to consider topological invariants (though they use the unique mea-sure-theoretic structure defined by this topology) which both come from the dynamics of the system, and, as we shall see, give indications on the arithmetics of α. They are linked with the notions of Rokhlin stacks and rank (for a general survey of these notions, the reader may consult [8]); more precisely, we shall use various notions of covering numbers, some of which having been defined in [17] (see also [15, 6]) and in [7].

In every measure-theoretic ergodic system, for every ε and arbitrarily high h, we can find (because of Rokhlin's Lemma, see, for example, [11]) disjoint sets $B, T B, \ldots, T^{h-1} B$ such that the union (called a Rokhlin stack) of these sets has measure greater than
$1-\varepsilon$. Furthermore, a rotation is of rank one [4], which means that such stacks approximate every set: more precisely, in that case, their basis B can be taken of arbitrarily small diameter. However, this does not imply that B is a "good" set, of nonempty interior for example. Can we get the same property with B being an interval? The answer is positive if α has unbounded partial quotients ([16], see [8] for a proof), and as yet unknown in the opposite case.

A rotation can be naturally coded into a symbolic system, and this canonical coding corresponds to sturmian symbolic systems [12]; in the particular case where α is the golden ratio number, this is the system associated to the well-known Fibonacci sequence. This symbolic system can then be studied by using combinatorics on words, the main tool being the graph of words, or Rauzy graph, of the associated sequences, see, for example, [2]. These methods have already been used in [3] to give a new proof of the famous three-length theorem on the distribution of the sequence $\{k \alpha\}$ on the circle, which appeared simultaneously in [18-20]; the reader may consult the survey [1] on these questions. Under a symbolic form, we speak of three-frequency theorem, and these frequencies are computed explicitly in [3] from the Rauzy graphs.

Here, using the explicit values of the frequencies and a geometric argument, we compute precisely the measure of the largest possible Rokhlin stack made with intervals (see definition of F_{I} below), according to the continued fraction expansion of α, and show that it is smaller than 1 when α has bounded partial quotients (a lower bound for F_{I} for rotations appears in [10]). We also consider the arithmetic properties of the number F_{I}. We remark that a related problem is solved by similar methods in [5].

The rank one property translates on the sturmian coding into covering the considered sequences by disjoint iterates of one word, with arbitrarily small gaps and transcription errors $\left(F^{\star}=1\right.$ in the definition below); the invariant F_{I} is equal to a topological invariant of the symbolic system, denoted by F_{C}, which is then completely known. But we may ask a new question: can we cover the sequences by iterates of one word, with arbitrarily small gaps but without errors? The ergodic theory tells us that, because of rank one, this must be true for some codings [14], but it need not be true for the canonical sturmian coding. We show that the answer is yes for the sturmian coding if and only if α has unbounded partial quotients, and compute explicitly, according to the continued fraction expansion of α, the proportion of each sequence that we may cover thus (see definition of F above). The invariant F is not smaller than F_{I}, and is greater in some cases, such as the case of the golden ratio number.

1. Preliminaries

1.1. Covering numbers

For a measure-theoretic dynamical system (X, T, μ) (μ being a probability invariant by T), the (measure-theoretic) covering number $F^{\star}(T)$ ([17], see also $\left.[6,15]\right)$ is defined by:

Definition 1. $F^{\star}(T)$ is the largest real number z such that for every measurable partition $P=\left\{P_{1}, \ldots, P_{r}\right\}$ of X, for every $\varepsilon>0$, for every integer h_{0}, there exist a subset B of X, an integer $h>h_{0}$ and a partition $P^{\prime}=\left\{P_{1}^{\prime}, \ldots, P_{r}^{\prime}\right\}$ of X such that if $A=\bigcup_{j=0}^{h-1} T^{j} B$,

- $B, T B, \ldots, T^{h-1} B$ are disjoint,
- $\mu(A)>z$,
- $\sum_{i=1}^{r} \mu\left(\left(P_{i} \Delta P_{i}^{\prime}\right) \cap A\right)<\varepsilon$,
- each $P_{i}^{\prime} \cap A$ is a union of sets $T^{j} B$, for some $0 \leqslant j \leqslant h-1$.
F^{\star} is an invariant for the notion of isomorphism for measure-theoretic dynamical systems (see [11] for a definition).

If we take for X the torus \mathbb{T}_{1}, and if T is the irrational rotation $T x=x+\alpha \bmod 1$, the only probability μ preserved by T is the Lebesgue measure. The last two conditions in the definition of F^{\star} are realized if the diameter of B is smaller than ε, and it is known that $F^{\star}=1$ [4], but we cannot guarantee that B is a nice set. Hence, we define a new invariant, the covering number by intervals F_{I}.

Let (X, T) be a topological dynamical system, defined on the torus \mathbb{T}_{1} with the usual topology, and uniquely ergodic: there is a unique probability invariant by T, denoted by μ. We call interval an arc of the torus, open to the left and closed to the right.

Definition 2. $F_{I}(T)$ is the largest real number z such that, for every h_{0}, there exist $h \geqslant h_{0}$ and an interval B such that

- $B, T B, \ldots, T^{h-1} B$ are disjoint intervals,
- $\mu\left(\bigcup_{i=0}^{h-1} T^{i} B\right) \geqslant z$.

The result will not be changed if we take open or closed intervals, or if we ask only that the interiors of the $T^{j} B$ are disjoint. The system is said to be of rank one by intervals whenever $F_{I}(T)=1$.
F_{I} depends a priori on both the topological and the measure-theoretic structure of the system; but the measure-theoretic structure is defined uniquely by the topology, and two uniquely ergodic systems defined on the torus have the same F_{I} when they are topologically conjugate. We say that F_{I} is an invariant of topological conjugacy in this class of systems.

Let Λ be a finite alphabet; we consider the one-sided sequences $\left(x_{0}, \ldots, x_{n}, \ldots\right)$, $x_{n} \in \Lambda$.

A word of length $l(w)=h$ is a finite sequence $w=w_{1} \ldots w_{h}$ of elements of Λ. The concatenation of two words v and w is denoted by $v w$. The word $w=w_{1} \ldots w_{h}$ occurs at place i in a sequence $\left(x_{n}\right)$ or a word $x_{0} \ldots x_{s}$ if $x_{i}=w_{1}, \ldots, x_{i+h-1}=w_{h}$. Two occurrences of w, at places i and j, are without overlap if $j>i+h-1$.

We define the shift T on the space $\{0,1\}^{\mathbb{N}}$, by, if $x=\left(x_{n}\right)_{n \in \mathbb{N}},(T x)_{n}=x_{n+1}$. For a sequence u, we define the set X_{u} as the closure of $\{0,1\}^{\mathbb{N}}$ equipped with the discrete topology of the set $\left(T^{n} u\right)_{n \in \mathbb{N}}$. A symbolic dynamical system is the topological dynamical system $\left(X_{u}, T\right)$ for a sequence u on an alphabet Λ. Every topological
dynamical system we consider here is minimal (each orbit is dense) and uniquely ergodic.

In a symbolic dynamical system, for a word w, we call cylinder associated to w and denote by [w] the set of x in X_{u} such that w occurs in x at place 0 ; the height of the cylinder [w] is the length of w.

Let $\left(X_{u}, T\right)$ be a symbolic dynamical system, minimal and uniquely ergodic. For such a system, the covering number of the associated measure-theoretic system has a symbolic expression [7]:

Definition 3. F^{\star} is the largest real number z such that, for every $\varepsilon>0$, for every integer h_{0}, there exists $h \geqslant h_{0}$, a word of length h, denoted by $w=w_{1} \ldots w_{h}$, and a sequence of indices $\left(i_{n}\right)_{n \in \mathbb{N}}$, such that

- $1 / h \#\left\{1 \leqslant j \leqslant h ; w_{i_{n}+j-1} \neq w_{j}\right\}<\varepsilon$,
- $i_{n+1}>i_{n}+h-1$,
- \#($\left.\left\{i_{n}+m, n \in \mathbb{N}, 0 \leqslant m \leqslant h-1\right\} \cap\{0, \ldots, N-1\}\right) \geqslant z N$ for all N large enough.

We define now the symbolic covering number F [7] and the covering number by cylinders F_{C} for a symbolic system:

Definition 4. F is the largest real number z such that, for every $\varepsilon>0$, for every integer h_{0}, there exists $h \geqslant h_{0}$, a word of length h, denoted by $w=w_{1} \ldots w_{h}$, and a sequence of indices $\left(i_{n}\right)_{n \in \mathbb{N}}$, such that

- w occurs in u at each place i_{n},
- $i_{n+1}>i_{n}+h-1$,
- \#($\left.\left\{i_{n}+m, n \in \mathbb{N}, 0 \leqslant m \leqslant h-1\right\} \cap\{0, \ldots, N-1\}\right) \geqslant z N$ for all N large enough.

Definition 5. F_{C} is the largest real number z such that, for every $\varepsilon>0$, for every integer h_{0}, there exists $h \geqslant h_{0}$, a word of length h, denoted by $w=w_{1} \ldots w_{h}$, and a sequence of indices $\left(i_{n}\right)_{n \in \mathbb{N}}$, such that

- w occurs in u at each place i_{n},
- w occurs in u only at places i_{n},
- $i_{n+1}>i_{n}+h-1$,
- $\#\left(\left\{i_{n}+m, n \in \mathbb{N}, 0 \leqslant m \leqslant h-1\right\} \cap\{0, \ldots, N-1\}\right) \geqslant z N$ for all N large enough.

Because of minimality and unique ergodicity, these definitions do not depend on the particular sequence u we used to define X_{u}, and we can immediately give for F and F_{C} definitions using the invariant probability μ :

Definition 6. F is the largest real number z such that, for every h_{0}, there exist $h \geqslant h_{0}$, a sequence $w_{j}, 0 \leqslant j \leqslant h-1,1 \leqslant w_{j} \leqslant r$, and a subset B of $\bigcup_{j=0}^{h-1} T^{-j} P_{w_{j}}$ such that

- $B, T B, \ldots, T^{h-1} B$ are disjoint,
- $\mu\left(\bigcup_{i=0}^{h-1} T^{i} B\right) \geqslant z$.

Definition 7. F_{C} is the largest real number z such that, for every h_{0}, there exist $h \geqslant h_{0}$ and a sequence $w_{j}, 0 \leqslant j \leqslant h-1,1 \leqslant w_{j} \leqslant r$, such that the set $B=\bigcup_{j=0}^{h-1} T^{-j} P_{w_{j}}$ satisfies - $B, T B, \ldots, T^{h-1} B$ are disjoint,

- $\mu\left(\bigcup_{i=0}^{h-1} T^{i} B\right) \geqslant z$.

We see that $F_{C} \leqslant F \leqslant F^{\star}$. We check also that F and F_{C} are invariants of topological conjugacy: if two minimal and uniquely ergodic topological dynamical systems are conjugate, they have the same F and the same F_{C}.

If B is a cylinder $[w]$, its measure $\mu([w])$ is also the frequency $f(w)$ defined as $\lim _{n \rightarrow+\infty} N_{n}(w) /(n+1)$, where $N_{n}(w)$ is the number of occurrences of w in $u_{0} \ldots u_{n}$.

In the same way, if $[w]$ is a cylinder of height h, we call frequency without overlap $d(w)$ the maximal measure of a subset B of $[w]$ such that $B, T B, \ldots, T^{h-1} B$ are disjoint; $d(w)$ is also $\lim _{n \rightarrow+\infty} M_{n}(w) /(n+1)$, where $M_{n}(w)$ is the maximal number of occurrences without overlap of w that we can find in $u_{0} \ldots u_{n}$.

To compute F for a symbolic system is the same as to compute, for arbitrarily long words, the greatest values of the quantity $\tau(w)=l(w) d(w)$; we call $\tau(w)$ the tiling of the word w. To compute F_{C}, we have to consider $\tau(w)$ for words whose all occurrences are without overlap.

In all this study, a set B such that $B, T B, \ldots, T^{h-1} B$ are disjoint is called a basis of a Rokhlin stack of height h; the Rokhlin stack is the set $\bigcup_{i=0}^{h-1} T^{i} B$.

1.2. Sturmian coding and Rauzy graph

In all what follows, $0<\alpha<1$ is an irrational number: let $\alpha=\left[0 ; a_{1}, \ldots, a_{n}, \ldots\right]$ be its simple continued fraction expansion, and $q_{n+1}=a_{n+1} q_{n}+q_{n-1}, p_{n+1}=a_{n+1} p_{n}+p_{n-1}$, $p_{-1}=1, p_{0}=0, q_{-1}=0, q_{0}=1$.
(X, T, μ) is the dynamical system associated to the irrational rotation of angle α on \mathbb{T}_{1}. Throughout this paper, we consider either this rotation or its sturmian coding, that is the symbolic system defined in the following way: if $P_{0}=\left[0,1-\alpha\left[\right.\right.$ and $P_{1}=[1-\alpha, 1[$, we associate to each point x the sequence $P N(x)$ defined by $P N(x)_{n}=i$ if $T^{n} x \in P_{i}$. We use the alphabet $\Lambda=\{0,1\}$ and for example $u=P N(0)$; we still call T the shift on X_{u} and μ the unique invariant probability on the minimal and uniquely ergodic system $\left(X_{u}, T\right)$. The coding by P gives a measure-theoretic isomorphism, and a semitopological conjugacy (the isomorphism is continuous except on a countable number of points) between (X, T, μ) and $\left(X_{u}, T, \mu\right)$.

In the sequel, we identify the elements of X and X_{u} : for a subset B, we can simultaneously ask whether it is an interval, as a subset of X, and whether it is a cylinder, as a subset of X_{u}.

If $L_{h}(u)$ is the set of words of length h occurring in u, then $\# L_{h}(u)=h+1$, that is why we call the coding sturmian. For each word $w=w_{0} \ldots w_{h-1}$ of $L_{h}(u)$, the cylinder [w] is the nonempty interval $\bigcap_{i=0}^{h-1} T^{-i} P_{w_{i}}$, and these $h+1$ intervals are exactly the intervals delimited on the circle by the points $0, T^{-1} 0, \ldots, T^{-h} 0$.

Fig. 1. Sturmian graph.

We define the Rauzy graph Γ_{h} in the following way: the vertices are the points of $L_{h}(u)$, with an edge from w to w^{\prime} if w and w^{\prime} occur successively in u, that is if $w=a v$ and $w^{\prime}=v b$ for letters a and b and a word v of $L_{h-1}(u)$; we label this edge by $a v b \in L_{h+1}$, and the set of edges is L_{h+1}.

The Rauzy graphs of sturmian systems and their evolution with h are described in [2,3]; we state here what we shall use in our study.

The graph Γ_{h} contains one vertex D_{h} which is right special: it has two outgoing edges $D_{h} 0$ and $D_{h} 1$; and one vertex G_{h} is left special: it has two incoming edges $0 G_{h}$ and $1 G_{h} ; D_{h}$ and G_{h} may be the same vertex; every vertex except G_{h} has one incoming edge, every vertex except D_{h} has one outgoing edge.

We say that the central branch contains the vertex G_{h}, its successors as far as D_{h} (included) and (if they exist) the edges between them. The other vertices and edges form two branches, beginning with one of the two outgoing edges of D_{h}, ending with one of the two incoming edges of G_{h}, and containing the edges and (if they exist) vertices between them. The lengths of these last two branches are always different, and we call them respectively short branch and long branch. The short circuit C_{h} (resp. long circuit L_{h}) begins with G_{h} and is made with the central branch followed by the short (resp. long) branch (Fig. 1).

In the sequel, when we speak of words of a branch, this will always mean vertices of that branch. The length of a branch is the number of its vertices, and the frequency of a branch is the common frequency of its vertices.

The vertices of Γ_{h+1} are the edges of Γ_{h}; if $D_{h} \neq G_{h}$, the vertices of a branch of Γ_{h+1} are the edges of the same branch of Γ_{h} (there is a split of an edge). If $G_{h}=D_{h}$, the central branch of Γ_{h} is reduced to one vertex, and there is a burst: for a reversing burst (RB), the vertices of the central branch of Γ_{h+1} are the edges of the long branch
of Γ_{h}, while for a non-reversing burst (NRB) the vertices of the central branch of Γ_{h+1} are the edges of the short branch of Γ_{h}; in both cases, the short branch of Γ_{h+1} is reduced to one edge.

If we enumerate successively the words of length h occurring in $u=P N(0)$ at place i for $i=0, \ldots, n, \ldots$, we get an infinite path γ_{h} in the graph Γ_{h}, beginning with G_{h} and made with a succession of short and long circuits. If for h there is a split, γ_{h} is deduced from γ_{h+1} by replacing C_{h+1} by C_{h}, L_{h+1} by L_{h}; if there is a non-reversing burst, γ_{h} is deduced from γ_{h+1} by replacing C_{h+1} by C_{h}, L_{h+1} by $C_{h} L_{h}$; if there is a reversing burst, γ_{h} is deduced from γ_{h+1} by replacing C_{h+1} by L_{h}, L_{h+1} by $L_{h} C_{h}$.

2. Covering number by intervals

2.1. Geometric computation of F_{I}

Let B be an interval and b its length.
Lemma 1. The property " $B, T B, \ldots, T^{h-1} B$ are disjoint", depends only on b.
Proof. This property is invariant by translation.
We now ask the question: what is the maximal possible length of B such that $B, T B, \ldots, T^{h-1} B$ are disjoint?

Lemma 2. The maximal possible length for an interval which is a basis of a Rokhlin stack of height h is the smallest frequency of a cylinder of length $h-1$.

Proof. Because of Lemma 1, we take $B=[0, b[$. Then $B \cap T B=\emptyset$ if the point $0+b$ is situated before $T 0$ on the oriented circle, and the point $T 0+b$ is situated before 0 on the oriented circle, that is:

$$
B \cap T B=\emptyset \quad \text { if and only if } \quad b \leqslant|T 0-0| .
$$

In the same way, for $T^{2} B$ disjoint from B and $T B$:

$$
\begin{aligned}
& T^{2} B \cap B=\emptyset \Leftrightarrow b \leqslant\left|T^{2} 0-0\right|, \\
& T^{2} B \cap T B=\emptyset \Leftrightarrow b \leqslant\left|T^{2} 0-T 0\right| .
\end{aligned}
$$

Eventually, we have

$$
T^{i} B \cap T^{j} B=\emptyset \Leftrightarrow b \leqslant\left|T^{i} 0-T^{j} 0\right|,
$$

for $i \neq j, i, j \in[0, h-1]$.
Hence, the greatest possible b is

$$
b=\min _{\substack{i \neq j \\ i, j \in[0, h-1]}}\left|T^{i} 0-T^{j} 0\right|=\min _{\substack{i \neq j \\ i, j \in[0, h-1]}}\left|T^{-i} 0-T^{-j} 0\right| .
$$

These form h intervals, which are the h cylinders of height $h-1$, hence the result.

2.2. Evolution of the Rauzy graph

The following analysis is inspired from [3]. We use different notations and give additional data (the lengths of the circuits) which are not explicit in [3].

The reversing bursts take place for [3]

$$
h=q_{n}+q_{n-1}-2
$$

and the lengths of the circuits are q_{n} and q_{n-1}. It can be shown, by recursion, that the three frequencies are

$$
\begin{aligned}
& f_{L}=\left|p_{n-1}-q_{n-1} \alpha\right| \quad \text { for the words which are vertices of the long branch, } \\
& f_{C}=\left|p_{n}-q_{n} \alpha\right| \quad \text { for the words of the short branch, } \\
& f^{+}=\left|p_{n}-p_{n-1}-\left(q_{n}-q_{n-1}\right) \alpha\right| \quad \text { for the words of the central branch, }
\end{aligned}
$$

with $f_{L}>f_{C}, f^{+}=f_{C}+f_{L}$.
Just after the reversing burst, $h=q_{n}+q_{n-1}-1$, with circuits of length q_{n} and $q_{n}+q_{n-1}$. At this stage there are only two frequencies:

$$
\begin{aligned}
f^{+} & =\left|p_{n-1}-q_{n-1} \alpha\right|, \\
f_{L} & =\left|p_{n}-q_{n} \alpha\right| .
\end{aligned}
$$

The new frequency $f_{C}=\left|p_{n}+p_{n-1}-\left(q_{n}+q_{n-1}\right) \alpha\right|$ appears for $h=q_{n}+q_{n-1}$; for this value h is also equal to the length of the long circuit. Then the lengths and frequencies remain the same until the following burst. If $a_{n+1}=1$, the following burst is reversing and takes place for $h=q_{n+1}+q_{n}-2$. If $a_{n+1}>1$, the following bursts take place for $h=k q_{n}+q_{n-1}-2,2 \leqslant k \leqslant a_{n+1}$, and are non-reversing.

If $a_{n+1} \geqslant 2,2 \leqslant k \leqslant a_{n+1},(k-1) q_{n}+q_{n-1}-1 \leqslant h \leqslant k q_{n}+q_{n-1}-2$, the length of the long circuit is $|L|=(k-1) q_{n}+q_{n-1}$, the length of the short circuit is $|C|=q_{n} ;|h|>|L|$ and $|L|>\left(a_{n+1}+1\right)|C|$. The corresponding frequencies are

$$
\begin{align*}
& f^{+}=\left|(k-2) p_{n}+p_{n-1}-\alpha\left[(k-2) q_{n}+q_{n-1}\right]\right|, \tag{1}\\
& f_{C}=\left|(k-1) p_{n}+p_{n-1}-\alpha\left[(k-1) q_{n}+q_{n-1}\right]\right|, \tag{2}\\
& f_{L}=\left|p_{n}-q_{n} \alpha\right| . \tag{3}
\end{align*}
$$

We remark however that there is no word on the short branch for $h=(k-1) q_{n}+$ $q_{n-1}-1$.

We have still the same f_{L}, with $f_{C}>f_{L}$, and $f^{+}=f_{C}+f_{L}$, until $h=a_{n+1} q_{n}+$ $q_{n-1}-2=q_{n+1}-2$, the last non-reversing burst; this f_{L} will remain the smallest frequency for $h=a_{n+1} q_{n}+q_{n-1}-1$, because there is no frequency for the short branch at that stage.

We have the following frequencies for $a_{n+1} q_{n}+q_{n-1}-1 \leqslant h \leqslant\left(a_{n+1}+1\right) q_{n}+q_{n-1}-2$ (except for $h=a_{n+1} q_{n}+q_{n-1}-1$ where there is no word on the short branch):
$f_{L}=\left|p_{n}-q_{n} \alpha\right| \quad$ for the words of the long branch,
$f_{C}=\left|p_{n+1}-q_{n+1} \alpha\right| \quad$ for the words of the short branch,
$f^{+}=\left|p_{n+1}-p_{n}-\left(q_{n+1}-q_{n}\right) \alpha\right| \quad$ for the words of the central branch,
and now $f_{L}>f_{C}$ (the next burst will be reversing), and $f^{+}=f_{C}+f_{L}$.
It will be useful to compare h with the lengths of the circuits: if $(k-1) q_{n}+$ $q_{n-1}-1 \leqslant h \leqslant k q_{n}+q_{n-1}-2$, we have always $h \leqslant|L|+|C|$; among these values of h, we have $h \leqslant|L|$ if $h \leqslant(k-1) q_{n}+q_{n-1}$, and $h>|L|$ otherwise; among these values of h, we have $(k-1)|C|<h \leqslant k|C|$ if $h \leqslant k q_{n}$, and $k|C|<h \leqslant(k+1)|C|$ otherwise.

2.3. Arithmetic computation of F_{I}

The previous analysis shows that if $q_{n}<h \leqslant q_{n+1}$, the smallest frequency of a cylinder of height $h-1$ remains $\left|p_{n}-q_{n} \alpha\right|$. Hence, we have the following value for F_{I}, which appears as a lower bound in [10]:

Lemma 3. For the rotation of angle α, whose convergents are p_{n} / q_{n},

$$
F_{I}=\limsup _{n \rightarrow \infty}\left(q_{n+1}\left|p_{n}-q_{n} \alpha\right|\right)
$$

Proposition 1. We define

$$
\begin{aligned}
v_{n} & =\left[0 ; a_{n}, a_{n-1}, \ldots, a_{1}\right], \\
t_{n} & =\left[0 ; a_{n+1}, a_{n+2}, \ldots\right] .
\end{aligned}
$$

Then, for the rotation of angle $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$,

$$
F_{I}=\limsup _{n \rightarrow \infty} \frac{1}{1+t_{n} v_{n}}
$$

Proof. We call

$$
\begin{equation*}
\left|p_{n}-q_{n} \alpha\right|=f_{n} \tag{4}
\end{equation*}
$$

with $\alpha=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$. If we use the previous analysis for $h=q_{n}+q_{n-1}-2$, and write that the sum of all frequencies is equal to one (knowing the frequencies, the lengths of the circuits and hence the length of each branch as the central branch is reduced to one vertex), we get the classic relation

$$
\begin{equation*}
q_{n} f_{n-1}+q_{n-1} f_{n}=1 \tag{5}
\end{equation*}
$$

and we can write

$$
\begin{equation*}
q_{n} f_{n-1}=\frac{1}{1+\frac{q_{n-1}}{q_{n}} \frac{f_{n}}{f_{n-1}}} . \tag{6}
\end{equation*}
$$

We then use Jager's notations (see, for example, [13]), and put $v_{n}=\left(q_{n-1}\right) / q_{n}, t_{n}=$ $f_{n} /\left(f_{n-1}\right)$; the recursion formulas $q_{n+1}=a_{n+1} q_{n}+q_{n-1}$ and $f_{n-1}=a_{n+1} f_{n}+f_{n+1}$ give the values for t_{n} and v_{n} which we claim in our proposition.

2.4. Properties of F_{I}

Proposition 2. $F_{I}=1$ if and only if α has unbounded partial quotients.
Proof. If there exists a sequence n_{k} such that $a_{n_{k}} \rightarrow \infty$, we have $v_{n_{k}} \leqslant 1 / a_{n_{k}} \rightarrow 0, t_{n} \leqslant 1$ for all n.

Conversely, if for all $n, a_{n} \leqslant M$, there exist K and L such that $K \leqslant t_{n} v_{n} \leqslant L$ and

$$
F_{I}<1
$$

Corollary 1. Let $\theta=\frac{1}{2}(1+\sqrt{5})$ be the golden ratio number; for any $\alpha \in[0,1[\cap \mathbb{Z} \theta+\mathbb{Z}$,

$$
F_{I}=\frac{\theta+2}{5}=\frac{5+\sqrt{5}}{10} .
$$

Proof. For such an α, the a_{n} are ultimately equal to one; $v_{n} \rightarrow 1 / \theta$ if $n \rightarrow \infty, t_{n}=1 / \theta$ for n large enough, hence

$$
F_{I}=\frac{1}{1+\frac{1}{\theta} \frac{1}{\theta}}
$$

and the result.

Corollary 2. For every α,

$$
F_{I} \geqslant \frac{5+\sqrt{5}}{10} .
$$

For every $\alpha \notin \mathbb{Z} \theta+\mathbb{Z}$,

$$
F_{I} \geqslant \frac{3}{4}
$$

Proof. If infinitely often $a_{n} \geqslant 3, F_{I} \geqslant \frac{1}{1+\frac{1}{3}}=\frac{3}{4}$. If infinitely often $a_{n} \geqslant 2$ and $a_{n+1} \geqslant 2$, $F_{I} \geqslant \frac{1}{1+\frac{1}{2} \frac{1}{2}}=\frac{4}{5}$.

There remains the case where $a_{n}=1$ ultimately, except for isolated values of n for which $a_{n}=2$. If $a_{n}=2$ infinitely often, we get $F_{I} \geqslant \frac{1}{1+\frac{4}{10} \frac{3}{4}}=\frac{10}{13}$; for $a_{n}=1$ ultimately, see the last corollary.

The first assertion of Corollary 2 is stated in [10]. We remark that there is no value of α giving an F_{I} between $\frac{1}{10}(5+\sqrt{5})$ and $\frac{3}{4}$.

If α and β have the same partial quotients a_{n} for all n large enough, they have the same F_{I}; thus F_{I} is not a complete invariant of topological conjugacy, even if we restrict ourselves to the class of bounded partial quotients. But α and β may also
give the same F_{I} without having any a_{n} in common: we check that for the periodic expansion $\alpha=[0 ; r, s, r, s, \ldots, r, s, \ldots]$, the associated F_{I} depends only on the product $r s$.

If the expansion of α is ultimately periodic, or equivalently if α is an algebraic number of degree $2, F_{I}$ is still an algebraic number of degree 2 . If the period is 2 , the upper limit giving F_{I} is a true limit, though this is not the case in general.

2.5. Computation of F_{C}

Lemma 4. For every natural integer h, there exists an interval B, of maximal length for the property " B is a basis of a Rokhlin stack of height h ", which is a cylinder of height h.

Proof. We know that the length of B is the smallest frequency of an $(h-1)$-cylinder. Hence, we can take for B an $(h-1)$-cylinder. The word in Γ_{h-1} corresponding to this cylinder is not right special (otherwise, it would be on the central branch of Γ_{h-1} and its frequency would not be the smallest). Hence, we can take the unique right extension of this $h-1$-word, which is an h-word corresponding to an h-cylinder.

Proposition 3. For rotations and the sturmian coding

$$
F_{C}=F_{I} .
$$

Proof. Immediate because of the previous lemma and Definition 7.

3. Symbolic covering number

In all this part, we intend to compute F for the rotation of angle α equipped with the partition P defined in Section 1.2, or, equivalently, the symbolic covering number of the sturmian coding. We already know, because of Proposition 3, that $F \geqslant F_{I}$.

We have to estimate the frequency without overlap of a word w : Section 2.2 gives the frequency of words, but also, by comparing their length with the length of the circuits, which of their occurrences are without overlap. We shall study first the extremal cases, that is the values of h for which the frequencies or the integral parts of the ratios between h and the lengths of the circuits change values. Then we shall show that the other cases do not bring any new situation. h being fixed, we denote by C the short circuit C_{h} and L the long circuit L_{h}. In this section, t_{n}, v_{n} and f_{n} are the quantities defined in the statement and the proof of Proposition 1.

In all what follows, for fixed h : if w is on the short (resp. long) branch of the graph Γ_{h}, it can occur only on the short (resp. long) circuit and its frequency without overlap is not greater than the frequency without overlap of a word of the central branch. On the contrary, a word of the central branch occurs both on the long and the short circuit; hence both the frequency and the frequency without overlap are maximal for these words. So we shall always take a word w of the central branch of the graph;
an occurrence of w can take place either on the short circuit, C, of Γ_{h}, or on its long circuit, L.

3.1. Study of the cases $a_{n+1} \geqslant 2, h=k q_{n}+q_{n-1}-2,2 \leqslant k \leqslant a_{n+1}$

For this value of h, there is a non-reversing burst. The analysis of Section 2.2 shows that $|L|<h<|L|+|C|$ and $k|C|<h<(k+1)|C|$.

We have to select disjoint occurrences of w in an optimal way. For that, we need to know the succession of L and C in the infinite path γ_{h} (see Section 1.2). Taking into account the formulas at the end of Section 1.2, and the sequence of bursts after h, we see that γ_{h} is made with blocks of the form $L C^{a_{n+1}-k+1}$ or $L C^{a_{n+1}-k+2}$.

Lemma 5. If on the N first blocks of the path γ_{h}, there are N_{0} blocks of the form $L C^{a_{n+1}-k+2}$,

$$
\frac{N_{0}}{N} \rightarrow t_{n+1} \quad \text { when } N \rightarrow+\infty
$$

Proof. To the first N blocks correspond N^{\prime} circuits. But

$$
\frac{N}{N^{\prime}} \rightarrow f_{L} \quad \text { and } \quad \frac{\left(a_{n+1}-k+2\right) N_{0}+\left(a_{n+1}-k+1\right)\left(N-N_{0}\right)}{N^{\prime}} \rightarrow f_{C}
$$

hence $N_{0} / N \rightarrow f_{C} / f_{L}-a_{n+1}+k-1$. Hence, the result because of the expression of f_{C} and f_{L} and the recursion relation on f_{n} (see the proof of Proposition 1).

In fact, it can be shown that the succession of blocks is itself a sturmian sequence, associated to the irrational rotation of angle t_{n+1}; we chose to deduce Lemma 5 from already known parameters.

Henceforth, we put $p_{0}=t_{n+1}, p_{1}=1-t_{n+1}$ and call " p_{0}-blocks" the blocks $L C^{a_{n+1}-k+2}$ and " p_{1}-blocks" the blocks $L C^{a_{n+1}-k+1}$.

Lemma 6. For $a_{n+1} \geqslant 2, h=k q_{n}+q_{n-1}-2,2 \leqslant k \leqslant a_{n+1}$ and w a word of the central branch of Γ_{h} there exists $0 \leqslant e_{n} \leqslant 2$, such that

$$
\begin{align*}
\tau(w) & =\left(1-\frac{2}{k q_{n}+q_{n-1}}\right)\left(k q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{k+1}-i+e_{n}\right) f_{n} \tag{7}\\
& =\left(1-\frac{2}{k q_{n}+q_{n-1}}\right)\left(k+v_{n}\right)\left(\frac{a_{n+1}}{k+1}-i+e_{n}\right) q_{n} f_{n} . \tag{8}
\end{align*}
$$

Proof. We put

$$
\begin{equation*}
a_{n+1}=q(k+1)+i, \quad 0 \leqslant i \leqslant k . \tag{9}
\end{equation*}
$$

In each block, we select occurrences without overlap of w. If we have selected an occurrence in a circuit C, we cannot select an occurrence in the following k circuits C, nor in the following circuit L if there are less than k circuits C before it. If we have
selected an occurrence in a circuit L, we cannot select an occurrence in the following circuit (necessarily C). In each block, we number the circuits C from 1 to $\left(a_{n+1}-k+1\right)$ or $\left(a_{n+1}-k+2\right)$. In each case, we can select an occurrence of w, either in the circuit C number one, or in the circuit C number two.

Case 1: In a block we select an occurrence of w in the circuit number 1 . We can a priori select an occurrence in the following circuits:

Hence for $i \in[0, k]$ we can select occurrences:

Case 2: In a block, we select one occurrence of w in the initial circuit L and in the circuit C number 2; we select occurrences:

Hence, in a block we could take $q, q+1$ or $q+2$ occurrences of the word. We consider the first N blocks, where N is chosen arbitrarily large; on average, we took $q+e_{n}$ occurences of w for each block, for some $0 \leqslant e_{n} \leqslant 2$. The number of occurrences without overlap we have selected is $N\left(q+e_{n}\right)$, and hence, from the proof of Lemma 5, we get $d(w)=\left(q+e_{n}\right) f_{L}, l(w)=k q_{n}+q_{n-1}-2$ and we can compute the tiling of
the word w :

$$
\tau(w)=\left(k q_{n}+q_{n-1}-2\right) f_{L}\left(q+e_{n}\right),
$$

and from (3), (4), (5) and (9) we get (7) and (8).
In Section 2.3 we had, with the notations of Proposition 1

$$
\begin{aligned}
F_{I} & =\limsup _{n \rightarrow \infty} q_{n+1}\left|p_{n}-q_{n} \alpha\right| \\
& =\limsup _{n \rightarrow \infty}\left(a_{n+1}+v_{n}\right) q_{n} f_{n} .
\end{aligned}
$$

We see now that if $e_{n}-i \leqslant 0$, then

$$
\tau(w) \leqslant\left(k+v_{n}\right)\left(\frac{a_{n+1}}{k+1}\right) q_{n} f_{n} \leqslant(k+1)\left(\frac{a_{n+1}}{k+1}\right) q_{n} f_{n}=a_{n+1} q_{n} f_{n} \leqslant F_{I} .
$$

Hence in that case, $\tau(w) \leqslant F_{I}$, which is not useful for computing F as we know already $F \geqslant F_{I}$.

We have still to study the case $e_{n}-i>0$, and, as $e_{n} \leqslant 2$, there remain three possibilities, $i \in[0,2]$. Because of (10) and (11) we get:

- $0=i<k-2$: We can take $q+1$ occurrences of w in a block provided we take an occurrence in the initial L; but then we cannot take more than $q-1$ occurrences in the following block, which leaves an average of q. Hence $e_{n}-i=0$:
- $0=i=k-2: e_{n}-i \geqslant 0$;
- $0=i=k-1: k=1$, impossible as $k>1$;
- $0=i=k: k=0$, impossible as $k \neq 0$;
- $1=i<k-2: e_{n}-i \leqslant 0$;
- $1=i=k-2: e_{n}-i \leqslant 0$;
- $1=i=k-1: e_{n}-i \leqslant 0$;
- $2=i=k: e_{n}-i \leqslant 0$.

Hence the only useful case is $0=i=k-2$.

3.1.1. Study of the sub-case $0=i=k-2$

We take $h=2 q_{n}+q_{n-1}-2$; for this value, a non-reversing bursting takes place. With $k=2$ and (9) we get: $a_{n+1}=3 q, a_{n+1}>1$ and there are blocks $L C^{a_{n+1}-1}$ with frequency p_{1} and $L C^{a_{n+1}}$ with frequency p_{0} (in the sense of Lemma 5).

Lemma 7. For $h=2 q_{n}+q_{n-1}-2$, w a word of the central branch of Γ_{h} and $a_{n+1}=3 q$, $q \in \mathbb{N}$

$$
\begin{align*}
\tau(w) & =\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2 q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{3}+\frac{1}{2}\right) f_{n} \\
& =\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(q+\frac{1}{2}\right) \frac{1+v_{n+1}(2-3 q)}{1+t_{n+1} v_{n+1}} \tag{12}
\end{align*}
$$

if $a_{n+2}=1$ and

$$
\begin{aligned}
& \qquad \begin{aligned}
& \tau(w)=\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2 q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{3}+t_{n+1}\right) f_{n} \\
&=\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(q+t_{n+1}\right) \frac{1+v_{n+1}(2-3 q)}{1+t_{n+1} v_{n+1}} \\
& \text { if } a_{n+2}>1
\end{aligned}
\end{aligned}
$$

Proof. We have blocks of type $L C^{a_{n+1}}$ or $L C^{a_{n+1}-1}$. The ulterior evolution gives

$$
\begin{align*}
& C, L \xrightarrow{N R B} C, C L \\
& \vdots \\
& \vdots \\
& \tag{14}\\
& \xrightarrow{R B} C, C^{a_{n+1}-1} L \\
& C^{a_{n+1}-1} \\
& L
\end{align*}, C^{a_{n+1}-1} L C .
$$

According to the following a_{n+2} we distinguish two cases.
Case 1: $a_{n+2}=1$. In that case we continue (14) in the following way: $\xrightarrow{R B} C^{a_{n+1}-1} L C$ $C^{a_{n+1}-1} L C^{a_{n+1}} L$.
We see that after a block $L C^{a_{n+1}-1}$ there is always a block $L C^{a_{n+1}}$.
We choose the occurrences of w that we keep; we call "block of type L " a block where we choose an occurrence of w in the initial L, "block of type C " a block where we choose an occurrence of w in the initial C. After having made our choice, we call, among all the blocks,

$$
\begin{array}{lllll}
A & \text { the proportion of blocks which are } L C^{a_{n+1}} & \text { and of type } L \\
B & \text { the proportion of blocks which are } L C^{a_{n+1}-1} & \text { and of type } L \\
D & \text { the proportion of blocks which are } L C^{a_{n+1}} & \text { and of type } C \tag{15}\\
E & C \\
\text { the proportion of blocks which are } L C^{a_{n+1}-1} & \text { and of type } C \text {. }
\end{array}
$$

Remembering that after $L C^{a_{n+1}-1}$ there is always an $L C^{a_{n+1}}$ and using the above table, we choose the optimal situation: after A we take D or E; after B, D; after D, A or B; and after E, D; thus we take, on average on the first N blocks for an arbitrarily large N, see Lemma 5 and its proof, $(q+1) A+(q+1) B+q D+q E$ occurrences of the word w. The previous relations imply $A+B+E=D+E, A+D=p_{0}$ and $B+E=p_{1}$, which give in the best case $A=\frac{1}{2}\left(p_{0}-p_{1}\right), B=p_{1}, D=\frac{1}{2}\left(p_{0}+p_{1}\right)$ and $E=0$. Hence $q+e_{n}=q(A+B+D+E)+A+B$ and

$$
e_{n}=\frac{p_{0}+p_{1}}{2}=\frac{1}{2} .
$$

Replacing e_{n} in (7) and (8) by $\frac{1}{2}$ and k by 2 , using (5) and $a_{n+1}=3 q$ we get

$$
\tau(w)=\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2 q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{3}+\frac{1}{2}\right) f_{n}
$$

$$
=\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2+v_{n}\right)\left(q+\frac{1}{2}\right) q_{n} f_{n}
$$

hence (12), as we check that $q_{n} f_{n}=v_{n+1} /\left(1+t_{n+1} v_{n+1}\right)$ and $1 / v_{n+1}=3 q+v_{n}$.
Case 2: $a_{n+2}>1$. In that case we continue (14) in the following way: $\xrightarrow{N R B} C^{a_{n+1}-1} L$, $C^{a_{n+1}-1} L C^{a_{n+1}-1} L C$.
We see that after an $L C^{a_{n+1}}$ there is always an $L C^{a_{n+1}-1}$, hence with the notations of (15) and in the optimal situation: after A we take E; after B, D or E; after D, B; and after E, D or E. The previous relations imply that $A+B+E=D+E, A+D=p_{0}$, $B+E=p_{1}$; the relations are the same as in the previous case, but the optimum is not the same because of the constraint that A, B, D, E cannot be negative, which gives in the best case $D=p_{0}, E=p_{1}-p_{0}, D=B$ and $A=0$. Hence

$$
e_{n}=A+B=p_{0}=t_{n+1} .
$$

Replacing e_{n} in (7) and (8) by t_{n+1} and k by 2 , using (5) and $a_{n+1}=3 q$ we get

$$
\begin{aligned}
\tau(w) & =\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2 q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{3}+t_{n+1}\right) f_{n} \\
& =\left(1-\frac{2}{2 q_{n}+q_{n-1}}\right)\left(2+v_{n}\right)\left(q+t_{n+1}\right) q_{n} f_{n},
\end{aligned}
$$

hence (13) because $q_{n} f_{n}=v_{n+1} /\left(1+t_{n+1} v_{n+1}\right)$ and $1 / v_{n+1}=3 q+v_{n}$.
3.2. Study of the cases $h=k q_{n}+q_{n-1}-2, k=a_{n+1}+1$

For this value of h, a reversing burst takes place,

$$
h=\left(a_{n+1}+1\right) q_{n}+q_{n-1}-2=q_{n+1}+q_{n}-2 .
$$

We have $|L|=q_{n+1},|C|=q_{n}$ and $h>|L|, h>\left(a_{n+1}+1\right)|C|$, but $h<|L|+|C|$.

Lemma 8. For $h=q_{n+1}+q_{n}-2$ and w a word of the central branch of Γ_{h}

$$
\begin{align*}
\tau(w) & =\left(1-\frac{2}{q_{n+1}+q_{n}}\right) \frac{q_{n+1}+q_{n}}{2}\left(f_{n+1}+f_{n}\right) \\
& =\left(1-\frac{2}{q_{n+1}+q_{n}}\right) \frac{\left(1+t_{n+1}\right)\left(1+v_{n+1}\right)}{2\left(1+t_{n+1} v_{n+1}\right)} . \tag{16}
\end{align*}
$$

Proof. Then $C L \xrightarrow{R B} L, L C$. If $a_{n+2}=1, L, L C \rightarrow L C, L C L$, if $a_{n+2}>1, L, L C \rightarrow L, L^{2} C$. In both cases the short circuit is isolated, and we can keep an occurrence of w if and only if we take neither the previous one nor the following one; so we can take one occurrence in two; $d(w)=\frac{1}{2} f^{+}$.

We remember that $f^{+}=f_{C}+f_{L}=\left(\left|p_{n}-q_{n} \alpha\right|+\left|p_{n+1}-q_{n+1} \alpha\right|\right)$ and $l(w)=q_{n+1}+$ $q_{n}-2$, hence the result.

3.3. Study of the cases $a_{n+1} \geqslant 2, h=(k-1) q_{n}+q_{n-1}, 2 \leqslant k \leqslant a_{n+1}$

For this value of h there is a split, the next burst will be non-reversing, and $h=|L|$; we have $(k-1)|C|<h<k|C|$; the frequencies are given by (1)-(3).

We reason like in Section 3.1, but with two modifications:

- as $h=|L|$, we can always take an occurrence of w in the first circuit C of each block,
- as $h<k|C|$, we take q such that $a_{n+1}=q k+i, 0 \leqslant i \leqslant k-1$.

As previously, we have only to study the case $i=0=k-2$.

Lemma 9. For $h=q_{n}+q_{n-1}$, w a word of the central branch of Γ_{h} and $a_{n+1}=2 q$, $q \in \mathbb{N}$,

$$
\begin{align*}
\tau(w) & =\left(q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{2}+t_{n+1}\right) f_{n} \tag{17}\\
& =\left(q+t_{n+1}\right) \frac{1+v_{n+1}(1-2 q)}{1+t_{n+1} v_{n+1}} . \tag{18}
\end{align*}
$$

Proof. We have $k=2, a_{n+1}=2 q$ and blocks $L C^{a_{n+1}-1}$ with frequency p_{1} and $L C^{a_{n+1}}$ with frequency p_{0}. For $i=0=k-2$ we can take q occurences of w in circuits C of a block, and one occurrence in the following circuit L if and only if we are in a block $L C^{a_{n+1}}$. By the same technique as in Section 3.1.1 we find an analogous formula for $d(w)$, with e_{n} replaced by $e_{n}^{\prime}=p_{0}=t_{n+1}$, which gives

$$
\begin{aligned}
\tau(w) & =\left(q_{n}+q_{n-1}\right)\left(\frac{a_{n+1}}{2}+t_{n+1}\right) f_{n} \\
& =\left(1+v_{n}\right)\left(q+t_{n+1}\right) q_{n} f_{n},
\end{aligned}
$$

hence (18) because $q_{n} f_{n}=v_{n+1} /\left(1+t_{n+1} v_{n+1}\right)$ and $1 / v_{n+1}=2 q+v_{n}$.

However, we check that, if $q>1, \tau(w) \leqslant 1 /\left(1+t_{n+1} v_{n+1}\right)$ and that if $q=1, \tau(w) \leqslant$ $\left(1+t_{n+1}\right)\left(1+v_{n+1}\right) / 2\left(1+t_{n+1} v_{n+1}\right)$. So these cases do not bring anything new in the final formula.

3.4. Study of the cases $a_{n+1} \geqslant 2, h=k q_{n}, 2 \leqslant k \leqslant a_{n+1}$

For this value of h there is a split, the next burst will be non-reversing, and h is a multiple of $|C|$; we have $h>|L|, h=k|C|$; the frequencies are given by (1)-(3); we make the computations for a word of the central branch. The reasoning is as in Section 3.1, except that as $h=k|C|$, we take q such that $a_{n+1}=q k+i, 0 \leqslant i \leqslant k-1$.

As previously, we have only to consider the case $i=0=k-2$.
We have $k=2, a_{n+1}=2 q$ and blocks $L C^{a_{n+1}-1}$ with frequency p_{1} and $L C^{a_{n+1}}$ with frequency p_{0}. For $i=0=k-2$, if we take the occurrence of w in the first C of a block, we can take q occurrences w in a circuit C, and its occurrence in the following circuit L if and only if we are in a block $L C^{a_{n+1}}$. If we take the occurrence of w in the second C of a block, we can take q occurrences of w in a circuit C and not its
occurrence in the following circuit L if we are in a block $L C^{a_{n+1}}, q-1$ occurrences of w in a circuit C and its occurrence in the following circuit L if we are in a block $L C^{a_{n+1}-1}$. The technique of Section 3.1.1 gives an analogous formula for $d(w)$, with e_{n} replaced by $e_{n}^{\prime \prime}=\frac{1}{2} p_{0}=\frac{1}{2} t_{n+1}$, which gives

$$
\begin{aligned}
\tau(w) & =2 q_{n}\left(\frac{a_{n+1}}{2}+\frac{t_{n+1}}{2}\right) f_{n} \\
& =\frac{q_{n} f_{n}}{t_{n}}=\frac{1}{1+t_{n} v_{n}} \leqslant F_{I},
\end{aligned}
$$

these cases bring nothing new.

3.5. Study of the other cases

The other extremal cases to study are the case $h=|L|$ and the case where h is a multiple of $|C|$, but when the next burst is reversing.

The first one corresponds to $h=a_{n+1} q_{n}+q_{n-1}$; we check that the frequency without overlap of a word of the central branch is not greater than the one of a word of the long branch, and that $\tau(w)$ is not greater than F_{I} (it will be close to F_{I} if n is large enough).

The second one corresponds to $h=\left(a_{n+1}+1\right) q_{n}$, and gives an estimate not greater than for $h=\left(a_{n+1}+1\right) q_{n}+q_{n-1}-2$.

The previous analyses show that if $h_{1}<h_{2}$ give the same frequencies and the same relations with the lengths of the circuits (namely, for $h=h_{1}$ and $h=h_{2}$, the same values for the upper integral parts of $h /\left|L_{h}\right|$ and $h /\left|C_{h}\right|$), the greatest frequency without overlap of a word of length h_{i} is the same for $i=1$ and 2 . The tiling $\tau(w)$ will then be the best for $h=h_{2}$. Hence, the general case of any h between $q_{n}+q_{n-1}-2$ and $q_{n+1}+q_{n}-2$ always give tilings not greater than in one of the particular cases studied above.

3.6. Final formula and properties of F

Proposition 4. If

$$
\begin{aligned}
& v_{n}=\left[0 ; a_{n}, a_{n-1}, \ldots, a_{1}\right], \\
& t_{n}=\left[0 ; a_{n+1}, a_{n+2}, \ldots\right],
\end{aligned}
$$

then, for the rotation of angle $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$ and the sturmian coding,

$$
\begin{align*}
F=\max \{ & \left\{\limsup _{n \rightarrow+\infty} \frac{1}{1+t_{n} v_{n}},\right. \tag{19}\\
& \limsup _{n \rightarrow+\infty} \frac{\left(1+t_{n}\right)\left(1+v_{n}\right)}{2\left(1+t_{n} v_{n}\right)}, \tag{20}
\end{align*}
$$

$$
\begin{equation*}
\limsup _{\substack{n \rightarrow+\infty \\ a_{n}=3 \\ a_{n+1}=1}}\left(\frac{3}{2}\right) \frac{1-v_{n}}{1+t_{n} v_{n}}, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left.\limsup _{\substack{n \rightarrow+\infty \\ a_{n} \equiv 0 \bmod 3 \\ a_{n+1}=2}}\left(\frac{a_{n}}{3}+t_{n}\right) \frac{1+v_{n}\left(2-a_{n}\right)}{1+t_{n} v_{n}}\right\} . \tag{22}
\end{equation*}
$$

Proof. The above discussion gives these formulas, after replacing n by $n-1$ for aesthetic reasons. The comparison of formulas, see below, implies that (21) does not apply if $a_{n}>3$ (because then (20) prevails) and that (22) does not apply if $a_{n+1}>2$ (because then (19) prevails).

Proposition 5. $F=1$ if and only if α has unbounded partial quotients.

Proof. Every quantity in formulae (19)-(22) is bounded away from 0 and 1 if α has bounded partial quotients.

If α and β have the same a_{n} for all n large enough, they have the same $F ; F$ is not a complete invariant for measure-theoretic isomorphism, even if we restrict ourselves to the class of bounded partial quotients.

Comparison of formulas: For a given value of n,

- (19) prevails over (20) if and only if $\left(1+t_{n}\right)\left(1+v_{n}\right) \leqslant 2$; (20) prevails if $\left(a_{n}, a_{n+1}\right)=$ $(1,1),(1,2)$ ou $(2,1)$, and (19) prevails if $a_{n} \geqslant 2, a_{n+1} \geqslant 2$ and at least one of them is not smaller than 3;
- if $a_{n}=3$ and $a_{n+1}=1$, (21) always prevails over (19);
- if $a_{n}=3$ and $a_{n+1}=1$, (21) prevails over (20) if and only if $v_{n-1}+2 t_{n+1}(1+$ $\left.v_{n-1}\right) \geqslant 2$;
- if $a_{n}=3 q$ for an integer q and $a_{n+1}=2$, (19) prevails over (22) if and only if $v_{n-1} \leqslant\left(q-2 t_{n}\right) /\left(q+t_{n}-1\right)$.

Corollary 3. For $\alpha=\theta-1$

$$
F=\frac{4 \theta+3}{10}=\frac{5+2 \sqrt{5}}{10}
$$

which represents the proportion of the Fibonacci sequence which can be covered by occurrences without overlap of one word (see Definition 4).

Other examples: F is given by formula (20) for the inverse of the golden ratio number $\alpha=\theta-1$, but also for example for the periodic expansion $[0 ; 1,6,1,6, \ldots]$.

We may have $F=F_{I}$ also for α with bounded partial quotients; this is the case, for example, as soon as all the a_{n} are not smaller than 3. For the periodic expansions $\alpha=[0 ; 4,6,4,6, \ldots]$ and $\beta=[0 ; 3,8,3,8, \ldots], \alpha$ and β give the same F_{I} and the same F without having any a_{n} in common.

Unfortunately, we have not been able to find an explicit example where F is given by formula (21).
F is given by formula (22), for example, for the periodic expansion $\alpha=$ $[0 ; 2,3,2,3, \ldots]$. If $\beta=[0 ; 1,6,1,6, \ldots], \alpha$ and β give the same F_{I} but different F.

Acknowledgements

The author wishes to thank Valérie Berthé and Christian Mauduit for their help.

References

[1] P. Alessandri, V. Berthé, Three distance theorem and combinatorics on words, preprint, 1997.
[2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité $2 n+1$, Bull. Soc. Math. France 119 (1991) 199-215.
[3] V. Berthé, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci. 165 (1996) 295-309.
[4] A. del Junco, Transformations with discrete spectrum are stacking transformations, Canadian J. Math. 24 (1976) 836-839.
[5] M. Deléglise, Recouvrement optimal du cercle par les multiples d'un intervalle, Acta Arith. 59 (1991) 21-35.
[6] S. Ferenczi, Systèmes localement de rang un, Ann. Inst. Henri Poincare 20 (1) (1984) 35-51.
[7] S. Ferenczi, Tiling and local rank properties of the Morse sequence, Theoret. Comput. Sci. 129 (1994) 369-383.
[8] S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997) 35-65.
[9] S. Ferenczi, Measure-theoretic complexity of ergodic systems, Israël J. Math, to appear.
[10] M. Guenais, Une majoration de la multiplicité spectrale d'opérateurs associés à des cocycles réguliers, Israël J. Math., to appear.
[11] P. Halmos, Lectures on ergodic theory, Math. Soc. Japan (1956).
[12] G.A Hedlund, M. Morse, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940) 1-42.
[13] H. Jager, The distribution of certain sequences connected with the continued fraction, Indag. Math. 48 (1986) 61-69.
[14] S. Kalikow, Twofold mixing implies threefold mixing for rank-1 transformations, Ergodic Th. Dyn. Syst. 4 (1984) 237-259.
[15] A.B. Katok, E.A. Sataev, Standardness of automorphisms of transposition of intervals and fluxes on surfaces, Math. Zametki 20 (4) (1976) 479-488 (in Russian); translated in Math. Notes Acad. Sci. USSR (1977) 826-831.
[16] A.B. Katok, A.M. Stepin, Approximations in ergodic theory, Usp. Math. Nauk. 22 (5) (1967) 81-106 (in Russian); translated in Russian Math. Surveys 22 (5) (1967) 77-102.
[17] J.L. King, Joining-rank and the structure of finite-rank mixing transformations, J. Analyse Math. 51 (1988) 182-227.
[18] V.T. Sos, On the distribution mod 1 of the sequence $n \alpha$, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1 (1958) 127-134.
[19] J. Surányi, Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1 (1958) 107-111.
[20] S. Swierczkowski, On successive settings of an arc on the circumference of a circle, Fundam. Math. 46 (1958) 187-189.

