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Abstract In this paper, we use Bernstein polynomials to seek the numerical solution of a class of

nonlinear variable order fractional differential equation. The fractional derivative is described in the

Caputo sense. Three different kinds of operational matrixes with Bernstein polynomials are derived

and are utilized to transform the initial equation into the products of several dependent matrixes

which can also be regarded as the system of nonlinear equations after dispersing the variable. By

solving the system of equations, the numerical solutions are acquired. Numerical examples are pro-

vided to show that the method is computationally efficient and accurate.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, fractional calculus has attracted many
researchers successfully in different disciplines of science and
engineering [1]. Recently, more and more researchers are
finding that numerous important dynamical problems exhibit
fractional order behavior which may vary with space and time.

This fact illustrates that variable order calculus provides an
effective mathematical framework for the description of com-
plex dynamical problems. The concept of a variable order

operator is a much more recent development, which is a new
orientation in science. Different authors have proposed differ-
ent definitions of variable order differential operators, each of
these with a specific meaning to suit desired goals. The variable

order operator definitions recently proposed in the science
include the Riemann-Liouville definition, Caputo definition,
Marchaud definition, Coimbra definition and Grünwald defi-

nition [2–7].
Since the kernel of the variable order operators is too com-

plex for having a variable-exponent, the numerical solutions of
ein poly-
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variable order fractional differential equations are quite diffi-
cult to obtain, and have not attracted much attention. To
the best of the authors’ knowledge, there are few references

appeared on the discussion of the numerical of variable order
fractional differential equation. Coimbra [4] employed a con-
sistent approximation with first-order accurate for the solution

of variable order differential equations. Soon et al. [7] pro-
posed a second-order Runge–Kutta method which is consist-
ing of an explicit Euler predictor step followed by an implicit

Euler corrector step to numerically integrate the variable order
differential equation. Lin et al. [8] studied the stability and the
convergence of an explicit finite-difference approximation for
the variable-order fractional diffusion equation with a nonlin-

ear source term. Zhuang et al. [9] obtained explicit and implicit
Euler approximations for the fractional advection–diffusion
nonlinear equation of variable-order. Aiming a variable-

order anomalous subdiffusion equation, Chen et al. [10]
employed two numerical schemes one fourth order spatial
accuracy and with first order temporal accuracy, the other with

fourth order spatial accuracy and second order temporal accu-
racy. However, as far as we know, no one had attempted to
seek the numerical solution of the variable order fractional dif-

ferential equations.
So in this paper, we introduce the Bernstein polynomials to

seek the numerical solution of the variable order fractional equa-
tion. With the simple structure and perfect properties [11,12],

Bernstein polynomials play an important role in the solution of
integral equations and differential equations [11–17].

In this paper, our study focuses on a class of variable order

fractional nonlinear differential equation as follows:

DaðtÞðu2ðtÞÞ þDbðtÞuðtÞ þ u0ðtÞ ¼ fðtÞ ð0 < aðtÞ; bðtÞ 6 1Þ ð1Þ
where DaðtÞðu2ðtÞÞ and DbðtÞðuðtÞÞ are fractional derivative in
Caputo sense. Among uðtÞ; fðtÞ are assumed to be casual func-

tions on ½0; 1�, and fðtÞ is known and uðtÞ is unknown.
The reminder of the paper is organized as follows: Sections

2 and 3 are preparative, the definitions and properties of the
variable order fractional order integrals and derivatives and

Bernstein polynomials are given in Sections 2 and 3 respec-
tively. In Section 4, three kinds of operational matrixes with
Bernstein polynomials are derived, and we applied the opera-

tional matrixes to solve the equation as given at beginning.
In Section 5, we present some numerical examples to illustrate
the method and demonstrate efficiency of the method. We end

the paper with a few concluding remarks in Section 6.

2. Basic definitions and properties of the variable order

fractional integrals and derivatives

In this section, before stating our main results, we firstly pro-
vide some basic definitions and properties of the variable order

fractional order calculus [2–7].

Definition 2.1. Caputo’s fractional derivative with order
aðtÞ; ð0 < aðtÞ 6 1Þ is

DaðtÞuðtÞ ¼ 1

Cð1� aðtÞÞ
Z t

0þ
ðt� sÞ�aðtÞ

u0ðsÞds

þ ðuð0þÞ � uð0�ÞÞt�aðtÞ

Cð1� aðtÞÞ ð2Þ
Please cite this article in press as: Chen Y-m et al., Numerical study of a class of var
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If we assume the starting time in a perfect situation, we can

get the definition as follows:

DaðtÞuðtÞ ¼ 1

Cð1� aðtÞÞ
Z t

0þ
ðt� sÞ�aðtÞ

u0ðsÞds ð3Þ

Generally, we adopt Eq. (3) as the definition of fractional

derivative in Caputo sense.

With the definition above, we can get the following

formula:

DaðtÞ
� c ¼ 0 ð4Þ

DaðtÞ
� xb ¼

0 b ¼ 0
Cðbþ1Þ

Cðbþ1�aðtÞÞ x
b�aðtÞ b ¼ 1; 2; 3 � � �

(
ð5Þ
3. Bernstein polynomials and their properties

3.1. The definition of Bernstein polynomials basis

The Bernstein Polynomials of degree n are defined by

Bi;nðxÞ ¼
n

i

� �
xið1� xÞn�i ð6Þ

By using the binomial expansion of ð1� xÞn�i
, Eq. (6) can

be expressed as

Bi;nðxÞ ¼
n

i

� �
xið1� xÞn�i ¼

Xn�i

k¼0

ð�1Þk n

i

� �
n� i

k

� �
xiþk

ð7Þ
Now, we define

UðxÞ ¼ ½B0;nðxÞ;B1;nðxÞ; � � � ;Bn;nðxÞ�T ð8Þ
where we can have

UðxÞ ¼ ATnðxÞ ð9Þ
where

A ¼

ð�1Þ0 n

0

� �
ð�1Þ1 n

0

� �
n� 0

1

� �
� � � ð�1Þn�0 n

0

� �
n� 0

n� 0

� �

0 ð�1Þ0 n

1

� �
n� 1

0

� �
� � � ð�1Þn�1 n

1

� �
n� 1

n� 1

� �

..

. ..
. . .

. ..
.

0 0 � � � ð�1Þ0 n

n

� �

2
666666666664

3
777777777775
ð10Þ

TnðxÞ ¼ 1; x; x2; . . . ; xn
� �T ð11Þ

Clearly

TnðxÞ ¼ A�1UðxÞ ð12Þ
3.2. Function approximation

A function fðxÞ 2 L2ð0; 1Þ can be expressed in terms of the
Bernstein Polynomials basis. In practice, only the first
ðnþ 1Þ terms of Bernstein Polynomials are considered. Hence

fðxÞ ’
Xn

i¼0

ciBi;nðxÞ ¼ cTUðxÞ ð13Þ
iable order nonlinear fractional differential equation in terms of Bernstein poly-
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where c ¼ ½c0; c1; . . . ; cn�T.
Then we have

c ¼ Q�1ðf;UðxÞÞ ð14Þ
where Q is an ðnþ 1Þ � ðnþ 1Þ matrix, which is called the dual
matrix of UðxÞ.

Q ¼
Z 1

0

UðxÞUTðxÞdx ¼
Z 1

0

ðATnðxÞÞðATnðxÞÞTdx

¼ A

Z 1

0

TnðxÞTT
n ðxÞdx

� �
AT ¼ AHAT

ð15Þ

where H is a Hilbert matrix:

H ¼

1 1
2

� � � 1
nþ1

1
2

1
3

� � � 1
nþ2

..

. ..
. . .

. ..
.

1
nþ1

1
nþ2

� � � 1
2nþ1

2
666664

3
777775 ð16Þ
3.3. Convergence analysis

Suppose that the function f : ½0; 1� ! R is mþ 1 times contin-

uously differentiable, f 2 Cmþ1½0; 1�, and

Y ¼ SpanfB0;n;B1;n;B2;n � � � ;Bn;ng is vector space. If cTUðxÞ is
the best approximation of f out of Y, then the mean error
bound is presented as follows:

kf� cTUk2 6
ffiffiffi
2

p
MS

2mþ3
2

ðmþ 1Þ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3

p ð17Þ

where M ¼ maxx2½0;1�jfðmþ1ÞðxÞj;S ¼ maxf1� x0; x0g.

Proof. We consider the Taylor polynomials

f1ðxÞ ¼ fðx0Þ þ f0ðx0Þðx� x0Þ þ f00ðx0Þ ðx� x0Þ2
2

þ � � �

þ fðmÞðx0Þ ðx� x0Þm
m!

which we know

jfðxÞ � f1ðxÞj ¼ fðmþ1ÞðeÞ�� �� ðx� x0Þmþ1

ðmþ 1Þ! 9e 2 ð0; 1Þ

Since cTUðxÞ is the best approximation of f, so we have

kf� cTUk22 6 kf� f1k22 ¼
R 1

0
ðfðxÞ � f1ðxÞÞ2dx

¼ R 1

0
fðmþ1ÞðeÞ�� �� ðx�x0Þmþ1

ðmþ1Þ!

� 	2

dx

6 M2

½ðmþ1Þ!�2
R 1

0
ðx� x0Þ2mþ2

dx

6 2M2S2mþ3

½ðmþ1Þ!�2ð2mþ3Þ

And taking square roots we have the above bound.
4. The operational matrix in terms of Bernstein polynomials

4.1. The operational matrix of the section as u0ðtÞ in terms of

Bernstein polynomials

If we approximate the function uðtÞ with Bernstein polynomi-

als, it can be written as Eq. (13), namely uðtÞ ’ cTUðtÞ.
Please cite this article in press as: Chen Y-m et al., Numerical study of a class of var
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The differentiation of vector UðtÞ can be expressed as

U0ðtÞ ¼ DUðtÞ ð18Þ
where D is the ðnþ 1Þ � ðnþ 1Þ operational matrix of deriva-
tives for Bernstein polynomials. Form Eq. (11) we have

U0ðtÞ ¼ A

0

1

..

.

ntn�1

2
66664

3
77775 ð19Þ

Define the ðnþ 1Þ � ðnÞ matrix Vðnþ1Þ�n and vector T�
nðtÞ as

Vðnþ1Þ�n ¼

0 0 � � � 0

1 0 � � � 0

0 2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � n

2
6666664

3
7777775
; T�

nðxÞ ¼

1

t

..

.

tn�1

2
66664

3
77775

ðn�1Þ

ð20Þ

Eq. (19) may then be restated as

U0ðtÞ ¼ AVðnþ1Þ�nT
�
nðtÞ ð21Þ

We now expand vector T�
nðtÞ in terms of UðtÞ. From Eq.

(12), we get

T�
nðtÞ ¼ B�UðtÞ ð22Þ

where

B� ¼

A�1
½1�

A�1
½2�

..

.

A�1
½n�

2
666664

3
777775 ð23Þ

A�1
½k� is kth row of A�1, k ¼ 1; 2; � � � ; n.
Then we have

U0ðtÞ ¼ AVðnþ1Þ�nB
�UðtÞ ð24Þ

Therefore we get the operational matrix of the section as
u0ðtÞ as follows:
u0ðtÞ ¼ ½cTUðtÞ�0 ¼ cTU0ðtÞ ¼ cTAVðnþ1Þ�nB

�UðtÞ ð25Þ
4.2. The operational matrix of the section as DaðtÞðu2ðtÞÞ in terms
of Bernstein polynomials

According to Eqs. (5) and (13), we have

DaðtÞðu2ðtÞÞ

¼DaðtÞðcTUðtÞUTðtÞcÞ

¼DaðtÞðcTAT�
nðtÞðAT�

nðtÞÞTcÞ

¼DaðtÞðcTAT�
nðtÞT�T

n ðtÞATcÞ

¼ cTADaðtÞðT�
nðtÞT�T

n ðtÞÞATc

¼ cTADaðtÞ

1

t

..

.

tn

2
66666664

3
77777775

1 t . .. tn½ �

0
BBBBBBB@

1
CCCCCCCA
ATc
iable order nonlinear fractional differential equation in terms of Bernstein poly-

http://dx.doi.org/10.1016/j.asej.2016.07.002


4 Y.-m. Chen et al.
¼ cTADaðtÞ

1 t . . . tn

t t2 . . . tnþ1

..

. ..
. . .

. ..
.

tn t2n . . . t2n

2
66664

3
77775ATc

¼ cTA

0 Cð2Þ
Cð2�aðtÞÞt

1�aðtÞ . .. Cðnþ1Þ
Cðnþ1�aðtÞÞt

n�aðtÞ

Cð2Þ
Cð2�aðtÞÞt

1�aðtÞ Cð3Þ
Cð3�aðtÞÞt

2�aðtÞ . .. Cðnþ2Þ
Cðnþ2�aðtÞÞt

nþ1�aðtÞ

..

. ..
. . .

. ..
.

Cðnþ1Þ
Cðnþ1�aðtÞÞt

n�aðtÞ Cðnþ2Þ
Cðnþ2�aðtÞÞt

nþ1�aðtÞ . .. Cð2nþ1Þ
Cð2nþ1�aðtÞÞt

2n�aðtÞ

2
6666664

3
7777775
ATc

¼ cTAMATc

Let

M ¼

0 Cð2Þ
Cð2�aðtÞÞ t

1�aðtÞ . . . Cðnþ1Þ
Cðnþ1�aðtÞÞ t

n�aðtÞ

Cð2Þ
Cð2�aðtÞÞ t

1�aðtÞ Cð3Þ
Cð3�aðtÞÞ t

2�aðtÞ . . . Cðnþ2Þ
Cðnþ2�aðtÞÞ t

nþ1�aðtÞ

..

. ..
. . .

. ..
.

Cðnþ1Þ
Cðnþ1�aðtÞÞ t

n�aðtÞ Cðnþ2Þ
Cðnþ2�aðtÞÞ t

nþ1�aðtÞ . . . Cð2nþ1Þ
Cð2nþ1�aðtÞÞ t

2n�aðtÞ

2
666666664

3
777777775

ð27Þ

M is called the operational matrix of the section as DaðtÞðu2ðtÞÞ
in terms of Bernstein polynomials. So we have

DaðtÞðu2ðtÞÞ ¼ cTAMATc ð28Þ
4.3. The operational matrix of the section as DbðtÞuðtÞ in terms of

Bernstein polynomials

Similar to the process above, we have

DbðtÞuðtÞ ¼ DbðtÞcTUðtÞ
¼ cTDbðtÞUðtÞ
¼ cTDbðtÞATnðtÞ

¼ cTADbðtÞ

1

t

..

.

tn

2
66664

3
77775 ¼ cTA

0
Cð2Þ

Cð2�bðtÞÞx
�bðtÞ

Cð3Þ
Cð3�bðtÞÞx

2�bðtÞ

..

.

Cðnþ1Þ
Cðnþ1�bðtÞÞ x

n�bðtÞ

2
666666664

3
777777775

¼ cTA

0 0 � � � 0

0 Cð2Þ
Cð2�bðtÞÞ t

�bðtÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Cðnþ1Þ
Cðnþ1�bðtÞÞ t

�bðtÞ

2
666664

3
777775

1

t

..

.

tn

2
66664

3
77775

¼ cTANA�1UðtÞ
ð29Þ

We define

N ¼

0 0 � � � 0

0 Cð2Þ
Cð2�bðtÞÞ t

�bðtÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Cðnþ1Þ
Cðnþ1�bðtÞÞ t

�bðtÞ

2
666664

3
777775 ð30Þ

So the initial equation is transformed to the form as
follows:

cTAMATcþ cTANA�1UðtÞ þ cTAVðnþ1Þ�nB
�UðtÞ ¼ fðtÞ ð31Þ
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Dispersing Eq. (31) with the variable t, by using Mathemat-
ica 9.0, we can obtain c. So the numerical solution of the orig-
inal problem is obtained ultimately.

5. Numerical examples

In order to demonstrate the efficiency and the practicability of

the proposed method, we present an example and find its
numerical solutions through the method described in
Section 4.

Example 1.

D
t
4ðu2ðtÞÞ þD

t
3uðtÞ þ u0ðtÞ ¼ fðtÞ

uð0Þ ¼ 0 t 2 ½0; 1�
where

fðtÞ ¼ 2tþ 18t2�
t
3

ð18� 9tþ t2ÞC 1� t
3


 �
þ 6144t4�

t
4

ð�16þ tÞð�12þ tÞð�8þ tÞð�4þ tÞC 1� t
4


 � :
The exact solution of the problem is uðtÞ ¼ t2.

We solved the problem by adopting of the technique

described in Section 4 with using of Mathematica 9.0.

Taking n ¼ 2, dispersing ti ¼ ki
2
� 1

4
ðki ¼ 1; 2Þ, we get

c ¼ 0 �1:25� 10�16 1
� �T

, so the numerical solution is

uðtÞ ¼ cTUðtÞ, where UðtÞ ¼ ð1� tÞ2 2ð1� tÞt t2
� �T

. In

other words, the algebraic expression is uðtÞ ¼ �1:25�
10�16ð1� tÞtþ t2. The absolute error between the numerical

solution and exact solution is displayed as in Fig. 1.

Taking n ¼ 3, dispersing ti ¼ ki
3
� 1

6
ðki ¼ 1; 2; 3Þ, we get

c ¼ 0 0 1 1½ �T, so the numerical solution is

uðtÞ ¼ cTUðtÞ UðtÞ ¼ ð1� tÞ3 3ð1� tÞ2t 3ð1� tÞt2 t3
� �

.

In other words, the algebraic expression is

uðtÞ ¼ ð1� tÞt2 þ t3. The absolute error between the numerical
solution and exact solution is displayed as in Fig. 2.

Taking n ¼ 4, dispersing ti ¼ ki
4
� 1

8
ðki ¼ 1; 2; 3; 4Þ, we get

c1 ¼ 0 0 1 2 1½ �T, so the solution is uðtÞ ¼ cTUðtÞ, where
UðtÞ ¼ ð1� tÞ4; ð1� tÞ3t; ð1� tÞ2t2; ð1� tÞt3; t4

h i
. In other

words, the algebraic expression is uðtÞ ¼ ð1� tÞ2t2þ
2ð1� tÞt3 þ t4.

The absolute error between the numerical solution and
exact solution is displayed as in Fig. 3.

Example 2.

D
cos t
3 ðu2ðtÞÞ þD

t
4uðtÞ þ u0ðtÞ ¼ fðtÞ

uð0Þ ¼ 0 t 2 ½0; 1�
where

fðx;tÞ¼1þ2tþ 4t1�
t
4ð8þ7tÞ

ð�8þ tÞð�4þ tÞC 1� t
4


 �

þ
18t2�

cost
3 108ð1þ tÞ2�3ð7þ6tÞcostþcos2 t
h i

ðcost�12Þðcost�9Þðcost�6Þðcost�3ÞC 1� cost
3


 �
iable order nonlinear fractional differential equation in terms of Bernstein poly-
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Figure 2 The absolute error when n ¼ 3 for Example 1.

Figure 3 The absolute error when n ¼ 4 for Example 1.

Figure 4 The absolute error when n ¼ 2 for Example 2.

Numerical study of a class of variable order nonlinear fractional differential equation 5
The exact solution of the above problem is uðtÞ ¼ tþ t2.

Taking n ¼ 2, dispersing ti ¼ ki
2
� 1

4
ðki ¼ 1; 2Þ, we get

c ¼ 0 0:5 2½ �T, so the numerical solution is uðtÞ ¼ cTUðtÞ,
where UðtÞ ¼ ð1� tÞ2 2ð1� tÞt t2

� �T
. In other words, the

algebraic expression is uðtÞ ¼ ð1� tÞtþ 2t2. The absolute error
between the numerical solution and exact solution is displayed
as in Fig. 4.

Taking n ¼ 3, dispersing ti ¼ ki
3
� 1

6
ðki ¼ 1; 2; 3Þ, we get

c ¼ 0 1
3

1 2
� �T

, so the numerical solution is uðtÞ ¼
cTUðtÞ, and UðtÞ ¼ ð1� tÞ3 3ð1� tÞ2t 3ð1� tÞt2 t3

� �
.

The algebraic expression is uðtÞ ¼ ð1� tÞt2 þ 3ð1� tÞt2 þ 2t3.
The absolute error between the numerical solution and exact
solution is displayed as in Fig. 5.

Taking n ¼ 4, dispersing ti ¼ ki
4
� 1

8
ðki ¼ 1; 2; 3; 4Þ, we get

c1 ¼ 0 1
4

2
3

5
4

2
� �T

, so the solution is uðtÞ ¼ cTUðtÞ,
UðtÞ ¼ ð1� tÞ4; 4ð1� tÞ3t; 6ð1� tÞ2t2; 4ð1� tÞt3; t4

h i
. In other

words, the algebraic expression is uðtÞ ¼ ð1� tÞ3þ
4ð1� tÞ2t2 þ 5ð1� tÞt3 þ 2t4. The absolute error between the
numerical solution and exact solution is displayed as in Fig. 6.

Example 3.

D
et

3 ðu2ðtÞÞ þD
t
2uðtÞ þ u0ðtÞ ¼ fðtÞ

uð0Þ ¼ 0 t 2 ½0; 1�
where

fðx; tÞ ¼ 3t2 þ 720t6�
et

3

C 7� et

3


 �� 48t3�
t
2

ðt� 6Þðt� 4Þðt� 2ÞC 1� t
2


 �
The exact solution of the problem is uðtÞ ¼ t3

Taking n ¼ 3, dispersing ti ¼ ki
3
� 1

6
ðki ¼ 1; 2; 3Þ, we can get

the coefficient as c ¼ 0 4:09� 10�17 7:77� 10�17 1
� �T

, so

the numerical solution is uðtÞ ¼ cTUðtÞ, where

UðtÞ ¼ ð1� tÞ3 3ð1� tÞ2t 3ð1� tÞt2 t3
� �

. In other words,

the algebraic expression is

uðtÞ ¼ �1:23� 10�16ð1� tÞ2tþ 2:33� 10�16ð1� tÞt2 þ t3. The

absolute error between the numerical solution and exact solu-
tion is displayed as in Fig. 7.

Taking n ¼ 4, dispersing ti ¼ ki
4
� 1

8
ðki ¼ 1; 2; 3; 4Þ, we get

c1 ¼ 0 0 0 1
4

1
8

h iT
, so the solution is uðtÞ ¼ cTUðtÞ,
Figure 1 The absolute error when n ¼ 2 for Example 1.
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UðtÞ ¼ ð1� tÞ4; 4ð1� tÞ3t; 6ð1� tÞ2t2; 4ð1� tÞt3; t4
h i

. In other

words, the algebraic expression is uðtÞ ¼ ð1� tÞt3 þ t4. The
absolute error between the numerical solution and exact solu-
tion is displayed as in Fig. 8.

From Examples 1–3, we can draw a conclusion that no
matter what type of the derivative is, the numerical solutions
are in quite agreement with the exact solutions.

From Figs. 1–8, we can see that the absolute error is very

small and only a small number of Bernstein polynomials are
needed to get a satisfactory result. From the above example,
we can draw a conclusion that the approach proposed in this

paper can be effectively used in seeking the numerical solution
of the variable order fractional nonlinear integral-differential
iable order nonlinear fractional differential equation in terms of Bernstein poly-
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Figure 7 The absolute error when n ¼ 3 for Example 3.

Figure 8 The absolute error when n ¼ 4 for Example 3.

Figure 5 The absolute error when n ¼ 3 for Example 2.

Figure 6 The absolute error when n ¼ 4 for Example 2.
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equation. At the same time we also prove the feasibility of the
method. Also we can find that the numerical solutions are in
good agreement with the exact solution. At last, it is worth

mentioning that the proposed method is more convenient in
computation than other methods such as the method in Ref.
[8–10].

6. Conclusion

In this work, three kinds of fractional operational matrixes

which contain the variable x or t in terms of Bernstein polyno-
mials are derived and are utilized to seek the numerical solu-
tion of the variable order fractional nonlinear equations.

With the operational matrixes, we transformed the initial
equation into the products of some matrixes which can also
be viewed as the system of algebraic nonlinear equations after

dispersing the variable. Solving the nonlinear equations, the
numerical solutions can be obtained.

As is known to all, it is difficult to solve the fractional non-
linear differential equations. The method proposed in this arti-

cle is simple in theory and easy in computation, so this method
has deserving applications in solving the various kinds of frac-
tional differential equations.
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