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Many materials contain inhomogeneities or inclusions that may greatly affect their mechanical proper-
ties. Such inhomogeneities are for example encountered in the case of composite materials or materials
containing precipitates. This paper presents an analysis of contact pressure and subsurface stress field for
contact problems in the presence of anisotropic elastic inhomogeneities of ellipsoidal shape. Accounting
for any orientation and material properties of the inhomogeneities are the major novelties of this work.
The semi-analytical method proposed to solve the contact problem is based on Eshelby’s formalism and
uses 2D and 3D Fast Fourier Transforms to speed up the computation. The time and memory necessary
are greatly reduced in comparison with the classical finite element method. The model can be seen as an
enrichment technique where the enrichment fields from the heterogeneous solution are superimposed to
the homogeneous problem. The definition of complex geometries made by combination of inclusions can
easily be achieved. A parametric analysis on the effect of elastic properties and geometrical features of the
inhomogeneity (size, depth and orientation) is proposed. The model allows to obtain the contact pressure
distribution – disturbed by the presence of inhomogeneities – as well as subsurface and matrix/inhomo-
geneity interface stresses. It is shown that the presence of an inclusion below the contact surface affects
significantly the contact pressure and subsurfaces stress distributions when located at a depth lower than
0.7 times the contact radius. The anisotropy directions and material data are also key elements that
strongly affect the elastic contact solution. In the case of normal contact between a spherical indenter
and an elastic half space containing a single inhomogeneity whose center is located straight below the
contact center, the normal stress at the inhomogeneity/matrix interface is mostly compressive. Finally
when the axes of the ellipsoidal inclusion do not coincide with the contact problem axes, the pressure
distribution is not symmetrical.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

From a fundamental point of view the presence of inhomogene-
ities in a matrix is very interesting for contact problems, first
because it modifies the subsurface stress field, and also because
it disturbes very significantly the contact pressure distribution.
On one hand, for metallic materials, aluminum alloys or ceramics,
failure mechanisms can be initiated by the presence of material
impurities such as cavities, inclusions or precipitates. Inclusions
can raise internal stresses, at the origin of fatigue cracks which in
turn reduce the service life of mechanical components such as roll-
ing elements (Voskamp, 1985; Nelias et al., 1999; Nugent et al.,
2000; Vignal et al., 2003; Chen et al., 2008). On the other hand,
in heterogeneous materials such as composite materials, the pres-
ence of inhomogeneities that are added to improve structural
properties strongly affects the distribution of stresses including
at the surface interface.

The disturbance field caused by the presence of an inhomogene-
ity embedded in an infinite space has been investigated by many
authors (Eshelby, 1957, 1959, 1961; Willis, 1964; Walpole, 1967;
Asaro and Barnett, 1975; Mura and Furuhashi, 1984). Eshelby
(1957, 1959) was the first to initiate a method dealing with an
inhomogeneity in an infinite space, which is called the ‘Equivalent
Inclusion Method’ (EIM). Moschovidis and Mura (1975) extended
this method to obtain the Eshelby’s tensor for the exterior points
of an ellipsoidal inclusion as a function of harmonic and bi-har-
monic potentials. All these authors limited their analysis to an infi-
nite body.

The analytical solutions for displacements, strains and stresses in
a half-space are difficult to obtain. Many authors investigated the ef-
fect of inhomogeneities in a half-space subjected to a prescribed
load. To solve the problem, some assumptions are usually made.
Mindlin and Cheng (1950) considered a half-space containing a
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Nomenclature

Letters
a� contact radius for contact problem
a1; a2; a3

semi-axes of an ellipsoidal inhomogeneity
B�ijkl influence coefficients that relating the stress rij at point

ðx3
1; x2; x3Þ to the constant eigenstrain at the point
ðxk

1; x
k
2; x

k
3Þ

CM
ijkl; CI

ijkl elastic constants of the matrix and the inhomogeneity

e0
ij deviatoric part of e0

ij

EM ; EI Young’s modulus of the matrix and the inhomogeneity
Eðh0; kÞ; Fðh0; kÞ elliptical integrals
h distance between the two surfaces of the contacting

bodies
Iijkl the fourth-order identity tensor
Kn coefficients in the normal displacement at the contact

surface due to the contact pressure
kM
; kI bulk modulus of the matrix and the inhomogeneity

L1; L2; L3 lengths of the three sides of the matrix in EF model
Mij influence coefficients relating the stress rij at the point

ðx1; x2; x3Þ to the normal traction rn within a discretized
area centered at ðxk

1; x
k
2;0Þ

n1; n2; n3 grid number in the half-space along the Cartesian
directions x1; x2; x3, respectively

P normal applied load
P0 maximum Hertzian pressure
p contact pressure distribution
R indenter radius
Sijkl components of the Eshelby’s tensor
u0

i displacements corresponding to the strain applied at
infinity e0

ij
ui disturbed contribution of the displacements
W applied exterior load
dx3 depth of the inclusion from the surface of the matrix in

EF model
xI ¼ ðxI

1; x
I
2; x

I
3Þ Cartesian coordinates of the inclusion center

Greek letters
e0

ij infinite applied strain
eij strain due to eigenstrains
e�ij eigenstrain due to the presence of inhomogeneities

e0
kk spherical part of e0

ij

ep initial eigenstrain of the inhomogeneity
r0

ij stress corresponding to the infinite applied strain e0
ij

rij disturbed contribution of the stresses
/; W harmonic and biharmonic potentials of mass density e�ij
/ij::, Wij:: harmonic and biharmonic potentials of mass density

xixj . . .
dij Kronecker symbol
rn normal pressure due to the summation of both symmet-

ric inclusions
Dx1; Dx2 half size of the discretized surface area
mM ; mI Poisson’s ratio of the matrix M and the inclusion I
lM ; lI shear modulus of the matrix and the inclusion
c the ratio of the inhomogeneity’s Young’s modulus to the

matrix’s
d the ratio of the inhomogeneity’s bulk modulus to the

matrix’s
g the ratio of the inhomogeneity’s shear modulus to the

matrix’s
h the tilt angle of the inhomogeneity in the x1Ox3 plan

Acronyms and fast Fourier transforms
2D-FFT two-dimensional fast Fourier transform
3D-FFT three-dimensional fast Fourier transform
FFT�1 inverse FFT operationbBijkl frequency response of coefficients Bijkl in the frequency

domainbMij frequency response of coefficients Mij in the frequency
domain
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hydrostatic eigenstrain; Aderogba (1976) assumed a spherical
inclusion with an arbitrary eigenstrain; Chiu (1977, 1978) limited
his analysis to a cuboidal inclusion with an incompressible eigen-
strain; Seo and Mura (1970) assumed an ellipsoidal inclusion with
a pure dilatational eigenstrain.

Meanwhile, for the exterior points of the ellipsoidal inclusion in
an infinite space, the Eshelby’s tensor was expressed in terms of
the harmonic and bi-harmonic potentials of the inclusion (Mura
et al., 1987). The potentials can also be written in terms of elliptical
integrals.

Several authors already investigated stress concentration due to
the presence of inclusions or inhomogeneities. However until very
recently they did not solve the contact problem, instead they as-
sumed the hertzian contact pressure distribution as input (see
for example Kabo and Ekberg, 2002; Kabo and Ekberg, 2005 or
Courbon et al., 2005). For the 2D contact problem the effect of
the presence of an elliptical heterogeneous inclusion on the contact
loading was first solved numerically by Kuo (2007) and Kuo (2008)
using the Boundary Element Method (BEM). The effect of inhomo-
geneities on the three-dimensional contact problem solution was
first investigated by Nelias and co-workers (Leroux et al., 2010;
Leroux and Nelias, 2011) and then by Zhou et al. (2011a) based
on the semi-analytical method (SAM) initially proposed by Jacq
et al. (2002) to numerically solve 3D elastic–plastic contact. For
more details on the modeling of inclusions in contact problems
the reader may refer to the review paper by Zhou et al. (2013).
SAMs have been continuously developed since ten years, and
then successfully applied to several leading edge problems such
as thermo-elastic–plastic contact modeling (Boucly et al., 2005),
modeling of plasticity and accumulation of plastic strains (Boucly
et al., 2005; Wang et al., 2005), running-in (Nelias et al., 2007)
and wear modeling (Gallego and Nelias, 2007; Gallego et al.,
2006, 2010a,b), simulation of single impact (Chaise et al., 2011),
shot peening (Chaise et al., 2012) and low plasticity burnishing
(Nelias et al., 2007; Chen et al., 2008; Chaise and Nelias, 2011),
modeling of cuboidal inclusions (Liu and Wang, 2005; Zhou et al.,
2009, 2011a,b, 2012), as well as to account for material or coating
anisotropy (Bagault et al., 2012, 2013). With the same technique
(Wang et al., 2009) solved a contact between two joined quarter
spaces and a rigid sphere.

In this paper, the analysis will be limited to a single elastic ellip-
soidal inhomogeneity which can be anisotropic and with any ori-
entation. This is one of the key steps for the modeling of contact
for composite materials since fibers are mostly anisotropic. It
should be outlined that the intent here is not to simulate the mac-
roscopic response of the contact assuming homogenized and
anisotropic material properties, as very recently studied by
Rodriguez-Tembleque et al. (2013). The effects of Young’s modulus,
bulk coefficient and shear modulus will be first investigated. It will
be shown that the presence of an heterogeneous inclusion will not
only affect the local stress field, but also very significantly the con-
tact pressure distribution. Finally the presence of an anisotropic
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and ellipsoidal inclusion located below the surface and with its
axes not coincident with the contact ones will be presented.

2. Contact problem formulation

Generally, the formulation of the normal contact between two
finite bodies B1 and B2 (Fig. 1) consists in a set of equations and
inequalities that are recalled below:

� The load balance. The applied load W and the integration of the
contact pressure pðx1; x2Þ in the contact region Cc must be
strictly equal.
W ¼
Z

Cc

pðx1; x2ÞdC; ð1Þ
� The surface separation. The gap between the two contacting
surfaces is:
hðx1; x2Þ ¼ hiðx1; x2Þ þ dþ uðB1þB2Þ
3 ðx1; x2Þ; ð2Þ
where hiðx1; x2Þ is the initial geometry, d the rigid body displace-
ment, and uðB1þB2Þ

3 ðx1; x2Þ the sum of normal displacements of sur-
faces 1 and 2, that can be due to elastic deflection (under loading
only), plastic deformation or the presence of inhomogeneities.
� The contact conditions. The distance hðx1; x2Þ is always positive,

because the contacting bodies can not interpenetrate each
other. The conditions are defined by the inequalities:
hðx1; x2ÞP 0;

contact : hiðx1; x2Þ ¼ 0 and pðx1; x2Þ > 0;

separation : hiðx1; x2Þ > 0 and pðx1; x2Þ ¼ 0: ð3Þ
3. Theoretical background – Eshelby’s equivalent inclusion
method in Contact Mechanics

Given that the presence of inhomogeneities creates an incom-
patibility of deformation between the inhomogeneities and the
matrix, the Eshelby’s equivalent inclusion method is used.

3.1. Eshelby’s solution for an infinite space

An infinite matrix D with the elastic stiffness tensor CM
ijkl con-

taining an ellipsoidal domain X with the elastic stiffness tensor
CI

ijkl is submitted at infinity to a uniform strain e0. The strain field
is disturbed by the presence of the inhomogeneity. The disturbed
contributions of the stresses and displacements are denoted rij

and ui respectively. The total stress is rij þ r0
ij and the total

displacement ui þ u0
i .

The stress components are in self-equilibrium if one neglects
the body forces:
Fig. 1. Contact probl
rij;j ¼ 0 ð4Þ

and rij ¼ 0 at infinity.
Under the hypothesis of linear isotropic elasticity, the stress

components are calculated by the Hooke’s law:

r0
ij þ rij ¼ CI

ijklðu0
k;l þ uk;lÞ ¼ CI

ijklðe0
kl þ eklÞ in X;

r0
ij þ rij ¼ CM

ijklðu0
k;l þ uk;lÞ ¼ CM

ijklðe0
kl þ eklÞ in D�X: ð5Þ

The Eshelby’s equivalent inclusion method (EIM) consists in
representing the ellipsoidal inhomogeneity as an inclusion
having the same elastic properties CM

ijkl as the matrix but being
subjected to an additional imaginary strain called eigenstrain
e� giving:

CI
ijklðe0

kl þ eklÞ ¼ CM
ijklðe0

kl þ ekl � e�klÞ in X: ð6Þ

The necessary and sufficient condition for the equivalence of
the stresses and strains in the two above problems of inhomogene-
ity and inclusion is provided by Eq. (6). In particular, the eigen-
strain e�ij is related to compatibility strain eij by:

eij ¼ Sijkl � e�kl; ð7Þ

where Sijkl is the Eshelby’s tensor.
Substitution of Eq. (7) into Eq. (6) leads to:

DCijklSklmne�mn þ CM
ijkle

�
kl ¼ �DCijkle0

kl; ð8Þ

where

DCijkl ¼ CI
ijkl � CM

ijkl:

When the inhomogeneity contains an initial eigenstrain ep (inho-
mogeneous inclusion), previous equations (Eq. (6)–(8)) are modified
as follows.

r0
ij þ rij ¼ CI

ijklðe0
kl þ ekl � ep

klÞ in X;

r0
ij þ rij ¼ CM

ijklðe0
kl þ eklÞ in D�X: ð9Þ

Using the EIM it yields,

CI
ijklðe0

kl þ ekl � epÞ ¼ CM
ijklðe0

kl þ ekl � ep
kl � e�klÞ: ð10Þ

Hence,

rij ¼ CI
ijklðSklmne��mn � epÞ ¼ CM

ijklðSklmne��mn � e��kl Þ; ð11Þ

where

e�� ¼ e� þ ep:
3.2. Determination of compatibility strain

The Eshelby’s solution is only valid for a uniformly applied
strain. However, the contact problem involves nonuniform strains.
em description.
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Moschovidis and Mura (1975) have extended the Eshelby’s EIM for
nonuniformly applied strain. When the applied strain is a n-order
polynomial, the equivalent eigenstrain is also treated as a n-order
polynomial.

Considering an ellipsoidal inhomogeneity, if the applied strain
is given by:

e0
ijðxÞ ¼ E0

ij þ E0
ijkxk þ E0

ijklxkxl þ � � � ; ð12Þ

where the coefficients E0 are constant, then the eigenstrain is as-
sumed to be:

e�ijðxÞ ¼ Bij þ Bijkxk þ Bijklxkxl þ � � � ð13Þ

The strain associated to the eigenstrain is given as:

eijðxÞ ¼ DijklðxÞBkl þ DijklqðxÞBklq þ DijklqrðxÞBklqr þ � � � ð14Þ

For the interior points of an ellipsoidal inhomogeneity, the coeffi-
cients Dijkl are constant and Dijklq are linear in x. The expressions
for Dijkl; Dijklq; Dijklqr are given in Mura et al. (1987).

The results presented here are limited to a uniform eigenstrain,
therefore, only the calculation of the tensor Dijkl is performed.

Dijkl ¼
1

8pð1� mÞ ½W;ijkl � 2mdkl/;ij � ð1� mÞðdkl/il þ dki/;jl

þ djl/;ik þ dli/;jkÞ�; ð15Þ

WðxÞ ¼
Z

X
jx� x0jdx0;

/ðxÞ ¼
Z

X

1
jx� x0jdx0:

The harmonic potential /ðxÞ and the biharmonic potential WðxÞ can
be expressed as a function of the elliptical integrals Eðh0; kÞ and
Fðh0; kÞ (Gradshteyn, 1965), where:

Eðh0; kÞ ¼
Z h0

0
ð1� k2sinwÞ

1=2
dw;

Fðh0; kÞ ¼
Z h0

0

1

ð1� k2sinwÞ
1=2 dw; ð16Þ

h0 ¼ sin�1 1� a2
3

a2
1

� �1=2

;

k ¼ 3ða2
1 � a2

2Þ
ða2

1 � a2
3Þ
: ð17Þ

Assuming that a1 > a2 > a3, with a1; a2; a3 the semi-axes of the
ellipsoidal inclusion. The Eshelby’s tensor Sijkl is obtained from Eq.
(15) as:

Sijkl ¼ DijklðxIÞ; ð18Þ

where xI ¼ ðxI
1; x

I
2; x

I
3Þ represents the cartesian coordinates of the

inclusion center.

3.3. Half-space solution

Three dimensional contact problems involve a half-space that
is bounded by the surface plane x3 ¼ 0 in the cartesian coordi-
nate system (x1; x2; x3). Mura et al. (1987) introduced a method
to determine the eigenstrain. The obtained equations, despite
of their complexity, are valid only in the case of hydrostatic
eigenstrains. In order to get rid of this restrictive hypothesis
which is incompatible with the contact problem, Zhou et al.
(2009) proposed an ingenious method allowing to extend the
previous solution, valid only for infinite spaces, to half spaces.
The solution for an isotropic half space consists in decomposing
the problem into three subproblems (Fig. 2), known as Chiu’s
decomposition (Chiu, 1978).

(1) An inclusion with the prescribed eigenstrain
e� ¼ ðe�11; e�22; e�33; e�12; e�13; e�23Þ in an infinite space.

(2) A symmetric inclusion with a mirror eigenstrain
e�s ¼ ðe�11; e�22; e�33; e�12;�e�13;�e�23Þ in the same space.

(3) A normal traction distribution �rn at the surface of the half
space (x3 ¼ 0) which is a function of the eigenstrains e� and
e�s .

The summation of the two solutions (1) and (2) leaves the plane
of symmetry (x3 ¼ 0) free of shear tractions. By adding an opposite
normal stress rn, the condition of free surface traction is obtained.
The stress at any point of the domain meshed with n1 � n2 � n3

cuboids is given by:

rijðx1;x2;x3Þ¼
Xn3�1

xI
3¼0

Xn2�1

xI
2¼0

Xn1�1

xI
1¼0

Bijkl x1�xI
1;x2�xI

2;x3�xI
3

� �
e�kl xI

1;x
I
2;x

I
3

� �

þ
Xn3�1

xI
3¼0

Xn2�1

xI
2¼0

Xn1�1

xI
1¼0

Bijkl x1�xI
1;x2�xI

2;x3þxI
3

� �
e�skl xI

1;x
I
2;�xI

3

� �

�
Xn2�1

xI
2¼0

Xn1�1

xI
1¼0

Mij x1�xI
1;x2�xI

2;x3
� �

rn xI
1;x

I
2;0

� �
; ð19Þ

where Bijkl are the influence coefficients that relate the constant
eigenstrain at the point ðxI

1; x
I
2; x

I
3Þ which is the inclusion center in

an infinite space to the stress rij at the point ðx1; x2; x3Þ. Mij repre-
sent the influence coefficients relating the normal traction rn with-
in a discretized area centered at ðxI

1; x
I
2; 0Þ to the stress rij at the

point ðx1; x2; x3Þ.

BijklðxÞ ¼ CM
ijmnDmnklðxÞ for x in D�X; ð20Þ

BijklðxÞ ¼ CM
ijmnðDmnklðxÞ � ImnklÞ for x in X; ð21Þ

where Iijkl ¼ 1
2 dildjkþ dikdjlð Þis the fourth-order identity tensor.

For a single inclusion centered at xI
1; x

I
2; x

I
3

� �
in the half-space,

the normal traction rn at the surface point ðx01; x02;0Þ is obtained as:

rn x01; x
0
2;0

� �
¼ �B33kl x01 � xI

1; x
0
2 � xI

2;�xI
3;

� �
e�kl xI

1; x
I
2; x

I
3

� �
� B33kl x01 � xI

1; x
0
2 � xI

2; x
I
3;

� �
e�skl xI

1; x
I
2;�xI

3

� �
: ð22Þ

In Eq. (19), each component MijðÞ is obtained by a double inte-
gration of the function FijðÞ over a discretized surface area
2Dx1 � 2Dx2 centered at ðxI

1; x
I
2;0Þ, see Appendices A and B .

Mij x1�xI
1;x2�xI

2;x3
� �

¼
Z xI

1þDx1

xI
1�Dx1

Z xI
2þDx2

xI
2�Dx2

Fij x1�x01;x2�x02;x3
� �

dx01x02: ð23Þ

The 3D-FFT is used to accelerate the calculation of the first (1) and
second terms (2) and the 2D-FFT for the third term (3). Wrap
around order and zero-padding techniques are used in order to re-
move the induced periodicity error (Liu et al., 2000).

3.4. Normal displacement of a surface point

The surface normal ‘eigen-displacements’ can be obtained when
inserting the eigenstrain into the total strain. They are generated
by the pressure field rn only. The normal displacements are calcu-
lated as:

u3ðx1; x2Þ ¼
Xn2�1

x0
2
¼0

Xn1�1

x0
1
¼0

Kn x1 � x01; x2 � x02
� �

rn x01; x
0
2

� �
: ð24Þ



Fig. 2. Decomposition of the half-space solution into three sub-problems.
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To solve the equation above numerically, the surface in contact
is discretized into n1 � n2 rectangular elements of uniform size
2Dx1 � 2Dx2. Then, pressure and displacement within each discrete
patch are treated as constant and their values located at the center.
The effect of an uniform pressure on a rectangular area has been
given by Love et al. (1952) and Johnson (1985). Kn denotes the
influence coefficients that relate the normal pressure at the surface
point ðx01; x02;0Þ to the normal displacement at the surface point
ðx1; x2;0Þ, recalled in Appendix C.

4. Integration of the inhomogeneity effects in the contact
algorithm

In order to integrate the inhomogeneity effects in the contact
algorithm, an equivalent elastic algorithm is proposed, as shown
in Fig. 3. The left frame in red presents the calculation of displace-
ments due to the eigenstrain and the right frame in blue the ones
due to the contact pressure. The effect of an inclusion on the con-
tact problem derives from the fact that the surface contact geom-
etry is modified by the eigen-displacement produces by the
eigenstrain. The contact pressure and shears are then updated,
which modifies the eigenstrain value. The elastic displacements
!

Tangential Normal problem 

Shear  Pressure  

Subsurface stresses 
(3D-FFT) 

Determination of  
eigenstrain  

Disturbance 
stresses 

Misfit displacements 
induced by inclusions 

Sum of stresses and 
displacements 

E
quivalent elastic problem

 

Convergence on 
displacements 

Fig. 3. Flowchart of the algorithm fo
are obtained from the updated contact pressure via the resolution
of the elastic contact problem. The algorithm is repeated until con-
vergence of the normal displacements is obtained.

It should be noted that in the frictional contact between dissim-
ilar elastic materials, the tangential displacements of the surface
points, as analyzed by Fulleringer et al. (2010) in analytical form
for a cuboid of uniform eigenstrain, should be considered.

5. How to consider the orientation of an ellipsoidal inclusion

In order to take into account the orientation of the inclusion
(Fig. 4), it is necessary to respect the three rules described below.

� Chiu’s decomposition: Given that the orientations of the source
inclusion and the mirror inclusion are different, the influence
coefficients of the two inclusions are consequently different.
However, the Chiu’s symmetry permits to offset the effect of
the shear stresses on the free surface.
� The Wrap Around: In the Wrap Around technique, the extension

of the zone should be considered. Based on the symmetries, this
technique is only valid in the inclusion’s coordinate system,
which implies a development of new coefficients of
problem 

Stresses on extended  
surface 

Misfit displacements and stresses 
induced by the pressure field 

Half-space subject 
to pressure 

For two mirror-image 
eigenstrains  

Equivalent inclusion 
model 

r the equivalent elastic problem.



(a) (b)

Fig. 4. Contact of a sphere over a flat in the presence of an arbitrarily oriented
inclusion. (a) 3D configuration and (b) 2D configuration.

Fig. 5. Finite element model used for the validation.

Fig. 6. Local coordinate system for the model partition.

Table 1
Geometry of the bodies in contact.

Region Geometry (mm)

Sphere R = 31
Solid L1 ¼ L2 ¼ L3 ¼ 60

Table 2
Size and location of the ellipsoidal inclusion (reference
case).

Geometry Position

a1 ¼ 0:4a�; a2 ¼ a3 ¼ 0:1a� dx3 ¼ 0:4a�
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symmetries. On each mesh point of the contact coordinate
system, it is necessary to associate a corresponding image point
in the inclusion coordinate system and the corresponding
coefficient of symmetry.
� The third step consists in taking into account the correct change

of coordinate both for the source inclusion and the mirror inclu-
sion. Hence, two transition matrixes based on the ZXZ conven-
tion of Euler angles are introduced, one for the source
inclusion and the other one for the mirror inclusion.

It should be noted that this model is valid whatever the contact-
ing surface geometry is, in other words it is not limited to the
contact of a sphere and a flat.

6. Validation by finite element analysis

In order to validate the semi-analytical method, a comparison
with a finite element (FE) model was performed using the
commercial FE package Abaqus v6.11.

The configuration is shown in Fig. 5. A contact between a sphere
and a plane (solid) containing an ellipsoidal inclusion at a certain
depth (dx3) is described. In order to correctly describe the interface,
the inclusion is obtained by making a solid partition in a local coor-
dinate system related to the contact coordinate, via a rotation of 30
degrees around the x2 axis (Fig. 6). The size of the sphere and the
solid are recalled in Table 1. The geometrical properties and posi-
tion of the inclusion are normalized by the contact half-width a�,
as shown in Table 2.

Since the model is symmetric with respect to the plane x2 ¼ 0,
only half of the bodies in contact are meshed. The solid is clamped
on the lower surface, the sphere can just move vertically. A point
force is applied on the sphere generating a half-width of contact
of 1 mm (from Hertzian theory). The latter is much smaller com-
pared with the radius of the sphere (1=31) such that the half-space
assumption (i.e. the contact size should be small compared to the
dimensions of the bodies in contact) is satisfied. A local area called
‘subsurface layer’ is meshed by 30,250 linear hexahedral elements
(C3D8) of size 0:02a�, while the rest of solid is meshed with
1,088,349 linear tetrahedral (C3D4) elements. The (quarter) sphere
contains 39,671 quadratic tetrahedral (C3D10) elements and the
inclusion 11,009 linear tetrahedral (C3D4) elements.

Three calculations are carried out. The first case corresponds to
an homogeneous body to be compared with the Hertz’s solution.
The second case considers an isotropic tilted inclusion and is used
to validate the framework for the inclusion orientation. At last, the
third case considers an orthotropic elastic inclusion, for which the
orthotropic coordinate system coincides with the contact coordi-
nate system.

The material properties for each region of the model and for
each case are shown in Table 3.

Results from the Semi Analytical Method and the Finite Element
Model are presented in Fig. 7 for the three cases studied. The com-
parison focuses on pressure distribution obtained by both meth-
ods. An excellent agreement is observed between both methods
thus validating the SAM framework.
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7. Parametric study

In this section, a normal contact between a spherical indenter
and an elastic half space containing a single inhomogeneity is con-
sidered. The radius of the indenter is R ¼ 62 mm and the normal
force P ¼ 10;000 N. The Young’s modulus and Poisson’s ratio for
the half space are chosen as EM ¼ 210 GPa and mM ¼ 0:3 respec-
tively (the equivalent bulk modulus and shear modulus are
kM ¼ 175 GPa and lM ¼ 80:77 GPa). The resulting contact width
and maximum contact pressure for the homogeneous half-space,
given by Hertz theory, are: 2a� ¼ 2 mm and P0 ¼ 4750 MPa. An
ellipsoidal inhomogeneity with semi-axes a1 ¼ 0:4a�; a2 ¼
0:1a�; a3 ¼ 0:1a� and its center located at dx3 ¼ 0:3a� will be
considered.

7.1. Isotropic inhomogeneity

The effect of an isotropic inhomogeneity on the contact pres-
sure distribution and the subsurface stress field is here investi-
gated. The analysis will be subdivided into three cases:

� Effect of the Young’s moduli ratio c ¼ EI=EM for mI ¼ mM ¼ 0:3.
� Effect of the bulk moduli ratio d ¼ kI

=kM for lI ¼ lM ¼
80:77 GPa.
� Effect of the shear moduli ratio g ¼ lI=lM for

kI ¼ kM ¼ 175 GPa.

7.1.1. Effect of the Young’s modulus
The Poisson’s ratio of the inhomogeneity is chosen as mI ¼ 0:3.

For this case, the elastic moduli of the inhomogeneity are given
as follows:

CI
ijkl ¼

EImI

ð1þ mIÞð1� 2mIÞ dijdkl þ
EI

ð1þ mIÞ ðdikdjl þ dildjkÞ; ð25Þ

mI ¼ mM and EI ¼ cEM; ð26Þ

CI
ijkl ¼ cCM

ijkl;

DC ¼ CI
ijkl � CM

ijkl ¼ ðc� 1ÞCM
ijkl: ð27Þ

Eq. (10) becomes:

ðc� 1ÞCM
ijklSklmne�mn þ Cijkle�kl ¼ ð1� cÞCM

ijkle
0
kl: ð28Þ

The dimensionless contact pressure distribution is presented for
different values of c in Fig. 8. The case of an inclusion parallel to the
surface is presented in Fig. 8(a) (h ¼ 0). Fig. 8(b) presents the case
for h ¼ 45�.

It can be observed that the magnitude of the contact pressure
increases when the inclusion becomes stiffer, i.e. when c > 1. Con-
versely when the inclusion is softer than the matrix, i.e. c < 1, the
substrate material surrounding the inhomogeneity becomes more
compliant and the contact pressure gets smaller than the Hertzian
Table 3
Material properties for each region and for each case

Region Mater

Sphere ES ¼ 1
Solid EM ¼
Inhomogeneity Case 1 (Isotropic) EI ¼ 2

Case 2 (Isotropic) EI ¼ 8
Case 3 (Orthotropic) EI

1 ¼ 2
lI

12 ¼
mI

12 ¼
pressure. Meanwhile the contact area increases. In Fig. 8(a), c!1
corresponds to a peak magnitude augmentation of 24:3% while
c! 0 leads to a reduction of 32:12%, compared with the homoge-
neous half space c ¼ 1. For an inclined rigid inclusion (c!1 and
h ¼ 45�, see Fig. 8(b)) it should be noticed a sharp increase of the
maximum contact pressure which is here five times the Hertz’s
solution. Note also that when the inclusion becomes infinitely soft
(c! 0), as for a void or cavity, the pressure drops locally to zero.

The influence of the orientation angle is observed for the case of
a stiff inclusion (c ¼ 4) in Fig. 9. When h – 0 both the surface pres-
sure and stress component lose their symmetry in the plane x1 ¼ 0.
When h approaches 90�, the inhomogeneity gets very closed to the
surface and the peak magnitude of the contact pressure increases
by more than 245:47%, compared with the case h ¼ 0.

In Fig. 10(a) and (b), the effect of the inhomogeneity’s center
location on the contact pressure distribution is shown. When its
dimensionless depth (dx3=a�) is greater than 0.7, the effect of the
inhomogeneity on the contact pressure distribution becomes
negligible.

The effect of the inhomogeneity on the subsurface stresses is
now investigated and the results are presented in Figs. 11 and
12. As a general trend it is observed that the stress components
(rij) inside the inhomogeneity increase as the inhomogeneity be-
comes stiffer and at the contrary decrease as the inhomogeneity
becomes more compliant.

The stress at the interface between the inclusion and the matrix
is of great interest to study crack initiation or debonding of com-
posite’s fibers. When the point M describes the inclusion matrix
interface (see Fig. 4(b)), the angle n ranges from 0� to 360�. Figs. 13
and 14 show the normal and shear stresses at the inhomogeneity/
matrix interface as a function of the angle n (the position of the
point M at this interface) for three different Young’s moduli ratios
c. Note that the normal stress is almost always negative which
means compressive. One can remark that the normal shear stress
at the inhomogeneity/matrix interface increases when the inho-
mogeneity becomes stiffer. For the asymptotic case of a rigid inclu-
sion (i.e. when c!1) the maximum value of the interfacial shear
stress reached 0:69P0 in the case of the ellipsoidal inhomogeneity
(Fig. 13) while it becomes slightly higher (0:86P0) in the case of a
spherical inhomogeneity (Fig. 14).

7.1.2. Effect of the bulk modulus
The effect of the bulk modulus on the contact problem is now

investigated. The bulk modulus characterizes the volume variation.
The inhomogeneity and matrix shear moduli are set equal
(lI ¼ lM ¼ 80:77 GPa). Note that in the case of a spherical inhomo-
geneity, the eigenstrain is purely hydrostatic. d ¼ kI

=kM is the ratio
of the inhomogeneity’s bulk modulus to the matrix one. In partic-
ular, d!1 and d! 0 correspond to a Poisson’s ratio of 0.5 (i.e.
incompressible) and �1 for the inhomogeneity, respectively.

Since Cijkl is an isotropic tensor, CI can be decomposed in the
base of isotropic tensors J and K.

CI
ijkl ¼ 3kIJijkl þ 2lIKijkl; ð29Þ
ial properties

010 GPa, mS ¼ 0:3

210 GPa, mM ¼ 0:3

10 GPa, mI ¼ 0:3

40 GPa, mI ¼ 0:3

10 GPa, EI
2 ¼ 623 GPa, EI

3 ¼ 50 GPa
83 GPa, lI

13 ¼ 400 GPa, lI
23 ¼ 20 GPa

0:15, mI
13 ¼ 0:26, mI

23 ¼ 0:40



(a) (b) (c)

Fig. 7. Comparison between the Semi Analytical Method (SAM) and the FEM; (a) Hertzian contact, (b) isotropic tilted inhomogeneity, and (c) orthotropic tilted
inhomogeneity.

(a) (b)

Fig. 8. Effect of the dimensionless Young’s modulus c ¼ EI=EM (with mI ¼ mM ¼ 0:3) on the dimensionless contact pressure distribution for isotropic ellipsoidal inclusion
(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3 ¼ 0:3a�); (a) h ¼ 0 and (b) h ¼ 45� .

Fig. 9. Dimensionless contact pressure distribution for different orientation angles
h for a stiff (c ¼ 4) isotropic ellipsoidal inclusion (a1 ¼ 0:4a�; a2 ¼ a3 ¼
0:1a�; dx3 ¼ 0:4a�).
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where

Jijkl ¼ 1
3 dijdkl and Kijkl ¼ Iijkl � Jijkl

Iijkl ¼ 1
2 dildjk þ dikdjl
� �

, is the fourth-order identity tensor

Jijklekl ¼ ekk
3 dijðspherical partÞ, and Kijklekl ¼ eijðdeviatoric partÞ
lI ¼ lM; kI ¼ dkM
; ð30Þ
DC ¼ CI � CM ¼ 3ðkI � kMÞJijkl ¼ 3ðd� 1ÞkMJijkl: ð31Þ

Then Eq. (10) becomes

3ðd� 1ÞkMJijklSklmne�mn þ CM
ijkle

�
kl ¼ �3ðd� 1ÞkMJijkle0

kl; ð32Þ
ðd� 1ÞkMdijSkkmne�mn þ CM
ijkle

�
kl ¼ �ðd� 1ÞkMdije0

kk; ð33Þ

where e0
kk represents the spherical part of e0

kl.
Fig. 15(a) and (b) present the dimensionless contact pressure

distribution for various bulk moduli ratios d. It can be observed
that the contact pressure locally increases on the top of the inclu-
sion when it tends to be incompressible (i.e. when kI or d!1).
This peak of pressure is less marked when the ellipsoidal inclusion,
which center is located at the dimensionless depth dx3=a� ¼ 0:3, is
oriented parallel to the surface (h ¼ 0, Fig. 15(a)) whereas it
becomes sharp for the inclined inclusion (Fig. 15(b)). This can be
explained by the fact that in the latter configuration (h ¼ 45�) the
surface of the inclusion becomes closer to the contact interface.
Note that there is no need to have a stiff inclusion to increase
the maximum contact pressure, a relatively soft but incompress-
ible one will have a very similar behavior.



(a) (b)

Fig. 10. Dimensionless contact pressure distribution for different dimensionless depths dx3=a� for an ellipsoidal cavity (a1 ¼ 0:3a�; a2 ¼ a3 ¼ 0:1a�; c! 0); (a) h ¼ 0 and (b)
h ¼ 45� .

Fig. 11. r33=P0 in the plane x2 ¼ 0 for various dimensionless Young’s moduli c ¼ EI=EM (with mI ¼ mM ¼ 0:3) for isotropic ellipsoidal inclusion
(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3=a� ¼ 0:4; h ¼ 30�); (a) c ¼ 0:25, (b) c ¼ 4, and (c) c!1.

Fig. 12. r13=P0 in the plane x2 ¼ 0 for various dimensionless Young’s moduli c ¼ EI=EM (with mI ¼ mM ¼ 0:3) for isotropic ellipsoidal inclusion
(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3=a� ¼ 0:4; h ¼ 30�); (a) c ¼ 0:25, (b) c ¼ 4, and (c) c!1.
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7.1.3. Effect of the shear modulus
The bulk modulus of the inhomogeneity is chosen equal to the

matrix one, kI ¼ kM ¼ 175 GPa. When the inhomogeneity is spher-
ical, the eigenstrain is purely deviatoric. The ratio of the inhomoge-
neity’s shear modulus to the matrix one is defined by the
dimensionless parameter g ¼ lI=lM .

The elastic modulus of the inhomogeneity is given as follow:

CI
ijkl ¼ 3kIJijkl þ 2lIKijkl; ð34Þ

kI ¼ kM
; lI ¼ glM; ð35Þ

DC ¼ CI � CM ¼ 2ðg� 1ÞlMKijkl: ð36Þ
Eq. (10) becomes

2ðg� 1ÞlMKijklSklmne�mnþ CM
ijkle

�
kl ¼ �2ðg� 1ÞlMe0

ij; ð37Þ

where e0
ij represents the deviatoric part of e0

ij.
The effect of the dimensionless shear modulus, g, on the contact

pressure distribution is shown in Fig. 16(a) and (b). It can be ob-
served that variations of contact pressure for different values of c
(see Fig. 8) and g (see Fig. 16) are quite similar.

7.2. Anisotropic inhomogeneity

The material properties of the inhomogeneity are here taken
anisotropic. An orthotropic material is considered. The elastic



(a) (b)

Fig. 13. Dimensionless normal and shear stresses (rn=P0 and s=P0) in the plane x2 ¼ 0 for various dimensionless Young’s moduli c ¼ EI=EM in presence of a single isotropic
ellipsoidal inclusion (a1 ¼ 0:4a�; a2 ¼ a3 ¼ 0:1a�; dx3=a� ¼ 0:4; h ¼ 30�); (a) rn=P0 and (b) s=P0.

(a) (b)

Fig. 14. Dimensionless normal and shear stresses (rn=P0 and s=P0) in the plane x2 ¼ 0 for various dimensionless Young’s moduli c ¼ EI=EM in presence of a single isotropic
and spherical inclusion (a1 ¼ a2 ¼ a3 ¼ 0:2a� ; dx3=a� ¼ 0:3); (a) rn=P0 and (b) s=P0.

(a) (b)

Fig. 15. Effect of the dimensionless bulk modulus d ¼ kI
=kM on the dimensionless contact pressure distribution for a single isotropic ellipsoidal inclusion

(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3 ¼ 0:3a�); (a) h ¼ 0 and (b) h ¼ 45� .
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coefficients are given in the orthotropy axes Rorthotropic as follows:
EI

1¼210 GPa; EI
2¼623 GPa; EI

3¼50 GPa; lI
12¼83 GPa; lI

13¼400 GPa
lI

23¼20 GPa; mI
12¼ 0:15; mI

13¼0:26, and mI
23¼0:4. The inclusion ori-

entation h is set equal to 45�.
Euler Angles of type ZXZ are introduced (Fig. 17) in order to de-
fine the orientation of the orthotropy using a combination of three
rotations (u; h;w) around the axes of the contact reference frame
(x1; x2; x3).



(a) (b)

Fig. 18. Dimensionless contact pressure distribution for the heterogeneous solid in presence of an orthotropic tilted ellipsoidal inclusion
(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3 ¼ 0:4a�; h ¼ 45�); (a) in the plane x1 ¼ 0 and (b) in the plane x2 ¼ 0.

Fig. 17. Euler Angles.

(a) (b)

Fig. 16. Effect of the dimensionless shear modulus g ¼ lI=lM on the dimensionless contact pressure distribution for a single isotropic ellipsoidal inclusion
(a1 ¼ 0:4a� ; a2 ¼ a3 ¼ 0:1a�; dx3 ¼ 0:3a�); (a) h = 0 and (b) h=45� .
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Four material orientations are defined and studied this way:

� Case 1: u ¼ 0�; h ¼ 0�; w ¼ 0�, the orthotropy and contact axes
coincide.
� Case 2: u ¼ 90�; h ¼ 45�; w ¼ 90�, the orthotropy and ellipsoid

axes coincide.
� Case 3: u ¼ 45�; h ¼ 60�; w ¼ 30�.
� Case 4: u ¼ �30�; h ¼ 45�; w ¼ 30�.

The contact pressure distributions corresponding to the four
cases are shown in Fig. 18(a) and (b).

One can see that depending on the orthotropic orientation rel-
ative to the contact orientation, the contact pressure value can
either increase (Cases 1 and 4) or decrease (Cases 2 and 3). This
is due to the fact that the inhomogeneity stiffness tensor associ-
ated to the contact axes varies widely in the four cases.
8. Conclusion

A numerical method has been proposed to model the effect of an
heterogeneous ellipsoidal inclusion with arbitrary orientation on
the solution of a three-dimensional contact problem. The elastic
properties of the inhomogeneity can be either isotropic, orthotropic
or fully anisotropic. The proposed method has been validated by
performing a comparison with the results of a finite element model.

It is found that the presence of such an inclusion located below
the contact surface modifies significantly to very significantly the
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pressure distribution when its center is located at a depth up to 0.7
times the contact radius. An asymmetry of the pressure distribu-
tion is also observed when the axes of the ellipsoidal inclusion
do not coincide with the contact problem axes. Still regarding
the contact pressure distribution it was shown that both the
dimensionless Young’s modulus of the inclusion and the dimen-
sionless bulk modulus have a very strong effect on the local contact
pressure. In other terms the compressibility properties of the inclu-
sion are as important as the dimensionless Young’s modulus. A lo-
cal peak of pressure up to 5 times the one in the absence of
inclusion can be observed in some extreme configurations.

The normal and shear stresses at the interface between the
inclusion and the matrix have also been investigated. In the config-
urations analyzed it was found that the normal stress is mostly
compressive, whatever the elastic properties of the inclusion
including when of ellipsoidal shape. Further work is now required
to study more accurately what happens at the inclusion/matrix
interface, as a function of the elastic properties of both materials,
aiming at developing a decohesion model. Finally it should be
pointed out that (i) the method can account for the interactions be-
tween close inclusions, and (ii) any geometry and material proper-
ties of the contacting bodies may be considered in the modeling (in
other words the indenter does not have to be rigid and spherical).

Appendix A. Stress in a half-space due to a concentrated unit
normal force at the surface origin (Fij)

F11ðx1; x2; x3Þ ¼
1

2p
1� 2m

r2 1� x3

q

� �
x2

1 � x2
2

r2 þ x3x2
2

q3 �
3x3x2

1

q5

� �
;

F22ðx1; x2; x3Þ ¼ F11ðx2; x1; x3Þ;

F33ðx1; x2; x3Þ ¼ �
3

2p
x3

3

q5 ;

F12ðx1; x2; x3Þ ¼
1

2p
1� 2m

r2 1� x3

q

� �
x1x2

r2 þ
x3x2x1

q3 � 3x3x2x1

q5

� �
;

F13ðx1; x2; x3Þ ¼ �
3

2p
x1x2

3

q5 ;

F23ðx1; x2; x3Þ ¼ F12ðx2; x1; x3Þ;

where

r2 ¼ x2
1 þ x2

2; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
3 þ x2

3

q
with m, the Poisson’s ratio of the isotropic half-space.

Appendix B. Stresses in a half-space subject to normal pressure
ðMijÞ

An isotropic half-space is submitted an uniform normal pres-
sure rn in a discretized surface area of 2Dx1 � 2Dx2 at the center
point Pðx01; x02;0Þ. The stress at an observation point Qðx1; x2; x3Þ is
given by Zhou et al. (2009) and Johnson (1985):

rijðx1; x2; x3Þ ¼ Mijðx1 � x01; x2 � x02; x3Þrnðx1; x2Þ;

rijðx1; x2; x3Þ ¼
rn

2p
½hijðn1 þ Dx1; n2 þ Dx2; n3Þ � hijðn1 þ Dx1; n2

� Dx2; n3Þ þ hijðn1 � Dx1; n2 � Dx2; n3Þ � hijðn1

� Dx1; n2 þ Dx2; n3Þ�;
where

ni ¼ xi � x0i:

The functions hijðÞ in Eq. (B1) are defined by

h11ðx1; x2; x3Þ ¼ 2m tan�1 x2
2 þ x2

3 � qx2

x1x3
þ 2ð1� mÞ tan�1 q� x2 þ x3

x1

þ x1x2x3

q x2
1 þ x2

3

� � ;
h22ðx1; x2; x3Þ ¼ h11ðx2; x1; x3Þ;

h33ðx1; x2; x3Þ ¼ tan�1 x2
2 þ x2

3 � qx2

x1x3
� x1x2x3

q
1

x2
1 þ x2

3

þ 1
x2

2 þ x2
3

� �
;

h12ðx1; x2; x3Þ ¼ �
x3

q
� ð1� 2mÞ logðqþ x3Þ;

h13ðx1; x2; x3Þ ¼ �
x2x2

3

q x3
1 þ x2

3

� � ;
h23ðx1; x2; x3Þ ¼ h13ðx2; x1; x3Þ;

where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
:

Appendix C. Normal displacement at the surface subject to
normal pressure ðKnÞ

The contact between a sphere and an elastic half-space having
respectively elastic constants ðE1; m1Þ and ðE2; m2Þ, where the sur-
face x3 ¼ 0 is discretized into rectangular surface area of
2D1 � 2D2, is now considered. The initial contact point coincides
with the origin of the Cartesian coordinate system ðx1; x2; x3Þ. The
relationship between the normal displacement at an observation
point Pðn1; n2;0Þ and the pressure field at the center Qðn01; n

0
2;0Þ is

built using the function Kn:

Knðc1; c2Þ ¼
1� m2

1

pE1
þ 1� m2

2

pE2

� �X4

p¼1

Kn
pðc1; c2Þ;

Kn
1ðc1; c2Þ ¼ ðc1 þ D1Þ log

ðc2 þ D2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ D2Þ2 þ ðc1 þ D1Þ2

q
ðc2 � D2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � D2Þ2 þ ðc1 þ D1Þ2

q
0
B@

1
CA;

Kn
2ðc1; c2Þ ¼ ðc2 þ D2Þ log

ðc1 þ D1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ D2Þ2 þ ðc1 þ D1Þ2

q
ðc1 � D1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ D2Þ2 þ ðc1 � D1Þ2

q
0
B@

1
CA;

Kn
3ðc1; c2Þ ¼ ðc1 � D1Þ log

ðc2 � D2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � D2Þ2 þ ðc1 � D1Þ2

q
ðc2 þ D2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ D2Þ2 þ ðc1 � D1Þ2

q
0
B@

1
CA;

Kn
4ðc1; c2Þ ¼ ðc2 � D2Þ log

ðc1 � D1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � D2Þ2 þ ðc1 � D1Þ2

q
ðc1 þ D1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � D2Þ2 þ ðc1 þ D1Þ2

q
0
B@

1
CA;

where

c1 ¼ n1 � n01 and c2 ¼ n2 � n02:
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Appendix D. Appendix D. Euler rotation matrix

RZðuÞ ¼
cos u � sinu 0
sinu cos u 0

0 0 1

0
B@

1
CA:

RZðwÞ ¼
cos w � sin w 0
sin w cos w 0

0 0 1

0
B@

1
CA:

RXðaÞ ¼
1 0 0
0 cos a � sina
0 sin a cos a

0
B@

1
CA:

Pðu;a;wÞ ¼ RZðuÞRXðaÞRZðwÞ:
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