The BG-rank of a partition and its applications ${ }^{*}$

Alexander Berkovich, Frank G. Garvan*
Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA
Received 14 December 2006; accepted 9 April 2007
Available online 6 June 2007

Abstract

Let π denote a partition into parts $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \cdots$. In a 2006 paper we defined BG-rank (π) as

$$
\mathrm{BG}-\operatorname{rank}(\pi)=\sum_{j \geqslant 1}(-1)^{j+1} \frac{1-(-1)^{\lambda_{j}}}{2} .
$$

This statistic was employed to generalize and refine the famous Ramanujan modulo 5 partition congruence. Let $p_{j}(n)$ denote the number of partitions of n with BG-rank $=j$. Here, we provide a combinatorial proof that

$$
p_{j}(5 n+4) \equiv 0 \quad(\bmod 5), \quad j \in \mathbb{Z},
$$

by showing that the residue of the 5 -core crank $\bmod 5$ divides the partitions enumerated by $p_{j}(5 n+4)$ into five equal classes. This proof uses the orbit construction from our previous paper and a new identity for the BG-rank. Let $a_{t, j}(n)$ denote the number of t-cores of n with BG-rank $=j$. We find eta-quotient representations for

$$
\sum_{n \geqslant 0} a_{t,\left\lfloor\frac{t+1}{4}\right\rfloor}(n) q^{n} \quad \text { and } \quad \sum_{n \geqslant 0} a_{t,-\left\lfloor\frac{t-1}{4}\right\rfloor}(n) q^{n},
$$

when t is an odd, positive integer. Finally, we derive explicit formulas for the coefficients $a_{5, j}(n), j=0, \pm 1$. Published by Elsevier Inc.

MSC: primary 11P81, 11P83; secondary 05A17, 05A19
Keywords: Partitions; t-Cores; BG-rank; eta-Quotients; Lambert series; Theta series; Even-odd dissections

[^0]
1. Introduction

A partition π is a nonincreasing sequence

$$
\pi=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)
$$

of positive integers (parts) $\lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \cdots$. The norm of π, denoted $|\pi|$, is defined as

$$
|\pi|=\sum_{i \geqslant 1} \lambda_{i} .
$$

If $|\pi|=n$, we say that π is a partition of n. The (Young) diagram of π is a convenient way to represent π graphically: the parts of π are shown as rows of unit squares (cells). Given the diagram of π we label a cell in the i th row and j th column by the least nonnegative integer $\equiv j-i(\bmod t)$. The resulting diagram is called a t-residue diagram [7]. We can also label cells in the infinite column 0 and the infinite row 0 in the same fashion and call the resulting diagram the extended t-residue diagram [5]. And so with each partition π and positive integer t we can associate the t-dimensional vector

$$
\vec{r}(\pi, t)=\left(r_{0}(\pi, t), r_{1}(\pi, t), \ldots, r_{t-1}(\pi, t)\right)
$$

with

$$
r_{i}(\pi, t)=r_{i}, \quad 0 \leqslant i \leqslant t-1,
$$

being the number of cells colored i in the t-residue diagram of π. If some cell of π shares a vertex or edge with the rim of the diagram of π, we call this cell a rim cell of π. A connected collection of rim cells of π is called a rim hook if (diagram of π)
(rim hook) represents a legitimate partition. We say that a partition is a t-core, denoted $\pi_{t \text {-core }}$, if its diagram has no rim hooks of length t [7].

The Durfee square of π is the largest square that fits inside the diagram of π. Reflecting the diagram of π about its main diagonal, one gets the diagram of π^{\prime} (the conjugate of π). More formally,

$$
\pi^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \ldots\right)
$$

with λ_{i}^{\prime} being the number of parts of π that are $\geqslant i$. In [2] we defined a new partition statistic

$$
\begin{equation*}
\operatorname{BG-rank}(\pi):=\sum_{j \geqslant 1}(-1)^{j} \frac{(-1)^{\lambda_{j}}-1}{2} . \tag{1.1}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\operatorname{BG}-\operatorname{rank}(\pi)=r_{0}(\pi, 2)-r_{1}(\pi, 2) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{BG}-\operatorname{rank}(\pi) \equiv|\pi| \quad(\bmod 2) \tag{1.3}
\end{equation*}
$$

In [2] we proved the following (mod 5) congruences

$$
\begin{array}{rll}
p_{j}(5 n) \equiv 0 & (\bmod 5) & \text { if } j \equiv 1,2(\bmod 5), \\
p_{j}(5 n+1) \equiv 0 & (\bmod 5) & \text { if } j \not \equiv 1,2(\bmod 5), \\
p_{j}(5 n+2) \equiv 0 & (\bmod 5) & \text { if } j \not \equiv 0,3(\bmod 5), \\
p_{j}(5 n+3) \equiv 0 & (\bmod 5) & \text { if } j \equiv 0,3(\bmod 5), \\
p_{j}(5 n+4) \equiv 0 & (\bmod 5) & \text { for all } j \in \mathbb{Z} . \tag{1.8}
\end{array}
$$

Here $p_{j}(n)$ denotes the number of partitions of n with BG-rank $=j$. Clearly,

$$
p(5 n+4)=\sum_{j} p_{j}(5 n+4)
$$

with $p(n)$ denoting the number of unrestricted partitions of n. And so (1.8) implies the famous Ramanujan congruence [11]

$$
p(5 n+4) \equiv 0 \quad(\bmod 5)
$$

In this paper, we build on the developments in [2] to provide a combinatorial proof of (1.8).
For t-odd it is surprising that the BG-rank ($\pi_{t-\text {-core }}$) assumes only finitely many values. In fact, we will show that if t is an odd, positive integer, then

$$
\begin{equation*}
-\left\lfloor\frac{t-1}{4}\right\rfloor \leqslant \mathrm{BG}-\operatorname{rank}\left(\pi_{t-\text { core }}\right) \leqslant\left\lfloor\frac{t+1}{4}\right\rfloor . \tag{1.9}
\end{equation*}
$$

Here $\lfloor x\rfloor$ denotes the integer part of x.
We will establish the following identities. For odd $t>1$

$$
\begin{gather*}
C_{t,(-1)^{\frac{t-1}{2}\left\lfloor\frac{t-1}{4}\right\rfloor}}(q)=q^{\frac{(t-1)(t-3)}{8}} F\left(t, q^{2}\right), \tag{1.10}\\
C_{t,(-1)^{\frac{t+1}{2}\left\lfloor\frac{t+1}{4}\right\rfloor}}(q)=q^{\frac{t^{2}-1}{8}} \frac{E^{t}\left(q^{4 t}\right)}{E\left(q^{4}\right)} \tag{1.11}
\end{gather*}
$$

where

$$
C_{t, j}(q)=\sum_{n \geqslant 0} a_{t, j}(n) q^{n},
$$

$a_{t, j}(n)$ denotes the number of t-cores of n with BG-rank $=j$ and

$$
\begin{gathered}
E(q)=\prod_{j=1}^{\infty}\left(1-q^{j}\right) \\
F(t, q)=\frac{E^{t-4}\left(q^{2 t}\right) E^{2}\left(q^{t}\right) E^{3}\left(q^{2}\right)}{E^{2}(q)}
\end{gathered}
$$

We observe that (1.3) suggests that $C_{t, j}(q)$ is an even (odd) function of q if j is even (odd).
It is instructive to compare (1.10), (1.11) with the well-known identity [5] for unrestricted t-cores

$$
\begin{equation*}
\sum_{n \geqslant 0} a_{t}(n) q^{n}=\frac{E^{t}\left(q^{t}\right)}{E(q)} \tag{1.12}
\end{equation*}
$$

Here $a_{t}(n)$ denotes the number of t-cores of n.
The rest of this paper is organised as follows.
In Section 2 we discuss the Littlewood decomposition of π in terms of t-core and t-quotient of π. We describe the Garvan, Kim, Stanton bijection for t-cores and use a constant term technique to provide a simple proof of the Klyachko identity [8]

$$
\begin{equation*}
\sum_{\substack{\vec{n} \in \mathbb{Z}^{t} \\ \vec{n} \cdot \overline{1}_{t}=0}} q^{\frac{t}{2} \vec{n} \cdot \vec{n}+\vec{b}_{t} \cdot \vec{n}}=\frac{E^{t}\left(q^{t}\right)}{E(q)} \tag{1.13}
\end{equation*}
$$

Here $\overrightarrow{1}_{t}=(1,1, \ldots, 1) \in \mathbb{Z}^{t}, \vec{b}_{t}=(0,1,2, \ldots, t-1)$.
In Section 3 we establish a fundamental identity connecting BG-rank and the Littlewood decomposition.

In Section 4 we discuss a combinatorial proof of (1.8).
Section 5 is devoted to the proof of the identities (1.10), (1.11).
Section 6 deals with 5-cores with prescribed BG-rank. There we derive the explicit formulas for the coefficients $a_{5, j}(n), j=0, \pm 1$.

In Section 7 we give a generalization of the BG-rank and state a number of results.

2. Two bijections

In this section we will follow closely the discussion in $[4,5]$ to recall some basic facts about t-cores and t-quotients. A region r in the extended t-residue diagram of π is the set of cells (i, j) satisfying $t(r-1) \leqslant j-i<t r$. A cell of π is called exposed if it is at the end of a row. One can construct t bi-infinite words $W_{0}, W_{1}, \ldots, W_{t-1}$ of two letters N, E as
the r th letter of $W_{i}= \begin{cases}E, & \text { if there is an exposed cell labelled } i \text { in the region } r, \\ N, & \text { otherwise. }\end{cases}$
It is easy to see that the word set $\left\{W_{0}, W_{1}, \ldots, W_{t-1}\right\}$ fixes π uniquely.
Let P be the set of all partitions and $P_{t-\text {-core }}$ be the set of all t-cores. There is a well-known bijection

$$
\phi_{1}: P \rightarrow P_{t \text {-core }} \times P \times P \times P \times \cdots \times P
$$

which goes back to Littlewood [9]

$$
\phi_{1}(\pi)=\left(\pi_{t-\text { core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)
$$

such that

$$
|\pi|=\left|\pi_{t-\text { core }}\right|+t \sum_{i=0}^{t-1}\left|\hat{\pi}_{i}\right| .
$$

Multipartition $\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)$ is called the t-quotient of π. We remark that (1.12) is the immediate corollary of the Littlewood bijection. We describe ϕ_{1} in full detail a bit later.

The second bijection

$$
\phi_{2}: P_{t-\text { core }} \rightarrow\left\{\vec{n}: \vec{n} \in \mathbb{Z}^{t}, \vec{n} \cdot \overrightarrow{1}_{t}=0\right\}
$$

was introduced in [5]. It is for t-cores only

$$
\phi_{2}\left(\pi_{t \text {-core }}\right)=\vec{n}=\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)
$$

where for $0 \leqslant i \leqslant t-2$

$$
\begin{equation*}
n_{i}=r_{i}\left(\pi_{t-\text { core }}, t\right)-r_{i+1}\left(\pi_{t \text {-core }}, t\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{t-1}=r_{t-1}\left(\pi_{t \text {-core }}, t\right)-r_{0}\left(\pi_{t \text {-core }}, t\right) . \tag{2.2}
\end{equation*}
$$

Clearly,

$$
\sum_{i=0}^{t-1} n_{i}=\vec{n} \cdot \overrightarrow{1}_{t}=0
$$

Moreover,

$$
\begin{equation*}
\left|\pi_{t-\text { core }}\right|=\frac{t}{2} \vec{n} \cdot \vec{n}+\vec{b}_{t} \cdot \vec{n}, \tag{2.3}
\end{equation*}
$$

as shown in [5]. And so

$$
\begin{equation*}
\sum_{n \geqslant 0} a_{t}(n) q^{n}=\sum_{\substack{\vec{n} \in \mathbb{Z}^{t} \\ \vec{n} \cdot \hat{1}_{t}=0}} q^{\frac{t}{2} \vec{n} \cdot \vec{n}+\overrightarrow{b_{t}} \cdot \vec{n}} . \tag{2.4}
\end{equation*}
$$

Note that (1.12), (2.4) imply the Klyachko identity (1.13). The reader may wonder if (2.1), (2.2) can be used to define $\phi_{2}(\pi)=\vec{n}$ for any partition π. This, of course, can be done. However, in general ϕ_{2} is not a $1-1$ function and so ϕ_{2}^{-1} cannot be defined. Indeed, if $\pi_{1} \neq \pi_{2}$, but $\pi_{t \text {-core }}$ is a t-core of both π_{1} and π_{2} then

$$
\phi_{2}\left(\pi_{1}\right)=\phi_{2}\left(\pi_{2}\right)=\phi_{2}\left(\pi_{t-\text { core }}\right)
$$

When a partition is a t-core, ϕ_{2} can be inverted. To do this we recall that the partition is a t-core iff for $0 \leqslant i \leqslant t-1$
$\begin{array}{rlcccc}\text { Region: } & \cdots \cdots \cdots \cdots & n_{i}-1 & n_{i} & n_{i}+1 & n_{i}+2 \\ W_{i}: & \cdots \cdots \cdots \cdots & E & E & N & N\end{array}$
as explained in [5]. For example, the word image of $\phi_{2}^{-1}((2,-1,-1))$ is

$$
\begin{array}{rlcccccc}
\text { Region : } & \cdots \cdots \cdot & -1 & 0 & 1 & 2 & 3 & \cdots \cdots \\
W_{0}: & \cdots \cdots \cdot & E & E & E & E & N & \cdots \cdots \\
W_{1}: & \cdots \cdots & E & N & N & N & N & \cdots \cdots \\
W_{2}: & \cdots \cdots & E & N & N & N & N & \cdots \cdots .
\end{array}
$$

This means that

$$
\begin{equation*}
\phi_{2}^{-1}((2,-1,-1))=(4,2) . \tag{2.5}
\end{equation*}
$$

More generally, if

$$
\phi_{1}(\pi)=\left(\pi_{t-\text { core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)
$$

with

$$
\hat{\pi}_{i}=\left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \ldots, \lambda_{m_{i}}^{(i)}\right), \quad 0 \leqslant i \leqslant t-1,
$$

then cells colored i are not exposed only in the regions

$$
n_{i}+j-\lambda_{j}^{(i)}, \quad 1 \leqslant j \leqslant m_{i}
$$

and

$$
n_{i}+m_{i}+k, \quad k \geqslant 1 .
$$

For example, if $\hat{\pi}_{i}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ then
Region : \qquad $n_{i}+1-\lambda_{1} \cdots \cdots n_{i}+2-\lambda_{2} \cdots \cdots n_{i}+3-\lambda_{3}$ $n_{i}+4 \ldots \ldots$

Clearly, one can easily determine \vec{n} and $\left(\hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)$ from the word set $\left\{W_{0}, W_{1}, \ldots\right.$, $\left.W_{t-1}\right\}$. And so

$$
\phi_{1}(\pi)=\left(\phi_{2}^{-1}(\vec{n}), \hat{\pi}_{0}, \ldots, \hat{\pi}_{t-1}\right) .
$$

We illustrate the above with the following example. If $t=3$ and $\pi=(7,5,4,3,2)$ then

Region:	$\cdots \cdots \cdots$	-2	-1	0	1	2	3	4	5	$\cdots \cdots$
$W_{0}:$	$\cdots \cdots$	E	E	E	N	E	E	N	N	$\cdots \cdots$
$W_{1}:$	$\cdots \cdots$	E	N	N	E	N	N	N	N	$\cdots \cdots$
$W_{2}:$	$\cdots \cdots$	E	N	E	N	N	N	N	N	$\cdots \cdots$.

We have

$$
\begin{array}{ll}
n_{0}=2, & \hat{\pi}_{0}=(2) \\
n_{1}=-1, & \hat{\pi}_{1}=(1,1) \\
n_{2}=-1, & \hat{\pi}_{2}=(1)
\end{array}
$$

Using (2.5), we obtain

$$
\phi_{1}((7,5,4,3,2))=((4,2),(2),(1,1),(1))
$$

To proceed further we recall some standard q-hypergeometric notations [6]:

$$
\left(a_{1}, a_{2}, a_{3}, \ldots ; q\right)_{N}=\left(a_{1} ; q\right)_{N}\left(a_{2} ; q\right)_{N}\left(a_{3} ; q\right)_{N} \ldots
$$

where

$$
(a ; q)_{N}=(a)_{N}= \begin{cases}\prod_{j=0}^{N-1}\left(1-a q^{j}\right), & N>0 \\ 1, & N=0 \\ \prod_{j=1}^{-N}\left(1-a q^{-j}\right)^{-1}, & N<0\end{cases}
$$

We shall also require the Jacobi triple product identity [6, (II.28)]

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n}=\left(q^{2},-z q,-\frac{q}{z} ; q^{2}\right)_{\infty} \tag{2.6}
\end{equation*}
$$

We are now ready to prove the Klyachko identity (1.13). We will employ a so-called constant term technique. To this end we rewrite the left-hand side of (1.13) as

$$
\text { LHS of (1.13) }=\left[z^{0}\right] \sum_{\vec{n} \in \mathbb{Z}^{t}} q^{\frac{t}{2} \vec{n} \cdot \vec{n}+\vec{b}_{t} \cdot \vec{n}} z^{\vec{n} \cdot \overrightarrow{1}_{t}}=\left[z^{0}\right] \prod_{i=0}^{t-1} \sum_{n_{i}=-\infty}^{\infty} q^{\frac{t}{2} n_{i}^{2}+i n_{i}} z^{n_{i}}
$$

where $\left[z^{i}\right] f(z)$ is the coefficient of z^{i} in the expansion of $f(z)$ in powers of z. With the aid of (2.6) we derive

$$
\begin{aligned}
\operatorname{LHS} \text { of (1.13) } & =\left[z^{0}\right] \prod_{i=0}^{t-1}\left(q^{t},-q^{i+\frac{t}{2}} z,-\frac{q^{\frac{t}{2}}}{q^{i} z} ; q^{t}\right)_{\infty} \\
& =\left[z^{0}\right] \frac{E^{t}\left(q^{t}\right)}{E(q)}\left(q,-q^{\frac{t}{2}} z,-\frac{q}{q^{\frac{t}{2}} z} ; q\right)_{\infty} \\
& =\left[z^{0}\right]\left(\frac{E^{t}\left(q^{t}\right)}{E(q)} \sum_{n=-\infty}^{\infty} q^{\frac{n^{2}}{2}+\frac{t-1}{2} n} z^{n}\right) \\
& =\frac{E^{t}\left(q^{t}\right)}{E(q)}
\end{aligned}
$$

as desired. The above proof is just a warm-up exercise to prepare the reader for a more sophisticated proof of (1.10) discussed in Section 5.

3. The Littlewood decomposition and BG-rank

The main goal of this section is to establish the following identities for BG-rank. If t is even and $\left(n_{0}, \ldots, n_{t-1}\right)=\phi_{2}(\pi)$, then

$$
\begin{equation*}
\mathrm{BG}-\operatorname{rank}(\pi)=\sum_{i=0}^{\frac{t-2}{2}} n_{2 i} \tag{3.1}
\end{equation*}
$$

If t is odd then

$$
\begin{equation*}
\mathrm{BG}-\operatorname{rank}\left(\pi_{t-\text { core }}\right)=b g(\vec{n}), \tag{3.2}
\end{equation*}
$$

where $\vec{n}=\phi_{2}\left(\pi_{t-\text { core }}\right)$ and

$$
\begin{equation*}
\operatorname{bg}(\vec{n}):=\frac{1-\sum_{j=0}^{t-1}(-1)^{j+n_{j}}}{4} \tag{3.3}
\end{equation*}
$$

Moreover, if t is odd and $\phi_{1}(\pi)=\left(\pi_{t}\right.$-core, $\left.\hat{\pi}_{0}, \ldots, \hat{\pi}_{t-1}\right)$ then

$$
\begin{equation*}
\mathrm{BG}-\operatorname{rank}(\pi)=\mathrm{BG}-\operatorname{rank}\left(\pi_{t-\text { core }}\right)+\sum_{j=0}^{t-1}(-1)^{j+n_{j}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{j}\right) . \tag{3.4}
\end{equation*}
$$

The proof of (3.1) is straightforward. It is sufficient to observe that if some cell is colored i in the t-residue diagram of π, then it is colored $\left(1-(-1)^{i}\right) / 2$ in the 2-residue diagram of π. And so we obtain with the aid of (1.2)

$$
\begin{aligned}
\operatorname{BG-rank}(\pi) & =\left(r_{0}+r_{2}+r_{4}+\cdots+r_{t-2}\right)-\left(r_{1}+r_{3}+r_{5}+\cdots+r_{t-1}\right) \\
& =\left(r_{0}-r_{1}\right)+\left(r_{2}-r_{3}\right)+\cdots+\left(r_{t-2}-r_{t-1}\right) \\
& =n_{0}+n_{2}+\cdots+n_{t-2}
\end{aligned}
$$

as desired. Next, let $D(\pi)=D$ denote the size of the Durfee square of π. To prove (3.2) we begin by rewriting (1.1) as

$$
\begin{equation*}
\operatorname{BG}-\operatorname{rank}(\pi)=\frac{1}{2}\left(\operatorname{par}(\nu)+\sum_{j=1}^{\nu}(-1)^{\lambda_{j}-j}\right) . \tag{3.5}
\end{equation*}
$$

Here $\pi=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu}\right)$ and $\operatorname{par}(x)$ is defined as

$$
\operatorname{par}(x):=\frac{1-(-1)^{x}}{2}
$$

Next, let π_{1}, π_{2} denote the partitions constructed from the first $D=D\left(\pi_{t \text {-core }}\right)$ rows, columns of $\pi_{t \text {-core }}$, respectively. Let π_{3} denote a partition whose diagram is the Durfee square of $\pi_{t \text {-core }}$. It is plain that

$$
\begin{align*}
\mathrm{BG}-\operatorname{rank}\left(\pi_{t-\text { core }}\right) & =\mathrm{BG}-\operatorname{rank}\left(\pi_{1}\right)+\mathrm{BG}-\operatorname{rank}\left(\pi_{2}\right)-\mathrm{BG}-\operatorname{rank}\left(\pi_{3}\right) \\
& =\mathrm{BG}-\operatorname{rank}\left(\pi_{1}\right)+\mathrm{BG}-\operatorname{rank}\left(\pi_{2}\right)-\operatorname{par}(D) . \tag{3.6}
\end{align*}
$$

We shall also require the following sets

$$
\begin{aligned}
P_{+} & :=\left\{i \in \mathbb{Z}: 0 \leqslant i \leqslant t-1, n_{i}>0\right\} \\
P_{-} & :=\left\{i \in \mathbb{Z}: 0 \leqslant i \leqslant t-1, n_{i}<0\right\} .
\end{aligned}
$$

Here n_{i} 's are the components of $\phi_{2}\left(\pi_{t-\text { core }}\right)$. Note that if $i \in P_{+}$, then i is exposed in all positive regions $\leqslant n_{i}$ of π_{1}. This observation together with (3.5) implies that

$$
\begin{align*}
\operatorname{BG-rank}\left(\pi_{1}\right) & =\frac{1}{2}\left(\operatorname{par}(D)+\sum_{i \in P_{+}} \sum_{k=1}^{n_{i}}(-1)^{t(k-1)+i}\right) \\
& =\frac{1}{2}\left(\operatorname{par}(D)+\sum_{i \in P_{+}}(-1)^{i} \operatorname{par}\left(n_{i}\right)\right) \tag{3.7}
\end{align*}
$$

In [5], the authors showed that under conjugation $\phi_{2}\left(\pi_{t \text {-core }}\right)$ transforms as

$$
\left(n_{0}, n_{1}, n_{2}, \ldots, n_{t-1}\right) \rightarrow\left(-n_{t-1},-n_{t-2},-n_{t-3}, \ldots,-n_{0}\right)
$$

Also it is easy to see that

$$
\operatorname{BG}-\operatorname{rank}\left(\pi_{2}\right)=\operatorname{BG}-\operatorname{rank}\left(\pi_{2}^{\prime}\right) .
$$

It follows that

$$
\begin{equation*}
\operatorname{BG-rank}\left(\pi_{2}\right)=\frac{1}{2}\left(\operatorname{par}(D)+\sum_{i \in P_{-}}(-1)^{i} \operatorname{par}\left(n_{i}\right)\right) . \tag{3.8}
\end{equation*}
$$

Combining (3.6)-(3.8) and taking into account that $\operatorname{par}(0)=0$ we get

$$
\operatorname{BG-rank}\left(\pi_{t \text {-core }}\right)=\frac{1}{2} \sum_{i \in P_{-} \cup P_{+}}(-1)^{i} \operatorname{par}\left(n_{i}\right)=\frac{1}{2} \sum_{i=0}^{t-1}(-1)^{i} \operatorname{par}\left(n_{i}\right)=\frac{1-\sum_{i=0}^{t-1}(-1)^{i+n_{i}}}{4},
$$

as desired. Note that formula (3.2) implies that BG-rank of odd- t-cores is bounded, as stated in (1.9). Next, let $\tilde{\pi}_{0, i}, \tilde{\pi}_{2, i}, \tilde{\pi}_{3, i}, \ldots$ denote the partitions constructed from $\phi_{1}(\pi)=$ $\left(\pi_{t-\text { core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{t-1}\right)$, for odd t as follows

$$
\begin{aligned}
& \tilde{\pi}_{0, i}=\phi_{1}^{-1}\left(\pi_{t \text {-core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{i-1},(0), \hat{\pi}_{i+1}, \ldots, \hat{\pi}_{t-1}\right) \\
& \tilde{\pi}_{1, i}=\phi_{1}^{-1}\left(\pi_{t-\text { core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{i-1},\left(\lambda_{1}\right), \hat{\pi}_{i+1}, \ldots, \hat{\pi}_{t-1}\right) \\
& \tilde{\pi}_{2, i}=\phi_{1}^{-1}\left(\pi_{t \text {-core }}, \hat{\pi}_{0}, \hat{\pi}_{1}, \ldots, \hat{\pi}_{i-1},\left(\lambda_{1}, \lambda_{2}\right), \hat{\pi}_{i+1}, \ldots, \hat{\pi}_{t-1}\right),
\end{aligned}
$$

Here $\hat{\pi}_{i}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\nu}\right)$. Note that the W_{i} word of $\tilde{\pi}_{0, i}$ is

$$
\begin{array}{rlcc}
\text { Region: } & \cdots \cdots \cdots \cdots & n_{i} & n_{i}+1 \\
W_{i}: & \cdots \cdots \cdots \cdots & E & N
\end{array}
$$

To convert $\tilde{\pi}_{0, i}$ into $\tilde{\pi}_{1, i}$ we attach a rim hook of length $t \lambda_{1}$ to $\tilde{\pi}_{0, i}$ so that W_{i} becomes

$$
\begin{array}{rlclc}
\text { Region: } & \cdots \cdots \cdots \cdots & n_{i}+1-\lambda_{1} & \cdots \cdots \cdots & n_{i}+2, \\
W_{i}: & \cdots \cdots \cdots \cdots & E N E & \cdots \cdots \cdots \cdots & E N N
\end{array}
$$

It is not hard to verify that the color of the head (north-eastern) cell of the added rim-hook in the 2-residue diagram of $\tilde{\pi}_{1, i}$ is given by $\operatorname{par}\left(t n_{i}+i\right)=\operatorname{par}\left(n_{i}+i\right)$. Observe that zeros and ones alternate along the added hook rim. This means that BG-rank does not change if λ_{1} is even. If λ_{1} is odd then the change is determined by the color of the added head cell, i.e.

$$
\begin{aligned}
\mathrm{BG}-\operatorname{rank}\left(\tilde{\pi}_{1, i}\right) & =\mathrm{BG}-\operatorname{rank}\left(\tilde{\pi}_{0, i}\right)+\operatorname{par}\left(\lambda_{1}\right)\left(1-2 \operatorname{par}\left(n_{i}+i\right)\right) \\
& =\mathrm{BG}-\operatorname{rank}\left(\tilde{\pi}_{0, i}\right)+\operatorname{par}\left(\lambda_{1}\right)(-1)^{n_{i}+i}
\end{aligned}
$$

Next, we convert $\tilde{\pi}_{1, i}$ into $\tilde{\pi}_{2, i}$ by adding the new hook rim of length $t \lambda_{2}$ to $\tilde{\pi}_{1, i}$ so that W_{i} becomes

$$
\begin{array}{rcclclcl}
\text { Region: } & \cdots \cdots \cdot & n_{i}+1-\lambda_{1} & \cdots \cdots & n_{i}+2-\lambda_{2} & \cdots \cdots & n_{i}+3 & \cdots \cdots . \\
W_{i}: & \cdots \cdots \cdot & E N E & \cdots \cdots & E N E & \cdots \cdots & E N & \cdots \cdots \cdot .
\end{array}
$$

The color of the new head cell is given by

$$
\operatorname{par}\left(t\left(n_{i}+1\right)+i\right)=\operatorname{par}\left(n_{i}+1+i\right),
$$

and so

$$
\begin{aligned}
\operatorname{BG}-\operatorname{rank}\left(\tilde{\pi}_{2, i}\right) & =\operatorname{BG}-\operatorname{rank}\left(\tilde{\pi}_{1, i}\right)+\operatorname{par}\left(\lambda_{2}\right)\left(1-2 \operatorname{par}\left(n_{i}+1+i\right)\right) \\
& =\operatorname{BG}-\operatorname{rank}\left(\tilde{\pi}_{0, i}\right)+(-1)^{n_{i}+i}\left(\operatorname{par}\left(\lambda_{1}\right)-\operatorname{par}\left(\lambda_{2}\right)\right) .
\end{aligned}
$$

Proceeding as above we arrive at

$$
\begin{align*}
\operatorname{BG}-\operatorname{rank}(\pi) & =\mathrm{BG}-\operatorname{rank}\left(\tilde{\pi}_{0, i}\right)+(-1)^{n_{i}+i} \sum_{j=1}^{\nu}(-1)^{j+1} \operatorname{par}\left(\lambda_{j}\right) \\
& =\operatorname{BG}-\operatorname{rank}\left(\tilde{\pi}_{0, i}\right)+(-1)^{n_{i}+i} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{i}\right) . \tag{3.9}
\end{align*}
$$

Formula (3.4) follows easily from (3.9). Let us now define $\vec{B}_{t}, \overrightarrow{\tilde{B}}_{t} \in \mathbb{Z}^{t}$ as

$$
\vec{B}_{t}= \begin{cases}\sum_{i=0}^{\frac{t-1}{2}} \vec{e}_{2 i}, & \text { if } t \equiv 1(\bmod 4) \\ \sum_{i=0}^{\frac{t-3}{2}} \vec{e}_{1+2 i}, & \text { if } t \equiv-1(\bmod 4)\end{cases}
$$

and

$$
\overrightarrow{\tilde{B}}_{t}=\vec{B}_{t}+\sum_{i=0}^{t-1} \vec{e}_{i}= \begin{cases}\sum_{i=0}^{\frac{t-3}{2}} \vec{e}_{1+2 i}, & \text { if } t \equiv 1(\bmod 4) \\ \sum_{i=0}^{\frac{t-1}{2}} \vec{e}_{2 i}, & \text { if } t \equiv-1(\bmod 4)\end{cases}
$$

Here \vec{e}_{i} 's are standard unit vectors in \mathbb{Z}^{t} defined as $e_{0}=(1,0, \ldots, 0), \ldots, \vec{e}_{t-1}=(0, \ldots, 0,1)$.
We conclude this section with the following important observation. If odd $t>1, k=$ $0,1, \ldots,(t-1) / 2$ and $\vec{n} \in \mathbb{Z}^{t}, \vec{n} \cdot \overrightarrow{1}_{t}=0$, then

$$
\begin{equation*}
\operatorname{bg}(\vec{n})=(-1)^{\frac{t-1}{2}}\left(\left\lfloor\frac{t}{4}\right\rfloor-k\right) \tag{3.10}
\end{equation*}
$$

iff $\vec{n} \equiv \vec{B}_{t}+\vec{e}_{i_{0}}+\vec{e}_{i_{1}}+\cdots+\vec{e}_{i_{2 k}}(\bmod 2)$ for some $0 \leqslant i_{0}<i_{1}<i_{2}<\cdots<i_{2 k} \leqslant t-1$. In particular, if $\vec{n} \in \mathbb{Z}^{t}, \vec{n} \cdot \overrightarrow{1}_{t}=0$, then

$$
\begin{equation*}
\operatorname{bg}(\vec{n})=(-1)^{\frac{t+1}{2}}\left\lfloor\frac{t+1}{4}\right\rfloor \tag{3.11}
\end{equation*}
$$

iff $\vec{n} \equiv \overrightarrow{\tilde{B}}_{t}(\bmod 2)$. We leave the proof as an exercise for the interested reader.

4. Combinatorial proof of $\boldsymbol{p}_{j}(5 n+4) \equiv 0(\bmod 5)$

Throughout this section we assume that

$$
|\pi| \equiv 4 \quad(\bmod 5)
$$

and

$$
\left|\pi_{5 \text {-core }}\right| \equiv 4 \quad(\bmod 5)
$$

To prove (1.8) we shall require a few definitions. Following [5], we define the 5-core crank as

$$
\begin{equation*}
c_{5}(\pi):=2\left(r_{0}(\pi, 5)-r_{4}(\pi, 5)\right)+\left(r_{1}(\pi, 5)-r_{3}(\pi, 5)\right)+1 \quad(\bmod 5) . \tag{4.1}
\end{equation*}
$$

Note that if $\left|\pi_{5 \text {-core }}\right| \equiv 4(\bmod 5)$, then obviously

$$
\begin{gather*}
n_{0}+n_{1}+n_{2}+n_{3}+n_{4}=0 \tag{4.2}\\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4} \equiv 4 \quad(\bmod 5) \tag{4.3}
\end{gather*}
$$

Here, $\vec{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)=\phi_{2}\left(\pi_{5 \text {-core }}\right)$. Let us introduce a new vector $\vec{\alpha}(\vec{n})=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right.$, α_{3}, α_{4}), defined as

$$
\begin{align*}
\alpha_{0} & =\frac{n_{0}-3 n_{1}-2 n_{2}-n_{3}+1}{5} \tag{4.4}\\
\alpha_{1} & =\frac{-3 n_{0}-n_{1}-4 n_{2}-2 n_{3}+2}{5} \tag{4.5}\\
\alpha_{2} & =\frac{-3 n_{0}-n_{1}+n_{2}-2 n_{3}+2}{5} \tag{4.6}\\
\alpha_{3} & =\frac{n_{0}+2 n_{1}+3 n_{2}+4 n_{3}+1}{5} \tag{4.7}\\
\alpha_{4} & =\frac{4 n_{0}+3 n_{1}+2 n_{2}+n_{3}-1}{5} \tag{4.8}
\end{align*}
$$

Using (4.2), (4.3) it is easy to verify that $\vec{\alpha}(\vec{n}) \in \mathbb{Z}^{5}$ and that

$$
\begin{equation*}
\left(\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)=1 \tag{4.9}
\end{equation*}
$$

Inverting (4.4)-(4.8) we find that

$$
\begin{gather*}
n_{0}=\alpha_{0}+\alpha_{4}, \tag{4.10}\\
n_{1}=-\alpha_{0}+\alpha_{1}+\alpha_{4}, \tag{4.11}\\
n_{2}=-\alpha_{1}+\alpha_{2}, \tag{4.12}\\
n_{3}=-\alpha_{2}+\alpha_{3}-\alpha_{4}, \tag{4.13}\\
n_{4}=-\alpha_{3}-\alpha_{4} . \tag{4.14}
\end{gather*}
$$

Note that in terms of these new variables we have

$$
\begin{align*}
& c_{5}(\pi) \equiv \sum_{i=0}^{4} i \alpha_{i} \quad(\bmod 5), \tag{4.15}\\
& |\pi|=5 Q(\vec{\alpha})-1+5 \sum_{i=0}^{4}\left|\hat{\pi}_{i}\right|, \tag{4.16}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{BG}-\operatorname{rank}(\pi)= & \frac{1-(-1)^{\alpha_{0}+\alpha_{1}}-(-1)^{\alpha_{1}+\alpha_{2}}-\cdots-(-1)^{\alpha_{4}+\alpha_{0}}}{4} \\
& +(-1)^{\alpha_{0}+\alpha_{4}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{0}\right) \\
& +(-1)^{\alpha_{2}+\alpha_{3}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{1}\right) \\
& +(-1)^{\alpha_{1}+\alpha_{2}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{2}\right) \\
& +(-1)^{\alpha_{0}+\alpha_{1}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{3}\right) \\
& +(-1)^{\alpha_{3}+\alpha_{4}} \operatorname{BG}-\operatorname{rank}\left(\hat{\pi}_{4}\right) . \tag{4.17}
\end{align*}
$$

Here $\phi_{1}(\pi)=\left(\pi_{5 \text {-core }}, \hat{\pi}_{0}, \ldots, \hat{\pi}_{4}\right)$ and $Q(\vec{\alpha}):=\vec{\alpha} \cdot \vec{\alpha}-\left(\alpha_{0} \alpha_{1}+\alpha_{1} \alpha_{2}+\cdots+\alpha_{4} \alpha_{0}\right)$. It is convenient to combine $\phi_{1}, \phi_{2}, \vec{\alpha}$ into a new invertible function Φ, defined as

$$
\Phi(\pi)=\left(\vec{\alpha}\left(\phi_{2}\left(\pi_{5} \text {-core }\right)\right), \overrightarrow{\hat{\pi}}\right),
$$

where $\overrightarrow{\hat{\pi}}:=\left(\hat{\pi}_{0}, \ldots, \hat{\pi}_{4}\right)$. Following [2] we define

$$
\begin{aligned}
& \widehat{C}_{1}(\vec{\alpha})=\left(\alpha_{4}, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right), \\
& \widehat{C}_{2}(\overrightarrow{\hat{\pi}})=\left(\hat{\pi}_{4}, \hat{\pi}_{2}, \hat{\pi}_{3}, \hat{\pi}_{0}, \hat{\pi}_{1}\right), \\
& \widehat{O}(\pi)=\Phi^{-1}\left(\widehat{C}_{1}(\vec{\alpha}), \widehat{C}_{2}(\overrightarrow{\hat{\pi}})\right) .
\end{aligned}
$$

We observe that operator \widehat{O} has the following properties

$$
\begin{gather*}
|\widehat{O}(\pi)|=|\pi|, \\
\widehat{O}^{5}(\pi)=\pi \\
\mathrm{BG}-\operatorname{rank}(\widehat{O}(\pi))=\mathrm{BG}-\operatorname{rank}(\pi), \\
c_{5}(\widehat{O}(\pi)) \equiv 1+c_{5}(\pi) \quad(\bmod 5) . \tag{4.18}
\end{gather*}
$$

Clearly, \widehat{O} preserves the norm and the BG-rank of the partition. And so we can assemble all partitions of $5 n+4$ with BG-rank $=j$ into disjoint orbits:

$$
\pi, \quad \widehat{O}(\pi), \quad \widehat{O}^{2}(\pi), \quad \widehat{O}^{3}(\pi), \quad \widehat{O}^{4}(\pi)
$$

Here, π is some partition of $5 n+4$ with BG-rank $=j$. Formula (4.18) suggests that all five members of the same orbit are distinct. Clearly,

$$
p_{j}(5 n+4)=5 \cdot(\text { number of orbits) }
$$

Hence, $p_{j}(5 n+4) \equiv 0(\bmod 5)$, as desired. In fact, we have the following
Theorem 4.1. Let j be any fixed integer. The residue of the 5-core crank mod 5 divides the partitions enumerated by $p_{j}(5 n+4)$ into five equal classes.

We note that this theorem generalizes Theorem 4.1 [2, p. 717].

5. Identities for odd \boldsymbol{t}-cores with extreme BG-rank values

The main object of this section is to provide a proof of formulas (1.10) and (1.11). Throughout this section t is presumed to be a positive odd integer. We will prove (1.11) first. To this end we employ the observation (3.10) together with (2.3) to rewrite it as

$$
\begin{equation*}
\sum_{\substack{\vec{n} \in \mathbb{Z}^{t}, \vec{n} \cdot \overrightarrow{1}_{t}=0 \\ \vec{n}=\tilde{B}_{t}(\bmod 2)}} q^{\widetilde{Q}(\vec{n})}=q^{\frac{t^{2}-1}{8}} \frac{E^{t}\left(q^{4 t}\right)}{E\left(q^{4}\right)}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{Q}(\vec{n}):=\frac{t}{2} \vec{n} \cdot \vec{n}+\vec{b}_{t} \cdot \vec{n} \tag{5.2}
\end{equation*}
$$

Next we introduce new summation variables $\overrightarrow{\tilde{n}}=\left(\tilde{n}_{0}, \ldots, \tilde{n}_{t-1}\right) \in \mathbb{Z}^{t}$ as follows

$$
\begin{equation*}
\vec{n}=2 \overrightarrow{\tilde{n}}+\sum_{i=0}^{\left\lfloor\frac{t-3}{4}\right\rfloor}\left(\vec{e}_{\frac{t-3}{2}-2 i}-\vec{e}_{\frac{t+1}{2}+2 i}\right) \tag{5.3}
\end{equation*}
$$

Obviously, $\overrightarrow{\tilde{n}}$ is subject to the constraint

$$
\begin{equation*}
\overrightarrow{\tilde{n}} \cdot \overrightarrow{1}_{t}=0 \tag{5.4}
\end{equation*}
$$

Note that in terms of new variables we have

$$
\begin{equation*}
\widetilde{Q}(\vec{n})=\widetilde{Q}(\vec{n})+(t-1) \overrightarrow{1}_{t} \cdot \overrightarrow{\tilde{n}}=\frac{t^{2}-1}{8}+4\left\{\frac{t}{2} \overrightarrow{\tilde{n}} \cdot \overrightarrow{\tilde{n}}+\sigma_{1}+\sigma_{2}+\sigma_{3}\right\} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{gathered}
\sigma_{1}=\sum_{i=0}^{\left\lfloor\frac{t-3}{4}\right\rfloor}(t-1-i) \tilde{n}_{\frac{t-3}{2}-2 i} \\
\sigma_{2}=\sum_{i=0}^{\left\lfloor\frac{t-3}{4}\right\rfloor} i \tilde{n}_{2 i+\frac{t+1}{2}} \\
\sigma_{3}=\sum_{i=-\left\lfloor\frac{t-1}{4}\right\rfloor}^{\left\lfloor\frac{t-1}{4}\right\rfloor}\left(\frac{t-1}{2}+i\right) \tilde{n}_{\frac{t-1}{2}+2 i}
\end{gathered}
$$

At this point it is natural to perform further changes:

$$
\begin{array}{ll}
\tilde{n}_{\frac{t-3}{2}-2 i} \rightarrow \tilde{n}_{t-1-i}, & 0 \leqslant i \leqslant\left\lfloor\frac{t-3}{4}\right\rfloor \\
& \tilde{n}_{\frac{t+1}{2}+2 i} \rightarrow \tilde{n}_{i}, \\
0 \leqslant i \leqslant\left\lfloor\frac{t-3}{4}\right\rfloor \\
\tilde{n}_{\frac{t-1}{2}+2 i} \rightarrow \tilde{n}_{\frac{t-1}{2}+i}, & -\left\lfloor\frac{t-1}{4}\right\rfloor \leqslant i \leqslant\left\lfloor\frac{t-1}{4}\right\rfloor .
\end{array}
$$

This way we obtain

$$
\begin{gathered}
\widetilde{Q}(\vec{n})=\frac{t^{2}-1}{8}+4 \widetilde{Q}(\overrightarrow{\tilde{n}}) \\
\overrightarrow{\tilde{\tilde{n}}} \in \mathbb{Z}^{t}, \quad \overrightarrow{\tilde{n}} \cdot \overrightarrow{1}_{t}=0
\end{gathered}
$$

And so with the aid of the Klyachko identity (1.13) we find that

$$
\begin{equation*}
C_{t,(-1)^{\frac{t+1}{4}\left\lfloor\frac{t+1}{4}\right\rfloor}}(q)=\sum_{\substack{\tilde{\tilde{n}} \in \mathbb{Z}^{t} \\ \tilde{\tilde{n}} \cdot \vec{t}_{t}=0}} q^{\frac{t^{2}-1}{8}+4 \widetilde{Q}(\overrightarrow{\tilde{n}})}=q^{\frac{t^{2}-1}{8}} \frac{E^{t}\left(q^{4 t}\right)}{E\left(q^{4}\right)}, \tag{5.6}
\end{equation*}
$$

as desired. To prove (1.10) we shall require the following lemma.

Lemma 5.1. For a positive odd t

$$
\begin{equation*}
\psi^{2}\left(q^{2}\right)=q^{\frac{t-1}{2}} \psi^{2}\left(q^{2 t}\right)+\frac{E^{3}\left(q^{4 t}\right)}{f\left(-q^{t},-q^{3 t}\right)} \sum_{i=0}^{\frac{t-3}{2}} q^{i} \frac{f\left(q^{t-1-2 i},-q^{1+2 i}\right)}{f\left(-q^{4 i+2},-q^{4 t-2-4 i}\right)} \tag{5.7}
\end{equation*}
$$

holds.
In the above we employed the Ramanujan notations

$$
\begin{align*}
& \psi(q):=\frac{E^{2}\left(q^{2}\right)}{E(q)}=\sum_{n \geqslant 0} q^{\binom{n+1}{2}} \tag{5.8}\\
& f(a, b):=(a b,-a,-b ; a b)_{\infty} \tag{5.9}
\end{align*}
$$

Using (2.6) we can easily show that

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} . \tag{5.10}
\end{equation*}
$$

Setting $a=q^{t-1-2 i}, b=-q^{1+2 i}, 0 \leqslant i \leqslant \frac{t-3}{2}$, in (5.10) and dissecting we obtain

$$
\begin{equation*}
f\left(q^{t-1-2 i},-q^{1+2 i}\right)=f\left(-q^{2+t+4 i},-q^{3 t-2-4 i}\right)+q^{t-1-2 i} f\left(-q^{2-t+4 i},-q^{5 t-2-4 i}\right) \tag{5.11}
\end{equation*}
$$

To prove the above lemma we start with the Ramanujan ${ }_{1} \psi_{1}$-summation formula [6, II.29]

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{(a)_{n}}{(b)_{n}} z^{n}=\frac{\left(a z, \frac{q}{a z}, q, \frac{b}{a} ; q\right)_{\infty}}{\left(z, \frac{b}{a z}, b, \frac{q}{a} ; q\right)_{\infty}}, \quad\left|\frac{b}{a}\right|<|z|<1 \tag{5.12}
\end{equation*}
$$

We set $b=a q$ to obtain

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{z^{n}}{1-a q^{n}}=\frac{\left(a z, \frac{q}{a z}, q, q ; q\right)_{\infty}}{\left(z, \frac{q}{z}, a, \frac{q}{a} ; q\right)_{\infty}}=\frac{E^{3}(q) f\left(-a z,-\frac{q}{a z}\right)}{f\left(-z,-\frac{q}{z}\right) f\left(-a,-\frac{q}{a}\right)}, \quad|q|<|z|<1 \tag{5.13}
\end{equation*}
$$

If we replace $q \rightarrow q^{4}, z=q, a=q^{2}$ in (5.13) we find that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{q^{n}}{1-q^{2+4 n}}=\psi^{2}\left(q^{2}\right) \tag{5.14}
\end{equation*}
$$

Next we split the sum on the left of (5.14) as

$$
\begin{equation*}
\psi^{2}\left(q^{2}\right)=\sum_{\substack{i=0 \\ i \neq \frac{t-1}{2}}}^{t-1} \sum_{m_{i}=-\infty}^{\infty} q^{i} \frac{q^{t m_{i}}}{1-q^{2+4 i} q^{4 t m_{i}}}+\sum_{m=-\infty}^{\infty} q^{\frac{t-1}{2}} \frac{q^{t m}}{1-q^{2 t} q^{4 t m}} \tag{5.15}
\end{equation*}
$$

Using (5.14) with $q \rightarrow q^{t}$ it is easy to recognize the last sum in (5.15) as $q^{(t-1) / 2} \psi^{2}\left(q^{2 t}\right)$. And so we have

$$
\begin{equation*}
\psi^{2}\left(q^{2}\right)=q^{\frac{t-1}{2}} \psi^{2}\left(q^{2 t}\right)+\frac{E^{3}\left(q^{4 t}\right)}{f\left(-q^{t},-q^{3 t}\right)} \sum_{\substack{i=0 \\ i \neq \frac{t-1}{2}}}^{t-1} q^{i} \frac{f\left(-q^{2+4 i+t},-q^{3 t-2-4 i}\right)}{f\left(-q^{2+4 i},-q^{4 t-2-4 i}\right)} \tag{5.16}
\end{equation*}
$$

where we have made a multiple use of (5.13). Finally, folding the last sum in half and using (5.11) we arrive at

$$
\begin{align*}
\psi^{2}\left(q^{2}\right)= & q^{\frac{t-1}{2}} \psi^{2}\left(q^{2 t}\right)+\sum_{i=0}^{\frac{t-3}{2}} \frac{E^{3}\left(q^{4 t}\right) q^{i}}{f\left(-q^{t},-q^{3 t}\right) f\left(-q^{2+4 i},-q^{4 t-2-2 i}\right)} \\
& \times\left\{f\left(-q^{2+4 i+t},-q^{3 t-2-4 i}\right)+q^{t-1-2 i} f\left(-q^{5 t-2-4 i},-q^{2-t+4 i}\right)\right\} \\
= & q^{\frac{t-1}{2}} \psi^{2}\left(q^{2 t}\right)+\frac{E^{3}\left(q^{4 t}\right)}{f\left(-q^{t},-q^{3 t}\right)} \sum_{i=0}^{\frac{t-3}{2}} q^{i} \frac{f\left(q^{t-1-2 i},-q^{1+2 i}\right)}{f\left(-q^{2+4 i},-q^{4 t-2-4 i}\right)} \tag{5.17}
\end{align*}
$$

This concludes the proof of Lemma 5.1.
We now move on to prove (1.10). Again, using the observation (3.10), we can rewrite it as

$$
\begin{equation*}
\sum_{j=0}^{t-1} \sum_{\substack{\vec{n} \in \mathbb{Z}^{t}, \vec{n} \cdot \overrightarrow{1}_{t}=0 \\ \vec{n} \equiv \vec{B}_{t}+\vec{e}_{j}(\bmod 2)}} q^{\widetilde{Q}(\vec{n})}=q^{\frac{(t-1)(t-3)}{8}} F\left(t, q^{2}\right) \tag{5.18}
\end{equation*}
$$

Remarkably, (5.18) is just the constant term in z of the following more general identity

$$
\begin{equation*}
\sum_{j=0}^{t-1} \sum_{\substack{\vec{n} \in \mathbb{Z}^{t} \\ \vec{n} \equiv \vec{B}_{t}+\vec{e}_{j}(\bmod 2)}} q^{\widetilde{Q}(\vec{n})} z^{\frac{\vec{n} \cdot \bar{T}_{t}}{2}}=q^{\frac{(t-1)(t-3)}{8}} F\left(t, q^{2}\right) \sum_{n=-\infty}^{\infty} q^{2 n^{2}+(t-1) n} z^{n} \tag{5.19}
\end{equation*}
$$

To prove (5.19) we observe that its right-hand side satisfies the first order functional equation

$$
\begin{equation*}
\widehat{D}_{t, q}(f(z))=f(z), \tag{5.20}
\end{equation*}
$$

where

$$
\widehat{D}_{t, q}(f(z)):=z q^{t+1} f\left(z q^{4}\right)
$$

After a bit of labor one can verify that for $0 \leqslant i \leqslant t-1$
where $\vec{e}_{t}:=\vec{e}_{0}$ and $\vec{e}_{t+1}:=\vec{e}_{1}$. Clearly, (5.21) implies that the left-hand side of (5.19) satisfies (5.20), as well. It remains to verify (5.19) at one nontrivial point. To this end we set

$$
z= \begin{cases}1, & \text { if } t \equiv-1(\bmod 4) \\ q^{2}, & \text { if } t \equiv 1(\bmod 4)\end{cases}
$$

in (5.19), and then replace $q^{2} \rightarrow q$ to get with the help of (2.6)

$$
\begin{equation*}
q^{\frac{t-1}{2}} \psi\left(q^{2 t}\right) \prod_{j=0}^{\frac{t-3}{2}} f^{2}\left(q^{1+2 j}, q^{2 t-1-2 j}\right)\left\{1+\sum_{i=1}^{\frac{t-1}{2}} q^{-i} \frac{f\left(q^{t}, q^{t}\right) f\left(q^{2 i}, q^{2 t-2 i}\right)}{\psi\left(q^{2 t}\right) f\left(q^{t+2 i}, q^{t-2 i}\right)}\right\}=\psi\left(q^{2}\right) F(t, q) \tag{5.22}
\end{equation*}
$$

To proceed further we need to verify two product identities

$$
\psi\left(q^{2}\right) \prod_{j=0}^{\frac{t-3}{2}} f^{2}\left(q^{1+2 j}, q^{2 t-1-2 j}\right)=\psi\left(q^{2 t}\right) F(t, q)
$$

and

$$
\psi\left(q^{2 t}\right) \frac{f\left(q^{t}, q^{t}\right) f\left(q^{2 i}, q^{2 t-2 i}\right)}{f\left(q^{t+2 i}, q^{t-2 i}\right)}=E^{3}\left(q^{4 t}\right) \frac{f\left(q^{2 i},-q^{t-2 i}\right)}{f\left(-q^{t},-q^{3 t}\right) f\left(-q^{2 t+4 i},-q^{2 t-4 i}\right)}, \quad i \in \mathbb{N} .
$$

Next, we multiply both sides of (5.22) by $\frac{\psi\left(q^{2}\right)}{F(t, q)}$ and simplify to arrive at

$$
\begin{equation*}
q^{\frac{t-1}{2}} \psi^{2}\left(q^{2 t}\right)+\frac{E^{3}\left(q^{4 t}\right)}{f\left(-q^{t},-q^{3 t}\right)} \sum_{i=1}^{\frac{t-1}{2}} q^{\frac{t-1}{2}-i} \frac{f\left(q^{2 i},-q^{t-2 i}\right)}{f\left(-q^{2 t+4 i},-q^{2 t-4 i}\right)}=\psi^{2}\left(q^{2}\right) \tag{5.23}
\end{equation*}
$$

which is essentially the identity in Lemma 5.1. This concludes our proof of (5.19). It follows that (5.18), (1.10) hold true.

6. 5-cores with prescribed BG-rank

Formula (1.9) suggests that BG-rank($\pi_{5 \text {-core }}$) can assume just three values: $0, \pm 1$. This means that

$$
\begin{equation*}
a_{5}(n)=a_{5,-1}(n)+a_{5,0}(n)+a_{5,1}(n) . \tag{6.1}
\end{equation*}
$$

The generating function of version (6.1) is

$$
\begin{equation*}
\frac{E^{5}\left(q^{5}\right)}{E(q)}=C_{5,-1}(q)+C_{5,0}(q)+C_{5,1}(q) \tag{6.2}
\end{equation*}
$$

In the last section we proved (1.10), (1.11). These identities with $t=5$ state that

$$
\begin{align*}
C_{5,-1}(q) & =q^{3} \frac{E^{5}\left(q^{20}\right)}{E\left(q^{4}\right)} \tag{6.3}\\
C_{5,1}(q) & =q F\left(5, q^{2}\right) \tag{6.4}
\end{align*}
$$

By (1.3) we observe that $C_{t, j}(q)$ is either an odd or an even function of q with parity determined by the parity of j. Therefore, $C_{5,0}(q)$ is an even function of q, and $C_{5, \pm 1}(q)$ are odd functions of q. Consequently, we see that

$$
\begin{equation*}
\mathrm{ep}\left(\frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=C_{5,0}(q) \tag{6.5}
\end{equation*}
$$

where

$$
\operatorname{ep}(f(x)):=\frac{f(x)+f(-x)}{2}
$$

In this section we will show that $C_{5,0}(q)$ can be expressed as a sum of two infinite products

$$
\begin{equation*}
C_{5,0}(q)=R\left(q^{2}\right) \tag{6.6}
\end{equation*}
$$

where

$$
\begin{equation*}
R(q):=\frac{E^{4}\left(q^{10}\right) E\left(q^{5}\right) E^{2}\left(q^{4}\right)}{E^{2}\left(q^{20}\right) E(q)}+q \frac{E^{2}\left(q^{20}\right) E^{3}\left(q^{5}\right) E^{6}\left(q^{2}\right)}{E^{2}\left(q^{10}\right) E^{2}\left(q^{4}\right) E^{3}(q)} \tag{6.7}
\end{equation*}
$$

It is easy to rewrite (6.7) in a manifestly positive way as

$$
R(q)=f\left(q, q^{4}\right) f\left(q^{2}, q^{3}\right)\left\{\varphi\left(q^{5}\right) \psi\left(q^{2}\right)+q \varphi(q) \psi\left(q^{10}\right)\right\}
$$

where

$$
\varphi(q):=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\frac{E^{5}\left(q^{2}\right)}{E^{2}\left(q^{4}\right) E^{2}(q)}
$$

and $\psi(q)$ is defined in (5.8). Formula (6.6) enabled us to discover and prove the new Lambert series identity

$$
\begin{equation*}
R(q)=\sum_{i=0}^{1} \sum_{n=-\infty}^{\infty}(-1)^{i} q^{5 n+i} \frac{1+q^{1+2 i+10 n}}{\left(1-q^{1+2 i+10 n}\right)^{2}} \tag{6.8}
\end{equation*}
$$

In what follows we will require three identities:

$$
\begin{equation*}
\left[u x, \frac{u}{x}, v y, \frac{v}{y} ; q\right]_{\infty}=\left[u y, \frac{u}{y}, v x, \frac{v}{x} ; q\right]_{\infty}+\frac{v}{x}\left[x y, \frac{x}{y}, u v, \frac{u}{v} ; q\right]_{\infty} \tag{6.9}
\end{equation*}
$$

[6, Ex. 5.21],

$$
\begin{equation*}
f(a, b) f(c, d)=f(a c, b d) f(a d, b c)+a f\left(\frac{b}{c}, \frac{c}{b}(a b c d)\right) f\left(\frac{b}{d}, \frac{d}{b}(a b c d)\right) \tag{6.10}
\end{equation*}
$$

provided $a b=c d[1]$, and

$$
\begin{equation*}
\frac{E^{5}\left(q^{5}\right)}{E(q)}=\sum_{i=1}^{2} \sum_{n=-\infty}^{\infty}(-1)^{i+1} \frac{q^{5 n+i-1}}{\left(1-q^{5 n+i}\right)^{2}} \tag{6.11}
\end{equation*}
$$

[6, Ex. 5.7], [5, p. 8]. Here

$$
\begin{gathered}
{[a ; q]_{\infty}=\left(a, \frac{q}{a} ; q\right)_{\infty}} \\
{\left[a_{1}, a_{2}, \ldots, a_{n} ; q\right]_{\infty}=\prod_{i=1}^{n}\left[a_{i} ; q\right]_{\infty} .}
\end{gathered}
$$

Next, we wish to establish the validity of

$$
\begin{equation*}
F(5, q)=\frac{E\left(q^{10}\right) E^{2}\left(q^{5}\right) E^{3}\left(q^{2}\right)}{E^{2}(q)}=\frac{E^{5}\left(q^{5}\right)}{E(q)}+q \frac{E^{5}\left(q^{10}\right)}{E\left(q^{2}\right)} \tag{6.12}
\end{equation*}
$$

To this end we multiply both sides of (6.12) by

$$
\frac{\left[q, q^{3} ; q^{10}\right]_{\infty}^{2}\left[q^{2}, q^{4} ; q^{10}\right]_{\infty}}{E^{4}\left(q^{10}\right)}
$$

to obtain after simplification that

$$
\begin{equation*}
\left[q^{2}, q^{2}, q^{4}, q^{6} ; q^{10}\right]_{\infty}=\left[q, q^{3}, q^{5}, q^{5} ; q^{10}\right]_{\infty}+q\left[q, q, q^{3}, q^{3} ; q^{10}\right]_{\infty} \tag{6.13}
\end{equation*}
$$

But the last equation is nothing else but (6.9) with q replaced by q^{10} and $u=q^{2}, v=q^{5}, x=1$, $y=q$. We now combine

$$
\mathrm{ep}\left(q \frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=q C_{5,-1}(q)+q C_{5,1}(q)
$$

with (6.3), (6.5), and (6.12) to obtain

$$
\begin{equation*}
\mathrm{ep}\left(q \frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=2 q^{4} \frac{E^{5}\left(q^{20}\right)}{E\left(q^{4}\right)}+q^{2} \frac{E^{5}\left(q^{10}\right)}{E\left(q^{2}\right)} \tag{6.14}
\end{equation*}
$$

This can be stated as the following eigenvalue problem

$$
\begin{equation*}
T_{2}\left(q \frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=q \frac{E^{5}\left(q^{5}\right)}{E(q)} \tag{6.15}
\end{equation*}
$$

where for prime p the Hecke operator T_{p} is defined by its action as

$$
T_{p}\left(\sum_{n \geqslant 0} a_{n} q^{n}\right)=\sum_{n \geqslant 0} a_{p n} q^{n}+p\left(\frac{p}{5}\right) \sum_{n \geqslant 0} a_{n} q^{p n},
$$

with $\left(\frac{a}{b}\right)$ being the Legendre symbol. We remark that (6.15) is the $p=2$ case of the more general formula

$$
\begin{equation*}
T_{p}\left(q \frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=\left(p+\left(\frac{p}{5}\right)\right)\left(q \frac{E^{5}\left(q^{5}\right)}{E(q)}\right) \tag{6.16}
\end{equation*}
$$

which can be deduced from (6.11). We shall not supply the details. Instead, we note that (6.16) together with (6.3)-(6.5) implies that

$$
\begin{equation*}
T_{\tilde{p}}\left(q C_{5, j}(q)\right)=\left(\tilde{p}+\left(\frac{\tilde{p}}{5}\right)\right)\left(q C_{5, j}(q)\right), \quad j=0 \pm 1 \tag{6.17}
\end{equation*}
$$

Here, \tilde{p} is an odd prime.
To prove (6.6) we use (6.12) to deduce that

$$
\begin{equation*}
\mathrm{ep}\left(\frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=\mathrm{ep}(F(5, q))=E\left(q^{10}\right) E^{3}\left(q^{2}\right) \cdot \mathrm{ep}\left(\frac{E^{2}\left(q^{5}\right)}{E^{2}(q)}\right) \tag{6.18}
\end{equation*}
$$

To proceed further we employ (6.10) with $a=q, b=q^{9}, c=q^{3}, d=q^{7}$ to get

$$
\begin{align*}
\frac{E\left(q^{5}\right)}{E(q)} & =\frac{E\left(q^{4}\right)}{E\left(q^{20}\right) E^{2}\left(q^{2}\right)} f\left(q, q^{9}\right) f\left(q^{3}, q^{7}\right) \\
& =\frac{E\left(q^{4}\right)}{E\left(q^{20}\right) E^{2}\left(q^{2}\right)}\left\{f\left(q^{4}, q^{16}\right) f\left(q^{8}, q^{12}\right)+q f\left(q^{6}, q^{14}\right) f\left(q^{2}, q^{18}\right)\right\} \\
& =\frac{E^{2}\left(q^{20}\right) E\left(q^{8}\right)}{E\left(q^{40}\right) E^{2}\left(q^{2}\right)}+q \frac{E\left(q^{40}\right) E\left(q^{10}\right) E^{3}\left(q^{4}\right)}{E\left(q^{20}\right) E\left(q^{8}\right) E^{3}\left(q^{2}\right)} \tag{6.19}
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\mathrm{ep}\left(\frac{E^{2}\left(q^{5}\right)}{E^{2}(q)}\right)=\frac{E^{4}\left(q^{20}\right) E^{2}\left(q^{8}\right)}{E^{2}\left(q^{40}\right) E^{4}\left(q^{2}\right)}+q^{2} \frac{E^{2}\left(q^{40}\right) E^{2}\left(q^{10}\right) E^{6}\left(q^{4}\right)}{E^{2}\left(q^{20}\right) E^{2}\left(q^{8}\right) E^{6}\left(q^{2}\right)} \tag{6.20}
\end{equation*}
$$

Combining (6.18) and (6.20) we find that

$$
\begin{equation*}
\mathrm{ep}\left(\frac{E^{5}\left(q^{5}\right)}{E(q)}\right)=R\left(q^{2}\right) \tag{6.21}
\end{equation*}
$$

The last formula together with (6.5) implies (6.6). Next, we rewrite (6.11) as

$$
\frac{E^{5}\left(q^{5}\right)}{E(q)}=\sum_{i=1}^{2} \sum_{n=-\infty}^{\infty}(-1)^{i+1} \frac{q^{5 n+i-1}\left(1+2 q^{5 n+i}+q^{10 n+2 i}\right)}{\left(1-q^{10 n+2 i}\right)^{2}}
$$

Clearly,

$$
\begin{align*}
\operatorname{ep}\left(\frac{E^{5}\left(q^{5}\right)}{E(q)}\right) & =\sum_{i=1}^{2} \sum_{\substack{n=-\infty \\
n \equiv i-1(\bmod 2)}}^{\infty}(-1)^{i+1} \frac{q^{5 n+i-1}\left(1+q^{10 n+2 i}\right)}{\left(1-q^{10 n+2 i}\right)^{2}} \\
& =\sum_{i=0}^{1} \sum_{n=-\infty}^{\infty}(-1)^{i} \frac{q^{10 n+i}\left(1+q^{20 n+4 i+2}\right)}{\left(1-q^{20 n+4 i+2}\right)^{2}} . \tag{6.22}
\end{align*}
$$

Formula (6.8) with $q \rightarrow q^{2}$ follows easily from (6.21) and (6.22). Before we move on we wish to summarize some of the above observations in the formula below

$$
\begin{align*}
\frac{E^{5}\left(q^{5}\right)}{E(q)}= & \left\{\frac{E^{4}\left(q^{20}\right) E\left(q^{10}\right) E^{2}\left(q^{8}\right)}{E^{2}\left(q^{40}\right) E\left(q^{2}\right)}+q^{2} \frac{E^{2}\left(q^{40}\right) E^{3}\left(q^{10}\right) E^{6}\left(q^{4}\right)}{E^{2}\left(q^{20}\right) E^{2}\left(q^{8}\right) E^{3}\left(q^{2}\right)}\right\} \\
& +q\left\{\frac{E^{5}\left(q^{10}\right)}{E\left(q^{2}\right)}+2 q^{2} \frac{E^{5}\left(q^{20}\right)}{E\left(q^{4}\right)}\right\} \tag{6.23}
\end{align*}
$$

In [5], the authors used (6.11) to find explicit formulas for the coefficients

$$
\begin{equation*}
a_{5}(n)=\frac{2^{d+1}+(-1)^{d}}{3} \cdot 5^{c} \cdot \prod_{i=1}^{s} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} \prod_{j=1}^{t} \frac{q_{j}^{b_{j}+1}+(-1)^{b_{j}}}{q_{j}+1} \tag{6.24}
\end{equation*}
$$

Here

$$
\begin{equation*}
n+1=2^{d} 5^{c} \prod_{i=1}^{s} p_{i}^{a_{i}} \prod_{j=1}^{t} q_{j}^{b_{j}} \tag{6.25}
\end{equation*}
$$

is the prime factorization of $n+1$ and $p_{i} \equiv \pm 1(\bmod 5), 1 \leqslant i \leqslant s$, and $q_{j} \equiv \pm 2(\bmod 5)$, $1 \leqslant j \leqslant t$, are odd primes. Formulas (6.3)-(6.5) and (6.12) suggest the following relations. For $n \in \mathbb{N}$ and $r=0,1,2,3$ one has

$$
\begin{gather*}
a_{5,0}(n)= \begin{cases}a_{5}(n), & \text { if } n \equiv 0(\bmod 2), \\
0, & \text { otherwise },\end{cases} \tag{6.26}\\
a_{5,-1}(4 n+r)= \begin{cases}a_{5}(n), & \text { if } r=3, \\
0, & \text { otherwise },\end{cases} \tag{6.27}\\
a_{5,1}(4 n+r)= \begin{cases}a_{5}(2 n), & \text { if } r=1, \\
a_{5}(n)+a_{5}(2 n+1), & \text { if } r=3, \\
0, & \text { if } r=0,2\end{cases} \tag{6.28}
\end{gather*}
$$

These relations together with (6.24) enabled us to derive explicit formulas for $a_{5, j}(n)$ with $-1 \leqslant$ $j \leqslant 1$. In particular, if the prime factorization of $n+1$ is given by (6.25), then

$$
\begin{equation*}
a_{5,1}(4 n+3)=2^{d+1} 5^{c} \prod_{i=1}^{s} \frac{p_{i}^{a_{i}+1}-1}{p_{i}-1} \prod_{j=1}^{t} \frac{q_{j}^{b_{j}+1}+(-1)^{b_{j}}}{q_{j}+1} . \tag{6.29}
\end{equation*}
$$

We would like to conclude this section with the following discussion. It is easy to check that (6.17) implies that

$$
\begin{equation*}
a_{5, j}(p n+p-1)+p\left(\frac{p}{5}\right) a_{5, j}\left(\frac{n+1}{p}-1\right)=\left(p+\left(\frac{p}{5}\right)\right) a_{5, j}(n), \quad j=0, \pm 1, \tag{6.30}
\end{equation*}
$$

where p is odd prime, $n \in \mathbb{N}$ and $a_{5, j}(x)=0$ if $x \notin \mathbb{Z}$. Setting $p=5$ we find that

$$
\begin{equation*}
a_{5, j}(5 n+4)=5 a_{5, j}(n), \quad j=0, \pm 1 \tag{6.31}
\end{equation*}
$$

This is a refinement of the well-known result

$$
\begin{equation*}
a_{5}(5 n+4)=5 a_{5}(n) \tag{6.32}
\end{equation*}
$$

proven in [5]. We can prove (6.31) by adapting the combinatorial proof in [5].
Let us define

$$
\vec{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)=\phi_{2}\left(\pi_{5} \text {-core }\right)
$$

for some $\pi_{5 \text {-core }}$ with $\mathrm{BG}-\operatorname{rank}\left(\pi_{5 \text {-core }}\right)=j$ and $\left|\pi_{5 \text {-core }}\right|=n$. Consider map $\vec{n} \rightarrow \overrightarrow{\tilde{n}}=\left(\tilde{n}_{0}, \tilde{n}_{1}\right.$, $\tilde{n}_{2}, \tilde{n}_{3}, \tilde{n}_{4}$) with

$$
\begin{gathered}
\tilde{n}_{0}=n_{1}+2 n_{2}+2 n_{4}+1, \\
\tilde{n}_{1}=-n_{1}-n_{2}+n_{3}+n_{4}+1, \\
\tilde{n}_{2}=2 n_{1}+n_{2}+2 n_{3}, \\
\tilde{n}_{3}=-2 n_{2}-2 n_{3}-n_{4}-1, \\
\tilde{n}_{4}=-2 n_{1}-n_{3}-2 n_{4}-1 .
\end{gathered}
$$

Obviously $\overrightarrow{\tilde{n}} \in \mathbb{Z}^{5}$ and $\overrightarrow{\tilde{n}} \cdot \overrightarrow{1}_{5}=0$ and so we can define $\tilde{\pi}_{5 \text {-core }}=\phi_{2}^{-1}(\overrightarrow{\tilde{n}})$. It is easy to check that

$$
\left|\tilde{\pi}_{5 \text {-core }}\right|=5 n+4
$$

and that

$$
\mathrm{BG}-\operatorname{rank}\left(\tilde{\pi}_{5 \text {-core }}\right)=j,
$$

and

$$
c_{5}\left(\tilde{\pi}_{5 \text {-core }}\right) \equiv 4 \quad(\bmod 5)
$$

Recall that the orbit $\left\{\tilde{\pi}_{5 \text {-core }}, \widehat{O}\left(\tilde{\pi}_{5 \text {-core }}\right), \ldots, \widehat{O}^{4}\left(\tilde{\pi}_{5 \text {-core }}\right)\right\}$ contains just one member with $c_{5} \equiv 4$ $(\bmod 5)$. And so each 5-core of n with BG-rank j is in $1-1$ correspondence with an appropriate 5 -member orbit of t-cores of $5 n+4$ with BG-rank j. This observation yields a combinatorial proof of (6.31).

7. Outlook

Given our combinatorial proof of

$$
p_{j}(5 n+4) \equiv 0 \quad(\bmod 5), \quad j \in \mathbb{Z}
$$

one may wonder about a combinatorial proof of the other mod 5 congruences (1.4)-(1.7). We strongly suspect that such proof will be dramatically different from the one discussed in Section 4. In addition, one would like to have combinatorial insights into (6.30) for $p \neq 5$.

In this paper we found "positive" eta-quotient representations for $C_{5, j}(q),-1 \leqslant j \leqslant 1$. In the general case (odd $t,-\lfloor(t-1) / 4\rfloor \leqslant j \leqslant\lfloor(t+1) / 4\rfloor$), we established such representation only for $C_{t, \pm\lfloor(t \pm 1) / 4\rfloor}(q)$. Clearly, one wants to find "positive" eta-quotient representations for other admissible values of BG-rank. (See [3] for a fascinating discussion of the $t=7$ case.)

Finally, we observe that (1.2) is the $s=2$ case of the following more general definition

$$
\operatorname{gbg}-\operatorname{rank}(\pi, s)=\sum_{j=0}^{s-1} r_{j}(\pi, s) \omega_{s}^{j}
$$

with

$$
\omega_{s}=e^{i \frac{2 \pi}{s}}
$$

Many identities, proven here, can be generalized further. For example, we can prove that if $(s, t)=1$ then

$$
\begin{equation*}
\operatorname{gbg}-\operatorname{rank}\left(\pi_{t-\text { core }}, s\right)=\frac{\sum_{i=0}^{t-1} \omega_{s}^{i+1}\left(\omega_{s}^{t n_{i}}-1\right)}{\left(1-\omega_{s}^{t}\right)\left(1-\omega_{s}\right)} \tag{7.1}
\end{equation*}
$$

and for $1 \leqslant i \leqslant s-1$ that

$$
\begin{equation*}
\sum_{\operatorname{gbg}-\mathrm{rank}\left(\pi_{t-\text { core }, s)=g(i)}\right.} q^{\mid \pi_{t-\text { core } \mid}}=q^{a(i)} F_{i}\left(q^{s}\right) \tag{7.2}
\end{equation*}
$$

Here,

$$
\begin{gathered}
\left(n_{0}, n_{1}, \ldots, n_{t-1}\right)=\phi_{2}\left(\pi_{t-\text { core }}\right) \\
a(i)=\frac{\left(t^{2}-1\right)\left(s^{2}-1\right)}{24}-\frac{(t-1)(s-i) i}{2} \\
g(i)=\frac{1}{\left(1-\omega_{s}\right)\left(1-\frac{1}{\omega_{s}}\right)}-\omega_{s}^{\frac{t-1}{2}} \frac{1+\frac{t-1}{\omega_{s}^{i}}}{\left(1-\omega_{s}^{t}\right)\left(1-\frac{1}{\omega_{s}}\right)}
\end{gathered}
$$

$$
F_{i}(q)=E\left(q^{s}\right) E\left(q^{s t}\right)^{t-2} \frac{\left[q^{i t} ; q^{s t}\right]_{\infty}}{\left[q^{i} ; q^{s}\right]_{\infty}}
$$

Setting $s=2$ in (7.1), (7.2) we obtain (3.2), (1.10), respectively.
In addition we can show that

$$
\begin{equation*}
\sum_{\operatorname{gbg}-\operatorname{rank}\left(\pi_{t-\text { core }, s)=g(0)}\right.} q^{\left|\pi_{t-\text { core }}\right|}=q^{a(0)} \frac{E\left(q^{s^{2} t}\right)^{t}}{E\left(q^{s^{2}}\right)} \tag{7.3}
\end{equation*}
$$

Setting $s=2$ in (7.3) we get (1.11).
In [10] Olsson and Stanton defined so-called (s, t)-good partitions. Surprisingly, t-cores with gbg-rank $=g(0)$ coincide with (t, s)-good partitions.

Let $\nu(t, s)$ denote a number of distinct values that $\operatorname{gbg}-\operatorname{rank}\left(\pi_{t-\text { core }}, s\right)$ may assume. Then it can be shown that

$$
\nu(s, t) \leqslant \frac{\binom{t+s}{t}}{t+s}
$$

provided that $(s, t)=1$. Moreover, if s is prime or if s is a composite number and $t<2 p$ then

$$
v(s, t)=\frac{\binom{t+s}{t}}{t+s}
$$

Here, p is the smallest prime divisor of s and $(s, t)=1$.
Details of these and related results will be left to a later paper.

Acknowledgments

We would like to thank Robin Chapman, Ole Warnaar, Herbert Wilf and Hamza Yesilyurt for their kind interest and stimulating discussions.

References

[1] B.C. Berndt, Ramanujan's Notebook III, Springer-Verlag, New York, 1991, pp. 44-48.
[2] A. Berkovich, F.G. Garvan, On the Andrews-Stanley refinement of Ramanujan's congruence modulo 5 and generalization, Trans. Amer. Math. Soc. 358 (2006) 703-726.
[3] A. Berkovich, H. Yesilyurt, New identities for 7-cores with prescribed BG-rank, preprint, arXiv: math.NT/0603150.
[4] F.G. Garvan, More cranks and t-cores, Bull. Austral. Math. Soc. 63 (2001) 379-391.
[5] F. Garvan, D. Kim, D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990) 1-17.
[6] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl., vol. 35, Cambridge University Press, Cambridge, 1990.
[7] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl., vol. 16, Addison-Wesley Publishing Co., Reading, MA, 1981.
[8] A.A. Klyachko, Modular forms and representations of symmetric groups, J. Soviet Math. 26 (1984) 1879-1887.
[9] D.E. Littlewood, Modular representations of symmetric groups, Proc. Roy. Soc. London Ser. A 209 (1951) 333-353.
[10] J.B. Olsson, D. Stanton, Block inclusions and cores of partitions, preprint, 2005.
[11] S. Ramanujan, Some properties of $p(n)$, the number of partitions on n, Proc. Cambridge Philos. Soc. 19 (1919) 207-210.

[^0]: *. Research of both authors was supported in part by NSA grant MSPF-06G-150.

 * Corresponding author.

 E-mail addresses: alexb@math.ufl.edu (A. Berkovich), frank@math.ufl.edu (F.G. Garvan).

