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Abstract

Let π denote a partition into parts λ1 � λ2 � λ3 � · · · . In a 2006 paper we defined BG-rank(π) as

BG-rank(π) =
∑
j�1

(−1)j+1 1 − (−1)λj

2
.

This statistic was employed to generalize and refine the famous Ramanujan modulo 5 partition congruence.
Let pj (n) denote the number of partitions of n with BG-rank = j . Here, we provide a combinatorial proof
that

pj (5n + 4) ≡ 0 (mod 5), j ∈ Z,

by showing that the residue of the 5-core crank mod 5 divides the partitions enumerated by pj (5n + 4)

into five equal classes. This proof uses the orbit construction from our previous paper and a new identity
for the BG-rank. Let at,j (n) denote the number of t-cores of n with BG-rank = j . We find eta-quotient
representations for ∑

n�0

a
t,� t+1

4 �(n)qn and
∑
n�0

a
t,−� t−1

4 �(n)qn,

when t is an odd, positive integer. Finally, we derive explicit formulas for the coefficients a5,j (n), j = 0,±1.
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1. Introduction

A partition π is a nonincreasing sequence

π = (λ1, λ2, λ3, . . .)

of positive integers (parts) λ1 � λ2 � λ3 � · · · . The norm of π , denoted |π |, is defined as

|π | =
∑
i�1

λi.

If |π | = n, we say that π is a partition of n. The (Young) diagram of π is a convenient way
to represent π graphically: the parts of π are shown as rows of unit squares (cells). Given the
diagram of π we label a cell in the ith row and j th column by the least nonnegative integer
≡ j − i (mod t). The resulting diagram is called a t-residue diagram [7]. We can also label cells
in the infinite column 0 and the infinite row 0 in the same fashion and call the resulting diagram
the extended t-residue diagram [5]. And so with each partition π and positive integer t we can
associate the t-dimensional vector

�r(π, t) = (
r0(π, t), r1(π, t), . . . , rt−1(π, t)

)
with

ri(π, t) = ri , 0 � i � t − 1,

being the number of cells colored i in the t-residue diagram of π . If some cell of π shares a
vertex or edge with the rim of the diagram of π , we call this cell a rim cell of π . A connected
collection of rim cells of π is called a rim hook if (diagram of π )\(rim hook) represents a
legitimate partition. We say that a partition is a t-core, denoted πt-core, if its diagram has no rim
hooks of length t [7].

The Durfee square of π is the largest square that fits inside the diagram of π . Reflecting the
diagram of π about its main diagonal, one gets the diagram of π ′ (the conjugate of π ). More
formally,

π ′ = (
λ′

1, λ
′
2, λ

′
3, . . .

)
with λ′

i being the number of parts of π that are � i. In [2] we defined a new partition statistic

BG-rank(π) :=
∑
j�1

(−1)j
(−1)λj − 1

2
. (1.1)

It is easy to verify that

BG-rank(π) = r0(π,2) − r1(π,2) (1.2)

and

BG-rank(π) ≡ |π | (mod 2). (1.3)
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In [2] we proved the following (mod 5) congruences

pj (5n) ≡ 0 (mod 5) if j ≡ 1,2 (mod 5), (1.4)

pj (5n + 1) ≡ 0 (mod 5) if j 	≡ 1,2 (mod 5), (1.5)

pj (5n + 2) ≡ 0 (mod 5) if j 	≡ 0,3 (mod 5), (1.6)

pj (5n + 3) ≡ 0 (mod 5) if j ≡ 0,3 (mod 5), (1.7)

pj (5n + 4) ≡ 0 (mod 5) for all j ∈ Z. (1.8)

Here pj (n) denotes the number of partitions of n with BG-rank = j . Clearly,

p(5n + 4) =
∑
j

pj (5n + 4)

with p(n) denoting the number of unrestricted partitions of n. And so (1.8) implies the famous
Ramanujan congruence [11]

p(5n + 4) ≡ 0 (mod 5).

In this paper, we build on the developments in [2] to provide a combinatorial proof of (1.8).
For t-odd it is surprising that the BG-rank(πt-core) assumes only finitely many values. In fact,

we will show that if t is an odd, positive integer, then

−
⌊

t − 1

4

⌋
� BG-rank(πt-core) �

⌊
t + 1

4

⌋
. (1.9)

Here �x� denotes the integer part of x.
We will establish the following identities. For odd t > 1

C
t,(−1)

t−1
2 � t−1

4 �(q) = q
(t−1)(t−3)

8 F
(
t, q2), (1.10)

C
t,(−1)

t+1
2 � t+1

4 �(q) = q
t2−1

8
Et(q4t )

E(q4)
, (1.11)

where

Ct,j (q) =
∑
n�0

at,j (n)qn,

at,j (n) denotes the number of t-cores of n with BG-rank = j and

E(q) =
∞∏

j=1

(
1 − qj

)
,

F (t, q) = Et−4(q2t )E2(qt )E3(q2)

2
.

E (q)
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We observe that (1.3) suggests that Ct,j (q) is an even (odd) function of q if j is even (odd).
It is instructive to compare (1.10), (1.11) with the well-known identity [5] for unrestricted

t-cores ∑
n�0

at (n)qn = Et(qt )

E(q)
. (1.12)

Here at (n) denotes the number of t-cores of n.
The rest of this paper is organised as follows.
In Section 2 we discuss the Littlewood decomposition of π in terms of t-core and t-quotient

of π . We describe the Garvan, Kim, Stanton bijection for t-cores and use a constant term tech-
nique to provide a simple proof of the Klyachko identity [8]

∑
�n∈Z

t

�n·�1t=0

q
t
2 �n·�n+�bt ·�n = Et(qt )

E(q)
. (1.13)

Here �1t = (1,1, . . . ,1) ∈ Z
t , �bt = (0,1,2, . . . , t − 1).

In Section 3 we establish a fundamental identity connecting BG-rank and the Littlewood
decomposition.

In Section 4 we discuss a combinatorial proof of (1.8).
Section 5 is devoted to the proof of the identities (1.10), (1.11).
Section 6 deals with 5-cores with prescribed BG-rank. There we derive the explicit formulas

for the coefficients a5,j (n), j = 0,±1.
In Section 7 we give a generalization of the BG-rank and state a number of results.

2. Two bijections

In this section we will follow closely the discussion in [4,5] to recall some basic facts about
t-cores and t-quotients. A region r in the extended t-residue diagram of π is the set of cells (i, j)

satisfying t (r − 1) � j − i < tr . A cell of π is called exposed if it is at the end of a row. One can
construct t bi-infinite words W0,W1, . . . ,Wt−1 of two letters N,E as

the rth letter of Wi =
{

E, if there is an exposed cell labelled i in the region r ,
N, otherwise.

It is easy to see that the word set {W0,W1, . . . ,Wt−1} fixes π uniquely.
Let P be the set of all partitions and Pt-core be the set of all t-cores. There is a well-known

bijection

φ1 : P → Pt-core × P × P × P × · · · × P

which goes back to Littlewood [9]

φ1(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1)

such that
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|π | = |πt-core| + t

t−1∑
i=0

|π̂i |.

Multipartition (π̂0, π̂1, . . . , π̂t−1) is called the t-quotient of π . We remark that (1.12) is the im-
mediate corollary of the Littlewood bijection. We describe φ1 in full detail a bit later.

The second bijection

φ2 : Pt-core → {�n: �n ∈ Z
t , �n · �1t = 0

}
was introduced in [5]. It is for t-cores only

φ2(πt-core) = �n = (n0, n1, . . . , nt−1)

where for 0 � i � t − 2

ni = ri(πt-core, t) − ri+1(πt-core, t) (2.1)

and

nt−1 = rt−1(πt-core, t) − r0(πt-core, t). (2.2)

Clearly,

t−1∑
i=0

ni = �n · �1t = 0.

Moreover,

|πt-core| = t

2
�n · �n + �bt · �n, (2.3)

as shown in [5]. And so ∑
n�0

at (n)qn =
∑
�n∈Z

t

�n·�1t=0

q
t
2 �n·�n+�bt ·�n. (2.4)

Note that (1.12), (2.4) imply the Klyachko identity (1.13). The reader may wonder if (2.1), (2.2)
can be used to define φ2(π) = �n for any partition π . This, of course, can be done. However, in
general φ2 is not a 1–1 function and so φ−1

2 cannot be defined. Indeed, if π1 	= π2, but πt-core is
a t-core of both π1 and π2 then

φ2(π1) = φ2(π2) = φ2(πt-core).

When a partition is a t-core, φ2 can be inverted. To do this we recall that the partition is a t-core
iff for 0 � i � t − 1
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Region : · · · · · · · · · ni − 1 ni ni + 1 ni + 2 · · · · · · · · ·
Wi : · · · · · · · · · E E N N · · · · · · · · ·

as explained in [5]. For example, the word image of φ−1
2 ((2,−1,−1)) is

Region : · · · · · · −1 0 1 2 3 · · · · · ·
W0 : · · · · · · E E E E N · · · · · ·
W1 : · · · · · · E N N N N · · · · · ·
W2 : · · · · · · E N N N N · · · · · · .

This means that

φ−1
2

(
(2,−1,−1)

) = (4,2). (2.5)

More generally, if

φ1(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1)

with

π̂i = (
λ

(i)
1 , λ

(i)
2 , . . . , λ(i)

mi

)
, 0 � i � t − 1,

then cells colored i are not exposed only in the regions

ni + j − λ
(i)
j , 1 � j � mi,

and

ni + mi + k, k � 1.

For example, if π̂i = (λ1, λ2, λ3) then

Region : · · · · · · ni + 1 − λ1 · · · · · · ni + 2 − λ2 · · · · · · ni + 3 − λ3 · · · · · · ni + 4 · · · · · ·
Wi : · · · · · · E N E · · · · · · E N E · · · · · · E N E · · · · · · E N · · · · · · .

Clearly, one can easily determine �n and (π̂0, π̂1, . . . , π̂t−1) from the word set {W0,W1, . . . ,

Wt−1}. And so

φ1(π) = (
φ−1

2 (�n), π̂0, . . . , π̂t−1
)
.

We illustrate the above with the following example. If t = 3 and π = (7,5,4,3,2) then

Region : · · · · · · −2 −1 0 1 2 3 4 5 · · · · · ·
W0 : · · · · · · E E E N E E N N · · · · · ·
W1 : · · · · · · E N N E N N N N · · · · · ·
W2 : · · · · · · E N E N N N N N · · · · · · .
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We have

n0 = 2, π̂0 = (2),

n1 = −1, π̂1 = (1,1),

n2 = −1, π̂2 = (1).

Using (2.5), we obtain

φ1
(
(7,5,4,3,2)

) = (
(4,2), (2), (1,1), (1)

)
.

To proceed further we recall some standard q-hypergeometric notations [6]:

(a1, a2, a3, . . . ;q)N = (a1;q)N(a2;q)N(a3;q)N . . .

where

(a;q)N = (a)N =

⎧⎪⎨⎪⎩
∏N−1

j=0 (1 − aqj ), N > 0,

1, N = 0,∏−N
j=1(1 − aq−j )−1, N < 0.

We shall also require the Jacobi triple product identity [6, (II.28)]

∞∑
n=−∞

qn2
zn =

(
q2,−zq,−q

z
;q2

)
∞

. (2.6)

We are now ready to prove the Klyachko identity (1.13). We will employ a so-called constant
term technique. To this end we rewrite the left-hand side of (1.13) as

LHS of (1.13) = [
z0] ∑

�n∈Zt

q
t
2 �n·�n+�bt ·�nz�n·�1t = [

z0] t−1∏
i=0

∞∑
ni=−∞

q
t
2 n2

i +ini zni

where [zi]f (z) is the coefficient of zi in the expansion of f (z) in powers of z. With the aid of
(2.6) we derive

LHS of (1.13) = [
z0] t−1∏

i=0

(
qt ,−qi+ t

2 z,− q
t
2

qiz
;qt

)
∞

= [
z0]Et(qt )

E(q)

(
q,−q

t
2 z,− q

q
t
2 z

;q
)

∞

= [
z0](Et(qt )

E(q)

∞∑
n=−∞

q
n2
2 + t−1

2 nzn

)

= Et(qt )

E(q)
,

as desired. The above proof is just a warm-up exercise to prepare the reader for a more sophisti-
cated proof of (1.10) discussed in Section 5.
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3. The Littlewood decomposition and BG-rank

The main goal of this section is to establish the following identities for BG-rank. If t is even
and (n0, . . . , nt−1) = φ2(π), then

BG-rank(π) =
t−2

2∑
i=0

n2i . (3.1)

If t is odd then

BG-rank(πt-core) = bg(�n), (3.2)

where �n = φ2(πt-core) and

bg(�n) := 1 − ∑t−1
j=0(−1)j+nj

4
. (3.3)

Moreover, if t is odd and φ1(π) = (πt-core, π̂0, . . . , π̂t−1) then

BG-rank(π) = BG-rank(πt-core) +
t−1∑
j=0

(−1)j+nj BG-rank(π̂j ). (3.4)

The proof of (3.1) is straightforward. It is sufficient to observe that if some cell is colored i in
the t-residue diagram of π , then it is colored (1 − (−1)i)/2 in the 2-residue diagram of π . And
so we obtain with the aid of (1.2)

BG-rank(π) = (r0 + r2 + r4 + · · · + rt−2) − (r1 + r3 + r5 + · · · + rt−1)

= (r0 − r1) + (r2 − r3) + · · · + (rt−2 − rt−1)

= n0 + n2 + · · · + nt−2,

as desired. Next, let D(π) = D denote the size of the Durfee square of π . To prove (3.2) we
begin by rewriting (1.1) as

BG-rank(π) = 1

2

(
par(ν) +

ν∑
j=1

(−1)λj −j

)
. (3.5)

Here π = (λ1, λ2, . . . , λν) and par(x) is defined as

par(x) := 1 − (−1)x

2
.

Next, let π1,π2 denote the partitions constructed from the first D = D(πt-core) rows, columns of
πt-core, respectively. Let π3 denote a partition whose diagram is the Durfee square of πt-core. It is
plain that
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BG-rank(πt-core) = BG-rank(π1) + BG-rank(π2) − BG-rank(π3)

= BG-rank(π1) + BG-rank(π2) − par(D). (3.6)

We shall also require the following sets

P+ := {i ∈ Z: 0 � i � t − 1, ni > 0},
P− := {i ∈ Z: 0 � i � t − 1, ni < 0}.

Here ni ’s are the components of φ2(πt-core). Note that if i ∈ P+, then i is exposed in all positive
regions � ni of π1. This observation together with (3.5) implies that

BG-rank(π1) = 1

2

(
par(D) +

∑
i∈P+

ni∑
k=1

(−1)t (k−1)+i

)

= 1

2

(
par(D) +

∑
i∈P+

(−1)i par(ni)

)
. (3.7)

In [5], the authors showed that under conjugation φ2(πt-core) transforms as

(n0, n1, n2, . . . , nt−1) → (−nt−1,−nt−2,−nt−3, . . . ,−n0).

Also it is easy to see that

BG-rank(π2) = BG-rank
(
π ′

2

)
.

It follows that

BG-rank(π2) = 1

2

(
par(D) +

∑
i∈P−

(−1)i par(ni)

)
. (3.8)

Combining (3.6)–(3.8) and taking into account that par(0) = 0 we get

BG-rank(πt-core) = 1

2

∑
i∈P−∪P+

(−1)i par(ni) = 1

2

t−1∑
i=0

(−1)i par(ni) = 1 − ∑t−1
i=0(−1)i+ni

4
,

as desired. Note that formula (3.2) implies that BG-rank of odd-t-cores is bounded, as
stated in (1.9). Next, let π̃0,i , π̃2,i , π̃3,i , . . . denote the partitions constructed from φ1(π) =
(πt-core, π̂0, π̂1, . . . , π̂t−1), for odd t as follows

π̃0,i = φ−1
1

(
πt-core, π̂0, π̂1, . . . , π̂i−1, (0), π̂i+1, . . . , π̂t−1

)
,

π̃1,i = φ−1
1

(
πt-core, π̂0, π̂1, . . . , π̂i−1, (λ1), π̂i+1, . . . , π̂t−1

)
,

π̃2,i = φ−1
1

(
πt-core, π̂0, π̂1, . . . , π̂i−1, (λ1, λ2), π̂i+1, . . . , π̂t−1

)
,

· · · · · · · · · .
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Here π̂i = (λ1, λ2, . . . , λν). Note that the Wi word of π̃0,i is

Region : · · · · · · · · · ni ni + 1 · · · · · · · · ·
Wi : · · · · · · · · · E N · · · · · · · · · .

To convert π̃0,i into π̃1,i we attach a rim hook of length tλ1 to π̃0,i so that Wi becomes

Region : · · · · · · · · · ni + 1 − λ1 · · · · · · · · · ni + 2, · · · · · · · · ·
Wi : · · · · · · · · · E N E · · · · · · · · · E N N · · · · · · · · · .

It is not hard to verify that the color of the head (north-eastern) cell of the added rim-hook in
the 2-residue diagram of π̃1,i is given by par(tni + i) = par(ni + i). Observe that zeros and ones
alternate along the added hook rim. This means that BG-rank does not change if λ1 is even. If λ1
is odd then the change is determined by the color of the added head cell, i.e.

BG-rank(π̃1,i ) = BG-rank(π̃0,i ) + par(λ1)
(
1 − 2 par(ni + i)

)
= BG-rank(π̃0,i ) + par(λ1)(−1)ni+i .

Next, we convert π̃1,i into π̃2,i by adding the new hook rim of length tλ2 to π̃1,i so that Wi

becomes

Region : · · · · · · ni + 1 − λ1 · · · · · · ni + 2 − λ2 · · · · · · ni + 3 · · · · · ·
Wi : · · · · · · E N E · · · · · · E N E · · · · · · E N · · · · · · .

The color of the new head cell is given by

par
(
t (ni + 1) + i

) = par(ni + 1 + i),

and so

BG-rank(π̃2,i ) = BG-rank(π̃1,i ) + par(λ2)
(
1 − 2 par(ni + 1 + i)

)
= BG-rank(π̃0,i ) + (−1)ni+i

(
par(λ1) − par(λ2)

)
.

Proceeding as above we arrive at

BG-rank(π) = BG-rank(π̃0,i ) + (−1)ni+i

ν∑
j=1

(−1)j+1 par(λj )

= BG-rank(π̃0,i ) + (−1)ni+iBG-rank(π̂i). (3.9)

Formula (3.4) follows easily from (3.9). Let us now define �Bt ,
�̃
Bt ∈ Z

t as

�Bt =
⎧⎨⎩

∑ t−1
2

i=0 �e2i , if t ≡ 1 (mod 4),∑ t−3
2 �e , if t ≡ −1 (mod 4)
i=0 1+2i
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and

�̃
Bt = �Bt +

t−1∑
i=0

�ei =
⎧⎨⎩

∑ t−3
2

i=0 �e1+2i , if t ≡ 1 (mod 4),∑ t−1
2

i=0 �e2i , if t ≡ −1 (mod 4).

Here �ei ’s are standard unit vectors in Z
t defined as e0 = (1,0, . . . ,0), . . . , �et−1 = (0, . . . ,0,1).

We conclude this section with the following important observation. If odd t > 1, k =
0,1, . . . , (t − 1)/2 and �n ∈ Z

t , �n · �1t = 0, then

bg(�n) = (−1)
t−1

2

(⌊
t

4

⌋
− k

)
(3.10)

iff �n ≡ �Bt + �ei0 + �ei1 + · · · + �ei2k
(mod 2) for some 0 � i0 < i1 < i2 < · · · < i2k � t − 1. In

particular, if �n ∈ Z
t , �n · �1t = 0, then

bg(�n) = (−1)
t+1

2

⌊
t + 1

4

⌋
(3.11)

iff �n ≡ �̃
Bt (mod 2). We leave the proof as an exercise for the interested reader.

4. Combinatorial proof of pj (5n + 4) ≡ 0 (mod 5)

Throughout this section we assume that

|π | ≡ 4 (mod 5)

and

|π5-core| ≡ 4 (mod 5).

To prove (1.8) we shall require a few definitions. Following [5], we define the 5-core crank as

c5(π) := 2
(
r0(π,5) − r4(π,5)

) + (
r1(π,5) − r3(π,5)

) + 1 (mod 5). (4.1)

Note that if |π5-core| ≡ 4 (mod 5), then obviously

n0 + n1 + n2 + n3 + n4 = 0, (4.2)

n1 + 2n2 + 3n3 + 4n4 ≡ 4 (mod 5). (4.3)

Here, �n = (n0, n1, n2, n3, n4) = φ2(π5-core). Let us introduce a new vector �α(�n) = (α0, α1, α2,

α3, α4), defined as
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α0 = n0 − 3n1 − 2n2 − n3 + 1

5
, (4.4)

α1 = −3n0 − n1 − 4n2 − 2n3 + 2

5
, (4.5)

α2 = −3n0 − n1 + n2 − 2n3 + 2

5
, (4.6)

α3 = n0 + 2n1 + 3n2 + 4n3 + 1

5
, (4.7)

α4 = 4n0 + 3n1 + 2n2 + n3 − 1

5
. (4.8)

Using (4.2), (4.3) it is easy to verify that �α(�n) ∈ Z
5 and that

(α0 + α1 + α2 + α3 + α4) = 1. (4.9)

Inverting (4.4)–(4.8) we find that

n0 = α0 + α4, (4.10)

n1 = −α0 + α1 + α4, (4.11)

n2 = −α1 + α2, (4.12)

n3 = −α2 + α3 − α4, (4.13)

n4 = −α3 − α4. (4.14)

Note that in terms of these new variables we have

c5(π) ≡
4∑

i=0

iαi (mod 5), (4.15)

|π | = 5Q(�α) − 1 + 5
4∑

i=0

|π̂i |, (4.16)

and

BG-rank(π) = 1 − (−1)α0+α1 − (−1)α1+α2 − · · · − (−1)α4+α0

4

+ (−1)α0+α4 BG-rank(π̂0)

+ (−1)α2+α3 BG-rank(π̂1)

+ (−1)α1+α2 BG-rank(π̂2)

+ (−1)α0+α1 BG-rank(π̂3)

+ (−1)α3+α4 BG-rank(π̂4). (4.17)
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Here φ1(π) = (π5-core, π̂0, . . . , π̂4) and Q(�α) := �α · �α − (α0α1 + α1α2 + · · · + α4α0). It is con-
venient to combine φ1, φ2, �α into a new invertible function Φ , defined as

Φ(π) = (�α(
φ2(π5-core)

)
, �̂π)

,

where �̂π := (π̂0, . . . , π̂4). Following [2] we define

Ĉ1(�α) = (α4, α0, α1, α2, α3),

Ĉ2( �̂π) = (π̂4, π̂2, π̂3, π̂0, π̂1),

Ô(π) = Φ−1(Ĉ1(�α), Ĉ2( �̂π)
)
.

We observe that operator Ô has the following properties∣∣Ô(π)
∣∣ = |π |,

Ô 5(π) = π,

BG-rank
(
Ô(π)

) = BG-rank(π),

c5
(
Ô(π)

) ≡ 1 + c5(π) (mod 5). (4.18)

Clearly, Ô preserves the norm and the BG-rank of the partition. And so we can assemble all
partitions of 5n + 4 with BG-rank = j into disjoint orbits:

π, Ô(π), Ô 2(π), Ô 3(π), Ô 4(π).

Here, π is some partition of 5n + 4 with BG-rank = j . Formula (4.18) suggests that all five
members of the same orbit are distinct. Clearly,

pj (5n + 4) = 5 · (number of orbits).

Hence, pj (5n + 4) ≡ 0 (mod 5), as desired. In fact, we have the following

Theorem 4.1. Let j be any fixed integer. The residue of the 5-core crank mod 5 divides the
partitions enumerated by pj (5n + 4) into five equal classes.

We note that this theorem generalizes Theorem 4.1 [2, p. 717].

5. Identities for odd t-cores with extreme BG-rank values

The main object of this section is to provide a proof of formulas (1.10) and (1.11). Throughout
this section t is presumed to be a positive odd integer. We will prove (1.11) first. To this end we
employ the observation (3.10) together with (2.3) to rewrite it as

∑
�n∈Z

t , �n·�1t=0
�̃

qQ̃(�n) = q
t2−1

8
Et(q4t )

E(q4)
, (5.1)
�n≡Bt (mod 2)
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where

Q̃(�n) := t

2
�n · �n + �bt · �n. (5.2)

Next we introduce new summation variables �̃n = (ñ0, . . . , ñt−1) ∈ Z
t as follows

�n = 2�̃n +
� t−3

4 �∑
i=0

(�e t−3
2 −2i

− �e t+1
2 +2i

). (5.3)

Obviously, �̃n is subject to the constraint

�̃n · �1t = 0. (5.4)

Note that in terms of new variables we have

Q̃(�n) = Q̃(�n) + (t − 1)�1t · �̃n = t2 − 1

8
+ 4

{
t

2
�̃n · �̃n + σ1 + σ2 + σ3

}
, (5.5)

where

σ1 =
� t−3

4 �∑
i=0

(t − 1 − i)ñ t−3
2 −2i

,

σ2 =
� t−3

4 �∑
i=0

iñ2i+ t+1
2

,

σ3 =
� t−1

4 �∑
i=−� t−1

4 �

(
t − 1

2
+ i

)
ñ t−1

2 +2i
.

At this point it is natural to perform further changes:

ñ t−3
2 −2i

→ ñt−1−i , 0 � i �
⌊

t − 3

4

⌋
,

ñ t+1
2 +2i

→ ñi , 0 � i �
⌊

t − 3

4

⌋
,

ñ t−1
2 +2i

→ ñ t−1
2 +i

, −
⌊

t − 1

4

⌋
� i �

⌊
t − 1

4

⌋
.

This way we obtain

Q̃(�n) = t2 − 1

8
+ 4Q̃(�̃n),

�̃n ∈ Z
t , �̃n · �1t = 0.
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And so with the aid of the Klyachko identity (1.13) we find that

C
t,(−1)

t+1
4 � t+1

4 �(q) =
∑
�̃n∈Z

t

�̃n·�1t=0

q
t2−1

8 +4Q̃(�̃n) = q
t2−1

8
Et(q4t )

E(q4)
, (5.6)

as desired. To prove (1.10) we shall require the following lemma.

Lemma 5.1. For a positive odd t

ψ2(q2) = q
t−1

2 ψ2(q2t
) + E3(q4t )

f (−qt ,−q3t )

t−3
2∑

i=0

qi f (qt−1−2i ,−q1+2i )

f (−q4i+2,−q4t−2−4i )
(5.7)

holds.

In the above we employed the Ramanujan notations

ψ(q) := E2(q2)

E(q)
=

∑
n�0

q(n+1
2 ), (5.8)

f (a, b) := (ab,−a,−b;ab)∞. (5.9)

Using (2.6) we can easily show that

f (a, b) =
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 . (5.10)

Setting a = qt−1−2i , b = −q1+2i , 0 � i � t−3
2 , in (5.10) and dissecting we obtain

f
(
qt−1−2i ,−q1+2i

) = f
(−q2+t+4i ,−q3t−2−4i

) + qt−1−2if
(−q2−t+4i ,−q5t−2−4i

)
. (5.11)

To prove the above lemma we start with the Ramanujan 1ψ1-summation formula [6, II.29]

∞∑
n=−∞

(a)n

(b)n
zn = (az,

q
az

, q, b
a
;q)∞

(z, b
az

, b,
q
a
;q)∞

,

∣∣∣∣ba
∣∣∣∣ < |z| < 1. (5.12)

We set b = aq to obtain

∞∑
n=−∞

zn

1 − aqn
= (az,

q
az

, q, q;q)∞
(z,

q
z
, a,

q
a
;q)∞

= E3(q)f (−az,− q
az

)

f (−z,− q
z
)f (−a,− q

a
)
, |q| < |z| < 1. (5.13)

If we replace q → q4, z = q , a = q2 in (5.13) we find that

∞∑ qn

1 − q2+4n
= ψ2(q2). (5.14)
n=−∞
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Next we split the sum on the left of (5.14) as

ψ2(q2) =
t−1∑
i=0

i 	= t−1
2

∞∑
mi=−∞

qi qtmi

1 − q2+4iq4tmi
+

∞∑
m=−∞

q
t−1

2
qtm

1 − q2t q4tm
. (5.15)

Using (5.14) with q → qt it is easy to recognize the last sum in (5.15) as q(t−1)/2ψ2(q2t ). And
so we have

ψ2(q2) = q
t−1

2 ψ2(q2t
) + E3(q4t )

f (−qt ,−q3t )

t−1∑
i=0

i 	= t−1
2

qi f (−q2+4i+t ,−q3t−2−4i )

f (−q2+4i ,−q4t−2−4i )
, (5.16)

where we have made a multiple use of (5.13). Finally, folding the last sum in half and using
(5.11) we arrive at

ψ2(q2) = q
t−1

2 ψ2(q2t
) +

t−3
2∑

i=0

E3(q4t )qi

f (−qt ,−q3t )f (−q2+4i ,−q4t−2−2i )

× {
f

(−q2+4i+t ,−q3t−2−4i
) + qt−1−2if

(−q5t−2−4i ,−q2−t+4i
)}

= q
t−1

2 ψ2(q2t
) + E3(q4t )

f (−qt ,−q3t )

t−3
2∑

i=0

qi f (qt−1−2i ,−q1+2i )

f (−q2+4i ,−q4t−2−4i )
. (5.17)

This concludes the proof of Lemma 5.1.
We now move on to prove (1.10). Again, using the observation (3.10), we can rewrite it as

t−1∑
j=0

∑
�n∈Z

t , �n·�1t=0
�n≡ �Bt+�ej (mod 2)

qQ̃(�n) = q
(t−1)(t−3)

8 F
(
t, q2). (5.18)

Remarkably, (5.18) is just the constant term in z of the following more general identity

t−1∑
j=0

∑
�n∈Z

t

�n≡ �Bt+�ej (mod 2)

qQ̃(�n)z
�n·�1t

2 = q
(t−1)(t−3)

8 F
(
t, q2) ∞∑

n=−∞
q2n2+(t−1)nzn. (5.19)

To prove (5.19) we observe that its right-hand side satisfies the first order functional equation

D̂t,q

(
f (z)

) = f (z), (5.20)

where

D̂t,q

(
f (z)

) := zqt+1f
(
zq4).
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After a bit of labor one can verify that for 0 � i � t − 1

D̂t,q

( ∑
�n∈Z

t

�n≡ �Bt+�ei (mod 2)

qQ̃(�n)z
�n·�1t

2

)
=

∑
�n∈Z

t

�n≡ �Bt+�ei+2 (mod 2)

qQ̃(�n)z
�n·�1t

2 , (5.21)

where �et := �e0 and �et+1 := �e1. Clearly, (5.21) implies that the left-hand side of (5.19) satisfies
(5.20), as well. It remains to verify (5.19) at one nontrivial point. To this end we set

z =
{

1, if t ≡ −1 (mod 4),

q2, if t ≡ 1 (mod 4)

in (5.19), and then replace q2 → q to get with the help of (2.6)

q
t−1

2 ψ
(
q2t

) t−3
2∏

j=0

f 2(q1+2j , q2t−1−2j
){

1 +
t−1

2∑
i=1

q−i f (qt , qt )f (q2i , q2t−2i )

ψ(q2t )f (qt+2i , qt−2i )

}
= ψ

(
q2)F(t, q).

(5.22)

To proceed further we need to verify two product identities

ψ
(
q2) t−3

2∏
j=0

f 2(q1+2j , q2t−1−2j
) = ψ

(
q2t

)
F(t, q)

and

ψ
(
q2t

)f (qt , qt )f (q2i , q2t−2i )

f (qt+2i , qt−2i )
= E3(q4t

) f (q2i ,−qt−2i )

f (−qt ,−q3t )f (−q2t+4i ,−q2t−4i )
, i ∈ N.

Next, we multiply both sides of (5.22) by ψ(q2)
F (t,q)

and simplify to arrive at

q
t−1

2 ψ2(q2t
) + E3(q4t )

f (−qt ,−q3t )

t−1
2∑

i=1

q
t−1

2 −i f (q2i ,−qt−2i )

f (−q2t+4i ,−q2t−4i )
= ψ2(q2), (5.23)

which is essentially the identity in Lemma 5.1. This concludes our proof of (5.19). It follows that
(5.18), (1.10) hold true.

6. 5-cores with prescribed BG-rank

Formula (1.9) suggests that BG-rank(π5-core) can assume just three values: 0,±1. This means
that

a5(n) = a5,−1(n) + a5,0(n) + a5,1(n). (6.1)
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The generating function of version (6.1) is

E5(q5)

E(q)
= C5,−1(q) + C5,0(q) + C5,1(q). (6.2)

In the last section we proved (1.10), (1.11). These identities with t = 5 state that

C5,−1(q) = q3 E5(q20)

E(q4)
, (6.3)

C5,1(q) = qF
(
5, q2). (6.4)

By (1.3) we observe that Ct,j (q) is either an odd or an even function of q with parity determined
by the parity of j . Therefore, C5,0(q) is an even function of q , and C5,±1(q) are odd functions
of q . Consequently, we see that

ep

(
E5(q5)

E(q)

)
= C5,0(q), (6.5)

where

ep
(
f (x)

) := f (x) + f (−x)

2
.

In this section we will show that C5,0(q) can be expressed as a sum of two infinite products

C5,0(q) = R
(
q2), (6.6)

where

R(q) := E4(q10)E(q5)E2(q4)

E2(q20)E(q)
+ q

E2(q20)E3(q5)E6(q2)

E2(q10)E2(q4)E3(q)
. (6.7)

It is easy to rewrite (6.7) in a manifestly positive way as

R(q) = f
(
q, q4)f (

q2, q3){ϕ(
q5)ψ(

q2) + qϕ(q)ψ
(
q10)},

where

ϕ(q) := f (q, q) =
∞∑

n=−∞
qn2 = E5(q2)

E2(q4)E2(q)
,

and ψ(q) is defined in (5.8). Formula (6.6) enabled us to discover and prove the new Lambert
series identity

R(q) =
1∑ ∞∑

(−1)iq5n+i 1 + q1+2i+10n

(1 − q1+2i+10n)2
. (6.8)
i=0 n=−∞
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In what follows we will require three identities:[
ux,

u

x
, vy,

v

y
;q

]
∞

=
[
uy,

u

y
, vx,

v

x
;q

]
∞

+ v

x

[
xy,

x

y
,uv,

u

v
;q

]
∞

(6.9)

[6, Ex. 5.21],

f (a, b)f (c, d) = f (ac, bd)f (ad, bc) + af

(
b

c
,
c

b
(abcd)

)
f

(
b

d
,
d

b
(abcd)

)
, (6.10)

provided ab = cd [1], and

E5(q5)

E(q)
=

2∑
i=1

∞∑
n=−∞

(−1)i+1 q5n+i−1

(1 − q5n+i )2
(6.11)

[6, Ex. 5.7], [5, p. 8]. Here

[a;q]∞ =
(

a,
q

a
;q

)
∞

,

[a1, a2, . . . , an;q]∞ =
n∏

i=1

[ai;q]∞.

Next, we wish to establish the validity of

F(5, q) = E(q10)E2(q5)E3(q2)

E2(q)
= E5(q5)

E(q)
+ q

E5(q10)

E(q2)
. (6.12)

To this end we multiply both sides of (6.12) by

[q, q3;q10]2∞[q2, q4;q10]∞
E4(q10)

to obtain after simplification that[
q2, q2, q4, q6;q10]

∞ = [
q, q3, q5, q5;q10]

∞ + q
[
q, q, q3, q3;q10]

∞. (6.13)

But the last equation is nothing else but (6.9) with q replaced by q10 and u = q2, v = q5, x = 1,
y = q . We now combine

ep

(
q

E5(q5)

E(q)

)
= qC5,−1(q) + qC5,1(q),

with (6.3), (6.5), and (6.12) to obtain

ep

(
q

E5(q5)
)

= 2q4 E5(q20)

4
+ q2 E5(q10)

2
. (6.14)
E(q) E(q ) E(q )
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This can be stated as the following eigenvalue problem

T2

(
q

E5(q5)

E(q)

)
= q

E5(q5)

E(q)
, (6.15)

where for prime p the Hecke operator Tp is defined by its action as

Tp

( ∑
n�0

anq
n

)
=

∑
n�0

apnq
n + p

(
p

5

) ∑
n�0

anq
pn,

with ( a
b
) being the Legendre symbol. We remark that (6.15) is the p = 2 case of the more general

formula

Tp

(
q

E5(q5)

E(q)

)
=

(
p +

(
p

5

))(
q

E5(q5)

E(q)

)
, (6.16)

which can be deduced from (6.11). We shall not supply the details. Instead, we note that (6.16)
together with (6.3)–(6.5) implies that

Tp̃

(
qC5,j (q)

) =
(

p̃ +
(

p̃

5

))(
qC5,j (q)

)
, j = 0 ± 1. (6.17)

Here, p̃ is an odd prime.
To prove (6.6) we use (6.12) to deduce that

ep

(
E5(q5)

E(q)

)
= ep

(
F(5, q)

) = E
(
q10)E3(q2) · ep

(
E2(q5)

E2(q)

)
. (6.18)

To proceed further we employ (6.10) with a = q, b = q9, c = q3, d = q7 to get

E(q5)

E(q)
= E(q4)

E(q20)E2(q2)
f

(
q, q9)f (

q3, q7)
= E(q4)

E(q20)E2(q2)

{
f

(
q4, q16)f (

q8, q12) + qf
(
q6, q14)f (

q2, q18)}
= E2(q20)E(q8)

E(q40)E2(q2)
+ q

E(q40)E(q10)E3(q4)

E(q20)E(q8)E3(q2)
. (6.19)

It is clear that

ep

(
E2(q5)

E2(q)

)
= E4(q20)E2(q8)

E2(q40)E4(q2)
+ q2 E2(q40)E2(q10)E6(q4)

E2(q20)E2(q8)E6(q2)
. (6.20)

Combining (6.18) and (6.20) we find that

ep

(
E5(q5)

)
= R

(
q2). (6.21)
E(q)
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The last formula together with (6.5) implies (6.6). Next, we rewrite (6.11) as

E5(q5)

E(q)
=

2∑
i=1

∞∑
n=−∞

(−1)i+1 q5n+i−1(1 + 2q5n+i + q10n+2i )

(1 − q10n+2i )2
.

Clearly,

ep

(
E5(q5)

E(q)

)
=

2∑
i=1

∞∑
n=−∞

n≡i−1 (mod 2)

(−1)i+1 q5n+i−1(1 + q10n+2i )

(1 − q10n+2i )2

=
1∑

i=0

∞∑
n=−∞

(−1)i
q10n+i (1 + q20n+4i+2)

(1 − q20n+4i+2)2
. (6.22)

Formula (6.8) with q → q2 follows easily from (6.21) and (6.22). Before we move on we wish
to summarize some of the above observations in the formula below

E5(q5)

E(q)
=

{
E4(q20)E(q10)E2(q8)

E2(q40)E(q2)
+ q2 E2(q40)E3(q10)E6(q4)

E2(q20)E2(q8)E3(q2)

}
+ q

{
E5(q10)

E(q2)
+ 2q2 E5(q20)

E(q4)

}
. (6.23)

In [5], the authors used (6.11) to find explicit formulas for the coefficients

a5(n) = 2d+1 + (−1)d

3
· 5c ·

s∏
i=1

p
ai+1
i − 1

pi − 1

t∏
j=1

q
bj +1
j + (−1)bj

qj + 1
. (6.24)

Here

n + 1 = 2d5c
s∏

i=1

p
ai

i

t∏
j=1

q
bj

j (6.25)

is the prime factorization of n + 1 and pi ≡ ±1 (mod 5), 1 � i � s, and qj ≡ ±2 (mod 5),
1 � j � t , are odd primes. Formulas (6.3)–(6.5) and (6.12) suggest the following relations. For
n ∈ N and r = 0,1,2,3 one has

a5,0(n) =
{

a5(n), if n ≡ 0 (mod 2),

0, otherwise,
(6.26)

a5,−1(4n + r) =
{

a5(n), if r = 3,

0, otherwise,
(6.27)

a5,1(4n + r) =
{

a5(2n), if r = 1,

a5(n) + a5(2n + 1), if r = 3, (6.28)

0, if r = 0,2.
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These relations together with (6.24) enabled us to derive explicit formulas for a5,j (n) with −1 �
j � 1. In particular, if the prime factorization of n + 1 is given by (6.25), then

a5,1(4n + 3) = 2d+15c

s∏
i=1

p
ai+1
i − 1

pi − 1

t∏
j=1

q
bj +1
j + (−1)bj

qj + 1
. (6.29)

We would like to conclude this section with the following discussion. It is easy to check that
(6.17) implies that

a5,j (pn + p − 1) + p

(
p

5

)
a5,j

(
n + 1

p
− 1

)
=

(
p +

(
p

5

))
a5,j (n), j = 0,±1, (6.30)

where p is odd prime, n ∈ N and a5,j (x) = 0 if x /∈ Z. Setting p = 5 we find that

a5,j (5n + 4) = 5a5,j (n), j = 0,±1. (6.31)

This is a refinement of the well-known result

a5(5n + 4) = 5a5(n), (6.32)

proven in [5]. We can prove (6.31) by adapting the combinatorial proof in [5].
Let us define

�n = (n0, n1, n2, n3, n4) = φ2(π5-core)

for some π5-core with BG-rank(π5-core) = j and |π5-core| = n. Consider map �n → �̃n = (ñ0, ñ1,

ñ2, ñ3, ñ4) with

ñ0 = n1 + 2n2 + 2n4 + 1,

ñ1 = −n1 − n2 + n3 + n4 + 1,

ñ2 = 2n1 + n2 + 2n3,

ñ3 = −2n2 − 2n3 − n4 − 1,

ñ4 = −2n1 − n3 − 2n4 − 1.

Obviously �̃n ∈ Z
5 and �̃n · �15 = 0 and so we can define π̃5-core = φ−1

2 (�̃n). It is easy to check that

|π̃5-core| = 5n + 4,

and that

BG-rank(π̃5-core) = j,

and

c5(π̃5-core) ≡ 4 (mod 5).
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Recall that the orbit {π̃5-core, Ô(π̃5-core), . . . , Ô
4(π̃5-core)} contains just one member with c5 ≡ 4

(mod 5). And so each 5-core of n with BG-rank j is in 1–1 correspondence with an appropriate
5-member orbit of t-cores of 5n + 4 with BG-rank j . This observation yields a combinatorial
proof of (6.31).

7. Outlook

Given our combinatorial proof of

pj (5n + 4) ≡ 0 (mod 5), j ∈ Z,

one may wonder about a combinatorial proof of the other mod 5 congruences (1.4)–(1.7). We
strongly suspect that such proof will be dramatically different from the one discussed in Sec-
tion 4. In addition, one would like to have combinatorial insights into (6.30) for p 	= 5.

In this paper we found “positive” eta-quotient representations for C5,j (q),−1 � j � 1. In the
general case (odd t , −�(t − 1)/4� � j � �(t + 1)/4�), we established such representation only
for Ct,±�(t±1)/4�(q). Clearly, one wants to find “positive” eta-quotient representations for other
admissible values of BG-rank. (See [3] for a fascinating discussion of the t = 7 case.)

Finally, we observe that (1.2) is the s = 2 case of the following more general definition

gbg-rank(π, s) =
s−1∑
j=0

rj (π, s)ω
j
s

with

ωs = ei 2π
s .

Many identities, proven here, can be generalized further. For example, we can prove that if
(s, t) = 1 then

gbg-rank(πt-core, s) =
∑t−1

i=0 ωi+1
s (ω

tni
s − 1)

(1 − ωt
s)(1 − ωs)

(7.1)

and for 1 � i � s − 1 that ∑
gbg-rank(πt-core,s)=g(i)

q |πt-core| = qa(i)Fi

(
qs

)
. (7.2)

Here,

(n0, n1, . . . , nt−1) = φ2(πt-core),

a(i) = (t2 − 1)(s2 − 1)

24
− (t − 1)(s − i)i

2
,

g(i) = 1

(1 − ω )(1 − 1 )
− ω

t−1
2

s

1 + t−1
ωi

s

(1 − ωt )(1 − 1 )
,

s ωs s ωs
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Fi(q) = E
(
qs

)
E

(
qst

)t−2 [qit ;qst ]∞
[qi;qs]∞ .

Setting s = 2 in (7.1), (7.2) we obtain (3.2), (1.10), respectively.
In addition we can show that

∑
gbg-rank(πt-core,s)=g(0)

q |πt-core| = qa(0) E(qs2t )t

E(qs2
)

. (7.3)

Setting s = 2 in (7.3) we get (1.11).
In [10] Olsson and Stanton defined so-called (s, t)-good partitions. Surprisingly, t-cores with

gbg-rank = g(0) coincide with (t, s)-good partitions.
Let ν(t, s) denote a number of distinct values that gbg-rank(πt-core, s) may assume. Then it

can be shown that

ν(s, t) �
(
t+s
t

)
t + s

,

provided that (s, t) = 1. Moreover, if s is prime or if s is a composite number and t < 2p then

ν(s, t) =
(
t+s
t

)
t + s

.

Here, p is the smallest prime divisor of s and (s, t) = 1.
Details of these and related results will be left to a later paper.
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