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from global climate models (GCMs) though typically post-processed into a secondary product with finer
resolution through methods of downscaling. Here we consider the production process as a chain of pro-
cesses leading to an application-ready data set, where each step may have a significant impact on the cli-
mate change signal. Through worked examples set in an Australian context we assess the influence of
GCM sub-setting, geographic area sub-setting and downscaling method on the regional change signal.
Examples demonstrate that choices impact on the final results differently depending on various factors
such as application needs, range of uncertainty of the projected variable, amplitude of natural variability,
and size of study region. For heat extremes, the choice of emissions scenario is of prime importance, but
for a given scenario the method of preparing data can affect the magnitude of the projection by a factor of
two or more, strongly affecting the indicated adaptation decision. For our catchment level runoff projec-
tions, the choice of emission scenario is less dominant. Rather the method of selecting and producing
application-ready datasets is crucial as demonstrated by results with opposing sign of change, raising
the real possibility of mal-adaptive decisions. This work illustrates the potential pitfalls when using

unwise GCM sub-sampling or the use of a single downscaled product when conducting IAV research.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Practical Implications

To explore possible future climates in detail, work in the impact, adaptation and vulnerability (IAV) field takes results from climate
models to produce ‘application-ready, locally-relevant’ datasets that can be used in applied models and analysis. Datasets usually
need to have fine spatial resolution and be comparable to observations. The process of producing these datasets involves numerous
steps, with important choices at each step. Each choice can strongly affect the results, which can then lead to very different policy
guidance. For end users with limited experience of the production of regional projections, it can be very hard to make assessment
on the robustness of the information (i.e. is the regional projection physically plausible and credible). There are however a number
of steps an end-user can take to critically assess the risks of ending up with a misrepresentative regional projection. These are framed
around key uncertainties:

e What emission scenarios is the information based on, and are these appropriate for the context of the study?

e Are you representing the uncertainty in models ability to simulate natural and forced climate variability? This is typically done
through considering either a large ensemble of global climate model (GCM) outputs or making a well-informed and representa-
tive subsampling. Is a worst case, best case, model consensus case a useful approach?

e If you are using a downscaled data set, are you familiar with the method’s capabilities of capturing characteristics of the change
signal as simulated by the GCM, or its abilities to add value to the GCM output? We would recommend users of downscaled infor-
mation to seek information about strengths and limitations of the particular downscaling method applied. This information ought
to be provided by the ‘producers’ of the downscaled dataset.
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e |Isthere a bias in the simulated data relative to the observed climate? If the level of bias is unacceptable to the application then
it may be preferable to use a technique of scaling observations, or else employ a bias correction technique.

e Limitations of the applied model. Many models used to study bio-physical impacts (such as runoff models) are optimised
based on physical relationships observed in measured variables. Does these relationships hold under climate change condi-
tions or is there risk for method-related biases?

These are central questions to consider when engaging with regional projections. The ‘application-ready’ dataset must be repre-
sentative of the current knowledge about future climate change and be aware of what information cannot be gained from using that
particular dataset.

Here we examine case studies in the areas of heat impacts to human health and changes to water resources. For each case study
we focus on information that is available to stakeholders through national and state wide projections. We find that for heat indices
the choice of emission scenario naturally has large influence on projected change, so the choice of scenarios is crucial. The second
largest influence for heat indices were the representation of the GCM ensemble in the regional projections, as there is still a fairly
broad range of temperature responses to emissions thought plausible (termed the ‘sensitivity’). Choices such as the precise geo-
graphic region, use of sophisticated downscaling or choice of complex scaling had relatively less influence that these two major
choices.

In the water resources case studies, we found the use of complex methods such as statistical and dynamical downscaling com-
pared to simpler methods had a large impact on results, sometimes affecting the sign of projected change. Differences were found
particularly in small regions close to environmental features that cause a deviation of the large scale change signal by the GCMs (e.g.
catchments along the Australian Alps). However, we also note that some differences are due to persistent characteristics of particular
datasets, characteristics that are revealed to the user only through comparisons with other information sources (noting the risk of
relying on information from a single downscaling source). As for temperature cases, GCM sub-setting also has an important effect.

Our case studies also demonstrate how the use of some simpler metrics can be sensitive to the natural range of variability of a
climate variable. For example, studies using exceedances over a certain threshold can give very different results depending on where
the threshold lies relative to the observed natural range of variability. An example being exceedances over a temperature threshold
in the coastal tropics, where the natural range of variability is much smaller compared to the temperature range of mid-latitudes or
continental climates.

Even with a limited set of case studies demonstrating the use of different climate change information sources, it is evident that
under certain circumstances different datasets can provide very different guidance on ‘change’, and this has a large effect on the sub-
sequent adaptation decisions. We suggest that if there is no obvious reason for why one dataset would be more credible than others,
then the study must state that significant uncertainty exists around the regional signal and drawing conclusions from a particular
result would not be recommended. However some understanding about the nature of uncertainty associated with a particular regio-
nal projection can be gained from considering how well that source represents uncertainties such as those associated with emission
scenarios, GCM subsampling, downscaling, bias correction and robustness of the applied model under a non-stationary climate.

1. Introduction

Research on climate change impacts to bio-physical and socio-
economic systems informs of plausible future change and can aid
the development of climate change policy in industry and govern-
ment. These policies subsequently influence strategic planning on
time horizons relevant to climate change (which are variable and
region dependant) and help to shape the future behaviour and
activities of communities, businesses and governments.

Here we recognise the important albeit challenging role that
impact research has in shaping policy guidance (Porter et al.,
2015; Schwartz, 2012). This includes the various methods that
exist of producing future climate datasets that represent plausible
scenarios (Ekstrom et al., 2015). The production of climate scenar-
ios and follow-on impact analysis involve many choices around
method selection, where different choices may lead to advice with
harmful, conflicting or even contradictory policy implications. This
raises the question of methodological reliability (Smith and
Petersen, 2014) of impact analysis for policy response, and the pos-
sibility of mal-adaptive responses due to inappropriate or inaccu-
rate information on future change.

Information about climate change suitable for regional impact
research typically involve several steps of modelling and analysis,
each associated with particular uncertainties (Giorgi, 2008). To
fully understand how a particular projection represents different
sources of uncertainty require a non-trivial analysis into key ele-
ments that make up ‘climate risk’ or rather the influence of climate

change in a particular risk analysis (Ekstrom et al., 2013; Brown
and Wilby, 2012; Ledbetter et al., 2012; Jackson et al., 2010). To
represent the range of hypothetical future climate change, it is
now common practice to use simulations from global climate mod-
els (GCMs) that follow plausible future emissions scenarios (IPCC,
2013; Defra, 2009; CSIRO, 2015). In order to inform appropriate
actions and avoid mal-adaptation, a study of climate change
impacts should consider all projections that are considered
plausible, and account for the various sources of uncertainty impli-
cit in the generation of climate change information (Whetton et al.,
2012; Stainforth et al., 2005; Foley, 2010; Conroy et al., 2011).
Assessing climate change impacts to bio-physical or socio-
economical systems often require inputting GCM simulations into
operational models (and other analyses). In doing so, researchers
can account for complex or non-linear responses in the studied
system due to expected changes in the climate. These assessments
present a great challenge to the research community, as GCM out-
put typically require translation onto finer spatial scales to be
implemented in impacts, adaptation and vulnerability (IAV) stud-
ies (Fowler et al., 2007; Harris et al., 2014). We might term the cli-
mate change projection data used in applied analyses at the
regional scale as application-ready, locally-relevant; reflecting the
idea that different applications have different requirements in
terms of what climate change information is required and what
resolution it should be provided on. However, datasets for 1AV
analysis can be produced using a range of conceptually different
methods, and whilst most of them produce output on finer resolu-
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tion than the GCM, the aspects of the simulated change signal con-
tained in the data can vary greatly (as discussed in Ekstrom et al.
(2015) and shown in Schmidli et al. (2007)).

Thus, to develop policy guidance material that is scientifically
robust from a climate projection point of view, IAV researchers
should pose the following question of any dataset used in their
analysis: does it represent the full range of projected climate changes
that we have confidence in, and does it represent them in a compre-
hensive and balanced way to address the question of interest for the
intended application? To demonstrate the influence that choice of
regional projections has on policy guidance we examine the typical
pathway for generation of application ready, locally relevant data
sets. We examine the impacts of different methods for creating
datasets and illustrate the effect of the choices on the end result
with worked examples set in an Australian context, drawing on
climate change information from the Australian national climate
projections (CSIRO, 2015) and other regionally available projec-
tions (Evans et al., 2014).

2. Defining the credibility of application ready, locally relevant
datasets

We propose that the credibility of a dataset for AV studies must
be judged in terms of the specific application. In this context, ‘cred-
ibility’ can be decomposed into two relevant aspects on which to
assess an application-ready dataset, these being; (1) the plausible
representation of a climate change signal and (2) the presence of
bias compared to observations. Climate change signals include per-
sistent changes in the mean, seasonality, daily variability, timing,
periodicity, length of events and inter-annual variability of climate
variables. Important aspects of bias include differences in these
same statistics compared to the relevant observed dataset. Here
we use the term ‘bias’ to describe any difference between the
model outputs and observed data.

The climate change signal is typically explored using an ensem-
ble of GCMs such as the Coupled Model Intercomparison Project
phase 5 (CMIP5) of Taylor et al. (2012) run for different future
emission scenarios such as the Representative Concentration Path-
ways (RCPs) of van Vuuren et al. (2011). Projections of variables
such as temperature can thus be described in terms of: emission
scenario, simulated climate response and natural variability (e.g.
[PCC, 2013). Model ensembles can be used to attempt to quantify
and illustrate the relative contribution from these key sources of
uncertainty and thereby identify the weakest link in the simulation
system, i.e. the relevant dominant uncertainty (RDU), which may
vary for a specific variable, time horizon and location (Hawkins
and Sutton, 2009).

Two key obstacles for implementing GCM output in IAV studies
are the spatial resolution of their outputs (around 200 km) and the
presence of bias relative to the observed climate. To gain greater
spatial resolution for a regional projection, scaling or downscaling
methods are used. We define scaling as modifying observed data
by a change factor produced by models (also called the delta
method, perturbation method, pattern scaling or simple scaling),
and downscaling via the running of either a statistical downscaling
model (SDM) or a dynamical regional climate model (RCM) to pro-
duce fine-resolution output. An appraisal of downscaling methods
and a framework for assessing the potential added value brought
by downscaling is provided by Ekstrom et al. (2015) and Maraun
et al. (2015) respectively.

Scaling of observed data typically solves the second issue of bias
as the bias is removed when generating the scaling factor that is sub-
sequently applied to the baseline climate. Downscaled outputs on
the other hand are not necessarily suitable for direct input into
applied models and further processing may still be required

(Christensen et al., 2008). This may involve using downscaled out-
puts to inform scaling, or employ bias correction to the downscaled
output. Bias correction implies a correction of model output to make
its distribution more similar to that of the observed datasets
(Argiieso et al., 2013; Bennett et al., 2013; Piani et al., 2010;
Teutschbein and Seibert, 2012). Whilst bias-correction is largely a
standard procedure to adjust downscaled information it is not an
uncontested approach as it assumes bias remains constant over time
and has the potential to modify dependencies in space-time and
between variables (Ehret et al.,2012). In some instances, it may even
alter the climate change signals from the downscaled input (Teng
et al., 2015). Nevertheless, whilst bias correction adds to the total
uncertainty in climate change information, it can lead to greater dis-
tributional detail in the regional change signal and it allows the use
of downscaled output in IAV models (Yang et al., 2010).

3. Chain of processes: producing application ready, locally
relevant datasets

Different strategies are employed to illustrate impacts on com-
munities, infrastructure and the environment due to a warming
climate (UNFCCC, 2008). Research that focuses on physical impacts
tend to favour a so called ‘top-down’ approach, which starts with
existing climate model outputs and works through to the applied
model. Top-down estimates of climate risk can inform policy guid-
ance, but need to take into account the typically large uncertainty
associated with the many modelling steps included in the projec-
tion. Uncertainty in top-down analysis output can be communi-
cated through showing the spread of results, such as the 10th
and 90th percentile of a model ensemble.

An alternative ‘bottom up’ approach (Wilby and Dessai, 2010)
focuses on the decision making context, and analysis begins within
the application to determine system specific vulnerabilities to cli-
matic variables (Brown et al., 2012, 2015; Turner et al., 2014). Cen-
tral to this approach is the focus on the system of interest and its
ability to maintain desired performance criteria under different/-
multiple climate change scenarios. A related concept is ‘robust
decision making’ (RDM), where ‘robust’ implies a proposed adapta-
tion modification that allows the ‘system’ to operate satisfactory
under multiple future climates (as predicted by GCMs or uncer-
tainties in the observed historical climate)(Lempert and Kalra,
2011; Weaver et al.,, 2013). The concept of RDM has been fre-
quently used to address problems with ‘deep’ uncertainty, the term
deep reflecting unresolvable lack of knowledge or fundamental
disagreement amongst researchers (Lempert et al., 2006). For these
reasons, the bottom-up view has become a favoured approach for
adaption and vulnerability research, where typically large uncer-
tainties associated with outputs from ‘top-down’ are difficult to
reconcile with the urgency to develop strategies for adaption
actions (UNFCCC, 2008; Mastrandrea et al., 2010).

With either approach there is often a need to produce
application-ready locally-relevant datasets that contain climate
change information; though its implementation in the study is fun-
damentally different depending on the approach taken (Ekstrém
et al., 2013).

In producing application-ready datasets for IAV studies, the first
and broadest question to assess is whether the projections from a
set of GCMs using hypothetical scenarios are required for the appli-
cation. If there is no need to link results to specific emission scenar-
ios, straightforward sensitivity testing may be adequate to assess
system vulnerabilities to a warming climate. For example, if there
is no current knowledge about the sensitivity of a plant, animal or
system to changes in mean temperature, a sensitivity study of
changes of 1 °C, 2 °C and so forth is useful before consulting temper-
ature projections. For more complex assessments, i.e. an interest in
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Table 1

Processes for producing application-ready and locally-relevant datasets, showing stages as: discrete processes (column 2), the main issues involved in each step (column 3), key
questions regarding the credibility of the process (column 4).
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Process stages in application ready datasets

Issues for the user to consider

Key credibility issue

Use of emission scenarios
Global climate response by GCMs

N o=

3 Sub-setting GCMs

4.a  Regionalise projections by:
Downscaling

4b  No Bias Correction  Bias Correction

Scaling

The three main sources of uncertainty are represented here:
future emissions, model ability to simulate climate response
to changing emissions, model ability to simulate natural
climate variability.

Choices around selection of scenarios and models will
influence how well these sources of uncertainty are
represented in the study. Issues to consider if selecting

models are:
e Model skill

e Reflecting simulated model range (does your sample
reflect the full range of possibilities?)
Methods of different complexity can generate finer resolution
projections over a specified region or location (downscaling).
Are you familiar with strengths weaknesses of the method
used to generate your dataset?
Methods other than scaling are likely to have output with a

Consider plausibility of change signal.
Consider if the plausible range is
represented

Consider added value of choosing
downscaling (e.g., plausibility of change
signal, lower bias).

Representativeness of range of change

bias relative to observed data (particularly output from
dynamical models). If level of bias is unacceptable, bias
correction (BC) of the regional projection is needed.

5. Applied Model

If the applied model is typically used with observed data,

issues to consider are:
e Sensitivity to biased data

e Does assumptions about model parameters hold under a
non-stationary climate?

Consider plausibility of change, level of
bias relative to observed data and
representation of key uncertainties in the
application-ready data used with the
Applied Model.

change across multiple variables or change with a temporal/spatial
dimension is well served by the use of application data based on
physical consistent model simulations.

Table 1 outlines a pathway of decisions and issues a user need
to consider when using GCM derived application ready data. The
path starts with choices around GCMs and emissions and ends
with the input into the applied model. The applied model can also
be viewed as a vulnerability threshold (i.e. threshold relating to a
level in e.g. magnitude/frequency/duration beyond which a system
becomes vulnerable) of a bottom-up approach.

The initial issue to consider is the representation of core uncer-
tainties in GCM output, viz. uncertainty stemming from natural vari-
ability, emission scenarios, uncertainty of climate processes (e.g.
change to atmospheric circulation and physical state responses).
To what degree does the inter-model range of GCMs represent a
plausible range of these uncertainties? Also, model dependence
and model evaluation are very practical concerns regarding the
use of an ensemble of GCMs. Is it meaningful to consider rejection
or weighting models depending on their performance and indepen-
dence (Evans et al., 2013; Masson and Knutti, 2011; Sanderson et al.,
2015). These are the generic concerns when using an ensemble of
GCMs as a tool for examining future climate change.

In some instances, it may be necessary to select a sub sample of
GCMs. For example, downscaling may be required and if the
desired method requires significant time or computing resources,
downscaling can only make use of a limited sample of GCMs (there
may also be limitations imposed due to requirement of specific
input variables or temporal resolution). Sub-setting introduces
the questions of whether the sub-sample is representative of the
full set, whether the models chosen have unacceptable biases for
the application of interest and also whether the selected models
are overly dependent due to similarities in model code (Knutti
et al., 2010; Masson and Knutti, 2011). The choice of GCMs sets
an important context for the rest of the process, and if a subset
of GCMs is particularly unrepresentative then the final datasets
will not be usable in terms of representing the range of plausible
climate changes (or at least the plausible range that is indicated
by the entire set of GCMs).

Once a set of GCM inputs are selected, many IAV studies face
two major choices (Table 1, column 4a), to downscale or use simple
scaling. Simple scaling by the mean can produce bias-free outputs,

but can only express a change in the mean and not in variance,
sequencing or duration of events. Downscaling aims to produce
‘added value’ in the climate change signal and offers the possibility
of containing lower biases than the host GCMs. However, the
downscaling may not reveal any robust regional detail and the
downscaling model itself introduces new method specific effects
of its own to the projection (Grose et al., 2015) e.g. due to a param-
eterisation choice. One approach to deal with this issue is to exam-
ine the outputs of numerous downscaling methods in a ‘matrix’ of
GCMs and downscaling (Kendon et al., 2010; Mearns et al., 2013;
Maraun et al., 2015). If only one downscaling method is used, then
this may represent a skewed sample that must be acknowledged in
any derived products or guidance.

If downscaling is used and a robust regional pattern of change is
revealed, then outputs can either be used to produce appropriate
scaling factors or bias corrected to produce application ready, locally
relevant data. A key question then is whether the bias is acceptably
small to allow it to be corrected. This depends on the application the
data will be used for, since different applications have different data
needs and different sensitivity to bias. Key questions of the output
are whether the bias is satisfactorily corrected and if the climate
change signal has been affected (Bennett et al., 2013).

The type of applied analysis used should also be considered.
Running an applied model with downscaled outputs (even after
bias correction) may not illustrate a plausible response to changes
in the climate. This may be because the model may not show a
plausible response in a new climate outside that it was calibrated
to (Chen et al., 2011). Split-sample modelling can be used to assess
how the IAV model performs when calibrated and applied to cli-
matologically different periods (e.g. Vaze et al. (2010b)), assuming
the observed data permits such analysis. Alternatively the model
may have an exceedingly small tolerance for bias (e.g., due to
over-fitting).

4. llustrative case studies, data and methods

To demonstrate the sensitivities of selecting an appropriate
data set relative to application requirements we have selected four
case studies each with different regional projection dataset
requirements (Table 2). All case studies are set in Australia and



Table 2
A summary of comparisons enabled through the example case studies in Sections 4.2 and 4.3.

Study Purpose Methods compared

Key Message

Heat stress: Melbourne (days over 42 °C) and Darwin (wet bulb temperature > 35 °C) case studies

1 Influence of emission scenario Mean scaling factor for southern Australia super cluster imposed on Melbourne/
- Common baseline (1986-2005) Darwin ACORN-SAT station record following:
- Common future time horizon (2080-2099) 1. RCP4.5
2. RCP 8.5
2 Influence of using scaling factor from differently sized Mean scaling factor imposed on Melbourne/Darwin ACORN-SAT station record
areas. based on model data from:

- Common baseline (1986-2005)
- Common future time horizon (2080-2099)
- RCP8.5

3 Influence of sub-selecting GCMs.
- Common baseline (1986-2005)

- Common future time horizon (2080-2099)
- Common emission scenario (RCP8.5)

1. Super clusters: Southern Australia/Northern Australia super cluster
2. Sub-clusters: Southern Slopes Victoria West/Monsoonal North west

Mean scaling factor for Southern Slopes Victoria West/Monsoonal North West

derived from:
1. All considered CMIP5 GCMs (~40)

2. 8 selected CMIP5 GCMs

3. 8 CMIP5 GCMs with coolest temperature projection (low)

4. 8 CMIP5 GCMs with warmest temperature projection (high)

Mean scaling factor for Southern Slopes Victoria West/ Monsoonal North West

derived from:
1. All considered CMIP5 GCMs (~40)

2. SDM (22 GCMs downscaled)
3. CCAM (6 GCMs downscaled)

Applied to the grid cell nearest to Melbourne for 8 selected CMIP5 GCMs:
1. Mean scaling

2. Quantile scaling

4 Influence of change signal in complex downscaling

choice.
- Common baseline (1986-2005)

- Common future time horizon (2080-2099)
- Common emission scenario (RCP8.5)

5. Influence of scaling method in application-ready dataset.
- Common baseline (1986-2005)

- Common future time horizon (2080-2099)
- Common emission scenario (RCP8.5)
- Common set of 8 GCMs

Water resources: Rainfall-Runoff - Catchments on Murray, Genoa and Avoca in southeast Australia

1 Influence on change signal due to different information ~ Annual and seasonal rainfall change (%) for each catchment' based on data from:
sources. . All considered CMIP5 GCMs (~40)

1
- Baseline 1986-2005 for all but NARCIiM (1990-2009) 2. 8 selected CMIP5 GCMs
- Future time horizon 2080-2099 for all but NARCIiM 3. CCAM
4
5

(2060-2079) . SDM
- Emission scenario is RCP8.5 for all but NARCIiM (SRES . NARCIiM
A2)
2 Influence on change signal due to different scaling Annual and seasonal runoff change (%) for each catchment based on application-
methods ready data based on:

- Common baseline (1986-2005)

- Common future time horizon (2080-2099)
- Common emission scenario RCP8.5

1. Mean scaling of rainfall and APET
2. Quantile scaling of rainfall, mean scaling of APET

Water resources: Water supply — urban bulk water supply system in Victoria
Influence on change signal due to information source. Mean change in mean annual temperature (MAT) and precipitation (MAP)

- Common baseline (1986-2005) applied to AWAP observed data for catchment area' according to:
- Common future time horizon (2080-2099) 1. All considered CMIP5 GCMs (~40)

- Common emission scenario (RCP8.5) 2. 8 selected CMIP5 GCMs
3. SDM (21 models)
4. CCAM (6 models)

2 Influence on change signal due to information source. Annual and seasonal rainfall change (%) for catchment area’ based on data from:

- Baseline 1986-2005 for all but NARCIiM (1990-2009) 1. All considered CMIP5 GCMs (~40)
- Future time horizon 2080-2099 for all but NARCIiM 2. 8 selected CMIP5 GCMs
(2060-2079) 3. CCAM (6 models)
- Emission scenario is RCP8.5 for all but NARCIiM (SRES 4. SDM (21 models)
A2) 5. NARCIiM (12 models)

Choice of RCP has large influence on projected change due to the strong
relationship between increase in greenhouse gas concentration and
heat increase.

Second largest influence is by GCM sub selection, reflecting the
different degree of warming in models under similar greenhouse gas
concentrations.

For these experiments choice of downscaling, choice of region and
mean or quantile scaling appear to have lesser influence on results.
For regions where there is a narrow range in natural variability, studies
using exceedances over a certain threshold can give very different
results depending on where the threshold lies relative to the observed
natural range of variability (see our Darwin case study).

Downscaling can have a large influence on the change signal,
particularly in small regions close to environmental features that cause
a deviation of the large scale change signal by the GCMs (e.g.
catchments along the Australian Alps).Downscaling also can give
different results away from these gradients, such as consistently drier
projections from statistical downscaling in the Avoca catchment (see
below). The effect of mean scaling compared to quantile scaling is
small compared to the choice of model inputWe note that in
circumstances when different datasets provide very different guidance
on ‘change’ and there is no obvious reason for why one dataset would
be more credible than others, significant uncertainty exist around the
regional signal and drawing conclusions from a particular result would
not be recommended

Same conclusions as for rainfall-runoff. The choice of rainfall
projections has a large effect on the results, including the choice to
subset or downscale GCM outputs. Temperature projections are more
consistent, so the choice of input has less effect than rainfall.

1 Catchments and catchment area for water resource studies are mapped in Fig. 4.
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represent applications with a heat or water resource focus, demon-
strating the use of projections of mainly rainfall and temperature.
For illustrative purposes our case studies are simple examples that
can be easily replicated, but that all have particular requirements
and restrictions.

Amongst the case studies, there are some discrepancies in terms
of regional focus and data use. This reflects our intent to give
examples where climate change impacts are more relevant (or
potentially larger) than elsewhere, or because downscaling is
shown to be particularly meaningful in the selected region. As a
consequence there is some variation in datasets used for particular
applications due to the uneven coverage of available downscaled
data sets across the Australian continent.

4.1. Climate change projection datasets

The core GCM data set used here are outputs of about 40 CMIP5
GCMs underpinning the new climate change projections for Aus-
tralia (CSIRO, 2015), available as a change signal for different
agglomerations of natural resource management regions, referred
to as ‘clusters’ (Fig. 1). Numbers of GCMs vary somewhat for differ-
ent variables and RCPs (see Table 3.3.1 and 3.3.2 in CSIRO (2015)).
For monthly temperature and rainfall under RCP 4.5 38 and 37
models were use respectively and for RCP8.5 38 and 39 models
respectively. These projections are accompanied by a suite of data-
sets intended for use in applied projects (Webb et al., 2015), so
called ‘application-ready’ data that are also utilised here (Table 2).
These datasets are created through scaling of 30 years of observed
data (1981-2010), where temperature and rainfall are from the
Australian Water Availability Project (AWAP, Jones et al. (2009))
and areal potential evaporation (APET) data calculated from the
AWAP variables using Morton’s method (Chiew et al., 2009b). All
application-ready datasets are at 5 km resolution across Australia.

100°E 110°E 120°E
! ! !

The change signal for the application-ready dataset is derived
from output data of 8 CMIP5 GCMs, representative of the larger
CMIP5 ensemble: ACCESS1.0, CESM1-CAM5, CNRM-CM5,
GDFL-ESM2M, HadGEM2-CC, CanESM2, MIROC5, NorESM1-M
(motivation for model selection is given in Box 9.2 of CSIRO
(2015)), and calculated as the difference between the 20-year
baseline period 1986-2005 and relevant future period (e.g.
2080-2099). To implement the change factor on a similar resolu-
tion to that of the observed data, the coarse resolution change fac-
tors (about 200 km resolution) were bi-linearly interpolated to the
5 km resolution grid of AWAP. Further, for some variables we
expect different change across different parts of the distribution
of a variable (e.g. change in high values are different to mean
and low values), thus scaling the observed series only by a mean
change is not appropriate. For these variables, e.g. rainfall, the
application-ready data is scaled using a quantile scaling approach,
allowing different scaling factors to be applied to different parts of
the distribution (Webb et al., 2015).

The national projections primarily consider the change signal of
the full CMIP5 ensemble, but when appropriate, it also considers
the change signal of two downscaled products. These are simula-
tions of the variable resolution GCM Conformal Cubic Atmospheric
Model (CCAM; McGregor and Dix (2008)) and outputs from the
statistical downscaling model (SDM) developed at the Australian
Bureau of Meteorology (Teng et al., 2012; Timbal et al., 2009);
the latter providing only three variables, daily maximum and min-
imum temperature and rainfall.

The CCAM model takes the climate change signal from its host
GCM model through incorporating the GCM sea surface tempera-
ture in its simulation. It has a stretchable grid across the globe,
with outputs at a regular 50 km resolution globally. The SDM
draws on a statistical relationship to find analogues between cur-
rent observed and future modelled large-scale patterns. Having
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Fig. 1. Natural Resource Management cluster regions in Australia for which climate change projections are derived. There are 8 clusters in total, with the majority split into
sub-clusters to better represent spatial variation in the climate change signal. For nation-wide projection summaries, larger ‘super’ clusters are used, these are: Rangelands (as
depicted here), Northern Australia (agglomeration of Monsoonal North and Wet Tropics), Southern Australia (Southern and South West Flatlands and Southern Slopes), and
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178/TR_Figure2.2.png) Reproduced by permission of CSIRO Australia, © CSIRO.
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found a match in analogues, the method uses the local observed
surface variables (from 5 km gridded AWAP data) associated with
the best matched analogue of the historical pool (Teng et al.,
2012); thus the SDM is available at a 5 km resolution. We note that
whilst both CCAM and SDM are available for all of Australia, the
latter was implemented across regions to ensure a regionally
appropriate selection of atmospheric variables as analogues. For
this reason, the SDM is not a spatially homogenous field, which
may be an issue to consider for users who are interested in regions
that straddle downscaling boundaries. The techniques downscale 6
and 22 GCMs respectively (see downscaled GCMs in Table 3.3.1 in
CSIRO (2015)). We note that neither CCAM nor SDM has been bias
corrected in this study, and are used as input to scaling methods
(decision 4b in Table 1 is not covered in this study).

In addition to resources available through the national
projections listed above, we also consider a regional projection
commissioned by the New South Wales State government, the
New South Wales and Australian Capital Territory Regional Climate
(NARCLiM) projections (Evans et al., 2014),. This projection product
is based on dynamical downscaling using the Weather Research
and Forecasting (WRF) limited area model (LAM) with coverage
across southeast Australia at 10 km resolution. In this setup, infor-
mation about moisture, temperature and movement of the atmo-
sphere in the GCM is feed to the LAM at regular time intervals
through lateral boundary files. The NARCIiIM projections contain
12 models simulations, where four different GCMs (MIROC,
ECHAM, CCCMA and CSIRO Mk3.0) are combined with three differ-
ent setups of the WRF model (Skamarock and Klemp, 2008). These
regional projections differ to those of the national product in three
relevant aspects, (i) they were downscaled from the previous gen-
eration of GCMs (CMIP3, Meehl et al. (2007)) that use (ii) emission
information from the A2 scenario of the Special Report on Emis-
sions Scenarios (SRES, Nakicenovic et al. (2000)) (iii) and data is
available for the baseline period 1990-2009 and future periods
2020-2039 and 2060-2079.

Despite differences, it is meaningful to include the NARCIiM
dataset in our comparisons when possible (depending on applica-

tion requirements and geographical coverage), as it is promoted by
the NSW state and the ACT. Further, it adds information about
range of uncertainty in downscaling methods, which is crucial
information for a region where there are very few readily available
downscaled datasets. The following case studies involve comparing
these datasets in general terms as projections under high emis-
sions for late in the century, noting the difference in specifics
(Table 2).

4.2. Heat stress examples

With regard to heat, we consider two simple examples of heat
stress to illustrate the effect of different choices in preparing data-
sets for this purpose. First we look at the incidence of days above
42 °C in Melbourne the State Capital of Victoria (37.8136°S,
144.9631°E), a threshold at which certain birds and bats can die
(Welbergen et al., 2008). For this example scaling factors from
the national projections datasets are used to scale the daily station
record from Melbourne from the Australian Climate Observation
Network - Surface Air Temperature (ACORN-SAT) of Trewin
(2013). The scaling factors are available for differently sized
regions and from different model outputs. Our example tests the
sensitivity in using scaling factors for the large Southern Australian
super cluster and also that of the smaller south west Victorian
sub-cluster (Fig. 1) (CSIRO, 2015), for the full set of CMIP5 GCMs,
subsets of CMIP5 GCMs and downscaled outputs (Table 2). Mean
scaling entails scaling the station record by the mean change in
temperature from each model, quantile scaling uses a separate
scaling of each month applied to each decile of the station record
distribution (percentile bins 0-10, 11-20 etc.) with a secondary
scaling to ensure that the monthly mean change is consistent with
projected mean change.

The second case study illustrates similar comparisons for data-
set preparation as for the Melbourne case study but for a some-
what more complex heat stress index in the tropics (Table 2).
From a ‘human comfort’ perspective, the joint change of high tem-
perature and humidity is of interest as increasing humidity has
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Fig. 2. Incidence of days over 42 °C in Melbourne in 1985-2005 (baseline) and 2090 under RCP8.5 calculated using different methods of scaling of the Melbourne ACORN-SAT
station data series: (a) mean scaling factor from CMIP5 for Southern Australia (SA) super-cluster under RCP4.5 compared to RCP8.5, (b) mean scaling factor for CMIP5 for SA
super-cluster and the Southern Slopes Victoria West (SSVW) sub-cluster, (c) mean scaling factor for SSYW in CMIP5, the 8 selected CMIP5 models, the 8 models showing the
coolest temperature projection (low) and the eight with the hottest (high), (d) mean scaling factors for SSVW for CMIP5, BOM-SDM and CCAM downscaling, (e) mean and
quantile scaling for the nearest GCM grid cell for the eight selected CMIP5 models (under RCP8.5).
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Fig. 3. As for Fig. 3 but in Darwin and for the number of days over 39.2 °C (approximating wet bulb temperature of 35 °C).

aggravating physiological effects during extreme temperature
events. Other factors are also relevant, such as radiation, wind
and behavioural factors such as metabolic rate and clothing
(Epstein and Moran, 2006). However, most indices focus on
changes to temperature and humidity (e.g. heat index, humidex,
temperature humidity index (THI)). Here, we examine days
exceeding a threshold wet bulb temperature of 35 °C, where
human heat stress becomes ‘extreme’. In January, Darwin in the
tropical north of Australia has a daily mean relative humidity of
75.5% (mean relative humidity of 81% at 9am and 70% at 3 pm)
and mean sea level pressure of 1007 hPa (Bureau of Meteorology).
Projected change in relative humidity is <5% (CSIRO, 2015) and also
relatively small in mean sea level pressure, so we take the climato-
logical value of these variables and assume they remain constant
for this simple example. This means that an air temperature of
39.2 °C gives a simplified wet bulb temperature of 35 °C. We note
that our approach is simple and other effects may need considera-
tion if applied in a real-world application. For example, in urban
areas (not resolved by GCMs) the heat island effect will worsen
the heat stress effect (Oleson et al., 2015).

4.3. Water sector examples

Two examples are used to demonstrate the impact of choosing
different climate change information in the water sector (Table 2).
Southeast Australia includes complex topography, so there is an
expectation that downscaled information will add value to the
regional climate change signal (Fig. 4). The first example looks at
assessments of future change on runoff for three catchments in this
region using a top-down approach. Our second example uses a
bottom-up style approach and looks at climate change relative to
decision thresholds for a complex urban water resource system
in the same region (Fig. 2). These examples illustrate different
approaches of including climate change information in IAV appli-
cations. The water resource example builds on the work in
Turner et al. (2014) (hereafter T14), wherein the authors created
a functional relationship between thresholds (related to system
management) and mean annual temperature and rainfall for the
relevant, dominant catchment area. Having established such a rela-
tionship, climate change information is used to examine under

which emission scenarios and time horizons action thresholds
are likely to be exceeded.

In comparison to the straightforward heat stress case studies,
the runoff examples require some additional analysis and impact
modelling. The essential details for each example are outlined
below and in Table 2.

4.3.1. Runoff

Our runoff example features three catchments in the state of
Victoria on the rivers: Murray, Avoca and Genoa (Fig. 2). These
catchments differ in size and geographical positioning, the largest
being on the Avoca river at Coonooer located on the western slopes
of the Great Dividing Range in western Victoria (2682 km?), fol-
lowed by the higher altitude catchment on the Murray river at Big-
gara (1257 km?) and the on the Genoa river at The Gorge to the
east of the Great Dividing Range (844 km?). We examine change
under a high emissions scenario (RCP8.5 for CMIP5 outputs, A2
for NARCIiM) to the end of the century (or as late in the century
that the model outputs cover) as a demonstration of a strong
climate change signal (Table 2).

Runoff projections typically draw on outputs from empirically-
fitted runoff models using daily series of rainfall and areal potential
evapo-transpiration (APET). But there are some methods that use
simpler empirical relationships (e.g. water balance equations such
as that described by the Budyko curve (Budyko, 1974)). For our
region of interest, a first order assessment of impact can be gained
from considering the rainfall projections themselves, as rainfall is
the variable with strongest predictive power in the rainfall-runoff
model in this region. Therefore, by considering projected changes
of rainfall, it is possible to use a ‘rules-of-thumb’ guidance about
what the projected runoff response might be to such a change,
i.e. the ‘rainfall elasticity of streamflow’. Analysis of more than
200 catchments across Australia suggests that in this region, a 1%
change in rainfall equate to a 2-3.5 change in runoff (as observed
in about 70% of catchments) (Chiew, 2006).

For this example, this relationship is convenient as it allows us
to consider downscaled data sets that would otherwise require fur-
ther processing to be implemented in runoff modelling, i.e. those of
the national projections and the NARCIiM datasets. This compar-
ison illustrates the effect of the first crucial decision in a study,
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Fig. 4. Projected change in mean annual rainfall for CMIP5 GCMs (left panel), and then on the right in descending order: a sub selection of 8 representative CMIP5 GCMs, 6
CCAM downscaled fields, 21 BoM-SDM downscaling fields and 12 downscaled NARCIiM fields. All changes are for 1986-2005 to 2080-2099 under RCP8.5, except NARCIiM
which is 1990-2009 to 2060-2079 under the SRES A2 scenario. The map shows the outline of selected catchments (along rivers Avoca, Murray and Genoa) used for the runoff
study (4.3.1) and the rectangular region used to inform regional climate change for the Melbourne water resource case study (4.3.2), the State boundary for Victoria and the
surface height of the region (height contours). The topography reveals the outline of the main topographic feature in this region, the Great Dividing Range, running parallel to
the eastern coastline of Australia. The mountainous region in Victoria and NSW is commonly referred to as the Australian Alps.

the choice of input models. After this choice is explored, we illus-
trate the choice of method to produce datasets for the rainfall-
runoff model. We also compare mean and quantile scaling of
AWAP datasets of rainfall and evaporation by changes from CMIP5
GCMs available via the web portal for the national projections’. The
hydrological model used to estimate runoff is GR4] (Perrin et al.,
2003) - a lumped conceptual daily rainfall-runoff model. The GR4]
model is widely used for water engineering and resource manage-
ment worldwide and its performance is among the best models of
its type (Vaze et al., 2010a). It has a parsimonious four-parameter
structure corresponding to the maximum level of complexity that
enables the optimum model performance. The modelling is carried
out for each catchment using the daily rainfall and APET data aver-
aged for the respective catchment. The model parameters are cali-
brated to reproduce the observed daily streamflow series over the
period of 1981-2010, for the catchments described above. The
GR4] model is driven with historical and future climate data to sim-
ulate corresponding runoff. The same optimised parameter values
are used for both historical and future simulations.

1 http://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-
projections/using-projections/application-ready-data/.

4.3.2. Water resources

In this example we demonstrate the use of a decision scaling
methodology (see e.g. Brown et al. (2012)) to assess climate risk
for a large urban bulk water supply system in southeast Australia
drawing on relationships developed in T14. The system comprises
multiple storage reservoirs located in protected catchments, as
well as a seawater desalination plant and inter-basin transfer for
emergency supplies. Total system storage capacity is equivalent
to about 5 years’ demand. A detailed description of the modelling
platform is provided in T14, here we merely note that the bulk sup-
ply system was modelled using a node-link mass balance simula-
tion software package eWater Source (Kelley and O’Brien, 2012)
that includes physical and operational specifications, including
control curves, downstream minimum flow requirements and
pump capacities.

The decision scaling approach involves identifying a vulnerabil-
ity threshold, such as a critical tipping point, or a situation that
would require management intervention in a system. In T14, the
decision threshold relates to system performance through a yield
measure. This measure defines the level of annual water supply
required to meet demand without violating specified service stan-
dards and is constrained by a reliability and a vulnerability crite-
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rion (see T14 p. 3556 for further details). In T14, an experiment
using the model platform with one thousand 100-year synthetic
time series (based on streamflow statistics of historic inflows)
was used to identify climate conditions that would sustain the
required yield without violating the set criteria. This experiment
enabled the construction of an empirical relationship between
the system yield and the mean annual inflow from four adjacent
catchments feeding the system. Combining this relationship with
a second empirical relationship between streamflow and the cli-
mate variables allowed for yield to be defined as a climate
response function of mean annual temperature (°C) and mean
annual precipitation (mm).

In T14, assessments were made with regard to climate projec-
tions by CMIP3 models. Here we use the climate response function
of T14 to relate annual yield (GL/yr) to climatic change as simu-
lated by CMIP5 GCMs and regionally downscaled datasets available
via the national projections (CSIRO, 2015) (Table 2). The change
factors for CMIP5 models, CCAM and SDM are based on model out-
put within the rectangular grid box outlined in Fig. 4 for the time
periods 2020-2039 and 2080-2099 relative to the baseline period
1986-2005. This box includes the four catchments that provide the
largest contribution to the yield in the bulk supply system and
includes more than two thirds of the total system storage capacity.

5. Results

Through the use of different datasets in the four examples intro-
duced above we can illustrate the influence on the change signal
due to sub-setting GCM ensembles and use of downscaling (simple
and more complex methods). An outline of comparisons are given
in Table 1, and findings from each example are summarised as
follows:

5.1. Heat stress

Our first measure of heat stress is incidence of days over 42 °C
in mid-latitude and coastal Melbourne, a threshold that severely
affects the physiology of birds and bats. To make an assessment
on changed risk to this measure in future climate, we look at the
change signal derived from different sources and make a number
of comparisons (Table 2). Currently the frequency of days over
42 °C is 0.5 days per year, or around one day every second year
on average. Using mean scaling, this is projected to increase differ-
ently under each RCP, with a median of 1.5 days per year for
RCP4.5 and to 3.9 for RCP8.5 by 2090 (Fig. 2a). This difference is
larger than for all other choices, demonstrating that choice of
RCP is the most notable decision for temperature impacts by
2090. For a nearer future, the RCP is likely to be of less importance
as for temperature the climate change signal is increasing in
strength with time reflecting the increase in atmospheric green-
house gas concentrations. The next most important choice is model
selection (Fig. 2¢), where the eight models selected to be represen-
tative show a similar projection (median 3.2 days) to the whole
ensemble (median 3.1 days), but the lowest and highest 8 changes
show very different results (medians 2.1 and 4.6 days). There is rel-
atively smaller differences given by the choice to use the super-
cluster or sub-cluster results (Fig. 2b: medians 3.9 and 3.1 days),
or to use the downscaling (Fig. 2d: median 3.1 compared to 3.9
and 4.1days), or to use quantile scaling over mean scaling
(Fig. 2e: median 4.3 vs. 3.75 days).

It is possible that alternative methods of producing the dataset
(e.g. bias correction of downscaled outputs) would give a greater
difference than the choices explored here. However, for tempera-
ture we don’t expect the climate change signal in bias corrected

downscaling to be as different from scaled data as it could be for
variables such as rainfall.

Our second heat stress index is incidence of days over 39.2 °C in
tropical and coastal city of Darwin, which corresponds (under
given assumptions) to 35 °C wet bulb temperature (thus also con-
sidering the air humidity). The type of comparisons for Darwin are
the same as for Melbourne (Table 2).

Its proximity to the equator and coastal location gives a stable
temperature regime. Thus, changes to the days over a threshold
is very sensitive to the precise temperature projection. This is
reflected in large differences between different model inputs
(Fig. 3) and some very large outliers. The baseline is zero days,
the GCM ensemble median for RCP4.5 is 0.2 days and for the higher
emission scenario RCP8.5 it is 3.8 days but with a maximum of
76.5 days (Fig. 3a). Differences between CMIP5 model subsets are
also large, from a median of 0.8 days for the low subset to 42 for
the high subset (Fig. 3c). In contrast to the Melbourne case, the
choice to use downscaling or quantile scaling also makes a large
difference to the results, with medians of 3.9 and 18.8 days per
year (Fig. 3d, 3e). Indeed, the inter-quartile range of mean and
quantile scaling have a minimal overlap, showing that 50% of the
decile scaled outputs are larger than the mean scaled outputs.

This highlights the large effect of simple decisions in preparing
datasets for applications involving absolute thresholds in the
tropics. Care must be taken that the change factors used are repre-
sentative for the temporal and spatial scale of the application. A
much more careful examination of the methods and assumptions
than undertaken here is also warranted, e.g. for the consideration
of change signal in variables other than temperature and the
appropriateness of the chosen station time series used here. It also
suggests the research question must be carefully framed, consider-
ing how meaningful a precise threshold actually is. Heat stress is a
continuous variable, so it is possible to over-interpret the meaning
of results either side of a precise threshold for ‘extreme’ heat stress.
A measure of heat stress that doesn’t rely on categories with pre-
cise absolute thresholds would be more appropriate in this case,
e.g. using exceedances over sensibly chosen percentile thresholds.

5.2. Water resources

This study focuses on rainfall and runoff in three catchments in
southeast Australia (as outlined in Fig. 4). Because of the input
needs for rainfall-runoff modelling, actual runoff simulations are
only conducted with the application-ready datasets produced by
mean and quantile scaling of AWAP and APET data. This compar-
ison draws on the rainfall elasticity of streamflow relationship,
where 1% change in rainfall equate to about 2-3.5% change in run-
off (Chiew, 2006).

The model mean projected change in mean annual rainfall var-
ies considerably between the GCM and downscaled model ensem-
bles (Fig. 4). The mean from all CMIP5 models shows a projected
decrease of 0-20% in all catchments (Fig. 4a). In sub-selecting
GCMs, the regional signal remains similar, but with somewhat dif-
ferent spatial pattern, which results in a different mean change for
two of the three catchments, Avoca and Murray (Fig. 4b).

All three downscaled datasets (CCAM, SDM and NARCIiM) have
different spatial characteristics. Whilst all agree on projected
decreases in rainfall in the west, the three datasets have a different
signal over the Alps and east coast regions (Fig. 4c-e). NARCIiM and
to a limited extent CCAM, project an enhanced decrease in the high
elevation areas over the Great Dividing Range (not seen in the
SDM). Across eastern parts of the state of Victoria, CCAM suggest
increases on the eastern slopes of the Great Dividing Range, a pat-
tern somewhat supported by the NARCIiM data in the southern
parts of NSW. The pattern that deviates strongest from the GCM
is that of SDM with large decreases, up to over 30% (implying a
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runoff reduction of 60 up to 100%, if implementing the elasticity Marked differences between these model ensembles are also
relationship). However, a very linear demarcation in the SDM found in the ranges of projected seasonal rainfall change for the
mapped dataset suggests existence of method dependent patterns three catchments (Fig. 5). On occasion, differences in projected
that may require bias correction or smoothing prior to use in runoff ranges are such that they offer different guidance on direction of
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Fig. 5. For catchments Murray (top panel), Genoa (middle panel) and Avoca (bottom panel): annual and seasonal rainfall change (%) for 2080-2090 relative to baseline 1986-
2005 following emission scenario RCP8.5. Datasets considered are listed in plot 5e.
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Fig. 7. For urban bulk supply system example (rectangular domain in Fig. 2): annual and seasonal rainfall change (%) for 2080-2090 relative to baseline 1986-2005 following

emission scenario RCP8.5. Datasets considered are listed in plot 7e.

Avoca, as well as autumn in Genoa. In other seasons, particularly in
winter for Genoa and Avoca, the different datasets lead to mark-
edly different advice on the magnitude of projected change. These
variations in projected change highlight the need for caution when
relying on a particular downscaled dataset; noting that differences
in projected runoff would be even larger than projected rainfall
change given the regional rainfall elasticity of streamflow.

The use of mean or quantile scaling of rainfall for input in a
hydrological model has a small effect on runoff seasonal averages
(Fig. 6). Note that mean scaling of APET was used in both modelling
experiments. Using the eight selected GCMs, the projected range of
change is similar for each catchment in each season. Perhaps the
only noteworthy differences is the slightly stronger decrease
shown by the mean scaled rainfall relative to using quantile scaled
rainfall; noting also that in autumn (MAM) the median of the mean
scaled rainfall indicate decrease in runoff in Avoca, whilst the med-
ian of the quantile scaled rainfall indicates increase in runoff. The
results illustrate the elasticity relationship, where changes are
greater than those for rainfall in Fig. 5 (note different scales), and
they also show a clear effect of increasing evapotranspiration
where some increases in rainfall do not result in increases in runoff
(e.g. evaporation losses offset increases in rainfall in Murray and
Avoca in DJF). Assuming the validity of the elasticity relationship,
we would expect a much larger range of results in runoff if we

were also to consider change information by the downscaling
methods SDM, CCAM and NARCIiM.

Our last example demonstrate a bottom-up example whereby
the change signal of different datasets are assessed against annual
system yield First we examine projected rainfall change for con-
text. Fig. 8 show the change in projected rainfall for the catchment
region feeding our urban bulk water supply system example. The
region is larger in size than the catchments considered for the run-
off example (Fig. 4a), but still small relative to the typical scale of
GCM output (~200 km). As was the case for the catchments above,
there are marked differences in projected change in seasonal mean
rainfall in the GCMs and the various downscaling sets. In particu-
lar, the sign of change is different in CCAM compared to BOM-
SDM in summer and autumn.

Results from the bottom-up analysis of yield reflect the large
differences in the input datasets (Fig. 8). The position of points rel-
ative to the grey lines indicate the system yield associated with a
particular change in temperature and rainfall within the catchment
area in Fig. 4. We note that yield lines have positive slope, so an
increase in temperature (y-direction) gives a future with decreas-
ing yield, and obviously more so with rainfall reductions Fig. 7
illustrates how the use of different datasets could lead to different
conclusions about future impacts in the near (2020-2039) and far
future (2080-2099) following RCP8.5. The change signal in the
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Fig. 8. For the catchment area (Fig. 4a): mean surface temperature (MAP, °C), mean annual precipitation (MAP,%) for 2080-2099 (circles) and 2020-2039 (triangles) relative
to 1986-2005 for CMIP5 GCMs, 8 selected GCMs, SDM (21 models) and CCAM (6 models). Corresponding system yield (GL/yr) is indicated by grey lines.

GCMs indicate that the near future is likely to be drier (on an
annual basis), with some models suggesting wetter, with a spread
around the 400GL/yr line. The model range is larger in the later
period, with some models giving larger decrease and a smaller
number showing a greater increase. A similar model range (for
both time horizons) is provided by the 8 models, indicating that
the 8 models are broadly representative of the range provided by
the full range of GCMs. This range highlights the enormous levels
of climate uncertainty faced by planners. The two downscaled
datasets give significantly different projections of the change signal
in rainfall (less so in temperature) and consequential responses in
yield. Both indicate an increase in temperature and a reduction in
rainfall; in both cases the signal is stronger in the SDM data
compared to CCAM, particularly so for the rainfall reduction.
Thus if guided by SDM the projected range in yield change by
2090 is about 0 to less than 200GL/yr, whilst that of CCAM is about
100-400 GL/yr. Both ranges fit within that of the GCM (about
0-500 GL/yr), but results indicate a more constrained range of pro-
jected change compared to the wider GCM ensemble. This gives a
more emphatic result for water managers, and could either lead to
more targeted adaptation response if the constrained range is
demonstrated to be suitable, or the possibility of mal-adaptation
if the restricted range is not shown to be adequate. We note that
in circumstances when different datasets provide very different
guidance on ‘change’ and there is no obvious reason for why one

dataset would be more credible than others, significant uncertainty
exist around the regional signal and drawing conclusions from a
particular result would not be recommended.

6. Discussion

Different IAV applications have different climate change infor-
mation requirements, so different methods of producing regional
projection dataset are more appropriate depending on the applica-
tion needs. These needs may include requirements of spatial reso-
lution, interest in capturing changes to the tails of a distribution
rather than mean change, changes to seasonal timing and more.
Such criteria may rule out some datasets purely because they are
unlikely to contain the change information of interest. Certainly
different downscaling techniques have different capabilities in
adding regional detail to the climate change signal as simulated
by the GCM. However, studies drawing on information from more
complex techniques generally use only a limited number of emis-
sions scenarios and GCMs, which raises the issue of representative-
ness and completeness of the datasets used. As shown here, using
an unrepresentative set of projections raises the possibility of
skewed analysis of climate change and the possibility of mal-
adaptation to climate change. If a reliable constraint is found on
the CMIP5 range of climate changes, or if a particular sub-set of
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GCM outputs or downscaling ensemble is demonstrated to have a
more plausible depiction of the climate change signal there is a
case for using this in preference. There may be theoretical reasons
to imply downscaling produces a more plausible change signal,
such as through improved representation of topography and coast-
lines (Rummukainen, 2016), but it must also be demonstrated that
there are no aspects of climate change specific to the downscaling
method itself. However, if this has not been demonstrated then
relying on theoretical and undemonstrated advantages for down-
scaling, such as greater resolution, is not justified.

Thus, users need to make choices around methods that have
capability to capture the full plausible range of change of interest
as well as making sure that key uncertainties are considered in a
final assessment that could be used to guide policy development.
For example, the user may want to consider appropriateness of
the dataset relative to simulating change for the far or near future,
is there marked topography in the region or otherwise high con-
trast in the land-surface environment, is temporal sequencing or
extremes important to the application, is daily spatially coherent
information needed, how well is multiple emission scenarios and
GCMs sampled (Ekstrom et al., 2015).

This paper demonstrates some impacts of choosing different
sources of climate change information in IAV work and the conse-
quences it may have on subsequent policy guidance. To this pur-
pose we use real world applications in combination with existing
regional datasets. We propose a pathway for production of
application-ready data sets and outline critical stages that may
influence the final change signal, such as sub-selecting GCMs,
choice of downscaling/scaling and requirement of bias correction.
Through our examples we can demonstrate when some of these
choices have fundamental impact on the change signal by compar-
ing the use of different inputs, as outlined in Table 2.

The first stage of developing projections, or risk assessment, is
to consider the ability of GCMs to represent the process that is of
interest. Our case studies draw primarily on projections of temper-
ature and rainfall. The two heat indices are primarily dependent on
temperature whilst the water resource examples are strongly
influenced by rainfall projections. This is a relevant distinction as
GCMs agree more on temperature change compared to rainfall
change, simply because the latter depend not only on changes
due to a warmer atmosphere but also on the model representation
on weather generating systems. Thus, temperature projections are
typically given higher confidence than rainfall projections. How-
ever, the magnitude of temperature change is still quite uncertain,
due in large part to our poorly constrained estimate of climate sen-
sitivity of the earth system (IPCC, 2013). Projections of rainfall in
particular must be broadly representative of plausible circulation
change, and there may be great impact from model bias with con-
sequential influences on final results. In our heat stress case stud-
ies, the direction of change is clear in all datasets, however the
different choices influence the magnitude of projected change.
The choice of emissions scenario is a matter for the risk manage-
ment approach of the application, e.g. what future is most relevant
from a risk assessment perspective.

The second stage involves the potential need of sub-setting
GCMs. This requirement may arise due to a need to achieve regio-
nal resolution through scaling or downscaling, because a user is
interested in a particular direction of change or because some
GCMs may not have the variable of interest (or have it at the tem-
poral resolution of interest). Our heat stress case studies illustrate
the effect of sub-setting through the use of the 8 representative
GCMs, and the eight models with the highest and lowest change
signal for the heat stress examples. The examples show that choos-
ing different models within the ensemble can have a strong influ-
ence on results (Chiew et al., 2009a), but if specially chosen to be
representative of the larger ensemble range, a sub-sample can

work well to demonstrate the range of plausible futures as simu-
lated by the GCMs. Until there is a reliable constraint on the tem-
perature projections, the output of the range of CMIP5 can be taken
as a minimum range of possible change, so should be considered.
Given a high emission scenario, the choice of the coolest models
suggest around a more modest increase of 2 days per year, whereas
the hottest suggest a greater increase to over 4 days per year. This
difference of a factor of two in the result could potentially make a
difference to the management actions taken to ameliorate the
impact of this heat stress. The choice to use a representative CMIP5
subset compared to the whole ensemble, to mean scale downscal-
ing, to use of a wider or narrower averaging region (super cluster
versus sub-cluster) or to use decile scaling are much less likely to
affect the adaptation decision.

Downscaling is intended to add value relative to projections by
GCMs through finer resolved modelling or drawing on relationships
between large and local scale variables (particularly around envi-
ronmental boundaries such as coasts and complex topography).
However, if using downscaled output also implies sub-setting
GCMs, users need to consider the benefits of more complex down-
scaling relative to the need to sample a wider GCM range. Amongst
our examples, the influence on the change signal from scaled and
downscaled datasets was strongest when we were interested in
change around a threshold for a distribution with otherwise little
temporal variability (our Darwin heat stress example) and for both
water resource examples due to the focus on relatively small geo-
graphical regions using projections associated with large uncer-
tainty in projected magnitudes and change patterns. Thus, as
demonstrated by our examples, downscaling may provide potential
regional insights, but can also add a layer of uncertainty when dif-
ferent methods indicate opposing direction of change. With a small
sample of methods it is difficult to attribute skill to a particular
dataset without additional analysis of the physical plausibility of
the regional projection. Overall, we would recommend caution
when using downscaled projections that have not been demon-
strated to add value relative to the regional GCM change signal.
We note that demonstrating such added value is typically beyond
what is expected by users of application ready datasets, rather such
demonstration of added value is perhaps best made by the produc-
ers of the data sets who are familiar with the production method
and its qualities. If using datasets that haven’t been demonstrated
to add value, users could aim to show results based on downscaling
along with those based on GCM output to illustrate the full range of
the physical plausibility of simulated climate change.

The application requiring the most detailed information about
change is the runoff example, where all moments of the temporal
distribution along with timing and periodicity of daily rainfall are
key concerns as runoff has non-linear relationships to rainfall
amount due to dependencies on soil wetness and connection to
groundwater storage. However, we find that the choice of GCM
inputs, and the associated mean rainfall projection, is in fact a far
bigger source of uncertainty than the more complex downscaling
sources of rainfall change. This is consistent with previous findings
of Chen et al. (2011) and Frost et al. (2011). In our runoff projec-
tions, only the mean and quantile scaled application-ready data
sets were used. We note that whilst these datasets are bias free
(in the sense that there is no ‘current climate bias’, observed data
is simply scaled to reflect a future change as simulated by models),
they wouldn’t inform a user about change in duration of runoff
events as the change factor is applied to observed time series on
a monthly resolution (hence change is implemented on a monthly
time step). For this reason, the output from more complex down-
scaling is attractive as they may inform on more complex changes
to the hydrological regime such as changes to drought or rain-day
duration. However, as noted above, more complex downscaling
typically require bias correction as hydrological models can be
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highly tuned to a particular observed dataset and may give a sys-
tematic bias if used in combination with a dataset different to that
used for its calibration (Ekstrom and Jones, 2009). This can present
a challenge to bias correction, where the correction is likely to be
much greater than observed uncertainty and projected changes.
Given the sensitivity to temporal sequencing, it is not surprising
that methods that express a change in variability can show differ-
ent results to those from simple mean scaling, as demonstrated for
Tasmania for dynamically downscaled outputs Ling et al. (2014)
and for the United States for statistical downscaling by Hay et al.
(2000).

Finally we note that users also need to consider the validity of
the IAV model under change environmental conditions. We can
refer to the on-going discussions on robustness of hydrological
models under a non-stationary climate (Milly et al., 2008, 2015).
For example, Vaze et al. (2010b) showed that models calibrated
over a wet period showed less predictive skill when applied to a
dry period compared to those calibrating over a dry period and
predicting in a wet period. These are implications to consider when
applying operational models in a climate change context. This
uncertainty can make fundamental IAV outcomes unclear, for
example the choice of climate variables to use in species distribu-
tion models can make the difference between projected extinction
or survival, an influence greater than the choice of GCM input
(Harris et al., 2013).

Our second water resource study demonstrates an alternative
to implementing projection data in IAV models by linking proba-
bilistic risk assessment to identified system vulnerabilities (or
thresholds). Different variations of this (bottom-up) approach have
been demonstrated for a range of water sector applications, e.g.
scenario-neutral approach to assess flood risk in UK catchments
(Prudhomme et al., 2010), the decision scaling approach by
(Brown et al., 2012). Others have pointed importance of consider-
ing socio-economical dimensions to managing water resource sys-
tems (considering decisions in relation to ‘supply’ as well as
‘demand’). Indeed Korteling et al. (2013) demonstrated that taking
such an approach could reveal attractive options where manage-
ment decisions on the demand side could under certain circum-
stances (i.e. policy uptake by public) match adaptation options
focusing on management of the supply side. For example Paton
et al. (2013) demonstrated that demand was always the largest
source of uncertainty relative to other sources (e.g. GCMs and
emission scenarios used) when considering uncertainties for a
southern Australian water resource system over the 2010-2050
planning horizon.

7. Conclusions

Central to IAV application is the representation of key uncer-
tainties in climate projections, i.e. those relating to emission
futures, models ability to simulate the climate response to chang-
ing greenhouse gas concentrations and natural climate variability.
The first is perhaps simply an issue of choice as we can choose to
study a low, medium or high emission future. Our ability to simu-
late the climate change and natural variability is however, only
quantifiable through consideration of the outputs from multiple
realisations of the climate systems, i.e. multiple GCMs. Thus the
consideration of the spread of GCMs is fundamental to all climate
change research. The complexity of many techniques to analyse
climate change impacts often means a limited set of emission sce-
narios, GCMs or downscaling techniques are considered and this
leads to a restricted and unrepresentative depiction of the climate
change signal currently thought of as plausible. This increases the
possibility of biased climate change projection advice and subse-
quent mal-adaptation to possible change. For this reason we sug-

gest that downscaled information is used in context with the
range of the GCM change signal unless assessment shows that
the downscaled signal is different to that of the GCM change signal
and the mechanism for that difference can be understood and
deemed credible.

Through simple demonstration studies using projections of
temperature and precipitation associated with the 2015 Australian
national projections and the regional NARCLIM projections, the
influence of different decisions when producing an application-
ready data set is illustrated. From the heat stress examples we note
that the strongest influence by far concerns the choice of emission
scenario, directly influencing the heat retained in the atmosphere
by greenhouse gases. A poor selection of GCMs could also distort
the change signal as GCMs have different sensitivity to increasing
greenhouse forcing. We also note that studies in environments
with small range of variability are particularly sensitive to model
biases or sub-setting GCM inputs, as demonstrated by our Darwin
heat stress case study.

Our water resource case studies show the large differences that
different climate change information can make for conclusions on
future water supply. Our test regions are within and adjacent to
the Australian Alps and as such, downscaling is expected to add
value to the GCM projections. However, for this region (and com-
mon for many other parts of the world) very few downscaled data-
sets are available. As the work is conducted on relatively small
spatial regions, differences between the datasets (both pattern
and magnitude wise) lead to markedly different projections; even
sometimes indicating a difference in projected direction of change.
It may therefore be wise to first assess the regional change signal to
assess if any fine scale patterns in the change signal exist and, as
noted above, can be understood and deemed credible. If not, it
may be more robust to consider change of a greater spatial region.

Rarely do IAV-applications have application-ready data sets
produced specifically for their purpose. Rather, data sets are pro-
vided by collaborative networks or downloaded from national/-
global websites. However, when research feeds into policy
development, considering the relevance of the change signal to
the application as well as representation of key uncertainties are
central to the credibility of the projection. Failing to do so may to
lead to a skewed or biased projection unfit for policy development
purposes.
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