Journal of Algebra 341 (2011) 306-312

On mep-relations in the wreath product of groups

Zbigniew Szaszkowski, Witold Tomaszewski*

Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

ARTICLE INFO

Article history: Received 17 March 2011 Available online 14 July 2011 Communicated by Derek Holt

MSC: primary 20F05, 20E22, 20F12, 20F45, 20B40 secondary 20B35

Keywords: Group theory Permutation groups Wreath products Generators and relations

ABSTRACT

Let *a*, *b* be two long cycles in an alternating group A_n , satisfying relations $a = [a_{,k}b]$ and $b = [b_{,k}a]$. We show that every pair of elements of the form x = (X, a), y = (Y, b), where the sum of coefficients of *X* and *Y* is equal zero, satisfies relations $x = [x_{,l}y]$, $y = [y_{,l}x]$ in the wreath product $(S_n \ge Z_m)'$ for *m* coprime with *n* and for an *l* divisible by *k*. We show also that for n = 5, 7, 13 and for *m* coprime with *n*, $(S_n \ge Z_m)'$ is generated by such pairs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We use traditional notations and terminology (see for example [3]). If g, h are two elements of a group, then the commutator of g and h is an element $[g, h] = [g, _1h] = g^{-1}h^{-1}gh$ and for an integer k > 1 $[g,_k h] = [[g,_{k-1}h], h]$ and $[g,_0 h] = g$. By G' = [G, G] we denote the commutator subgroup of G (that is $G' = \langle [g, h]: g, h \in G \rangle$). If m is a positive integer, then Z_m is the ring of integers modulo m. As usual, S_n and A_n denote respectively the symmetric and the alternating group acting on $\{1, \ldots, n\}$. If P is a matrix then P^T is transpose of P. We call $\sigma \in S_n$ a long cycle if it is a cycle of length n.

In Kourovka Notebook [5], Brandl posed the following question (Problem 11.18): Is it true that if *G* is generated by elements *a*, *b* satisfying relations $a = [a, _kb]$ and $b = [b, _la]$ for some positive integers *k*, *l*, then *G* is finite? He stated also that if every minimal simple group has generators satisfying above relations, then there exists a series of two-variable words which characterize soluble groups (see [1]). In [2] Heineken calls such pairs of elements mep-pairs (a mutually Engel periodic pair).

0021-8693/\$ – see front matter $\,$ © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2011.06.025

^{*} Corresponding author. *E-mail addresses:* Zbigniew.Szaszkowski@polsl.pl (Z. Szaszkowski), Witold.Tomaszewski@polsl.pl (W. Tomaszewski).

Definition 1. We say that a pair of elements a, b is a mep-pair if there exist positive integers k, l, such that a = [a, kb] and b = [b, la]. If k and l are minimal, then we say that (k, l) is the mep-period of the mep-pair (a, b). We say that a group G is a mep-group if it is generated by a mep-pair.

An example of a mep-group is A_5 , which is generated by a mep-pair a = (1, 2, 3, 4, 5), b = (1, 3, 5, 4, 2) satisfying relations a = [a, 5b], b = [b, 5a]. Other examples of mep-pairs can be found in Section 3.

Heineken [2] showed that if a group *G* is generated by a mep-pair *a*, *b*, then *G* is perfect (that is G = G') and elements *a*, b^{-1} , ab^{-1} are conjugate in *G* (see also Proposition 1 below). He studied mep-pairs in $Sl_2(p)$ and he proved that for all primes *p* of the form 5 + 8t and some of the form 1 + 8t, there exist mep-pairs generating $Sl_2(p)$. He also showed that mep-pairs exist in $Sl_2(q)$ where *q* is a prime such that $q^3 - q$ is divisible by 7 and he found mep-pairs for $q = p^3$, for the remaining primes *p*.

It can be deduced from [6] that for $n \ge 5$, every group $G = (S_n \wr Z_m)'$ is a perfect group and is two-generated. So, searching mep-groups among such groups is natural. At first, we used computer calculations for searching mep-pairs in groups $G = (S_5 \wr Z_m)'$ and we discovered that pairs of the form x = ((0, 0, 0, 0, 0); (1, 2, 3, 4, 5)), y = ((0, 0, 0, 1, -1); (1, 3, 2, 5, 4)) are mep-pairs in $G = (S_5 \wr Z_m)'$ for *m* not divisible by 5. At the end of the paper we present tables, which show these results. After analyzing the mep-pairs that we had obtained, we discovered that if *x*, *y* is a mep-pair of period (k, k) in $(S_5 \wr Z_{pl})'$, then it is a mep-pair of period (pk, pk) in $(S_5 \wr Z_{pl+1})'$, where p^l is a power of prime number *p*. This discovery and further analysis finally led us to Theorem 1, which says that every pair of the form (X, a), (Y, b), where $a, b \in A_n$ is a mep-pair of long cycles and *X*, *Y* are vectors with zero sum of coefficients modulo *m*. More information about mep-groups and groups with similar properties can be found in [7].

2. Mep-pairs in $(S_n \wr Z_m)'$

Remark. If *k* is the least integer, such that for elements *a*, *b* of a group we have a = [a, kb], then for every positive integer *n* we have [a, nb] = [a, rb] where $n \equiv r \mod k$.

Proposition 1. Let G be a mep-group generated by a mep-pair a, b. Then

- (a) *G* is a perfect group, that is G = G',
- (b) elements a, b^{-1} and ab^{-1} are pairwise conjugate in *G*.

Proof. Point (a) is clear, since a, b generate G and $a, b \in G'$. Since $a = [a, {}_{k}b] = [a, {}_{k-1}b]^{-1}b^{-1}[a, {}_{k-1}b]b$, we have $ab^{-1} = [a, {}_{k-1}b]^{-1}b^{-1}[a, {}_{k-1}b]$, so ab^{-1} and b^{-1} are conjugate. Similarly ba^{-1} and a^{-1} are conjugate and so ab^{-1} and a are conjugate. Hence by transitivity of conjugation, a and b^{-1} are also conjugate. \Box

The definition of a wreath product of groups can be found for example in [4]. We use the following natural representation of $S_n \wr Z_m$. Every element of $S_n \wr Z_m$ can be interpreted as a pair (X, σ) , where $\sigma \in S_n$ and X is an $n \times 1$ matrix over Z_m (i.e. X is a column vector). The multiplication and inversion can be defined as follows:

$$(X,\sigma) \cdot (Y,\delta) = (X + A_{\sigma}Y, \sigma\delta), \qquad (X,\sigma)^{-1} = \left(-A_{\sigma}^{-1}X, \sigma^{-1}\right)$$

where $A_{\sigma} \in Gl_n(Z_m)$ is a regular matrix representation of σ over Z_m . The neutral element of $S_n \wr Z_m$ is $(\overline{0}, id)$, where *id* is the neutral element of S_n , and $\overline{0}$ is a zero-vector.

If $x = (X, \sigma)$ and $y = (Y, \delta)$ then $[x, y] = (X, \sigma)^{-1}(Y, \delta)^{-1}(X, \sigma)(Y, \delta)$ and after calculations we get

$$[x, y] = \left(A_{\sigma}^{-1} \left(A_{\delta}^{-1} - I\right) X + A_{\sigma}^{-1} A_{\delta}^{-1} (A_{\sigma} - I) Y, [\sigma, \delta]\right).$$
(1)

Let *a*, *b* be long cycles in A_n , satisfying relations [a, kb] = a and [b, ka] = b. Let *A* be the matrix representation of *a* and *B* be the matrix representation of *b*. If x = (X, a), y = (Y, b) then using formula (1) we have $[x, y] = (A^{-1}(B^{-1} - I)X + A^{-1}B^{-1}(A - I)Y, [a, b])$. We shall calculate iterated commutators [x, iy]. Let $[x, iy] = (V_iX + W_iY, [a, ib])$. Then $[x, i+1y] = (\overline{X}, [a, i+1b])$, where

$$\overline{X} = [A, {}_{i}B]^{-1} (B^{-1} - I) (V_{i}X + W_{i}Y) + [A, {}_{i}B]^{-1}B^{-1} ([A, {}_{i}B] - I)Y$$

= $[A, {}_{i}B]^{-1} (B^{-1} - I) V_{i}X + [A, {}_{i}B]^{-1} ((B^{-1} - I) W_{i} + B^{-1} ([A, {}_{i}B] - I))Y.$

So matrices V_i and W_i are defined recursively as follows:

$$V_1 = A^{-1} (B^{-1} - I), \qquad W_1 = A^{-1} B^{-1} (A - I),$$

$$V_{i+1} = [A, iB]^{-1} (B^{-1} - I) V_i,$$

$$W_{i+1} = [A, iB]^{-1} ((B^{-1} - I) W_i + B^{-1} ([A, iB] - I)) \quad \text{for } i > 0.$$

By symmetry if $[y, ix] = (L_i X + T_i Y, [b, ia])$ then

$$T_{1} = B^{-1} (A^{-1} - I), \qquad L_{1} = B^{-1} A^{-1} (B - I),$$

$$T_{i+1} = [B, iA]^{-1} (A^{-1} - I) T_{i},$$

$$L_{i+1} = [B, iA]^{-1} ((A^{-1} - I) W_{i} + A^{-1} ([B, iA] - I)) \quad \text{for } i > 0$$

If *C* is a permutation matrix, then (1, ..., 1)C = (1, ..., 1), so if $P \in \{V_i, W_i, T_i, L_i\}$, then (1, ..., 1)P = 0, and hence the sum of coefficients in every column of a matrix *P* is equal zero. Since [a, kb] = a, [b, ka] = b then we have [A, kB] = A and [B, kA] = B.

Proposition 2. Let k be a least integer such that [a, kb] = a and [b, ka] = b. If x = (X, a), $y = (Y, b) \in S_n \wr Z_m$ is a mep-pair satisfying relations [x, y] = x and [y, x] = y then k|l.

Proof. If $x = [x, _ly]$ and $y = [y, _lx]$ then since x = (X, a), y = (Y, b) we have $a = [a, _lb]$ and $b = [b, _la]$. Using the above Remark we get k|l. \Box

Remark. If x, y is a mep-pair satisfying relations [x, ly] = x and [y, lx] = y then l = kt for an integer t and

$$V_{kt}X + W_{kt}Y = X, \qquad L_{kt}X + T_{kt}Y = Y.$$
 (2)

Let $V = V_k$, $T = T_k$, $W = W_k$, $L = L_k$. We know from our above calculations that

$$V = [A, {}_{k-1}B]^{-1} (B^{-1} - I) \dots [A, B]^{-1} (B^{-1} - I) A^{-1} (B^{-1} - I).$$
(3)

Lemma 1. For every positive integer t,

(i) $V_{kt} = V^t$, $T_{kt} = T^t$, (ii) $W_{kt} = (V^{t-1} + V^{t-2} + \dots + V + I)W$, $L_{kt} = (T^{t-1} + T^{t-2} + \dots + T + I)L$.

Proof. We will only show that $V_{kt} = V^t$ and $W_{kt} = (V^{t-1} + \dots + V + I)W$, because proofs of two other equations are similar. We know that $[x, _ky] = (V_kX + W_kY, [a, _kb]) = (V_kX + W_kY, a)$. Let us denote $X_1 = V_kX + W_kY = VX + WY$. The *kt* commutator is equal to $[x, _{kt}y] = (V_{kt}X + W_{kt}Y, [a, _{kt}b])$,

but on the other hand the commutator $[x, _{kt}y]$ is the k(t-1) commutator of elements (X_1, a) and (Y, b) and since V_i and W_i does not depend on X, Y but only on a, b we get $[x, _{kt}y] = (V_{k(t-1)}X_1 + W_{k(t-1)}Y, [a, _{k(t-1)}b])$, and using the formula for $X_1, [x, _{kt}y] = (V_{k(t-1)}(VX + WY) + W_{k(t-1)}Y, a)$. Hence $V_{kt} = V_{k(t-1)}V$ and $W_{kt} = V_{k(t-1)}W + W_{k(t-1)}$. So using the induction on t we get $V_{kt} = V_{k(t-1)}V = V^{t-1}V = V^t$ and $W_{kt} = V_{k(t-1)}W + W_{k(t-1)} = V^{t-1}W + W_{k(t-1)} = (V^{t-1} + V^{t-2} + \dots + V + I)W$. \Box

Theorem 1. Let a, b be long cycles that form a mep-pair in A_n and let m be an integer coprime with n. If X, Y are $n \times 1$ matrices over Z_m with coefficients summing to 0, then x = (X, a), y = (Y, b) is a mep-pair in the group $(S_n \wr Z_m)'$.

Proof. We have to show that there exists t, such that X, Y satisfy Eqs. (2). We show that there exists t satisfying the first equation, because the appropriate t for the second equation can be found similarly. In a view of Lemma 1 the first equation has the form

$$V^{t}X + (V^{t-1} + \dots + I)WY = X.$$

Let $R \subseteq Z_m^n$ consist of all vectors, whose sums of coefficients are equal to zero. Then R^T is the set of all column vectors X, such that $X^T \in R$. The numbers m and n are coprime, so e = (1, ..., 1) does not belong to R and we get a direct sum:

$$Z_m^n = \mathbb{Z}e \oplus R$$

Both summands are invariant under the action of A and B, so by (3) they are also invariant under the action of V.

If *b* is a long cycle, then b^{-1} is a long cycle and we shall deduce that the restriction $\overline{B^{-1} - I}$ of $B^{-1} - I$ on *R* is a bijection. Since *R* is finite, we only need to show that it is injective. If for $r = (r_1, \ldots, r_n) \in R$ we have $(B^{-1} - I)r^T = 0$, then $B^{-1}r^T = r^T$ and as b^{-1} is a long cycle, this can happen only if $r_1 = r_2 = \cdots = r_n = u$. As $r \in R$, this implies that nu = 0 and as *n* and *m* are coprime we get u = 0.

Hence, \overline{V} the restriction of V on R also is a bijection (by (3) it is a product of bijective maps on R). It acts on a finite set, so has a finite order, s say. Hence, $\overline{V}^s = I$ and we get:

$$\overline{V}^{ms-1} + \dots + \overline{V} + I = (\overline{V}^{s(m-1)} + \dots + \overline{V}^s + I)(\overline{V}^{s-1} + \dots + \overline{V} + I)$$
$$= m(\overline{V}^{s-1} + \dots + \overline{V} + I) = 0.$$

So for t = ms and every $U \in R^T$ we have $(V^{t-1} + \dots + V + I)U = 0$. Hence, for $X \in R^T$ we have $(V^t - I)X = (V - I)(V^{t-1} + \dots + I)X = 0$, so $V^tX = X$. A sum of every column of a matrix W is equal to 0, so $(V^{t-1} + \dots + I)W = 0$. Finally, for $X, Y \in R^T$ the required equation $V^tX + (V^{t-1} + \dots + I)WY = X$ holds. \Box

3. Mep-pairs generating $(S_n \wr Z_m)'$

Let R_m be the set of all $n \times 1$ matrices over Z_m with zero sum of coefficients, that is:

$$R_m = \left\{ [x_1, \dots, x_n]^T \colon x_i \in Z_m, \ \sum_{i=1}^n x_i = 0 \right\} = \{ X \colon [1, \dots, 1] X = 0 \}.$$

For example $Z = A_{\sigma}^{-1}(A_{\delta}^{-1} - I)X + A_{\sigma}^{-1}A_{\delta}^{-1}(A_{\sigma} - I)Y$ is an element of R_m , because [1, ..., 1]Z = 0.

We will identify the subgroup $\{(\overline{0}, \sigma): \sigma \in A_n\}$ with A_n , and the normal subgroup $\{(Z, id): Z \in R_m\}$ with R_m .

Let for i = 1, 2, ..., n - 1, a_i denote an element (X_i, id) , where X_i has 1 on *i*-th position, -1 on *n*-th position and 0 elsewhere. Elements $a_1, a_2, ..., a_{n-1}$ generate R_m , because for every $s = (S, id) \in R_m$ we have $s = a_{n-1}^{s_1} a_2^{s_2} \cdots a_{n-1}^{s_{n-1}}$, where $s_1, s_2, ..., s_n$ are coefficients of *S*.

Proposition 3. An element (X, α) is in the commutator subgroup of $S_n \wr Z_m$ for $n \ge 2$ if and only if $\alpha \in A_n$ and $X \in R_m$. Moreover, we have $(S_n \wr Z_m)' \cong R_m \rtimes A_n$.

Proof. Let $x = (X, \sigma)$, $y = (Y, \delta) \in S_n \wr Z_m$. Then by (1) and from $Z \in R_m$ we have $[x, y] = (Z, [\sigma, \delta]) = (Z, id) \cdot (\overline{0}, [\sigma, \delta]) \in R_m A_n$.

To establish the converse, it is enough to prove that A_n and R_m are subgroups of $(S_n \wr Z_m)'$. Clearly $A_n < (S_n \wr Z_m)'$. Let g = (X, id) where $X = [0, ..., 0, 1]^T$ and $h_i = (\overline{0}, (i, n))$ for i = 1, ..., n - 1. Then $a_i = [g, h_i] \in (S_n \wr Z_m)'$ and $R_m = \langle a_1, ..., a_{n-1} \rangle < (S_n \wr Z_m)'$. \Box

Proposition 4. Let A be a subset of A_n $(n \ge 4)$ such that $\langle A \rangle = A_n$ and $\overline{A} = \{(X, \sigma) | \sigma \in A\} \subset (S_n \wr Z_m)'$. Then for every $i \in \{1, ..., n-1\}$, we have $\langle \overline{A} \cup \{a_i\} \rangle = (S_n \wr Z_m)'$.

Proof. Let *i*, *j*, *k* are different integers from the set $\{1, \ldots, n-1\}$. Since $\langle A \rangle = A_n$ there exists $u = (U, (i, j, k)) \in \langle \overline{A} \rangle$. Hence $ua_iu^{-1} = a_j$ and $a_1, \ldots, a_{n-1} \in \langle \overline{A} \cup \{a_i\} \rangle$. So $R_m \subseteq \langle \overline{A} \cup \{a_i\} \rangle$. From assumptions we know that for every $\sigma \in A$ there exists $X \in R_m$, such that (X, σ) belongs to \overline{A} . So $(\overline{0}, \sigma) = (X, \sigma) \cdot (X, id)^{-1}$ is in $\langle \overline{A} \cup \{a_i\} \rangle$. It means that A_n is also a subgroup of $\langle \overline{A} \cup \{a_i\} \rangle$. Hence, by Proposition 3, $\langle \overline{A} \cup \{a_i\} \rangle = (S_n \wr Z_m)'$. \Box

Theorem 2. Let *a*, *b* be elements generating A_n , where n > 3 is an odd integer. If there exists positive integer *k* such that $a^k b$ is a cycle of length less than *n* then there exists *X*, such that $x = (\overline{0}, a)$, y = (X, b) generate $(S_n \wr Z_m)'$.

Proof. By Proposition 4, it is enough to prove that there exists i such, that $a_i \in \langle x, y \rangle$. Let $a^k b =$ (i_1, \ldots, i_l) . Since n is odd, we have got $l \leq n-2$. Moreover l is greater then 2, because for $l=1, a^k b$ would be equal *id*, which is impossible, and for l = 2, $a^k b$ would be odd, which also is impossible. We will denote by A (resp. B) a matrix representation of a (resp. b). If $x = (\overline{0}, a)$ and y = (X, b) then $x^k y = (A^k X, a^k b)$. Since A^k is invertible, $A^k X$ can take any value Y in R_m . Since $a^k b$ is a cycle of length l we have $(x^k y)^l = ((I + C + \dots + C^{l-1})Y, id)$, where $C = A^k B$. It is easy to see that if c_{ij} are entries of the matrix $I + C + \cdots + C^{l-1}$ then $c_{ii} = l$ if $i \notin \{i_1, \ldots, i_l\}$ and $c_{ij} = 1$ if $i, j \in \{i_1, \ldots, i_l\}$ and remaining coordinates are zero. So if $Y = [y_1, \ldots, y_n]^T$, $Z^T = (I + C + \cdots + C^{l-1})Y$ and $Z = [z_1, \ldots, z_n]$ then $z_i = ly_i$ for $i \notin \{i_1, \ldots, i_l\}$ and $z_j = y_{i_1} + \cdots + y_{i_l}$ for $j \in \{i_1, \ldots, i_l\}$. If we choose exactly one $i \notin \{i_1, \ldots, i_l\}$ and we put $y_i = -1$ and exactly one $y_j = 1$ for $j \in \{i_1, \ldots, i_l\}$ then Z has exactly one coefficient -l and exactly $l \ge 3$ coefficients 1 and rest (at least one) of coefficients are zero. Hence there exist p, r, s, t such that $z_p = 1$, $z_r = 1$, $z_s = 1$ and $z_t = 0$. Since $\langle a, b \rangle = A_n$, there exists U such that $u = (U, (p, r)(s, t)) \in \langle x, y \rangle$. Hence $u(Z, id)u^{-1} \in \langle x, y \rangle$ and $u(Z, id)u^{-1} = (W, id)$, where $w_p = z_p = 1$, $w_r = z_r = 1$, $w_s = z_t = 0$, $w_t = z_s = 1$ and the rest coefficients of W are the same as coefficients of Z. Then $(Z, id)(W, id)^{-1} = (P, id)$, where P has 1 on s-th position, -1 on t-th position and zero elsewhere. If $t \neq n$, then conjugation by the element of the form (U, (i, j)(t, n)) move -1 to the last position. \Box

Corollary 1. Let a, b be a mep-pair of long cycles, generating A_n , and let m be a positive integer coprime with n. If a and b satisfy the assumption of Theorem 2, then there exists X such that $(\overline{0}, a)$, (X, b) is a mep-pair generating $(S_n \wr Z_m)'$ (that is $(S_n \wr Z_m)'$ is a mep-group).

Proof. It follows immediately from Theorems 1 and 2. □

Examples. Using Theorem 2 and Corollary 1 we give examples that show that $(S_n \wr Z_m)'$ are mepgroups for n = 5, 7, 13 and *m* coprime with *n*. 1. A_5 is a mep-group generated by a mep-pair

$$a = (1, 2, 3, 4, 5), \qquad b = (1, 3, 5, 4, 2),$$

satisfying $a = [a, {}_{5}b]$, $b = [b, {}_{5}a]$. Since ab = (143), $(S_5 \wr Z_m)'$ are mep-groups.

2. A_7 is a mep-group generated by a mep-pair

$$a = (1, 2, 3, 4, 5, 6, 7), \qquad b = (1, 3, 6, 2, 4, 7, 5),$$

satisfying $a = [a, _{49}b]$, $b = [b, _{49}a]$. Since $a^4b = (172)$, $(S_7 \wr Z_m)'$ are mep-groups.

3. A_{13} is a mep-group generated by a mep-pair

$$a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),$$
 $b = (1, 3, 8, 11, 7, 12, 5, 4, 10, 2, 13, 9, 6),$

satisfying a = [a, 2708b], b = [b, 2708a].

Since $a^4b = (1, 7, 3, 12, 9, 10, 6, 5, 8, 2, 4)$, $(S_{13} \wr Z_m)'$ are mep-groups.

4. Tables

Let a = (1, 2, 3, 4, 5), b = (1, 3, 5, 4, 2), $m \in \mathbb{N} \setminus \{0, 1\}$. We define $x = (\overline{0}, a)$, $y = (X, b) \in (S_5 \wr Z_m)'$, such that x, y is a mep-pair of a mep-period (k, k), so [x, ky] = x, [y, kx] = y.

Let $G = \langle x, y \rangle \subseteq (S_5 \wr Z_m)'$. We think that the case when *m* is divisible by 3 is special. Here are some examples obtained by computer calculations.

т	X^T	k	G	$G = (S_5 \wr Z_m)'$
3	[0, 0, 0, 1, 2]	130	4860	yes
3	[1, 1, 2, 0, 2]	5	60	no
6	[0, 0, 0, 1, 5]	390	77 760	yes
6	[1, 1, 2, 0, 2]	15	960	no
9	[0, 0, 0, 1, 8]	390	393 660	yes
9	[1, 1, 2, 0, 5]	15	4860	no

Next table shows the results of our computer search for mep-pairs in groups $(S_5 \wr Z_m)'$. Elements a, b are as previously, $x = ([0, 0, 0, 0, 0]^T, a), y = ([0, 0, 0, 1, -1]^T, b), z = ([z_1, z_2, z_3, z_4, z_5]^T, b), k_{max}$ is a maximal mep-period, k_{min} is a minimal mep-period of a mep-pair x, z in $(A_5 \wr Z_m)'$ and ? means unknown value.

т	k _{max}	z max	k _{min}	z min	m	k _{max}	z max	k _{min}	z min
2	15	у	= max		23	279840	у	?	
3	130	у	= max		24	780	у	= max	
4	30	у	= max		26	840	у	420	$([0, 1, 3, 0, 9]^T, b)$
6	390	у	= max		27	1170	у	= max	
7	1710	у	15	$([1, 3, 2, 3, 5]^T, b)$	28	1710	у	30	$([1, 3, 2, 10, 12]^T, b)$
8	60	у	= max		29	60970	у	?	
9	390	у	= max		31	230880	у	?	
11	190	у	10	$([1, 10, 7, 1, 3]^T, b)$	32	240	у	= max	
12	390	у	= max		33	2470	у	?	
13	840	у	420	$([0, 1, 3, 0, 9]^T, b)$	34	27840	у	?	
14	1710	у	15	$([1, 3, 2, 3, 5]^T, b)$	36	390	у	?	
16	120	у	= max		37	253260	у	?	
17	27840	у	= max		38	34290	у	90	$([5, 1, 7, 8, 17]^T, b)$
18	390	у	= max		39	10920	у	?	
19	34290	у	90	$([5, 1, 7, 8, 17]^T, b)$	41	34460	у	?	
21	22230	у	?		42	22230	у	?	
22	570	у	30	$([1, 10, 7, 1, 3]^T, b)$	43	4620	у	?	

Acknowledgments

The authors wish to thank Vitaliy Sushchansky for critical reading of this text and for many helpful remarks. They would also like to thank the referee for valuable suggestions.

References

- [1] R. Brandl, J.S. Wilson, Characterization of finite soluble groups by laws in a small number of variables, J. Algebra 116 (2) (1988) 334-341.
- [2] H. Heineken, Groups generated by two mutually Engel periodic elements, Boll. Unione Mat. Ital. Sez. B Mat. Soc. Cult. (8) 3 (2000) 461–470.
- [3] M.I. Kargapolov, Ju.I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979.
- [4] A. Kerber, Representations of Permutation Groups, II, Lecture Notes in Math., vol. 495, Springer-Verlag, 1975.
- [5] V.D. Mazurov, E.I. Khukhro (Eds.), The Kourovka Notebook. Unsolved Problems in Group Theory, sixteenth edition, including archive of solved problems, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2006.
- [6] O. Ore, Theory of monomial groups, Trans. Amer. Math. Soc. 51 (1) (1942) 15-64.
- [7] P. Słanina, W. Tomaszewski, Groups generated by (near) mutually Engel periodic pairs, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2) (2007) 485–499.