On mep-relations in the wreath product of groups

Zbigniew Szaszkowski, Witold Tomaszewski*
Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

A R T I C LE I N F O

Article history:

Received 17 March 2011
Available online 14 July 2011
Communicated by Derek Holt

MSC:

primary 20F05, 20E22, 20F12, 20F45, 20B40
secondary 20B35

Keywords:

Group theory
Permutation groups
Wreath products
Generators and relations

Abstract

Let a, b be two long cycles in an alternating group A_{n}, satisfying relations $a=\left[a,{ }_{k} b\right]$ and $b=\left[b,_{k} a\right]$. We show that every pair of elements of the form $x=(X, a), y=(Y, b)$, where the sum of coefficients of X and Y is equal zero, satisfies relations $x=[x, y]$, $y=[y, l x]$ in the wreath product $\left(S_{n} 2 Z_{m}\right)^{\prime}$ for m coprime with n and for an l divisible by k. We show also that for $n=5,7,13$ and for m coprime with $n,\left(S_{n} 2 Z_{m}\right)^{\prime}$ is generated by such pairs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We use traditional notations and terminology (see for example [3]). If g, h are two elements of a group, then the commutator of g and h is an element $[g, h]=[g, 1 h]=g^{-1} h^{-1} g h$ and for an integer $k>1\left[g_{, k} h\right]=\left[\left[g_{, k-1} h\right], h\right]$ and $\left[g,{ }_{0} h\right]=g$. By $G^{\prime}=[G, G]$ we denote the commutator subgroup of G (that is $G^{\prime}=\langle[g, h]: g, h \in G\rangle$). If m is a positive integer, then Z_{m} is the ring of integers modulo m. As usual, S_{n} and A_{n} denote respectively the symmetric and the alternating group acting on $\{1, \ldots, n\}$. If P is a matrix then P^{T} is transpose of P. We call $\sigma \in S_{n}$ a long cycle if it is a cycle of length n.

In Kourovka Notebook [5], Brandl posed the following question (Problem 11.18): Is it true that if G is generated by elements a, b satisfying relations $a=\left[a,{ }_{k} b\right]$ and $b=[b, a]$ for some positive integers k, l, then G is finite? He stated also that if every minimal simple group has generators satisfying above relations, then there exists a series of two-variable words which characterize soluble groups (see [1]). In [2] Heineken calls such pairs of elements mep-pairs (a mutually Engel periodic pair).

[^0]Definition 1．We say that a pair of elements a, b is a mep－pair if there exist positive integers k ，l ，such that $a=\left[a,{ }_{k} b\right]$ and $b=\left[b,{ }_{l} a\right]$ ．If k and l are minimal，then we say that（ k, l ）is the mep－period of the mep－pair (a, b) ．We say that a group G is a mep－group if it is generated by a mep－pair．

An example of a mep－group is A_{5} ，which is generated by a mep－pair $a=(1,2,3,4,5), b=$ （ $1,3,5,4,2$ ）satisfying relations $a=[a, 5 b], b=\left[b,{ }_{5} a\right]$ ．Other examples of mep－pairs can be found in Section 3.

Heineken［2］showed that if a group G is generated by a mep－pair a, b ，then G is perfect（that is $G=G^{\prime}$ ）and elements $a, b^{-1}, a b^{-1}$ are conjugate in G（see also Proposition 1 below）．He studied mep－pairs in $\mathrm{Sl}_{2}(p)$ and he proved that for all primes p of the form $5+8 t$ and some of the form $1+8 t$ ，there exist mep－pairs generating $\mathrm{Sl}_{2}(p)$ ．He also showed that mep－pairs exist in $\mathrm{Sl}_{2}(q)$ where q is a prime such that $q^{3}-q$ is divisible by 7 and he found mep－pairs for $q=p^{3}$ ，for the remaining primes p ．

It can be deduced from［6］that for $n \geqslant 5$ ，every group $G=\left(S_{n}: Z_{m}\right)^{\prime}$ is a perfect group and is two－generated．So，searching mep－groups among such groups is natural．At first，we used computer calculations for searching mep－pairs in groups $G=\left(S_{5} Z_{m}\right)^{\prime}$ and we discovered that pairs of the form $x=((0,0,0,0,0) ;(1,2,3,4,5)), y=((0,0,0,1,-1) ;(1,3,2,5,4))$ are mep－pairs in $G=\left(S_{5} \text { ？} Z_{m}\right)^{\prime}$ for m not divisible by 5 ．At the end of the paper we present tables，which show these results．After analyzing the mep－pairs that we had obtained，we discovered that if x, y is a mep－pair of period (k, k) in $\left(S_{5} \text { 乙 } Z_{p^{l}}\right)^{\prime}$ ，then it is a mep－pair of period $(p k, p k)$ in $\left(S_{5} \text { 乙 } Z_{p^{l+1}}\right)^{\prime}$ ，where p^{l} is a power of prime number p ．This discovery and further analysis finally led us to Theorem 1 ，which says that every pair of the form $(X, a),(Y, b)$ ，where $a, b \in A_{n}$ is a mep－pair of long cycles and X, Y are vectors with zero sum of coefficients modulo m ．More information about mep－groups and groups with similar properties can be found in［7］．

2．Mep－pairs in $\left(S_{n} \geq Z_{m}\right)^{\prime}$

Remark．If k is the least integer，such that for elements a, b of a group we have $a=\left[a,{ }_{k} b\right]$ ，then for every positive integer n we have $\left[a,{ }_{n} b\right]=\left[a,{ }_{r} b\right]$ where $n \equiv r \bmod k$ ．

Proposition 1．Let G be a mep－group generated by a mep－pair a, b ．Then
（a）G is a perfect group，that is $G=G^{\prime}$ ，
（b）elements a, b^{-1} and $a b^{-1}$ are pairwise conjugate in G ．
Proof．Point（a）is clear，since a, b generate G and $a, b \in G^{\prime}$ ．Since $a=\left[a,{ }_{k} b\right]=\left[a,{ }_{k-1} b\right]^{-1} b^{-1}\left[a,{ }_{k-1} b\right] b$ ， we have $a b^{-1}=\left[a,{ }_{k-1} b\right]^{-1} b^{-1}\left[a,{ }_{k-1} b\right]$ ，so $a b^{-1}$ and b^{-1} are conjugate．Similarly $b a^{-1}$ and a^{-1} are conjugate and so $a b^{-1}$ and a are conjugate．Hence by transitivity of conjugation，a and b^{-1} are also conjugate．

The definition of a wreath product of groups can be found for example in［4］．We use the following natural representation of $S_{n} \imath Z_{m}$ ．Every element of $S_{n} 乙 Z_{m}$ can be interpreted as a pair (X, σ) ，where $\sigma \in S_{n}$ and X is an $n \times 1$ matrix over Z_{m}（i．e．X is a column vector）．The multiplication and inversion can be defined as follows：

$$
(X, \sigma) \cdot(Y, \delta)=\left(X+A_{\sigma} Y, \sigma \delta\right), \quad(X, \sigma)^{-1}=\left(-A_{\sigma}^{-1} X, \sigma^{-1}\right)
$$

where $A_{\sigma} \in \mathrm{Gl}_{n}\left(Z_{m}\right)$ is a regular matrix representation of σ over Z_{m} ．The neutral element of S_{n} 亿 Z_{m} is $(\overline{0}, i d)$ ，where $i d$ is the neutral element of S_{n} ，and $\overline{0}$ is a zero－vector．

If $x=(X, \sigma)$ and $y=(Y, \delta)$ then $[x, y]=(X, \sigma)^{-1}(Y, \delta)^{-1}(X, \sigma)(Y, \delta)$ and after calculations we get

$$
\begin{equation*}
[x, y]=\left(A_{\sigma}^{-1}\left(A_{\delta}^{-1}-I\right) X+A_{\sigma}^{-1} A_{\delta}^{-1}\left(A_{\sigma}-I\right) Y,[\sigma, \delta]\right) \tag{1}
\end{equation*}
$$

Let a, b be long cycles in A_{n}, satisfying relations $\left[a,{ }_{k} b\right]=a$ and $\left[b,{ }_{k} a\right]=b$. Let A be the matrix representation of a and B be the matrix representation of b. If $x=(X, a), y=(Y, b)$ then using formula (1) we have $[x, y]=\left(A^{-1}\left(B^{-1}-I\right) X+A^{-1} B^{-1}(A-I) Y,[a, b]\right)$. We shall calculate iterated commutators $\left[x,{ }_{i} y\right]$. Let $\left[x,{ }_{i} y\right]=\left(V_{i} X+W_{i} Y,\left[a,{ }_{i} b\right]\right)$. Then $\left[x,{ }_{i+1} y\right]=\left(\bar{X},\left[a,{ }_{i+1} b\right]\right)$, where

$$
\begin{aligned}
\bar{X} & =\left[A,{ }_{i} B\right]^{-1}\left(B^{-1}-I\right)\left(V_{i} X+W_{i} Y\right)+\left[A,{ }_{i} B\right]^{-1} B^{-1}\left(\left[A,{ }_{i} B\right]-I\right) Y \\
& =\left[A,{ }_{i} B\right]^{-1}\left(B^{-1}-I\right) V_{i} X+\left[A,{ }_{i} B\right]^{-1}\left(\left(B^{-1}-I\right) W_{i}+B^{-1}\left(\left[A,{ }_{i} B\right]-I\right)\right) Y .
\end{aligned}
$$

So matrices V_{i} and W_{i} are defined recursively as follows:

$$
\begin{aligned}
& V_{1}=A^{-1}\left(B^{-1}-I\right), \quad W_{1}=A^{-1} B^{-1}(A-I) \\
& V_{i+1}=\left[A,{ }_{i} B\right]^{-1}\left(B^{-1}-I\right) V_{i}, \\
& W_{i+1}=\left[A,{ }_{i} B\right]^{-1}\left(\left(B^{-1}-I\right) W_{i}+B^{-1}\left(\left[A,{ }_{i} B\right]-I\right)\right) \quad \text { for } i>0 .
\end{aligned}
$$

By symmetry if $\left[y,{ }_{i} x\right]=\left(L_{i} X+T_{i} Y,\left[b,{ }_{i} a\right]\right)$ then

$$
\begin{aligned}
& T_{1}=B^{-1}\left(A^{-1}-I\right), \quad L_{1}=B^{-1} A^{-1}(B-I) \\
& T_{i+1}=\left[B,{ }_{i} A\right]^{-1}\left(A^{-1}-I\right) T_{i} \\
& L_{i+1}=\left[B,{ }_{i} A\right]^{-1}\left(\left(A^{-1}-I\right) W_{i}+A^{-1}\left(\left[B,{ }_{i} A\right]-I\right)\right) \text { for } i>0
\end{aligned}
$$

If C is a permutation matrix, then $(1, \ldots, 1) C=(1, \ldots, 1)$, so if $P \in\left\{V_{i}, W_{i}, T_{i}, L_{i}\right\}$, then $(1, \ldots, 1) P=0$, and hence the sum of coefficients in every column of a matrix P is equal zero. Since $\left[a,{ }_{k} b\right]=a$, $\left[b,{ }_{k} a\right]=b$ then we have $\left[A,{ }_{k} B\right]=A$ and $\left[B,{ }_{k} A\right]=B$.

Proposition 2. Let k be a least integer such that $\left[a,{ }_{k} b\right]=a$ and $\left[b,{ }_{k} a\right]=b$. If $x=(X, a), y=(Y, b) \in S_{n}$ 乙 Z_{m} is a mep-pair satisfying relations $\left[x,{ }_{l} y\right]=x$ and $\left[y,{ }_{l} x\right]=y$ then $k \mid$.

Proof. If $x=[x, l y]$ and $y=\left[y,{ }_{l} x\right]$ then since $x=(X, a), y=(Y, b)$ we have $a=[a, b]$ and $b=[b, l a]$. Using the above Remark we get $k \mid l$.

Remark. If x, y is a mep-pair satisfying relations $[x, l y]=x$ and $[y, l x]=y$ then $l=k t$ for an integer t and

$$
\begin{equation*}
V_{k t} X+W_{k t} Y=X, \quad L_{k t} X+T_{k t} Y=Y \tag{2}
\end{equation*}
$$

Let $V=V_{k}, T=T_{k}, W=W_{k}, L=L_{k}$. We know from our above calculations that

$$
\begin{equation*}
V=\left[A,{ }_{k-1} B\right]^{-1}\left(B^{-1}-I\right) \ldots[A, B]^{-1}\left(B^{-1}-I\right) A^{-1}\left(B^{-1}-I\right) \tag{3}
\end{equation*}
$$

Lemma 1. For every positive integer t,
(i) $V_{k t}=V^{t}, T_{k t}=T^{t}$,
(ii) $W_{k t}=\left(V^{t-1}+V^{t-2}+\cdots+V+I\right) W, L_{k t}=\left(T^{t-1}+T^{t-2}+\cdots+T+I\right) L$.

Proof. We will only show that $V_{k t}=V^{t}$ and $W_{k t}=\left(V^{t-1}+\cdots+V+I\right) W$, because proofs of two other equations are similar. We know that $\left[x,{ }_{k} y\right]=\left(V_{k} X+W_{k} Y,\left[a,{ }_{k} b\right]\right)=\left(V_{k} X+W_{k} Y, a\right)$. Let us denote $X_{1}=V_{k} X+W_{k} Y=V X+W Y$. The $k t$ commutator is equal to $\left[x,{ }_{k t} y\right]=\left(V_{k t} X+W_{k t} Y,\left[a,{ }_{k t} b\right]\right)$,
but on the other hand the commutator $\left[x,{ }_{k t} y\right]$ is the $k(t-1)$ commutator of elements (X_{1}, a) and (Y, b) and since V_{i} and W_{i} does not depend on X, Y but only on a, b we get $\left[x,{ }_{k t} y\right]=\left(V_{k(t-1)} X_{1}+\right.$ $\left.W_{k(t-1)} Y,\left[a,_{k(t-1)} b\right]\right)$, and using the formula for $X_{1},\left[x,{ }_{k t} y\right]=\left(V_{k(t-1)}(V X+W Y)+W_{k(t-1)} Y, a\right)$. Hence $V_{k t}=V_{k(t-1)} V$ and $W_{k t}=V_{k(t-1)} W+W_{k(t-1)}$. So using the induction on t we get $V_{k t}=$ $V_{k(t-1)} V=V^{t-1} V=V^{t}$ and $W_{k t}=V_{k(t-1)} W+W_{k(t-1)}=V^{t-1} W+W_{k(t-1)}=\left(V^{t-1}+V^{t-2}+\cdots+\right.$ $V+I) W$.

Theorem 1. Let a, b be long cycles that form a mep-pair in A_{n} and let m be an integer coprime with n. If X, Y are $n \times 1$ matrices over Z_{m} with coefficients summing to 0 , then $x=(X, a), y=(Y, b)$ is a mep-pair in the group $\left(S_{n} \text { Z } Z_{m}\right)^{\prime}$.

Proof. We have to show that there exists t, such that X, Y satisfy Eqs. (2). We show that there exists t satisfying the first equation, because the appropriate t for the second equation can be found similarly. In a view of Lemma 1 the first equation has the form

$$
V^{t} X+\left(V^{t-1}+\cdots+I\right) W Y=X
$$

Let $R \subseteq Z_{m}^{n}$ consist of all vectors, whose sums of coefficients are equal to zero. Then R^{T} is the set of all column vectors X, such that $X^{T} \in R$. The numbers m and n are coprime, so $e=(1, \ldots, 1)$ does not belong to R and we get a direct sum:

$$
Z_{m}^{n}=\mathbb{Z} e \oplus R
$$

Both summands are invariant under the action of A and B, so by (3) they are also invariant under the action of V.

If b is a long cycle, then b^{-1} is a long cycle and we shall deduce that the restriction $\overline{B^{-1}-I}$ of $B^{-1}-I$ on R is a bijection. Since R is finite, we only need to show that it is injective. If for $r=\left(r_{1}, \ldots, r_{n}\right) \in R$ we have $\left(B^{-1}-I\right) r^{T}=0$, then $B^{-1} r^{T}=r^{T}$ and as b^{-1} is a long cycle, this can happen only if $r_{1}=r_{2}=\cdots=r_{n}=u$. As $r \in R$, this implies that $n u=0$ and as n and m are coprime we get $u=0$.

Hence, \bar{V} the restriction of V on R also is a bijection (by (3) it is a product of bijective maps on R). It acts on a finite set, so has a finite order, s say. Hence, $\bar{V}^{s}=I$ and we get:

$$
\begin{aligned}
\bar{V}^{m s-1}+\cdots+\bar{V}+I & =\left(\bar{V}^{s(m-1)}+\cdots+\bar{V}^{s}+I\right)\left(\bar{V}^{s-1}+\cdots+\bar{V}+I\right) \\
& =m\left(\bar{V}^{s-1}+\cdots+\bar{V}+I\right)=0 .
\end{aligned}
$$

So for $t=m s$ and every $U \in R^{T}$ we have $\left(V^{t-1}+\cdots+V+I\right) U=0$. Hence, for $X \in R^{T}$ we have $\left(V^{t}-I\right) X=(V-I)\left(V^{t-1}+\cdots+I\right) X=0$, so $V^{t} X=X$. A sum of every column of a matrix W is equal to 0 , so $\left(V^{t-1}+\cdots+I\right) W=0$. Finally, for $X, Y \in R^{T}$ the required equation $V^{t} X+\left(V^{t-1}+\cdots+I\right) W Y=$ X holds.

3. Mep-pairs generating $\left(S_{n} \imath Z_{m}\right)^{\prime}$

Let R_{m} be the set of all $n \times 1$ matrices over Z_{m} with zero sum of coefficients, that is:

$$
R_{m}=\left\{\left[x_{1}, \ldots, x_{n}\right]^{T}: x_{i} \in Z_{m}, \sum_{i=1}^{n} x_{i}=0\right\}=\{X:[1, \ldots, 1] X=0\} .
$$

For example $Z=A_{\sigma}^{-1}\left(A_{\delta}^{-1}-I\right) X+A_{\sigma}^{-1} A_{\delta}^{-1}\left(A_{\sigma}-I\right) Y$ is an element of R_{m}, because $[1, \ldots, 1] Z=0$.
We will identify the subgroup $\left\{(\overline{0}, \sigma): \sigma \in A_{n}\right\}$ with A_{n}, and the normal subgroup $\left\{(Z, i d): Z \in R_{m}\right\}$ with R_{m}.

Let for $i=1,2, \ldots, n-1, a_{i}$ denote an element（ $X_{i}, i d$ ），where X_{i} has 1 on i－th position，-1 on n－th position and 0 elsewhere．Elements $a_{1}, a_{2}, \ldots, a_{n-1}$ generate R_{m} ，because for every $s=(S, i d) \in$ R_{m} we have $s=a_{1}^{s_{1}} a_{2}^{s_{2}} \cdots a_{n-1}^{s_{n-1}}$ ，where $s_{1}, s_{2}, \ldots, s_{n}$ are coefficients of S ．

Proposition 3．An element（ X, α ）is in the commutator subgroup of S_{n} 乙 Z_{m} for $n \geqslant 2$ if and only if $\alpha \in A_{n}$ and $X \in R_{m}$ ．Moreover，we have $\left(S_{n} \imath Z_{m}\right)^{\prime} \cong R_{m} \rtimes A_{n}$ ．

Proof．Let $x=(X, \sigma), y=(Y, \delta) \in S_{n} \imath Z_{m}$ ．Then by（1）and from $Z \in R_{m}$ we have $[x, y]=(Z,[\sigma, \delta])=$ $(Z, i d) \cdot(\overline{0},[\sigma, \delta]) \in R_{m} A_{n}$ ．

To establish the converse，it is enough to prove that A_{n} and R_{m} are subgroups of $\left(S_{n} 乙 Z_{m}\right)^{\prime}$ ．Clearly $A_{n}<\left(S_{n} \imath Z_{m}\right)^{\prime}$ ．Let $g=(X, i d)$ where $X=[0, \ldots, 0,1]^{T}$ and $h_{i}=(\overline{0},(i, n))$ for $i=1, \ldots, n-1$ ．Then $a_{i}=\left[g, h_{i}\right] \in\left(S_{n} \imath Z_{m}\right)^{\prime}$ and $R_{m}=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle<\left(S_{n} \imath Z_{m}\right)^{\prime}$ ．

Proposition 4．Let A be a subset of $A_{n}(n \geqslant 4)$ such that $\langle A\rangle=A_{n}$ and $\bar{A}=\{(X, \sigma) \mid \sigma \in A\} \subset\left(S_{n} \text { २ } Z_{m}\right)^{\prime}$ ． Then for every $i \in\{1, \ldots, n-1\}$ ，we have $\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle=\left(S_{n} \imath Z_{m}\right)^{\prime}$ ．

Proof．Let i, j, k are different integers from the set $\{1, \ldots, n-1\}$ ．Since $\langle A\rangle=A_{n}$ there exists $u=(U,(i, j, k)) \in\langle\bar{A}\rangle$ ．Hence $u a_{i} u^{-1}=a_{j}$ and $a_{1}, \ldots, a_{n-1} \in\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle$ ．So $R_{m} \subseteq\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle$ ．From assumptions we know that for every $\sigma \in A$ there exists $X \in R_{m}$ ，such that（ X, σ ）belongs to \bar{A} ．So $(\overline{0}, \sigma)=(X, \sigma) \cdot(X, i d)^{-1}$ is in $\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle$ ．It means that A_{n} is also a subgroup of $\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle$ ．Hence，by Proposition 3，$\left\langle\bar{A} \cup\left\{a_{i}\right\}\right\rangle=\left(S_{n} \imath Z_{m}\right)^{\prime}$ ．

Theorem 2．Let a, b be elements generating A_{n} ，where $n>3$ is an odd integer．If there exists positive integer k such that $a^{k} b$ is a cycle of length less than n then there exists X ，such that $x=(\overline{0}, a), y=(X, b)$ generate $\left(S_{n} 乙 Z_{m}\right)^{\prime}$ ．

Proof．By Proposition 4，it is enough to prove that there exists i such，that $a_{i} \in\langle x, y\rangle$ ．Let $a^{k} b=$ $\left(i_{1}, \ldots, i_{l}\right)$ ．Since n is odd，we have got $l \leqslant n-2$ ．Moreover l is greater then 2 ，because for $l=1, a^{k} b$ would be equal $i d$ ，which is impossible，and for $l=2, a^{k} b$ would be odd，which also is impossible． We will denote by A（resp．B）a matrix representation of a（resp．b）．If $x=(\overline{0}, a)$ and $y=(X, b)$ then $x^{k} y=\left(A^{k} X, a^{k} b\right)$ ．Since A^{k} is invertible，$A^{k} X$ can take any value Y in R_{m} ．Since $a^{k} b$ is a cycle of length l we have $\left(x^{k} y\right)^{l}=\left(\left(I+C+\cdots+C^{l-1}\right) Y\right.$ ，id），where $C=A^{k} B$ ．It is easy to see that if $c_{i j}$ are entries of the matrix $I+C+\cdots+C^{l-1}$ then $c_{i i}=l$ if $i \notin\left\{i_{1}, \ldots, i_{l}\right\}$ and $c_{i j}=1$ if $i, j \in\left\{i_{1}, \ldots, i_{l}\right\}$ and remaining coordinates are zero．So if $Y=\left[y_{1}, \ldots, y_{n}\right]^{T}, Z^{T}=\left(I+C+\cdots+C^{I-1}\right) Y$ and $Z=\left[z_{1}, \ldots, z_{n}\right]$ then $z_{i}=l y_{i}$ for $i \notin\left\{i_{1}, \ldots, i_{l}\right\}$ and $z_{j}=y_{i_{1}}+\cdots+y_{i_{l}}$ for $j \in\left\{i_{1}, \ldots, i_{l}\right\}$ ．If we choose exactly one $i \notin\left\{i_{1}, \ldots, i_{l}\right\}$ and we put $y_{i}=-1$ and exactly one $y_{j}=1$ for $j \in\left\{i_{1}, \ldots, i_{l}\right\}$ then Z has exactly one coefficient $-l$ and exactly $l \geqslant 3$ coefficients 1 and rest（at least one）of coefficients are zero．Hence there exist p, r, s, t such that $z_{p}=1, z_{r}=1, z_{s}=1$ and $z_{t}=0$ ．Since $\langle a, b\rangle=A_{n}$ ，there exists U such that $u=(U,(p, r)(s, t)) \in\langle x, y\rangle$ ．Hence $u(Z, i d) u^{-1} \in\langle x, y\rangle$ and $u(Z, i d) u^{-1}=(W, i d)$ ，where $w_{p}=z_{p}=1, w_{r}=z_{r}=1, w_{s}=z_{t}=0, w_{t}=z_{s}=1$ and the rest coefficients of W are the same as coefficients of Z ．Then $(Z, i d)(W, i d)^{-1}=(P, i d)$ ，where P has 1 on s－th position，-1 on t－th position and zero elsewhere．If $t \neq n$ ，then conjugation by the element of the form $(U,(i, j)(t, n))$ move -1 to the last position．

Corollary 1．Let a, b be a mep－pair of long cycles，generating A_{n} ，and let m be a positive integer coprime with n ．If a and b satisfy the assumption of Theorem 2 ，then there exists X such that $(\overline{0}, a),(X, b)$ is a mep－pair generating $\left(S_{n} २ Z_{m}\right)^{\prime}$（that is $\left(S_{n} २ Z_{m}\right)^{\prime}$ is a mep－group）．

Proof．It follows immediately from Theorems 1 and 2.
Examples．Using Theorem 2 and Corollary 1 we give examples that show that $\left(S_{n} Z_{m}\right)^{\prime}$ are mep－ groups for $n=5,7,13$ and m coprime with n ．

1. A_{5} is a mep-group generated by a mep-pair

$$
a=(1,2,3,4,5), \quad b=(1,3,5,4,2),
$$

satisfying $a=\left[a,{ }_{5} b\right], b=\left[b,{ }_{5} a\right]$. Since $a b=(143),\left(S_{5} \text { 乙 } Z_{m}\right)^{\prime}$ are mep-groups.
2. A_{7} is a mep-group generated by a mep-pair

$$
a=(1,2,3,4,5,6,7), \quad b=(1,3,6,2,4,7,5),
$$

satisfying $a=\left[a,{ }_{49} b\right], b=[b, 49 a]$. Since $a^{4} b=(172),\left(S_{7} \text { ८ } Z_{m}\right)^{\prime}$ are mep-groups.
3. A_{13} is a mep-group generated by a mep-pair

$$
a=(1,2,3,4,5,6,7,8,9,10,11,12,13), \quad b=(1,3,8,11,7,12,5,4,10,2,13,9,6),
$$

satisfying $a=[a, 2708 b], b=[b, 2708 a]$.
Since $a^{4} b=(1,7,3,12,9,10,6,5,8,2,4),\left(S_{13} \text { Z } Z_{m}\right)^{\prime}$ are mep-groups.

4. Tables

Let $a=(1,2,3,4,5), b=(1,3,5,4,2), m \in \mathbb{N} \backslash\{0,1\}$. We define $x=(\overline{0}, a), y=(X, b) \in\left(S_{5} \text { 乙 } Z_{m}\right)^{\prime}$, such that x, y is a mep-pair of a mep-period (k, k), so $\left[x,{ }_{k} y\right]=x,\left[y,{ }_{k} x\right]=y$.

Let $G=\langle x, y\rangle \subseteq\left(S_{5} z_{m}\right)^{\prime}$. We think that the case when m is divisible by 3 is special. Here are some examples obtained by computer calculations.

m	X^{T}	k	$\|G\|$	$G=\left(S_{5} \imath Z_{m}\right)^{\prime}$
3	$[0,0,0,1,2]$	130	4860	yes
3	$[1,1,2,0,2]$	5	60	no
6	$[0,0,0,1,5]$	390	77760	yes
6	$[1,1,2,0,2]$	15	960	no
9	$[0,0,0,1,8]$	390	393660	yes
9	$[1,1,2,0,5]$	15	4860	no

Next table shows the results of our computer search for mep-pairs in groups ($\left.S_{5} Z_{m}\right)^{\prime}$. Elements a, b are as previously, $x=\left([0,0,0,0,0]^{T}, a\right), y=\left([0,0,0,1,-1]^{T}, b\right), z=\left(\left[z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right]^{T}, b\right), k_{\text {max }}$ is a maximal mep-period, $k_{\min }$ is a minimal mep-period of a mep-pair x, z in $\left(A_{5} Z_{m}\right)^{\prime}$ and ? means unknown value.

m	$k_{\max }$	$z \max$	$k_{\min }$	$z \min$
2	15	y	$=\max$	
3	130	y	$=\max$	
4	30	y	$=\max$	
6	390	y	$=\max$	
7	1710	y	15	$\left([1,3,2,3,5]^{T}, b\right)$
8	60	y	$=\max$	
9	390	y	$=\max$	
11	190	y	10	$\left([1,10,7,1,3]^{T}, b\right)$
12	390	y	$=\max$	
13	840	y	420	$\left([0,1,3,0,9]^{T}, b\right)$
14	1710	y	15	$\left([1,3,2,3,5]^{T}, b\right)$
16	120	y	$=\max$	
17	27840	y	$=\max$	
18	390	y	$=\max$	
19	34290	y	90	$\left([5,1,7,8,17]^{T}, b\right)$
21	22230	y	$?$	
22	570	y	30	$\left([1,10,7,1,3]^{T}, b\right)$

m	$k_{\max }$	$z \max$	$k_{\min }$	$z \min$
23	279840	y	$?$	
24	780	y	$=\max$	
26	840	y	420	$\left([0,1,3,0,9]^{T}, b\right)$
27	1170	y	$=\max$	
28	1710	y	30	$\left([1,3,2,10,12]^{T}, b\right)$
29	60970	y	$?$	
31	230880	y	$?$	
32	240	y	$=\max$	
33	2470	y	$?$	
34	27840	y	$?$	
36	390	y	$?$	
37	253260	y	$?$	
38	34290	y	90	$\left([5,1,7,8,17]^{T}, b\right)$
39	10920	y	$?$	
41	34460	y	$?$	
42	22230	y	$?$	
43	4620	y	$?$	

Acknowledgments

The authors wish to thank Vitaliy Sushchansky for critical reading of this text and for many helpful remarks. They would also like to thank the referee for valuable suggestions.

References

[1] R. Brandl, J.S. Wilson, Characterization of finite soluble groups by laws in a small number of variables, J. Algebra 116 (2) (1988) 334-341.
[2] H. Heineken, Groups generated by two mutually Engel periodic elements, Boll. Unione Mat. Ital. Sez. B Mat. Soc. Cult. (8) 3 (2000) 461-470.
[3] M.I. Kargapolov, Ju.I. Merzljakov, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979.
[4] A. Kerber, Representations of Permutation Groups, II, Lecture Notes in Math., vol. 495, Springer-Verlag, 1975.
[5] V.D. Mazurov, E.I. Khukhro (Eds.), The Kourovka Notebook. Unsolved Problems in Group Theory, sixteenth edition, including archive of solved problems, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2006.
[6] O. Ore, Theory of monomial groups, Trans. Amer. Math. Soc. 51 (1) (1942) 15-64.
[7] P. Słanina, W. Tomaszewski, Groups generated by (near) mutually Engel periodic pairs, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2) (2007) 485-499.

[^0]: * Corresponding author.

 E-mail addresses: Zbigniew.Szaszkowski@polsl.pl (Z. Szaszkowski), Witold.Tomaszewski@polsl.pl (W. Tomaszewski).

