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Let a, b be two long cycles in an alternating group An , satisfying
relations a = [a,k b] and b = [b,k a]. We show that every pair of
elements of the form x = (X,a), y = (Y ,b), where the sum of
coefficients of X and Y is equal zero, satisfies relations x = [x,l y],
y = [y,l x] in the wreath product (Sn � Zm)′ for m coprime with n
and for an l divisible by k. We show also that for n = 5,7,13 and
for m coprime with n, (Sn � Zm)′ is generated by such pairs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

We use traditional notations and terminology (see for example [3]). If g , h are two elements of
a group, then the commutator of g and h is an element [g,h] = [g,1 h] = g−1h−1 gh and for an integer
k > 1 [g,k h] = [[g,k−1 h],h] and [g,0 h] = g . By G ′ = [G, G] we denote the commutator subgroup of G
(that is G ′ = 〈[g,h]: g,h ∈ G〉). If m is a positive integer, then Zm is the ring of integers modulo m. As
usual, Sn and An denote respectively the symmetric and the alternating group acting on {1, . . . ,n}. If
P is a matrix then P T is transpose of P . We call σ ∈ Sn a long cycle if it is a cycle of length n.

In Kourovka Notebook [5], Brandl posed the following question (Problem 11.18): Is it true that if G
is generated by elements a, b satisfying relations a = [a, kb] and b = [b, la] for some positive integers
k, l, then G is finite? He stated also that if every minimal simple group has generators satisfying above
relations, then there exists a series of two-variable words which characterize soluble groups (see [1]).
In [2] Heineken calls such pairs of elements mep-pairs (a mutually Engel periodic pair).
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Definition 1. We say that a pair of elements a,b is a mep-pair if there exist positive integers k, l, such
that a = [a, kb] and b = [b, la]. If k and l are minimal, then we say that (k, l) is the mep-period of the
mep-pair (a,b). We say that a group G is a mep-group if it is generated by a mep-pair.

An example of a mep-group is A5, which is generated by a mep-pair a = (1,2,3,4,5), b =
(1,3,5,4,2) satisfying relations a = [a, 5b], b = [b, 5a]. Other examples of mep-pairs can be found
in Section 3.

Heineken [2] showed that if a group G is generated by a mep-pair a, b, then G is perfect (that
is G = G ′) and elements a, b−1, ab−1 are conjugate in G (see also Proposition 1 below). He studied
mep-pairs in Sl2(p) and he proved that for all primes p of the form 5 + 8t and some of the form
1 + 8t , there exist mep-pairs generating Sl2(p). He also showed that mep-pairs exist in Sl2(q) where
q is a prime such that q3 − q is divisible by 7 and he found mep-pairs for q = p3, for the remaining
primes p.

It can be deduced from [6] that for n � 5, every group G = (Sn � Zm)′ is a perfect group and is
two-generated. So, searching mep-groups among such groups is natural. At first, we used computer
calculations for searching mep-pairs in groups G = (S5 � Zm)′ and we discovered that pairs of the form
x = ((0,0,0,0,0); (1,2,3,4,5)), y = ((0,0,0,1,−1); (1,3,2,5,4)) are mep-pairs in G = (S5 � Zm)′ for
m not divisible by 5. At the end of the paper we present tables, which show these results. After
analyzing the mep-pairs that we had obtained, we discovered that if x, y is a mep-pair of period
(k,k) in (S5 � Z pl )′ , then it is a mep-pair of period (pk, pk) in (S5 � Z pl+1 )′ , where pl is a power of
prime number p. This discovery and further analysis finally led us to Theorem 1, which says that
every pair of the form (X,a), (Y ,b), where a,b ∈ An is a mep-pair of long cycles and X , Y are vectors
with zero sum of coefficients modulo m. More information about mep-groups and groups with similar
properties can be found in [7].

2. Mep-pairs in (Sn � Zm)′

Remark. If k is the least integer, such that for elements a, b of a group we have a = [a, kb], then for
every positive integer n we have [a, nb] = [a, rb] where n ≡ r mod k.

Proposition 1. Let G be a mep-group generated by a mep-pair a, b. Then

(a) G is a perfect group, that is G = G ′ ,
(b) elements a, b−1 and ab−1 are pairwise conjugate in G.

Proof. Point (a) is clear, since a,b generate G and a,b ∈ G ′ . Since a = [a, kb] = [a, k−1b]−1b−1[a, k−1b]b,
we have ab−1 = [a, k−1b]−1b−1[a, k−1b], so ab−1 and b−1 are conjugate. Similarly ba−1 and a−1 are
conjugate and so ab−1 and a are conjugate. Hence by transitivity of conjugation, a and b−1 are also
conjugate. �

The definition of a wreath product of groups can be found for example in [4]. We use the following
natural representation of Sn � Zm . Every element of Sn � Zm can be interpreted as a pair (X, σ ), where
σ ∈ Sn and X is an n × 1 matrix over Zm (i.e. X is a column vector). The multiplication and inversion
can be defined as follows:

(X,σ ) · (Y , δ) = (X + Aσ Y ,σ δ), (X,σ )−1 = (−A−1
σ X,σ−1)

where Aσ ∈ Gln(Zm) is a regular matrix representation of σ over Zm . The neutral element of Sn � Zm
is (0, id), where id is the neutral element of Sn , and 0 is a zero-vector.

If x = (X, σ ) and y = (Y , δ) then [x, y] = (X, σ )−1(Y , δ)−1(X, σ )(Y , δ) and after calculations we
get

[x, y] = (
A−1

σ

(
A−1

δ − I
)

X + A−1
σ A−1

δ (Aσ − I)Y , [σ , δ]). (1)
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Let a, b be long cycles in An , satisfying relations [a, kb] = a and [b, ka] = b. Let A be the matrix
representation of a and B be the matrix representation of b. If x = (X,a), y = (Y ,b) then using
formula (1) we have [x, y] = (A−1(B−1 − I)X + A−1 B−1(A − I)Y , [a,b]). We shall calculate iterated
commutators [x, i y]. Let [x, i y] = (V i X + W i Y , [a, ib]). Then [x, i+1 y] = (X, [a, i+1b]), where

X = [A, i B]−1(B−1 − I
)
(V i X + W i Y ) + [A, i B]−1 B−1([A, i B] − I

)
Y

= [A, i B]−1(B−1 − I
)

V i X + [A, i B]−1((B−1 − I
)
W i + B−1([A, i B] − I

))
Y .

So matrices V i and W i are defined recursively as follows:

V 1 = A−1(B−1 − I
)
, W1 = A−1 B−1(A − I),

V i+1 = [A, i B]−1(B−1 − I
)

V i,

W i+1 = [A, i B]−1((B−1 − I
)
W i + B−1([A, i B] − I

))
for i > 0.

By symmetry if [y, i x] = (Li X + Ti Y , [b, ia]) then

T1 = B−1(A−1 − I
)
, L1 = B−1 A−1(B − I),

Ti+1 = [B, i A]−1(A−1 − I
)
Ti,

Li+1 = [B, i A]−1((A−1 − I
)
W i + A−1([B, i A] − I

))
for i > 0.

If C is a permutation matrix, then (1, . . . ,1)C = (1, . . . ,1), so if P ∈{V i, W i, Ti, Li}, then (1, . . . ,1)P =0,
and hence the sum of coefficients in every column of a matrix P is equal zero. Since [a, kb] = a,
[b, ka] = b then we have [A, k B] = A and [B, k A] = B .

Proposition 2. Let k be a least integer such that [a, kb] = a and [b, ka] = b. If x = (X,a), y = (Y ,b) ∈ Sn � Zm

is a mep-pair satisfying relations [x, l y] = x and [y, lx] = y then k|l.

Proof. If x = [x, l y] and y = [y, lx] then since x = (X,a), y = (Y ,b) we have a = [a, lb] and b = [b, la].
Using the above Remark we get k|l. �
Remark. If x, y is a mep-pair satisfying relations [x, l y] = x and [y, lx] = y then l = kt for an integer
t and

Vkt X + Wkt Y = X, Lkt X + Tkt Y = Y . (2)

Let V = Vk , T = Tk , W = Wk , L = Lk . We know from our above calculations that

V = [A, k−1 B]−1(B−1 − I
)
. . . [A, B]−1(B−1 − I

)
A−1(B−1 − I

)
. (3)

Lemma 1. For every positive integer t,

(i) Vkt = V t , Tkt = T t ,
(ii) Wkt = (V t−1 + V t−2 + · · · + V + I)W , Lkt = (T t−1 + T t−2 + · · · + T + I)L.

Proof. We will only show that Vkt = V t and Wkt = (V t−1 + · · · + V + I)W , because proofs of two
other equations are similar. We know that [x, k y] = (Vk X + WkY , [a, kb]) = (Vk X + WkY ,a). Let us
denote X1 = Vk X + WkY = V X + W Y . The kt commutator is equal to [x, kt y] = (Vkt X + Wkt Y , [a, ktb]),
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but on the other hand the commutator [x, kt y] is the k(t − 1) commutator of elements (X1,a) and
(Y ,b) and since V i and W i does not depend on X, Y but only on a,b we get [x, kt y] = (Vk(t−1) X1 +
Wk(t−1)Y , [a, k(t−1)b]), and using the formula for X1, [x, kt y] = (Vk(t−1)(V X + W Y ) + Wk(t−1)Y ,a).
Hence Vkt = Vk(t−1)V and Wkt = Vk(t−1)W + Wk(t−1) . So using the induction on t we get Vkt =
Vk(t−1)V = V t−1 V = V t and Wkt = Vk(t−1)W + Wk(t−1) = V t−1W + Wk(t−1) = (V t−1 + V t−2 + · · · +
V + I)W . �
Theorem 1. Let a, b be long cycles that form a mep-pair in An and let m be an integer coprime with n. If X ,
Y are n × 1 matrices over Zm with coefficients summing to 0, then x = (X,a), y = (Y ,b) is a mep-pair in the
group (Sn � Zm)′ .

Proof. We have to show that there exists t , such that X , Y satisfy Eqs. (2). We show that there exists t
satisfying the first equation, because the appropriate t for the second equation can be found similarly.
In a view of Lemma 1 the first equation has the form

V t X + (
V t−1 + · · · + I

)
W Y = X .

Let R ⊆ Zn
m consist of all vectors, whose sums of coefficients are equal to zero. Then R T is the set

of all column vectors X , such that X T ∈ R . The numbers m and n are coprime, so e = (1, . . . ,1) does
not belong to R and we get a direct sum:

Zn
m = Ze ⊕ R.

Both summands are invariant under the action of A and B , so by (3) they are also invariant under the
action of V .

If b is a long cycle, then b−1 is a long cycle and we shall deduce that the restriction B−1 − I
of B−1 − I on R is a bijection. Since R is finite, we only need to show that it is injective. If for
r = (r1, . . . , rn) ∈ R we have (B−1 − I)rT = 0, then B−1rT = rT and as b−1 is a long cycle, this can
happen only if r1 = r2 = · · · = rn = u. As r ∈ R , this implies that nu = 0 and as n and m are coprime
we get u = 0.

Hence, V the restriction of V on R also is a bijection (by (3) it is a product of bijective maps
on R). It acts on a finite set, so has a finite order, s say. Hence, V s = I and we get:

V ms−1 + · · · + V + I = (
V s(m−1) + · · · + V s + I

)(
V s−1 + · · · + V + I

)
= m

(
V s−1 + · · · + V + I

) = 0.

So for t = ms and every U ∈ RT we have (V t−1 + · · · + V + I)U = 0. Hence, for X ∈ RT we have
(V t − I)X = (V − I)(V t−1 +· · ·+ I)X = 0, so V t X = X . A sum of every column of a matrix W is equal
to 0, so (V t−1 +· · ·+ I)W = 0. Finally, for X, Y ∈ RT the required equation V t X +(V t−1 +· · ·+ I)W Y =
X holds. �
3. Mep-pairs generating (Sn � Zm)′

Let Rm be the set of all n × 1 matrices over Zm with zero sum of coefficients, that is:

Rm =
{

[x1, . . . , xn]T : xi ∈ Zm,

n∑
i=1

xi = 0

}
= {

X: [1, . . . ,1]X = 0
}
.

For example Z = A−1
σ (A−1

δ − I)X + A−1
σ A−1

δ (Aσ − I)Y is an element of Rm , because [1, . . . ,1]Z = 0.
We will identify the subgroup {(0, σ ): σ ∈ An} with An , and the normal subgroup {(Z , id): Z ∈ Rm}

with Rm .



310 Z. Szaszkowski, W. Tomaszewski / Journal of Algebra 341 (2011) 306–312
Let for i = 1,2, . . . ,n − 1, ai denote an element (Xi, id), where Xi has 1 on i-th position, −1 on
n-th position and 0 elsewhere. Elements a1,a2, . . . ,an−1 generate Rm , because for every s = (S, id) ∈
Rm we have s = as1

1 as2
2 · · ·a

sn−1
n−1 , where s1, s2, . . . , sn are coefficients of S .

Proposition 3. An element (X,α) is in the commutator subgroup of Sn � Zm for n � 2 if and only if α ∈ An

and X ∈ Rm. Moreover, we have (Sn � Zm)′ ∼= Rm � An.

Proof. Let x = (X, σ ), y = (Y , δ) ∈ Sn � Zm . Then by (1) and from Z ∈ Rm we have [x, y] = (Z , [σ , δ]) =
(Z , id) · (0, [σ , δ]) ∈ Rm An .

To establish the converse, it is enough to prove that An and Rm are subgroups of (Sn � Zm)′ . Clearly
An < (Sn � Zm)′ . Let g = (X, id) where X = [0, . . . ,0,1]T and hi = (0, (i,n)) for i = 1, . . . ,n − 1. Then
ai = [g,hi] ∈ (Sn � Zm)′ and Rm = 〈a1, . . . ,an−1〉 < (Sn � Zm)′ . �
Proposition 4. Let A be a subset of An (n � 4) such that 〈A〉 = An and A = {(X, σ ) | σ ∈ A} ⊂ (Sn � Zm)′ .
Then for every i ∈ {1, . . . ,n − 1}, we have 〈A ∪ {ai}〉 = (Sn � Zm)′ .

Proof. Let i, j, k are different integers from the set {1, . . . ,n − 1}. Since 〈A〉 = An there exists
u = (U , (i, j,k)) ∈ 〈A〉. Hence uaiu−1 = a j and a1, . . . ,an−1 ∈ 〈A ∪ {ai}〉. So Rm ⊆ 〈A ∪ {ai}〉. From
assumptions we know that for every σ ∈ A there exists X ∈ Rm , such that (X, σ ) belongs to A. So
(0, σ ) = (X, σ ) · (X, id)−1 is in 〈A ∪ {ai}〉. It means that An is also a subgroup of 〈A ∪ {ai}〉. Hence, by
Proposition 3, 〈A ∪ {ai}〉 = (Sn � Zm)′ . �
Theorem 2. Let a, b be elements generating An, where n > 3 is an odd integer. If there exists positive integer
k such that akb is a cycle of length less than n then there exists X , such that x = (0,a), y = (X,b) generate
(Sn � Zm)′ .

Proof. By Proposition 4, it is enough to prove that there exists i such, that ai ∈ 〈x, y〉. Let akb =
(i1, . . . , il). Since n is odd, we have got l � n − 2. Moreover l is greater then 2, because for l = 1, akb
would be equal id, which is impossible, and for l = 2, akb would be odd, which also is impossible.
We will denote by A (resp. B) a matrix representation of a (resp. b). If x = (0,a) and y = (X,b) then
xk y = (Ak X,akb). Since Ak is invertible, Ak X can take any value Y in Rm . Since akb is a cycle of
length l we have (xk y)l = ((I + C + · · · + Cl−1)Y , id), where C = Ak B . It is easy to see that if ci j are
entries of the matrix I + C + · · · + Cl−1 then cii = l if i /∈ {i1, . . . , il} and ci j = 1 if i, j ∈ {i1, . . . , il} and
remaining coordinates are zero. So if Y = [y1, . . . , yn]T , Z T = (I +C +· · ·+Cl−1)Y and Z = [z1, . . . , zn]
then zi = lyi for i /∈ {i1, . . . , il} and z j = yi1 + · · · + yil for j ∈ {i1, . . . , il}. If we choose exactly one
i /∈ {i1, . . . , il} and we put yi = −1 and exactly one y j = 1 for j ∈ {i1, . . . , il} then Z has exactly one
coefficient −l and exactly l � 3 coefficients 1 and rest (at least one) of coefficients are zero. Hence
there exist p, r, s, t such that zp = 1, zr = 1, zs = 1 and zt = 0. Since 〈a,b〉 = An , there exists U
such that u = (U , (p, r)(s, t)) ∈ 〈x, y〉. Hence u(Z , id)u−1 ∈ 〈x, y〉 and u(Z , id)u−1 = (W , id), where
w p = zp = 1, wr = zr = 1, ws = zt = 0, wt = zs = 1 and the rest coefficients of W are the same as
coefficients of Z . Then (Z , id)(W , id)−1 = (P , id), where P has 1 on s-th position, −1 on t-th position
and zero elsewhere. If t �= n, then conjugation by the element of the form (U , (i, j)(t,n)) move −1 to
the last position. �
Corollary 1. Let a,b be a mep-pair of long cycles, generating An, and let m be a positive integer coprime
with n. If a and b satisfy the assumption of Theorem 2, then there exists X such that (0,a), (X,b) is a mep-pair
generating (Sn � Zm)′ (that is (Sn � Zm)′ is a mep-group).

Proof. It follows immediately from Theorems 1 and 2. �
Examples. Using Theorem 2 and Corollary 1 we give examples that show that (Sn � Zm)′ are mep-
groups for n = 5,7,13 and m coprime with n.
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1. A5 is a mep-group generated by a mep-pair

a = (1,2,3,4,5), b = (1,3,5,4,2),

satisfying a = [a, 5b], b = [b, 5a]. Since ab = (143), (S5 � Zm)′ are mep-groups.
2. A7 is a mep-group generated by a mep-pair

a = (1,2,3,4,5,6,7), b = (1,3,6,2,4,7,5),

satisfying a = [a, 49b], b = [b, 49a]. Since a4b = (172), (S7 � Zm)′ are mep-groups.
3. A13 is a mep-group generated by a mep-pair

a = (1,2,3,4,5,6,7,8,9,10,11,12,13), b = (1,3,8,11,7,12,5,4,10,2,13,9,6),

satisfying a = [a, 2708b], b = [b, 2708a].
Since a4b = (1,7,3,12,9,10,6,5,8,2,4), (S13 � Zm)′ are mep-groups.

4. Tables

Let a = (1,2,3,4,5), b = (1,3,5,4,2), m ∈ N \ {0,1}. We define x = (0,a), y = (X,b) ∈ (S5 � Zm)′ ,
such that x, y is a mep-pair of a mep-period (k,k), so [x, k y] = x, [y, kx] = y.

Let G = 〈x, y〉 ⊆ (S5 � Zm)′ . We think that the case when m is divisible by 3 is special. Here are
some examples obtained by computer calculations.

m X T k |G| G = (S5 � Zm)′

3 [0,0,0,1,2] 130 4860 yes
3 [1,1,2,0,2] 5 60 no
6 [0,0,0,1,5] 390 77 760 yes
6 [1,1,2,0,2] 15 960 no
9 [0,0,0,1,8] 390 393 660 yes
9 [1,1,2,0,5] 15 4860 no

Next table shows the results of our computer search for mep-pairs in groups (S5 � Zm)′ . Elements
a, b are as previously, x = ([0,0,0,0,0]T ,a), y = ([0,0,0,1,−1]T ,b), z = ([z1, z2, z3, z4, z5]T ,b), kmax
is a maximal mep-period, kmin is a minimal mep-period of a mep-pair x, z in (A5 � Zm)′ and ? means
unknown value.

m kmax z max kmin z min

2 15 y = max
3 130 y = max
4 30 y = max
6 390 y = max
7 1710 y 15 ([1,3,2,3,5]T ,b)

8 60 y = max
9 390 y = max

11 190 y 10 ([1,10,7,1,3]T ,b)

12 390 y = max
13 840 y 420 ([0,1,3,0,9]T ,b)

14 1710 y 15 ([1,3,2,3,5]T ,b)

16 120 y = max
17 27 840 y = max
18 390 y = max
19 34 290 y 90 ([5,1,7,8,17]T ,b)

21 22 230 y ?
22 570 y 30 ([1,10,7,1,3]T ,b)

m kmax z max kmin z min

23 279 840 y ?
24 780 y = max
26 840 y 420 ([0,1,3,0,9]T ,b)

27 1170 y = max
28 1710 y 30 ([1,3,2,10,12]T ,b)

29 60 970 y ?
31 230 880 y ?
32 240 y = max
33 2470 y ?
34 27 840 y ?
36 390 y ?
37 253 260 y ?
38 34 290 y 90 ([5,1,7,8,17]T ,b)

39 10 920 y ?
41 34 460 y ?
42 22 230 y ?
43 4620 y ?
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