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Cells need to decode chemical or physical signals from their

environment in order to make decisions on their fate. In the

case of signalling receptors, ligand binding triggers a cascade

of chemical reactions but also the internalization of the

activated receptors in the endocytic pathway. Here, we

highlight recent studies revealing a new role of the endosomal

network in signal processing. The diversity of entry pathways

and endosomal compartments is exploited to regulate the

kinetics of receptor trafficking, and interactions with specific

signalling adaptors and effectors. By governing the spatio-

temporal distribution of signalling molecules, the endosomal

system functions analogously to a digital-analogue computer

that regulates the specificity and robustness of the signalling

response.
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Introduction to signalling and endocytosis
Cells constantly process information in the form of chemi-

cal or physical signals from the environment to make

decisions on their fate. Despite a great deal of molecular

diversity, the communication of information based on

chemical signals follows general design principles that

can be described with the language of information theory

as source, channel, receiver, decoder and destination [1�,2]:

(1) the source of signals are the cells that secrete signalling

factors which are propagated by (2) the channel, the

extracellular medium (e.g. blood, ECM). (3) The receiver

is the receptors on the target cells, where (4) the decoder,

the intracellular signalling machinery transmits and

decodes the signals to (5) the destination, that is, the cell

nucleus to determine cell fate. Although intracellular signal

transmission and decoding occur simultaneously, they are
www.sciencedirect.com 
distinct process that can be uncoupled. A well-character-

ized example of these processes is the family of receptor

tyrosine kinases (RTKs). In this case, signalling is initiated

by a ligand binding to its receptor, which leads to receptor

activation and recruitment of intracellular scaffold proteins

[3]. Next, intracellular signalling scaffolds and kinases

amplify the signal and finally, lead to changes in target

proteins that modify the cellular state [4]. For this pathway,

information is transmitted and decoded/processed through

phosphorylation [5], and other post-translational modifica-

tions such as ubiquitination [6,7] or SUMOylation [8]. Key

properties of such a biological decoder are: (1) specificity,

which is the capacity to translate a given input into a

specific output; (2) multiplexing, which is the ability to

process different signals through a relatively limited num-

ber of core components in order to transfer information; (3)

robustness, which is the capacity to maintain signalling

functions despite internal (e.g. levels of signal transducers)

or external (e.g. levels of signalling molecules) fluctuations;

(4) adaptation, which is the ability to adjust the signal

processing network according to the cellular context (cells

within their tissue) and signals that act concomitantly. How

these properties arise from the cellular machinery and

contribute to cell homeostasis and cell fate remain open

questions.

Recent results suggest that both the network topology,

that is, network motifs such as feedback loops [9,10], and

the spatial organization of signalling components

(reviewed in [11]) regulate signalling specificity and

robustness. An important element of the cellular decoder

is endocytosis. Concomitant with receptor activation,

ligand binding also triggers the internalization of the

signalling receptors from the plasma membrane into early

endosomes, where receptors are sorted for degradation to

late endosomes and lysosomes or recycled back to the

plasma membrane to be reutilized (Figure 1). The bal-

ance among internalization, degradation, and recycling,

regulates the ratio of surface receptor and intracellular

pools, and, as such, the sensitivity of the cell to the

concentration of ligand. This particular role of endocyto-

sis on the levels of surface receptors and its impact on

responsiveness to external signals has been extensively

reviewed (e.g. see [12,13]). Here, we focus on novel

insights into the role of the endocytic system as an

essential part of the cellular machinery that decodes

signals for a specific cell fate decision.

Compartmental organization of the endocytic
network
To understand the role of the endocytic system in signal

transduction, we first need to consider the diversity of
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Figure 1
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Model of basic organization of the endocytic pathway. Molecules can be internalized from the plasma membrane either by CME or various forms

of CIE, including macropinocytosis. They can be transported to two distinct types of Rab5-positive early endosomes, distinguished by the

presence of the Rab5 effectors APPL1 or EEA1 and PI(3)P. The arrows indicate the direction of cargo flow between different endocytic

compartments. The two endosomes communicate through a double APPL1 + EEA1-positive compartment. From these endosomes, cargo can

either be recycled to the plasma membrane via tubular carriers, directly or passing through perinuclear recycling endosomes, or transported to

late endosomes and lysosomes. In the course of this process, cargo is incorporated in intra-luminal vesicles (ILV) and degraded. The model,

which is highly simplified, emphasizes the diversity of endosomal compartments where signalling receptors can traffic, with different kinetics while

encountering different adaptors and effectors.
entry routes and endosomal compartments that could

bestow regulation for the decoder. Receptors at the cell

surface can be internalized through several distinct endo-

cytic routes and mechanisms ([14�] and Di Fiore et al., this

issue). The best-characterized pathway in molecular

terms is Clathrin-mediated endocytosis (CME). CME

requires the GTPase Dynamin. Reagents that block its

GTPase activity inhibit CME. Note, however, that Dyna-

min is dispensable for other forms of endocytosis. In

addition to the well-known macropinocytosis and phago-

cytosis, several Clathrin-independent endocytosis (CIE)

mechanisms have been discovered that differ on the basis

of morphological features, cargo specificity, and molecular

requirements [14�]. These include Dynamin-dependent

mechanisms such as caveolae and RhoA-dependent vesi-

cles but also a variety of Dynamin-independent vesicles,

such as Clathrin-independent tubulovesicular carriers

CLIC/GEEC or vesicles that are differentially regulated

either by Cdc42, Arf6 and Flotillin [14�]. Recently, the

protein endophilin, a component of CME, has been

implicated in a form of rapid CIE (Fast endophilin-

mediated endocytosis (FEME); [15]). CIE pathways

can contribute to RTK internalization. For example,

RTKs can be internalized by caveolae [16] and FEME

[15]. The different internalization pathways could lead to

changes in signalling output. For a detailed discussion on
Current Opinion in Cell Biology 2016, 39:53–60 
the mechanisms of endocytosis and their role in signalling

see Di Fiore’s review in the same issue.

All internalization pathways converge at the early endo-

some, where cargo is sorted and transported to subse-

quent compartments (Figure 1). It is important to bear in

mind that these functions result from the collective

properties of several hundreds of individual endosomes

that form a dynamic network. One can view the

early endosome network as a funnel-like system [17,18]

(Figure 2). Endocytic cargo such as RTKs progressively

flow from small endosomes at the cell periphery to large

endosomes in the centre, where eventually early endo-

somes that are positive for the small GTPase Rab5

convert into Rab7-positive late endosomes [19,20]. Pro-

gressively, the internalized receptors are incorporated

into intra-luminal vesicles (ILV), leading to degradation.

The endosomes undergo fusion and fission reactions,

which shape the distribution (in space, number and size)

of the organelles and, thus, the kinetics and fate of cargo

transport in the network.

This organization already provides a simple means to

regulate cargo flow through the network by modulating

the kinetics of transport and, consequently, the duration

of signalling before degradation [21�]. However, recent
www.sciencedirect.com
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Funnel-like organization of the early endosomal network and signalling quanta. Endocytic cargo such as EGF-EGFR complexes internalized from

the surface, for example, via clathrin-coated vesicles CCVs, are transported to Rab5-positive early endosomes (see Figure 1). By tracking

individual endosomes as well as endosomal populations, it was shown that cargo progressively flows from many small early endosomes at the cell

periphery to few large endosomes at the centre, resembling a funnel-like shape distribution of endosomes. This is because early endosomes

progressively undergo fusion and fission reactions, propagating with time cargo to larger endosomes. The kinetics of these two processes as well

as of membrane recycling to the surface shape the distribution of endosomes in terms of number, size and location. The few large Rab5-positive

early endosomes that accumulate in the perinuclear region eventually convert into Rab7-positive late endosomes leading to cargo degradation.

Due to these features, the early endosomal network functions as a digital-analogue computer that regulates specificity and robustness of the

signalling response. Upon internalization, active p-EGFR (single EGF-EGFR red) is distributed and packaged in early endosomes as small clusters

or quanta of p-EGFR (triple EGF-EGFR red), whereas unphosphorylated EGFR is distributed randomly. With time, the number of endosomes with

p-EGFR quanta decreases due to p-EGFR dephosphorylation (EGF-EGFR black) and sequestration into intra-luminal vesicle (ILV), leading to

degradation in late endosomes/lysosomes (EGF-EGFR grey).
evidence further suggests that early endosomes are a

heterogeneous population of distinct organelles in com-

munication with each other. The canonical early endo-

some is defined by the presence of Rab5, and its effectors,

such as EEA1, that are recruited to the membrane in

a phosphatidylinositol 3-phosphate PI(3)P-dependent

fashion [20,22]. Some Rab5-positive early endosomes

contain the effectors APPL1 and APPL2. These endo-

somes are enriched in the sub-cortical region of the cell,

and are devoid of EEA1 and PI(3)P [23,24]. A fraction

(�15–30%) of endosomes contain both APPL1 and EEA1

(APPL1 + EEA1 endosomes [23,24]). It has been pro-

posed that, similar to Rab5-to-Rab7 conversion [19],

APPL1 vesicles are transport intermediates in the gener-

ation of EEA1-positive early endosomes [25,26]. Recent
www.sciencedirect.com 
work, however, has provided evidence for APPL1- and

APPL1 + EEA1 and EEA1 endosomes representing dis-

tinct populations of early endosomes with distinct spatial

distributions and cargo sorting activity. The presence of

distinct classes of early endosomes offers additional

modes of signalling regulation by RTKs, because each

endosome class can sort cargo specifically and provides a

distinct membrane platform for signalling adaptors and

effectors, before transport to late endosomes and lyso-

somes.

Signalling from endosomes
There is an ongoing debate whether signalling from

endosomes is actually required for the signalling re-

sponse. Can signals propagate directly from the plasma
Current Opinion in Cell Biology 2016, 39:53–60
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Table 1

Summary of recently discovered signalling proteins localized to

distinct endosome compartments

Protein Signalling

pathway

Endosome

compartment

Reference

Akt PI3K-Akt APPL+ endosomes [44]

GSK-3b PI3K-Akt, Wnt APPL+ endosomes [44]

GRB2 MAPK (EGFR) Early endosomes [32��]

SHC1 MAPK (EGFR) Early endosomes [35��]

PYK2 JAK/STAT Early endosomes [39]

LAMTOR2 MAPK, mTOR Late endosomes [40]

PTP1B Broad spectrum

phosphatase

ER-late or recycling

endosome contacts

[46,47,49��]

VAV2 PI3K-Rac (c-Met) Uncharacterized

perinuclear endosomes

[33]

KRas MAPK Late endosomes [64]

STAT3 JAK/STAT Early endosomes [65]

Rac1 RTK Early endosomes [66]

Adenylyl

Cyclase

cAMP (TSHR) Uncharacterized

endosomes

[67]
membrane to the nucleus? Are endosomes essential for

signal decoding? Studies using Dynamin knock-out (KO)

cells showed that reduced endocytosis did not prevent

MAPK signalling [27], suggesting that endocytosis is not

an absolute requirement for signal transmission to the

nucleus. However, stimulation with low (physiological)

concentrations of EGF leads to different Erk activation

kinetics in Dynamin KO compared to control cells [27].

Inhibition of receptor CME or ubiquitination changes the

EGF-induced transcriptional response, similar to EGFR

overexpression [28]. Interestingly, stimulating cells with

PMA, a compound known to rewire the signal decoding

network [10], causes substantial changes in the temporal

pattern of the transcriptional response [28], similar to

those produced by inhibition of receptor internalization.

The effect of Clathrin and Dynamin-2 knockdown is less

pronounced than that of PMA, most likely because the

block of EGFR CME can be compensated by CIE

mechanisms [14�,29]. By contrast, reduction of EGFR

degradation by silencing components of the ESCRT

complex (TGS101, Alix) does not affect the EGF-depen-

dent transcriptional response [28], arguing that regulation

of signalling transmission is not due to degradation but

takes place at a previous stage (see below). By blocking

(dynamin-dependent) endocytosis, the levels of active

receptors aberrantly increase at the cell surface. In such an

artificial situation, both the precise temporal activation

pattern of downstream signalling molecules [27] and the

magnitude of the transcriptional response [28] are altered.

These changes can result in incorrect signal decoding

since it is known that altering signalling activation kinet-

ics leads to signalling network rewiring and signal misin-

terpretation [10]. We conclude from these studies that,

although endocytosis may not be strictly necessary for

signal transmission per se, it appears to be required for

correct signal decoding.

Numerous studies have provided evidence that, under

normal conditions, signalling continues following recep-

tor endocytosis in endosomes. Early biochemical work on

EGFR and insulin signalling revealed receptor recruit-

ment of adaptor proteins (SHC, GRB2 and mSOS) in

endosomes [30,31]. Recently, different quantitative tech-

niques have confirmed these initial observations. Live-

cell imaging revealed sustained localization of the fluo-

rescently-tagged signalling adaptor Grb2 to endosomes

[32��]. Phosphorylation of c-Met in endosomes leads to

recruitment of the guanine nucleotide exchange factor

Vav2 and sustained activation of Rac1 [33]. Work using a

conformation specific intracellular nanobody showed that

activation of the b2-adrenoceptor GPCR is sustained in

endosomes, contributing to the overall cyclic AMP re-

sponse [34��]. A recent study using quantitative immu-

nofluorescence and FRET showed that a sub-population

of EGFR remains activated in early endosomes where it

recruits the signalling adaptor Shc [35��]. Importantly,

this study also showed that EGFR was dephosphorylated
Current Opinion in Cell Biology 2016, 39:53–60 
before sequestration into ILVs, arguing that signal

quenching (receptor dephosphorylation) and degradation

can be uncoupled. By contrast to degradation, de-phos-

phorylation is a reversible process and can be exploited to

fine-tune signalling through the endocytic system. Alto-

gether, these findings support the concept that signalling

is not limited to the plasma membrane but continues in

endosomes, which act as signalling platforms.

Qualitative regulation of signalling specificity
by endocytosis
A large fraction of signalling adaptors identified by mass-

spectrometry [36,37] is localized to endosomes (see

Table 1). A recent review of protein databases identified

nearly 50 endosomal scaffolds that could regulate multi-

ple signalling pathways including Wnt, Notch and MAPK

[38]. Furthermore, these scaffolds are localized to specific

endosomal compartments. For example, the kinase PYK2

is recruited specifically to early endosomes, where it

sustains EGFR-mediated STAT3 activation [39]. The

LAMTOR complex is restricted to late endosomes,

where it regulates mTOR and MAPK signalling [40].

This organization allows for different mechanisms of

signalling regulation. For example, sorting of the same

receptor to different compartments can give rise to sub-

stantially different signalling responses and cellular out-

comes. This is the case for the c-Met receptor, which

triggers acute Rac1 activation when transported to early

endosomes but leads to PI3K-dependent and Vav2-de-

pendent sustained Rac1 activation only from perinuclear

endosomes [33]. Table 1 summarizes the localization of

signalling molecules recently found in endosomes.

Several studies have reported interactions of APPL1

with specific receptors and components of signalling

pathways including adiponectin receptors [41], TRAF2
www.sciencedirect.com
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in the NF-kb pathway [42], Akt [43,44], and TAK1 in

the p38 MAPK pathway [45]. These results suggest that

APPL1 endosomes play a specialized function as part of

the signal decoder. In addition, RTKs entering APPL1

endosomes can be temporarily protected from degrada-

tion, as shown by the enhanced ERK activation down-

stream of EGFR [26]. Changing the proportion of cargo

flow between APPL1-early and EEA1-early endosomes

could thus result in changes in signalling.

The endosomal system as an analogue-digital
computer
The cytoplasm is not homogeneous, and the concentra-

tion of molecules can change in space. This means that

the spatial distribution of receptors in the cytoplasm can

modulate signalling. For example, deactivation of signal-

ling receptors is regulated by compartmentalization.

PTP1B, a well-characterized phosphatase of EGFR, loca-

lizes to the ER [46]. This results in a gradient of PTP1B

from the periphery to the perinuclear area of the cell

where the termination of signalling is higher in late [47] or

recycling endosomes [48]. Recent studies on both EphA2

[48] and EGFR [49��] showed that ligand-independent

autonomous activation was suppressed via transport to the

phosphatase-rich perinuclear area, whereas ligand-bound

receptors were transported to early endosomes where

signalling was prolonged. This mechanism could have

a key role in signalling robustness as it allows high

sensitivity while suppressing autonomous activation.

Nano-clusters (less than ten molecules) of activated

receptors or of Ras at the plasma membrane regulate

intracellular signal transduction [50,51,52�,53]. Recent

developments in quantitative microscopy revealed that

active (phosphorylated) EGFR forms small clusters of

�80 molecules on early endosomes [35��]. Increasing the

EGF concentration does not produce larger clusters but a

higher number of clusters. Remarkably, increasing the

number of clusters through a mild reduction in endosome

fusion is sufficient to change the signalling outcome.

These clusters can be considered as quanta of signalling

information that confer regulation and robustness to the

cellular response against fluctuations in ligand or receptor

expression [35��].

Experimental data suggest that quanta formation is an

emergent property of positive and negative feedback

loops between receptor activation and de-phosphoryla-

tion. The positive feedback loop is due to the catalytic

auto-activation of receptors in a cluster [54,55��]. The

activation of EGFR also leads to phosphotyrosine-medi-

ated recruitment and local activation of phosphatases (e.g.

PTPN11/SHP2) in the clusters, thus forming a negative

feed-back loop [35��,56]. Mathematical simulations

showed that such an auto-inhibitory loop, together with

fast phosphatase diffusion into the cytosol can give rise

to self-organized clusters of activated receptors of a
www.sciencedirect.com 
characteristic size [55��], a mechanism first described

by Turing [57]. Since it is known that multiple receptors

can recruit phosphatases to their cytoplasmic tails, quanta
formation is in all likelihood a general property of signal-

ling receptors in endosomes. The formation of p-EGFR

quanta on endocytic membranes by Turing mechanism

has interesting consequences. The endosomal quanta
behave as a digital-analogue computer. Clustering of

activated EGFR on endosomes is equivalent to an ana-

logue-to-digital conversion of signalling. The basic prop-

erties of the endosomal network, such as endosome

fusion, fission and sequestration of receptors into ILV

(Figure 2) allow performing calculus operations (addition

and subtraction) on quanta. For example, the Turing

mechanism ensures that the fusion of two endosomes

each containing a p-EGFR cluster does not result in two

quanta or a cluster of double size, but keeps only one

quantum per endosome. This is similar to the bits addition

in single-bit processors (digital summation by module 2).

Therefore, the kinetics of endosome fusion and fission

(the analogue component) regulates the number and life-

time of the quanta, which in turn modulates signal decod-

ing [35��].

Feed-back regulation of endocytosis
The previous examples underscore the importance of

endosomal sorting for signal transduction. An additional

level of regulation comes from the feedback that signal-

ling pathways exert on the endosomal system itself

(reviewed in [58]). Phospho-proteomic analysis of EGFR

downstream targets identified multiple endosomal pro-

teins [37]. Phosphorylation of endosomal proteins can

lead to substantial changes in cargo uptake and sorting.

For example, Akt-mediated phosphorylation of PIK-

FYVE regulates EGFR degradation [59], whereas p38-

mediated phosphorylation of EEA1 promotes early endo-

some fusion [60]. But even more impressive is the extent

to which signalling pathways regulate the endocytic sys-

tem. Genomic surveys by RNA interference revealed a

profound influence on endocytosis and the endosomal

network by a variety of signalling pathways (e.g. MAP

Kinase, Notch, Wnt, TGFb, among others.) [18,61]. Sig-

nalling molecules can thus modify the endosomal system

by causing specific changes in endosome fusion and

fission, which imply changes in number, size and intra-

cellular position of the endosomes, and consequently, in

the trafficking fate of signalling molecules themselves

[35��,62]. The combined action of simultaneous signal-

ling pathways can lead to a specific spatio-temporal

organization of endosomes that, in turn, can regulate

signalling specificity and responsiveness. This means that

re-adjustment of the endocytic system depending on the

cell state can modify the decoding of signals. Through

this mechanism, endosomes allow for multiplexing, that

is, a weighted integration of different types of signals

which share a common down-stream signalling molecular

machinery, resulting in a unique cell fate decision.
Current Opinion in Cell Biology 2016, 39:53–60
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Concluding remarks
Our understanding of signalling endosomes, first de-

scribed using biochemical techniques, has been greatly

expanded due to the advancement in high-resolution

quantitative microscopy applied to single cells or sub-

cellular structures. A better understanding of these mech-

anisms will require fast live-cell imaging to study spatio-

temporal dynamics with sufficient precision but also

resolving molecular nano-clusters below the diffraction

limit. A current limitation, however, is that signalling

molecules on endosomes have been explored mainly in

cell culture systems. In the context of multicellular sys-

tems, the bidirectional regulation of endocytosis and

signalling may lead to a more complex signal decoding

than appreciated so far. For example, the spatial regula-

tion of VEGFR endocytosis by PKC in retinal vasculature

leads to an endocytosis gradient that is required for vessel

patterning [63�]. Therefore, a major challenge will be to

study the role played by endosomal signalling quanta and

other regulatory mechanisms in physiological processes in
vivo.
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