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1. INTRODUCTION

A frequent problem of categorical data analysis is that a fixed number »
of samples X=(X,, .., X,)€2" is taken from each of N different popula-
tions (families of individuals, clusters of objects). The sample space Z 1is
classified into r categories by a rule

pr X - {1, ., r}.
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Let Y=(Y,,.., Y, ) be the classification vector with the components
representing counts of the respective categories in the sample vector X; i.e.,
let

Y,=#{l<k<n: p(X,)=j}, 1<j<r. (1)
The sample space of the vector Y is denoted by S, ,: ie,

Sor={y=0, )0, n}" y + - +y,=n}

Populations i=1, .., N generate different sample vectors X"’ and the
corresponding classification vectors Y'". The sampled populations are
assumed to be independent and homogeneous in the sense that X', and
consequently Y', are independent realizations of the above considered X
and Y. The 1id. property of the components X, .., X, 1s included as a
special case.

The aim of this paper is to present an extended class of methods for
estimating parameters of statistical models of vectors Y and for testing
statistical hypotheses about these models. Our methods are based on the
so-called ¢-divergences of probability distributions. They include as par-
ticular cases the well-known maximum likelihood method of estimation
and Pearson’s X 2-method of testing.

The classical statistical model of classification vectors Y=(VY,, .., Y,}) is
based on the assumption that the components of sample vectors

X=(X,,..,X,) are 11d. Then the distribution (p(y): ye S, ,) of Y is
multinomial (r-nomial) with parameters » and
m=E(1,1,(X)))=Pr(p(X,))=J), l<j<r, (2)
where 7= (n,, .., 7,) is from the set
nm={n=(n,,.,m)mel),n,+ - +r,=1}
Further, the maximum likelihood estimator (MLE) #=(#,, ... %,) of =,

which is given by the formula

Z Zl (X,

l—] k=1

takes on values belonging essentially to 77, too. The well-known asymptotic
properties of the estimator follow from the Bernoulli law and the
Moivre—Laplace theorem. Analogously, the Pearson statistic

i ﬁ _n01)7
- Ty,
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is under the null hypothesis H: n=n,, ny= (g, ..., Ty,) € 1, asymptoti-
cally distributed as the well-known y?_,.
Extension to the case where the null hypothesis is composite, of the form

H:ne(n(@)ell,. 0 B), ® <= R’ open, s<r—1, (3)

is easy, namely by the method of Birch [ 3] developed for arbitrary discrete
stochastic models. This method employs the MLE # of the unknown
parameter £, defined by the condition 7= r(f,), and the Pearson statistic
with 7(d) plugged-in for the unknown 7, = n(6,),

r(#,—n;(0))

nN —
Jj=1 7[]'(9)

(4)

Under standard regularity conditions for z(#), the estimator 6 is asymptoti-
cally normal with known asymptotic covariance matrix, and the statistic
(4) is asymptotically distributed as y2__ , (cf Birch [3], or Bishop,
Fienberg, and Holland [4]). The last result, in fact, holds for any best
asymptotically normal (BAN) estimator; cf. Read and Cressie [14].

The classical multinomial model is not realistic enough. In practice, the
samples within one population (relatives within one family, objects within
one cluster) are often dependent. If members of the same cluster tend to
respond similarly, then responses from the member of the same cluster will
not be independent and hence the multinomial distribution will not be the
correct distribution for the observed counts.

The first alternative to the multinomial model of Y= (Y,, .., V,), result-
ing from a certain model of mutually dependent variables p(X,), ..., p(X,),
has been proposed by Cohen [6] and Altham [2]. In fact, they proposed
the mixed model p(y)=(1—a) p*(y)+ap**(y), 0<a<1, where p* is
the multinomial with parameters 7, ..., 7, and p** has the mass 7, residing
at the jth extremal point (0,..,0,1,0,..,0) of S, ,. Later Brier [5]
proposed the Dirichlet-multinomial model p(y), analyzed formerly by
Mosimann [13], with parameters n, n=(=n,,..,n,), and a nuissance
parameter K> 0.

Within the frameworks of their respective models, the cited authors have
considered null hypotheses under which the normed expectation n~'E(Y)
is a I1,-valued function #(#)=(7m(8), .., n,(6)) on the same parameter
space @ as that considered in (3). They restricted themselves to the MLE
# and to the normed sample means #=n"'Y. By employing methods
parallel to that of Birch [3], they proved that the statistic formally identi-
cal with (4) has, under the same regularity conditions for n(f) as those
considered by Birch, the same asymptotic distribution as (4).

The present paper exploits the observation that the last result remains true
for more general models of classification vectors Y than those considered by the
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cited authors. Therefore, we consider all models with regular normed
IT -valued expectations n(f) and suitable covariance matrices V(8).
Moreover, the MLE is replaced by a quasi-likelihood estimate & (cf, e.g.,
McCullagh and Nelder [ 11]), where the estimating function is an arbitrary
¢-divergence between the observed sample means # and the theoretical
means 7(0). The MLE is a special case obtained for an appropriate ¢. Also
the X *-statistic (4) is replaced by a more general ¢-divergence between the
observed and estimated means 7 and n(8). It is proved that if the estimate-
defining ¢ 1s smooth enough then the estimate is BAN. If also the
divergence-defining ¢ is smooth then the asymptotic distribution of the
statistic can be evaluated. This means that the corresponding ¢-divergence
statistics can be used in testing hypotheses about the classification models
under consideration. Asymptotically a-level goodness-of-fit tests are found
for these statistics. Optimality of ¢ for these tests is investigated in the last
part of the paper.

¢-divergences Dy(p, g) of probability distributions p, ¢ have been intro-
duced by Csiszar [8] and, independently, by Ali and Silvey [1] as the
expected values of likelihood ratio functions ¢( p/g), where ¢(u) is convex.
Quasi-likelihood estimates # which maximize the ¢-divergence D,(p, p(0))
between empirical and theoretical probability distributions have been
studied by a number of authors; see Morales et al. [12] and references
therein. The MLE 6 is the ¢-divergence estimator for ¢(u)=wIn u. The
¢-divergence alternatives D (g, p(6)) to the statistic 2 AP pj((}))z/pj(é),
which is the ¢-divergence for ¢(u)=(u— 1), with the MLE estimate &,
have been introduced by Cressie and Read [7] and studied later in Read
and Cressie [ 14] Salicrt et a/. [15], and Morales et al. [ 12]. Note that in
this paper the ¢-divergence estimators and statistics are applied to properly
normalized means # and z({)} and not to probability distributions.

2. THE MODEL AND THE PROBLEM

Let us look in more detail at stochastic models of classification vectors
Y=(Y,.. Y,) represented by probability distributions p=(p(y): yve S, ,)
As explained in Section 1, each model p is obtained from the distribution

q(jl’ ""jn) = Pr(pl :jl’ kil pnzjn)’ (jls Al jn)e { 1’ ey r}"’

of classification (p,, .., p,)=(p(X)), .., p(X,)) of individuals observed in
each population, according to

I

Y,= 3 1,(ps) 1<j<r (cf (1))

k=1



DIVERGENCE-BASED ESTIMATION 333
We consider the normed means
n=(n,,.,n)=n"'E(Y) (5a)
taking on values in I7,, and the variances-covariances
V=(Vyi,.1=E(Y—-EY))(Y—-EY))) (6a)

It is easy to see that the formulas

nj=%Zk)qk(j), (5b)
Vi= g @ (1)1 = qil(J)) +k§m (Geml J)—4x(J) 4ulj)),  (6D)

and
V,-,-=k§m (qk, mlts J) = @i(0) gl 7)) —; 7(i) 4i(J) (6¢c)

hold for the marginals

a(j)=Pr(p,=j), 1 <k<n,
qk,m(i!j)=Pr(pk=i’ pm:j)’ 1<k, msn, k;ém,

of the primary distribution gq.
We shall need the normed sample means

N
A=n"'F=(nN)"' ¥ ¥Y© (7)

i=1

for the sample YV, .., Y™ iid. by p. By the strong law of large numbers,
fi—m as. (here, as well as everywhere in the sequel, the asymptotics are
considered for N — oo). Therefore we may assume that

nell,, rell,,
where the second relation holds asymptotically, on sets with probabilities
approaching 1 exponentially.

The estimation and testing in this paper are based on the ¢-divergence
Dy(#, n) between stochastic vectors # and n. We recall that the

683/54/2-13
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¢-divergence between arbitrary probability distributions has been intro-
duced by Csiszar [8] and Ali and Silvey [ 1] for functions ¢(«) convex on
(0, oo ). If u, ve 11, then

Dy(u,v)=Y v¢(’f—> (8)
J

j=1

Well-known are the I-divergence

I, v)=z;1jln%, du)=ulnu, {9)
J=1 7
and the X’-divergence
. ( "'"V')z 2
Y=Y 2V gy =(1—w? (10)

j=1 Vi
Both (9) and {10) are particular cases of divergences considered by Cressie
and Read [7] and defined in (21a)-(22b) below. For more examples and
general properties of ¢-divergences we refer to Liese and Vajda [9]. In this
paper we restrict ourselves to ¢-divergences (8) with ¢(u) continuously
differentiable in a neighborhood of =1 and ¢"(1) #0.

Special attention will be paid to models for which there exists ¢, > 0 such
that

V=c,(diagn—n'n). (11)

Note that here and in the sequel diag{y,, .., y,) denotes the diagonal
matrix with entries y,, .., y, at the diagonal.

The following assertion is essentially due to Cohen [6] (r=2) and
Altham [2] (general n).

LEMMA. If there exist a = (o, ..., ) and (o), such that

4G=q(J), %y =g i ) (12)

Sfor all k and m considered in (5b) and (6b, 6¢), respectively, and if there
exists 0 <a <1 such that

ay=(1—a) o2, +a%,8,()), (13)

g
then the corresponding model p satisfies (11) for ¢c,=n+n(n—1)a.

Proof. Under (12) it follows from (6b) that

V.

=1 —a) +n(n—1)(a,;— o)
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and from (6c) that

Vi=n(n—1){a,—a,a)—noex

G %% %
Inserting (13) one obtains

V,=c,a,(1 — ), Vi= —c,oq;

for ¢, given by the lemma. Finally, (5b) implies « =z which completes the
proof.

In the following example, and in the sequel,

( y >= Iy+1
ExampLE | (Multinomial). Let for n=(n,, .., n,)ell,

q(jls sees jn) = nj] o nj,,'

Then (12) holds for « =z (so that (5a) holds; i.e., our notation is consistent
with (5a)) and «;; =7, 7;. Therefore (13) is satisfied with a=0. By Lemma,
(11) holds for ¢, =n. Here p is r-nomial with parameters » and 7, ie.,

hn ,
pua:< )ﬂ“~ﬂ% yes, .
Vi Vp

ExampPLE 2 (Cohen [6]; Altham [2]). Let g* be the same as ¢ in
Example 1 and

7zj if j1="'=jn=j’

X Yo I )=
g**(Jrs s Jn) {0’ otherwise.

Consider 0 <c <1 and put ¢g=(1—c¢)g* + cg**. Then (12) holds fora=n
(the notational consistency of the previous example holds) and

a;=(1—c)m,n,+cm; 8,(j).

Therefore (13) holds for a=c¢ and, consequently, (11) holds for
¢,=n+n{n—1)c In this model

)= =) p*)+cp**(y),  yeS,.,,
where p* is the r-nomial distribution of the previous example and

m; if y=n,
p**(y)={ !

0, otherwise.
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ExaMmpLE 3 (Brier [5]). Denote the distribution of Example 1 by
q(Jys - ju/m), consider on [1, the Dirichlet density

K-1 Kmy~1 Kn,— 1
f""((x)_<Knl—l~-~K7t,—l>xl B

with parameters = and K> 0, and define

q(jl» e jn) =J‘ q(jh ] jn/x)fn.K(x) dx'

1,

Then, in accordance with Example 1,

n . N
P{)‘)=< )J‘ x'l”“‘x':'fn.x(xl,---,x,)dxl---dx,
Yv v/ n,

~< n >< K—1 >/‘< n+K-—1 )
Ay, /\Kn,—1---Kn,—1)/\y, +Kn,—1---y,+Kn,— 1)

This is the so-called Dirichlet-r-nomial distribution with parameters a, x,
and K. As shown by Brier [5] with a reference to Mosimann [13], the
vector of parameters n in this example satisfies (5a), and (11) holds for
c,=n(n+ K)/(K+1). In the lemma this corresponds to a=(K+1)~".

If n=1 then the classification model considered in this paper is equiv-
alent to the classical discrete model of statistical inference with sample
space {1,..,r} and probabilities =, .., n,. Indeed, there is a one-one
correspondence between the random vectors

YeS,,={(1,0,..,0),(0,1,...0) .. (0, ..0,1)

and the random variables Z = p(X) taking on values 1</ <r with
probabilities Pr(Z = j) equal to

n,=E(1,(Z))=Pr(Y;=1)  (cf.(1),(5a)).

To formulate precisely the problems studied in this paper, consider a family
P =(py: 8 ®) of probability distributions on S, , with the same @ as in
(3). We consider the composite hypothesis

H:pe?. (14)

The exact meaning of (14) is that the true distribution p of Y equals p,
where 6,€ @ is an unknown true parameter value. One of the two
problems we solve is to find a suitable statistical a-level test of H. The other
problem is to find under H a suitable consistent point estimator of §,. The
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tests and estimators are assumed to be based on the sample YV, ., YV
with independent components distributed by py,.

Since the unknown parameter varies over @, we consider the parameteric
functions

n=n(0), V= Wa#), feco,

defined by (5a) and (6a) with p replaced by p,.

The only restriction on the hypothesis H in this paper is the regularity
of n(#) summarized in assumptions (Al)-(A3). Such assumptions have
been considered already for Birch [3]. The first regularity assumption is
quite natural.

(Al) The mapping inverse to # — n(#) exists and is continuous at 8.

In the next assumption we consider the gradient V=(3/86,, .., 8/08,), the
rxs Jacobian of n(#) with row vectors Vz,(#), denoted by J(f) and the
particular values J,=J(f,) and 7, = (7q;, ..., o) = 7(04).

(A2) The mapping =(f#) is continuously differentiable in an open
neighborhood of 4, so that

(r(8) = 7o) =Jo(0 —8p)" + o0 —boll)  for 60— 6,

In the last assumption we consider the vectors = (7], , ..., n3,) defined for
all real «; more precisely, we refer to the r x s-matrix 4 = diag ny '2J,,

(A3) The rxs-matrix A'A4 is positive definite.

3. ESTIMATION

In this section we consider the estimation problem introduced in
Section 2. An estimator 6 is a sequence of measurable functions
6,(Y'", ., Y™)) taking on values in ©. This estimator is consistent if §
tends in probabilAity to 6,. It is ¢ -consistent if |6 — 6, = O,(c3").

An estimator # is said to be a minimum ¢-divergence estimator (briefly
M¢E) if

6= arg min D,(#, n(8)).

Note that the estimators minimizing ¢-divergence between the sample-
based empirical distribution and theoretical distributions under the
hypothesis (14) were considered by many authors (see, e.g., the references
in Vajda [6]). The estimators minimizing ¢-divergences between sample
means and their theoretical expectations seem to be new. This approach is
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a variant of the well-known method of moments and for ¢(u)=ulnu in
Example 1 it coincides with the maximum likelihood method.

The following theorem summarizes asymptotic properties of minimum
divergence estimators § and, also, properties of the function n(#) for
references later.

THEOREM 1. Let assumptions (A1)-(A3) hold and let us consider the
matrices

—1/2 V(()())

—di T Yol ~1/2
B=diag n, o

diag ',
(15)
C=A(A4'4)"", D=CA'=A4(A'4)"" 4"

Then for all convex functions ¢(u) under consideration the MGEQ satisfies
the asymptotic relations

f— 0, a.s., (16a)
0=0,+ (7 — 1) diag ny '2C+ (1 +0,(1)), (16b)
N0 —80,) - N0, C'BC)  in law, (16¢)

n(0) =my+ (£ — 7o) diag g 2D diag n}2 + (1 +0,(1)),  (16d)
N'"(n(0) — ny) — N(0, diag n; 2 DBD diag z}/*)  in law. (16e)
Proof (a) By (Al), (16a) holds if
|7zU—7r(9)l -0 a.s.,

where |-| denotes the absolute norm of vectors from R’ The triangle
inequality and symmetry of this norm imply

Iy —7(0)] < |mg — &| + | — 7(6)].

By the strong law of large numbers, |7, — 7| — 0 a.s. By the definition of 8
and the theorem about the range of ¢-divergences in Liese and Vajda [9],

$(1) < Dy(#, 7(0)) < D (7, ny),

where Dy(#, my) » ¢(1) as. Therefore Dy(7, R(é))—i(ﬁ(l) as. But, by
Proposition 949 in Vajda [16], this implies |# —#z(6)] -0 as. As said
above, this is sufficient for (16a).

(b) By the central limit theorem, it follows from (7) and (6a) that

NY(# — ) — N(O, n=2V(0,))  in law. (17)
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In particular,
17— moll = O,(N ~'7). (18)

Now consider the vector function ¥(q, 8)=VD(q, n(0)) of variables
q=1(4,,..49,)€4, and fe@. It holds that

¥(q, 6)=h(q, 0) J(0),

where h(q, 8) =(h,(q, 8), .., h,.(q, 8)) is a vector function with components

_ % N 9 9
hf(q’g)’¢<n,<e)> n,(6)¢<nj(6)>‘ (1)

Consequently,

a ¢ (m)
— ¥(q,0)= — " —= | Vn(8).
2, (g,6) n}(a)d’ (0) (6)
Takigg into account (18), the convergences #— 7,, n(f)—m,, and
Vr,(8) = Vn;(8,) (cf (16a), and the continuous differentiability of n(f) in

(A2)}, one obtains from the mean value theorem

W%, §) — Hn,, 0) = —¢"(1) Z Vr,(6,)

j=1 0

= —¢"(1)(# —7,) diag g A+ 0, (N ). (20)

(ﬁj - 770]) + Op(N - 1/2)

Let us now evaluate ¥(x,, ) for 8 from the neighﬂborhood of 8, by apply-
ing the mean value theorem to the function h(n,, €) (cf. (19)). It holds that
hi(mg, 0o) =¢(1)—¢'(1) and, by (16a) and the mean value theorem,

. Vi (0,)(0 —6,)
h,(no,0)=¢(1)—¢’(1)+¢”(1)A(L—°)+(1+o,,(1))

0j
or, equivalently,
h(ng, ) =c+¢"(1)(0— 8y) A diag 252 + (1 +0,(1)),

where ¢ is the r-vector of constants ¢(1) —¢'(1). Any such vector satisfies
the identity ¢J(#) =0 on ©. Therefore, by definition,

P(r, 0) = ¢"(1)(0 — 0,) A* diag 7y V2I(B) + (1 +0,(1)),

where, by (16a) and (A2), the matrix A'diag z;'2J() tends as. to the
matrix A'4 which is positive definite by (A3).
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Now, by the definition of estimate f, W(#, 6) = 0. Hence we obtain from
the last formula and (20) the identity

3 (100 —04) = ¢"(1)(# — 1) diag 7y 2A(A'A) "+ 1+0,(1).

By the assumption ¢”(1} 0 and (17), (16b) follows from here.
(c) The convergence (16¢) follows from (16b) and (17).

(d) Employing as in (b) the mean value theorem and taking into
account (16b), one obtains (16d).

(e) The convergence (16¢) follows from (16d) and (17). Q.E.D.

Note that the assumptions of the present paper concerning ¢ are satisfied
by the nonnegative convex functions

— —1
Polu)= Lfliq . a#0,  a#l, (21a)

as well as by their limits
dolt)=—Ilnu+u—1, d(wy=ulnu—u+1. (21b)

The corresponding distances are defined in accordance with (8) by

D, v)=

<Z oy '*”-1) (22a)

a(a

or by the corresponding limits,

r

Diipv)=Y s lnf% Dilu, v) =D, (v, ) (22b)
j=1
This family of distances defines a family of estimators ', ae R.

An interesting problem is how to choose a convex function ¢ such that
the corresponding M@E 6 is optimal. The solution obviously depends on
the optimality. If the optimality is represented by the asymptotic variance
of §¥ then it follows from Theorem | that, in the models satisfying

)-(A3), all M¢E’s under consideration are equivalent. But for finite
sample sizes N the variances of these estimators depend on ¢ and the stated
problem becomes nontrivial. Similar methods as used in Section 5 can be
employed, e.g., to demonstrate that there exist values a € R optimal for the
above-considered estimators #‘“. An alternative approach based on a
residual adjustment function has been presented recently by Lindsay [10].
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4. TESTING

In this section we consider the testing problem and related concepts and
assumptions of Section 2. By Theorem 1, the point estimator § assumed in
Theorem 2 below may be the M@E for convex ¢ under consideration. The
function ¢ in Theorem I may of course differ from the ¢ considered in
Theorem 2.

THEOREM 2. Let M be an r x r-matrix and let 0 be a point estimator such
that

m(0) =my+ (£ —no) M+ o0, (N 7). (23)
Then for every convex ¢ under consideration

RN(D (%, n(é))—qﬁ(l))—»ﬂ;l—) Z LZE in law, (24)

j=1

where Z; are mutually independent standard normal random variables and
4; 20 are eigenvalues of the matrix

V(8
L = diag n(;”z(I—M)‘-%l(I—M)diag ng 2. (25)

Proof. Under (23),
#=n(0) = (# —mo)(I— M) +o0, (N~ 7).
It follows from here and (17} that
N'2(# —n(d)) diagng > - N(O,n"'L)  in law
for the matnix L defined by (25), and also
(% —n(0)) diag n(0) "' = (£ — n(0)) diag my ' + 0 (N 7).
Therefore,
(nN)'2 (# — n(0)) diag n(6) "2 > N(O, L)  in law.

It is well known that if a sequence of random r-vectors U= 0™ and an
rx r-matrix L satisfy U — N(0, L) in law, and L has eigenvalues 4,, .., 4,,
then

00'> Y 4Z:  inlaw,

i=1
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where Z, are independent N(0, 1). Applying this to
U= (nN)"2 (# — n(0)) diag n(§) 17>
and, using the obvious identity
00 =nNX¥#, n(0)  (cf (11)),

one obtains

\.

aNX2(#, n(8)) Z zZ? in law, (26)

where 4; and Z, are defined in accordance with Theorem 2. The non-
negativity of eigenvalues follows from the fact that L is a covariance
matrix.

Taking into account that the XZ-divergence defined by (11) is
¢ . -divergence for ¢ (u)= (1 —u)?, where ¢,(1)=0 and ¢,(1)=2, we see
that (24) is proved for ¢ = ¢,. The desired extension follows from the fact
that if #=2"" and #=#‘"" are arbitrary sequences of random vectors
with values in =z,, satisfying the asymptotic condition

I —moll = O(N"'2),  |f—mo) = O N~'73), (27)
then for every ¢ under consideration

D, (#,7)=¢(1) ¢“ XA, &)+ 0N ") (28)

Indeed, (24) follows from (26) and (28). Thus it remains to prove that (27)

implies (28). To this end consider coordinates #; and 7%, of vectors # and
#. By Taylor’s theorem,

7 7 1 ¥ \/#; 2
6(3)=om+om (2= )30 (ﬁ)(f—l) ,
n; , 2 ; us
where n*, n** are r-vectors with the norms ||z* — 7y, ||n** — 7./} bounded
above by || — 7l [# — m,ll, respectively. By (8),

D, (%, #) ¢(1)+ Z 9" (—-)——f———
J—l n
¢"(

=¢(1)+‘—2“X( 2 +Z™,
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1/¢ nt
(NYy __ _ wl 7 N g
z —2<E1¢ (n}"*) ¢(1)>.

By (27), ZN=0,(N ). Q.ED.
If (A1)-(A3) hold then the estimators § of Theorem 1 satisfy (23) for

where

M =diag ny '?4(A'A) " A" diag =} (29)
In this case Theorem 2 can be made precise as follows.
CororLARY.  Let (A1)—(A3) hold. If the model satisfies (11), ie., if
V(8,) = ¢, (diag ny — o) (30)

Jfor some positive real c,, then for all convex functions ¢, ¢, under considera-
tion and the M¢  E 0,

in law. 31

r—s—1

A "(1
nN(D, (2, (0 — (1)) 22 D)2

Proof. Assumptions of Theorem 2 hold for M given by (29). We shall
prove that, under (A1)-(A3), (29), and (30), the matrix (25) satisfies the
relation

L=%(I—(7z(‘,"2)'7z(l,/2—D), (32)

where

)t = (nd, .., ny?)
and D is given by (15). Analogously as on page 517 of Bishop, Fienberg,
and Holland [4], under (32) it suffices to prove that the matrix
I—(ny/*)! nl* — D is idempotent with the trace r —s— 1. The idempotence
is clear from the relations

n*D=D(ny*)'=0, D'D=D,

where the first one follows from the obvious equalities

r . r

on on;
124 _ o4/2—127 _ J -7
"o 4 To Mo JO <j§1 aHl (80)’ w jgl a91 (00))
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(cf. definitions of 4 and J, in Section 1) and the second one is clear from
the definition of D. Futher,

Tr(l)=r, Tr({ny?) ng?) =1,

Tr{(D)=Tr(A'4) ' A'4)=s (cf. (A3)).
Therefore it suffices prove (32). To this end take into account that, by (29),

(I— M) diag n, '? = (diag n, ' diag n))> — M) diag n; '
=diag ny (- D)
and, by (30),
diag my "2 V(8,) diag ny ' = (I — (ry?)' nl?).
Therefore, by (25),
Lz%(l—D)‘ (I— ()t nl?)(I— D).

By multiplying the matrices and taking into account the above relations for

7, and D one obtains (32). Q.E.D.

The corollary offers a family of asymptotically a-level tests
(T, x2 . (1 —a): ¢ € @) of the hypothesis (14) for the class @ of convex
functions considered in this paper. The test statistics are defined by

2n2N A
TV = D (#, n(8)) — ¢(1 (33
(,n¢,,(1)( ol ) —¢(1)) )
and the critical values are the (1 — a)-quantiles y2 , (1 —a) of y>-distributed

random variable with r — s — | degrees of freedom. The estimates @ figuring in
(33) are the M¢, E’s for ¢, € @. There are thus two “free parameters” of the
testing procedure under consideration, namely the functions ¢, ¢, e®. A
particular solution of the problem of optimal choice of these parameters,
namely the optimal choice of ¢, is considered in Section 5 below.

Examples 1-3 illustrate situations where the above considered tests can
be applied. In practical applications, however, the value ¢, defined by (11)
and figuring in (33) might be unknown. In the models satisfying the
assumptions of the lemma in Section2, one can use the fact that
n<c,<n? If one is uncertain about the assumptions of the lemma, he can
use the sample-based approximation

nZ

N _
"'N=(N—1)(r~l),§] 7, (6)

5
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As shown by Brier [5], ¢, y consistently estimates ¢, under (11). Therefore
the replacement of ¢, by ¢, » preserves the considered asymptotic distribu-
tion of the statistic (33).

Remark. Throughout the paper we suppose that a fixed number n of
samples X, .., X, is taken from each of N independent populations. This
assumption is often violated (e.g., due to missing values in some popula-
tions). But the extension of our results to this more general situation is
relatively easy. Suppose that the populations can be clustered into a fixed
number of groups indexed by y which differ only in that the number of
samples n =n, varies with the group. Denote by N, the number of popula-
tions in the group y (so that N=3% N.) and replace the assumption
N— oo by N,— o0 by N,— oo for each y. Then all above stated results
hold separately for each population group.

We shall describe the extension of the corollary to the union of all
groups under the assumption that in each group the model satisfies (11)
with the vector of parameter n = (=, .., n,) not depending on y (or on »,
which is, in the given context, equivalent). Put for brevity

Zo=diag ny— gy g for my=mn(8,)

and

. Cp,
M,=diag ny '? X, diag n, '3, B,=-2M,.
n
;

Denote by #, the normed samplp mean in the group y defined by (7)
with n, N replaced by n,, N,. Let 6, be an estimator satisfying (16d) with
B replaced by B,. Finally, define
Z,N,%, ﬁ:zynyNyn(éy) S e N,

Z,n N/ Z,nN, ~’ (Z,c, N

ﬁ:
By (16d)
#=mo+ (% —m,) diag ny ' D diag 7y + o,(min N 7'?), (16d*)
7
#— 7= (% —no)(I— D) +o,(min N 7'72), (16dx+)
y
and by (17)

vt —my) = N(O, 2y) in law. (17%)
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Combining (16d#x*) and (17%) one obtains

w7 — 7) diag n, "2 — N(0, D),
where

L=diag n;'*(1—D)' Zo(I— D) diag n; '

and, by a similar argument as in the proof of the corollary,

L=~ (ng"*) ng "2 = D).
Combining (16d=) and (16d**) one obtains from here

w# — #) diag # Y2 — N(O, L).

Finally, by repeating essentially the argument of the proof of Theorem 2
and its Corollary, one obtains from here that for every ¢ under considera-
tion

¢"(1) ,

I’Z(D¢(7?,ﬁ)ﬂ¢(1))->T)(,,x,l in law.

This is an extension of (31) which leads to generalized test statistics (33).
If there is only one group with n,=n then v’ = Nn®/c, and the last result
reduces to (31).

5. CHOICE OF ¢

In this section we investigate the problem of optimal specification of ¢ in
the test statistic (33) for a fixed sample size N. The aim is to demonstrate
that the choice of ¢ has significant practical consequences, rather than to
present a practically significant solution.

As pointed out in Section 2, the model of classification considered in this
paper is for n =1, equivalent to the classical discrete statistical model with
sample space {1, ..,r} and probabilities 7, .., n,. In the classical discrete
model the problem of optimal choice of ¢ from the special family
(¢,: ae R) defined by (21) has been studied by Cressie and Read [7]. We
extend their study to the classification model of the present paper. Our
results obtained for arbitrary » may thus be verified by putting n =1 and
comparing with their results.

The methods used here are similar to those of Cressie and Read. We
therefore omit motivation or justification of these methods. In particular,
(14) is replaced by the simple hypothesis H: n=n,€ H,.



DIVERGENCE-BASED ESTIMATION 347

Further, we restrict ourselves to the model of Brier [5] described in
Example 3. The test statistics are thus assumed to be defined by (33) for
c,=n(n+ K)/(K+1) (cf. Example 3) and for distances D,(u,v), ae R,
defined by (22).

Some of these distances are well known. As follows from (22b) and (10),

Di(u,v)=1pu,v), Do(u, v)=Iv, u)
(in general, D (u, v) =D, _ (v, u) for all ae R). Further,
Dyp, v) = X*(u, v),
D_i(u,v)y=X*v,u)  (cf (11) and (22)).
It is easy to see that D (u, v) =2H 2(u, v) for the Hellinger metric distance
r 12
(£ )"
j=1

In general, D (u, v) are monotone functions of the distances of Renyi
[17] given (in the variant extended to all real a#0, a# 1 by Liese and
Vajda {9]) by the formula

1
ala—1)

R, (u,v)= In Y uivi~

i=1

coinciding with them at a=0 and a=1. The special case R,,(u, v)/4 is
known as the Bhattacharyya distance. The sum M(a)=2,u;’v}”” is the
moment generating function of log likelihood ratio of 4 and v under the
hypothesis v.

The Renyi distances play an important role in information theory and in
the statistics of random processes. All results obtained in this paper for D,
can easily be reformulated for R, (the corresponding minimum distance
estimators coincide).

In accordance with Cressie and Read [7] we use the modified parameter
i=a—1; ie., we consider the tests (T*, y2 (1 —a)) of Section 3, where
O<a<l, Ae R, and T'* is defined by (33) with ¢ replaced by ¢, , and
n(0) replaced by n,. In other words, we substitute in (33) ¢(1)=0,
#"(1)=1, and

Dy (#, n(0)) =D, , (#, m).
Therefore,

Tm:an

D, ,(#, 7o) (34)

H
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for c,=n(n+ K)/(K+1). Some well-known particular cases of statistics
ND,, (#, =n,) are presented in Table I, which is also helpful for orientation
in the results that follow.

First we present a computer-based analysis of optimality in the class of
tests

(T, 2 (1 —a)), AeR. (35)

This analysis consists in the computation of the actual size and power of
these tests. The computations were restricted to the symmetric hypothesis
H with the normed expectations mo=(r"", .., r~') and to alternatives H
for 6e(—1, r—1) with the normed expectations

J é 6>

n(6)=n0+<—r(r_l),.‘., THr—1)r)

The computed quantity is the probability

2nN
Ps;=Pr <C_Dl+i(7ia 710)>th1 (1 —O‘HH&)

n
for

{i)
Y >

1

=

I ™=

1
nN ,

where YV, . Y™ are iid. realizations of ¥ with

_ N Kn(8)—1---Kn (3)—1
PI’(Y—yIHa)-(yl“'yr)( n+ K—1 >
i+ Kn(8)—1--y,+Kn (5)—1

TABLE 1

Statistics ND, , ;(#, my) = ND (#, n)

A a symbol name

Pearson’s X

G- Log likelihood ratio

T°  Freeman-Tukey

Modified log likelihood ratio
MX? Neyman modified X7

o
<
)

|

— O bl —
g
<
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for every y=(y,, .., y,)€S, ,. The value P, , is thus the actual size, and
P;_; for #0 is the actual power of the test (35) applied in the model of
Example 3.

Our computations have been carried out for a = 0.05 and r =4, also con-
sidered by Cressie and Read. Further, we have chosen N=5 and n=4 in
order to obtain the same overall sample size, nN =20, as considered by
these authors. For K tending to infinity, the model of Example 3 tends to
the r-nomial with parameters n,, .., n,. Therefore the results of our com-
putations for large K must coincide with those of Cressie and Read. The
other extreme, namely K=0, leads again to the results of the type of
Cressie and Read, but with the reduced sample size N =5. We decided for
K “in the midle” between these two extremes, namely for X = 5. The results
of our computations are presented in Table II. The computation error is
less than 0.01.

The results of Table II seem to be more interesting from the point of
view of practical small-sample applications of the tests (35) than analogous
results of Cressie and Read:

(a) The actual size of the tests (35) differs too much from the
designed size a =0.05 for A outside the interval —1<A<2. Inside this
interval one can take the power as the criterion of test optimality

(b) The monotonicity of power in A found by Cressie and Read is
not observed here. Instead, for § = —0.9 we see a dramatic peak of power
in the neighborhood of A= —1.

TABLE 11
Probability Ps ;, for N=K=5and n=r=4

J
A 1.5 0.5 0 -09
-5 0.83 0.57 0.48 0.39
-2 0.56 0.25 0.18 0.25
-1 0.72 0.16 0.08 0.22
-3 0.71 0.16 0.08 0.72
-03 0.69 0.15 0.08 0.71
0 0.70 0.14 0.07 0.65
0.3 0.69 0.11 0.05 0.36
4 0.71 0.11 0.05 0.29
1 0.70 0.11 0.04 0.22
2 0.78 0.16 0.07 0.22
5 0.89 0.31 0.19 0.51

Note. The test size for 0 =0; the test power for
d#0.

683/54/2-14
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(c) All classical goodness-of-fit tests, defined by 1 equal 1,0, —1,
and —2 (cf. Table I}, are problematic from the point of view of the power.
The celebrated Pearson X7’-test defined by A=1 seems to be most
problematic.

(d) The least problematic (optimal in 2 mimimax sense) seems to be
the Freeman-Tukey 7 -test defined by A= —1.

One can also conclude from TableIl, and to some extent also from
the analogous table of Cressie and Read, that (i) the optimality of tests
(T 2 (1 —a)), ¢ € D, for finite N significantly depends on the choice of
¢, and (i1) there is no hope of finding a test universally best for a greater
variety of statistical models. Such a test cannot be chosen even among the
tests (35) for the relatively narrow class of Dirichlet-multinomial models.
Therefore positive conclusions concerning some tests in Cressie and Read
[7] or here are valid only within the framework of the considered assump-
tions and one has to be very careful in extrapolating these conclusions
beyond this framework.

Our analytic method of evaluation of optimal A€ R for the tests (35) is
based on the assumption that a test is better, the closer 7'* is to ¥ . The
peculiarity of this approach to the test optimality is further sharpened by
the next step. Namely, aiming at compatibility with the approach of Cressie
and Read, we measure the distance between 7'*' and y?_, by the absolute
deviation of expectations. Thus by the optimization of 4 we mean the
minimization of

|E(T'#) = E(x} ).

Next we show that, for large N, zero deviation is achieved in the

neighborhood of two points A, and 4,, where 4, =1 is constant and 2,

depends on the hypothesis parameters n, and model parameters (n, r, K).
By Taylor expansion of D, (%, n,) around 7 =n, we get

~ 1 r - , ;t_l r -
Dy tmo) =3 T my Wit = ¥ m W)
J= J=1
TR
Lz b=2)

54 Y, o, Wi+ O (N 77,

j=1
where

. 1 X , .
sznj—”oj:;;]g Y (YO —E(Yi"Y).

=1
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By (6b) and (7),
2 C,,
E( Wj):mnoj(l _7[01'),

so that

| (r—=1c¢, c¢,Ex*_))
E - -| 2 — n_"n r l‘
<2,§, o W ,) 20N 21N

Therefore, E(T*) — E(x¥?_,) is equal to

(A—U)nN & _ (A—1)(A=2) L B
T Z nosz( W;)+—Tcn——Nn Z 7[013E( W;)-I-O(N 32y,

j=1 j=1

By the definition of W, above
E(W}y=n">N"[E(Y])=3nnq, E(Y}) + 2nny]
and
E(WH=n"*N " [E(Y})—4nno, E(Y})+ 3(N — 1 )(E(Y}))?
+6mg,n*(2~ N) E(Y})+3n*(N—2) 3]
Neglecting the terms of order O(N ~*) one obtains from here

E(T(A))‘—E(X371) =N*la(l9 ron, K)+ 0(N~3/2),

where
a=a(i,r, n, K):;;rr_zc—l,,<b+%_rz_2€>
for
b= i no, E(Y})—3n ‘Z o E(Y2) + 2n (36)
i=1 j=1
and
c=3 zr: o (E(Y}))* —6n’ i ny E(Y7)+3n*, (37)

Jj=1 j=1
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The expectations figuring in (36) and (37) are explicitly given as

ngn(n—1) K+ mgn(n+ K)

E(Y})= K+1 '
<7r3,n(n2—3n)+2)K2+K3n5,-n<"2+"[’<—”“K]
+mo;n(2n* + 3Kn + K?
E(Y;)z 0 )

(K+ 1)(K+2)

Thus our result is that in the classification model of Example 3 the
optimal large-sample tests (35) are obtained for

b=l and =2 (38)
where b, ¢ are given by (36) and (37).

We see that the value 1, defines the classical Pearson’s X >-test. The other
test which is optimal in the stated sense is defined by A,, ranging over the
whole real line when n, r, K, and n, vary arbitrarily in their respective
domains. One can expect that in large-sample applications of tests (35), the
size of optimal tests (7%, y2 (1 —a)) and (T*", y2 (1 —a)) will be best
fitted to the designed value 0 <« < 1. Table II indicates that the actual size
of tests (35) may depart very significantly from « so that the present
optimality 1s statistically meaningful. This table also implies that this
optimality is lost when the sample size becomes small. Indeed, one obtains
from (36)-(38) that 4, =222 for (n, r, k)=(4,4,5) and for the uniform =,
considered in Table I, but the actual sizes of (T'",x2(0.95)) and
(T'**2, x2(0,95)), deductible from Table II are not fitted to o =0.05.

The powers of tests (7%, yZ_,(0.95)) and (T, y? ,(0.95)) need not be
the same as those demonstrated to some extent by Table II too. The
preference between them in practical applications can be decided by
calculating an analogue of the corresponding two rows in Table II. The
choice of alternatives H; used in these calculations may, of course, be not
as simple as in Table II, which is dealing with the special symmetric
hypothesis H.

Let us now look in more detail at the particular case of the symmetric
hypothesis H with z,=(r ', .., r~1). Then

n(n—l)K+rn(n+l{w)
rr(K+1)

E(Y;)=

and
n(n®>—3n+2) K>+ 3mK[n* +n(K—-1)—K]
< +r®n(2n® + 3nK + K?) )
K+ 1)0{K+2)

E(Y})=
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so that, by (36) and (37),
HEK+1INK+2)=n(n?—3n+2) K2+ 3m[n’+n(K—-1)—K]
+rm(2n* +3nK+ K*) —3n[n(n—1) K+ rm(n+ K)]

x (K+2)+2n(K + 1)K +2)

and
A(K+1)Y2=3[nn—1)K+rn(n+K)]?
—6n*[n(n—=1)K+rm(n+ K)]+ 3n*(Kn)~
Therefore,
L b_m2r 43K+ KY) (K1)
re o € 3n¥n+K)> (K+1)}K+2)
=(2n2+3nK+K2)(K-+-1)
3nn+ K (K+2)
and, by (38),
2 2
Jim 4, = 2_;_1(2;1 (:inlf)j(ll((jr(;+ = (39)

Thus for large r the explicit specification of the optimal test
(T, ¥ (1 —a)) is simple and easy.

For K — oo (the case considered in Section 4 of Cressie and Read [7],
with the overall sample size nN), as well as for n=1 and arbitrary K> 0
(the same case, but with the overall sample size N), we obtain in (39) the
limit value

Jp=2—d=2 (40)

which coincides with the limit value found already by Cressie and Read.
Hence the large-sample results of the present section are consistent with an
extend those of Cressie and Read [7]. In particular, it remains true for the
classification models under consideration that the test (7%, y>_ (1 —a))
is a practically interesting alternative to the Pearson’s XZ2-type test
(T, x2_ (1 —a)), provided the normed expectations in hypothesis (14)
are close to (r~',..,r" ") and r is large.
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