Linear Transformations on Matrices:
The Invariance of Generalized Permutation Matrices—III

Hock Ong*
University of Toronto
Toronto, Ontario, Canada

Submitted by Marvin Marcus

ABSTRACT

Let F be a field, F^* be its multiplicative group, and $\mathcal{K} = \{ H : H$ is a subgroup of F^* and there do not exist $a, b \in F^*$ such that $Ha + b \subset H \}$. Let D_n be the dihedral group of degree n, H be a nontrivial group in \mathcal{K}, and $\Gamma_n(H) = \{ \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) : \alpha_i \in H \}$. For $\sigma \in D_n$ and $\alpha \in \Gamma_n(H)$, let $P(\sigma, \alpha)$ be the matrix whose (i, j) entry is $\alpha_i \delta_{m(i)}$ (i.e., a generalized permutation matrix), and

$$P(D_n, H) = \{ P(\sigma, \alpha) : \sigma \in D_n, \alpha \in \Gamma_n(H) \}.$$

Let $M_n(F)$ be the vector space of all $n \times n$ matrices over F and

$$\mathcal{T} P(D_n, H) = \{ T : T$ is a linear transformation on $M_n(F)$

to itself and $T(P(D_n, H)) = P(D_n, H) \}.$$

In this paper we classify all T in $\mathcal{T} P(D_n, H)$ and determine the structure of the group $\mathcal{T} P(D_n, H)$ (Theorems 1 to 4). An expository version of the main results is given in Sec. 1, and an example is given at the end of the paper.

1. INTRODUCTION

Let F be a field, $M_n(F)$ be the vector space of all n-square matrices with entries in F, and \mathcal{U} be a subset of $M_n(F)$. It is of interest to determine the structure of linear map $T : M_n(F) \to M_n(F)$ such that $T(\mathcal{U}) \subseteq \mathcal{U}$. For example Dieudonné [1] showed that if $\mathcal{U} = \{ X \in M_n(F) : \det(X) = 0 \}$ then T is of the

*The present mailing address of the author is 826, Pandamaran N/V, Port Klang, Selangor, Malaysia.

I.LINEAR ALGEBRA AND ITS APPLICATIONS 15, 119–151 (1976) 119

form

\[T(X) = UXV, \quad X \in M_n(F) \quad \text{or} \quad T(X) = U'XV, \quad X \in M_n(F), \]

(1.1)

where \(U, V \) are invertible matrices and \(\mathcal{T} \) is the transpose of \(X \); Marcus [3] showed that if \(\mathbb{U} \) is the unitary group, then \(T \) is also of the form (1.1), where \(U, V \) are unitary and \(F = \mathbb{C} \). Other results in this direction can be found in [4]. In [5], [6] we consider \(\mathbb{U} \) to be a set of generalized permutation matrices relative to some permutation group (set) and with entries in some nontrivial subgroup of \(F^* \), the multiplicative group of \(F \). More precisely, let \(S_n \) be the symmetric group acting on the set \{1, 2, ..., n\}, and if \(S \) is a subset of \(F \) define

\[\Gamma_n(S) = \{ \alpha = (\alpha_1, \alpha_2, ..., \alpha_n) : \alpha_i \in S \}. \]

If \(\alpha \in \Gamma_n(F^*) \) and \(\sigma \in S_n \), then \(P(\sigma, \alpha) \) is the matrix whose \((i, i)\) entry is \(\alpha_i \delta_{\sigma(i)} \) (where \(\delta_{ij} = 1 \) if \(i = j \) and 0 elsewhere), and we call \(P(\sigma, \alpha) \) a generalized permutation matrix. If \(G \) is a nonempty subset of \(S_n \) and \(H \) is a subgroup of \(F^* \), we define

\[P(G, H) = \{ P(\sigma, \alpha) : \alpha \in \Gamma_n(H) \text{ and } \sigma \in G \}, \]

\[\mathcal{P}(G, H) = \{ T : T \text{ is a linear transformation on } M_n(F) \text{ to itself and } T(P(G, H)) = P(G, H) \}, \]

\[\mathcal{S}(G, H) = \{ S : S \text{ is a linear transformation on } M_n(F) \text{ to itself and } S(P(G, H)) \subseteq P(G, H) \}. \]

Let

\[\mathcal{K} = \{ H : H \text{ is a subgroup of } F^* \text{ and there do not exist } a, b \in F^* \text{ such that } Ha + b \subseteq H \}. \]

The set \(\mathcal{K} \) is not empty. For examples, \(F^* \) is in \(\mathcal{K} \) for every field \(F \), every nontrivial finite subgroup of \(F^* \) is in \(\mathcal{K} \), and every subgroup \(H \) of the unit circle \(\{ z : |z| = 1 \} \) of the complex plane and \(|H| > 2 \) is in \(\mathcal{K} \) [5]. But if \(F \) is a subfield of \(\mathbb{R} \), the real field, then \(F^* = \{ x \in F : x > 0 \} \) is not in \(\mathcal{K} \), since \(F^* + 1 \subseteq F^* \). Also, if \(F \) is a finite field of characteristic \(p > 2 \), then the trivial
group $H = \{1\}$ is not in \mathcal{H}, since $(p-1)H+2 = H$, but for $p=2$, the group $\{1\}$ is in \mathcal{H}. In [5] we classify the T in $\mathcal{T}(G,H)$ and determine the structure of the group $\mathcal{T}(G,H)$ when G is a regular subset or a doubly transitive subset (subgroup) of S_n and H a nontrivial group in \mathcal{H}. In [6] the T in $\mathcal{T}(G,H)$ when G is a regular subset of S_n and H is a nontrivial group in \mathcal{H} has been characterized. In this paper we shall classify the T in $\mathcal{T}(D_n,H)$ and determine the structure of $\mathcal{T}(D_n,H)$, where D_n is the dihedral group of degree n and H is a nontrivial group in \mathcal{H}.

Recall that the dihedral group D_n of degree n is the subgroup of S_n generated by the two elements g,h, where $g(i) = i + 1$, $i = 1,2,\ldots,n-1$; $g(n) = 1$, and where $h(1) = 1$; $h(i) = n - i + 2$, $i = 2,3,\ldots,n$. Let $g = g^{i-1}$, $i = 1,2,\ldots,n$. Then we may write $D_n = \{g,g,h : i = 1,2,\ldots,n\}$, and the diagonals are as follows shown in Fig. 1 ($n = 6$; solid lines denote the diagonals g_i, dotted lines the diagonals $g_i h$).

\[g_1 \quad g_2 \quad g_3 \quad g_4 \quad g_5 \quad g_6 \]

\[x \quad x \quad x \quad x \quad x \quad x \]

\[x \quad x \quad x \quad x \quad x \quad x \]

\[x \quad x \quad x \quad x \quad x \quad x \]

\[x \quad x \quad x \quad x \quad x \quad x \]

\[g_6 h \quad g_1 h \quad g_2 h \quad g_3 h \quad g_4 h \quad g_5 h \]

FIG. 1.

Roughly speaking, if $n = 3$ or $n > 5$ we prove that T is in $\mathcal{T}(D_n,H)$ if and only if T corresponds to some particular permutation among the diagonals $g_i g_i h$, $i = 1,2,\ldots,n$ and then each entry is multiplied by an element in H. More precisely, we denote by $S(\{x_1,x_2,\ldots,x_n\})$ the symmetric group acting on the set $\{x_1,x_2,\ldots,x_n\}$; by $(x_1 x_2 \cdots x_r)$ the cycle σ such that $\sigma(x_1) = x_2, \sigma(x_2) = x_3,\ldots, \sigma(x_r) = x_1$; by \circ the usual function composition; by 1 the identity permutation; and we write $g_i h = g_i + i$, $i = 1,2,\ldots,n$. Then apart from multiplying each entry by an element in H, we have $T \in \mathcal{T}(D_n,H)$ if and only if T transforms the ordered $2n$-tuple $(g_1, g_2, \ldots, g_{2n})$ to $(g_{\psi(1)}, g_{\psi(2)}, \ldots, g_{\psi(2n)})$ where for n odd and $n > 3$, ψ is in the subgroup $S_n \circ S(\{n+1,n+2,\ldots,2n\}) \circ \{1,(1n+1)(2n+2)\cdots (n2n)\}$ of S_{2n}, and for n even and $n > 6$, ψ is in the subgroup ψ in the subgroup ψ.
\[S\left(\{1,3,\ldots, n-1\}\right) \circ S\left(\{2,4,\ldots, n\}\right) \circ S\left(\{n+1,n+3,\ldots, 2n-1\}\right)\]

\[\circ S\left(\{n+2, n+4,\ldots, 2n\}\right)\]

\[\circ \left\{1,(12)(34)\cdots (n-1)n(n+1n+2)\cdots (2n-12n)\right\}\]

\[\circ \left\{1,(1n+1)(3n+3)\cdots (n-12n-1)\right\} \circ \left\{1,(2n+2)(4n+4)\cdots (n2n)\right\}\]

of \(S_{2n}\). For example, for \(n = 6\) if \(T \in \mathcal{T}\left(\mathcal{P}(D_6,H)\right)\), one possibility is as shown in Fig. 2 and Table 1 (solid lined diagonals are transformed to solid lined diagonals and dotted lined diagonals to dotted lined diagonals). Thus

\[
\begin{array}{cccccc}
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
\end{array} \quad \rightarrow \quad \begin{array}{cccccc}
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
\end{array}
\]

\[
\begin{array}{cccccc}
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
\end{array} \quad \rightarrow \quad \begin{array}{cccccc}
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
X & X & X & X & X & X \\
\end{array}
\]

Fig. 2.

<table>
<thead>
<tr>
<th>(T) transforms</th>
<th>the set of diagonals</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>({g_1,g_3,g_5})</td>
<td>({g_2,g_4,g_6})</td>
<td></td>
</tr>
<tr>
<td>({g_2,g_4,g_6})</td>
<td>({g_1h,g_3h,g_5h})</td>
<td></td>
</tr>
<tr>
<td>({g_1h,g_3h,g_5h})</td>
<td>({g_2h,g_4h,g_6h})</td>
<td></td>
</tr>
<tr>
<td>({g_2h,g_4h,g_6h})</td>
<td>({g_1,g_3,g_5})</td>
<td></td>
</tr>
</tbody>
</table>

An example of this type is given at the end of the paper.
The main results will be stated in Sec. 5.
2. MORE DEFINITIONS AND NOTATION

Let 0 denote the additive identity of F, and 1 denote the multiplicative identity of F. The matrix with 1 at the (i, j) position and 0 elsewhere will be denoted by $E_{i,j}$. If $\alpha \in \Gamma_n(F)$ is the sequence all of whose entries are equal to 1, we write $P(\alpha)$ for $P(\sigma, \alpha)$ and call $P(\sigma)$ the permutation matrix corresponding to σ. The n-square matrix all of whose entries are 0, the matrix all of whose entries are 1, and the identity matrix will be denoted by O_n, I_n, I_n respectively (or O, I, I if no ambiguity arises). If $A = (a_{ij})$ is an n-square matrix, let A denote the matrix whose (i, j) entry is $a_{i,n-j+1}$ for all $i, j = 1, 2, \ldots, n$. If $n = 2m$ is even, we denote by A_o the matrix whose (i, j) entry is a_{ij} if $i + j$ is even and 0 otherwise, and let $A_o = A - A_o$. If $A = (a_{ij})$ and $B = (b_{ij})$ are n-square matrices, then their Hadamard product $A \ast B = (c_{ij})$ is the matrix defined by $c_{ij} = a_{ij}b_{ij}$. If A is an n-square matrix and B is an m-square matrix, then $A \oplus B$ will denote their direct sum. If $X = (x_{ij}) \in M_n(F)$ and $\sigma \in S_n$, then X_σ is the matrix whose (i, j) entry is x_{ij} if $\sigma(i) = j$ and 0 otherwise.

If H is a subgroup of F^*, let $M_n(H)$ be the set of all n-square matrices with entries in H. It is easy to see that the set $M_n(H)$ with the operation Hadamard product form a group, which will be denoted by $M_n(H)$. Under the correspondence

$$A \mapsto (a_{11}, a_{12}, \ldots, a_{1n}, \ldots, a_{n1}, a_{n2}, \ldots, a_{nn}),$$

where $A = (a_{ij}) \in M_n(H)$, it is obvious that $M_n(H)$ is isomorphic to the direct product $H \times H \times \cdots \times H$ (n^2 times).

A chain of subgroups of a group G', $G_k < G_{k-1} \cdots < G_1 < G_0 = G'$, is a composition series if each G_i is a maximal normal subgroup of G_{i-1}, $i = 1, 2, \ldots, k$. If G_1 is a normal subgroup of G_2, we write $G_1 \triangleleft G_2$. If S is a finite set, $|S|$ will be the order of S. If S is a set of η a mapping of S into S, we denote the image of $s \in S$ under η by s^η or $\eta(s)$. Suppose G', K are two groups and for every element $g' \in G'$ we are given an automorphism of K, $k \mapsto k^{g'}$ for all $k \in K$, such that

$$(k^{g'})^{g''} = k^{g'g''}, \quad g', g'' \in G'.$$

Then the symbols $\langle g', k \rangle$, $g' \in G'$, $k \in K$, form a group under the rule $\langle g', k_1 \rangle \cdot \langle g'', k_2 \rangle = \langle g'g'', k_1 k_2^{g'} \rangle$, which is called the semi-direct product of K by G' and will be denoted by $\langle G', K \rangle$.
The linear transformations \(U, R \) on \(M_n(F) \) to itself are defined as follows:

\[
U(X) = XP(g^{-1}), \quad R(X) = X, \quad X \in M_n(F).
\]

For \(\sigma \in S_n \) let \(D(\sigma) = \{ (i, \sigma(i)) : i = 1, 2, \ldots, n \} \). For \(T \in \mathbb{P}(D_n, H) \) and \(\sigma \in D_n \) let \(T(\sigma) = \{ T(E_{\sigma(i)}): i = 1, 2, \ldots, n \} \).

If \(n (=2m) \) is even, let \(G \) be the subgroup of \(S_n \) generated by the transpositions \((i i + m), i = 1, 2, \ldots, m; K_n \) be the subgroup \(\{ \sigma \in S_n : \sigma \text{ maps even integers into even integers} \} \) of \(S_n \); and \(V \) and \(\Lambda(\lambda_1, \lambda_2, \ldots, \lambda_n) \), \(\lambda_1, \lambda_2, \ldots, \lambda_n \in G \), be the linear transformations on \(M_n(F) \) to itself defined by

\[
V(X) = X_0 + R(X, P(g^{-1})),
\]

\[
\Lambda(\lambda_1, \lambda_2, \ldots, \lambda_n)(X) = \sum_{i=1}^{n} P(\lambda_i)X_{i}P(g_{\lambda_i}g_i^{-1})
\]

and

\[
\Lambda = \{ \Lambda(\lambda_1, \lambda_2, \ldots, \lambda_n) : (\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G \}.
\]

In Sec. 3, for any integer \(p \) we denote by \(\langle p \rangle \) the remainder of \(p \) in \(\{1, 2, \ldots, n\} \) after dividing by \(n \), i.e., we work modulo \(n \) using \(\{1, 2, \ldots, n\} \) as a system of distinct representatives.

3. THE MAPPINGS \(\varphi_i, \theta_i \)

It is well known that the subgroup \(D'_n = \{ g_i : i = 1, 2, \ldots, n \} \) of \(D_n \) is regular and \(D_n = D'_n \cup D'_nh \). Hence for each pair \((i, j), 1 < i, j < n \), there exist exactly one \(k \) and one \(l, 1 < k, l < n \), such that \(g_k(i) = j \) and \(g_lh(i) = j \) or \(g_k(i) = g_lh(i) \). We then define

\[
\varphi_k(i) = l \quad \text{and} \quad \theta_l(i) = k.
\]

Since \(g \) is the full cycle \((12 \cdots n), g^k(i) = \langle k + i \rangle \) for \(i, k = 1, 2, \ldots, n \). Hence

\[
g_k(i) = g^{k-1}(i) = \langle k + i - 1 \rangle, \quad i, k = 1, 2, \ldots, n
\]

and

\[
g_lh(i) = g^{l-1}h(i) = \langle l - (i - 1) \rangle, \quad i, l = 1, 2, \ldots, n.
\]
Now $g_k(i) = g_lh(i)$ implies that $l = k + 2(i - 1)$ and $k = l - 2(i - 1)$. Hence
\[\varphi_k(i) = \langle k + 2(i - 1), i, k = 1, 2, \ldots, n \]
and
\[\theta_l(i) = \langle l - 2(i - 1), i, l = 1, 2, \ldots, n. \]
Consequently, if $i \neq j$, then $\varphi_k(i) = \varphi_k(j)$ or $\theta_k(i) = \theta_k(j)$ if and only if $\langle 2(i - j) \rangle = n$—i.e., if n is odd, then $\varphi_k, \theta_k, k = 1, 2, \ldots, n$, are in S_n, and if n is even, then $\varphi_k(i) = \varphi_k(i + n/2), \theta_k(i) = \theta_k(i + n/2)$ for $k = 1, 2, \ldots, n, i = 1, 2, \ldots, n/2$. Also $\varphi_k(i), \theta_k(i)$ are even if and only if k is even for $i = 1, 2, \ldots, n$, where n is even.

4. THE GROUPS $\langle S_n \times S_n, M_n(H) \rangle$ AND $\langle K_n \times K_n, M_n(H) \rangle$

Let H be a subgroup of F^*. We first assume that n is an odd positive integer. Then $\varphi_k, \theta_k \in S_n$ for $k = 1, 2, \ldots, n$. For $(\tau, \nu) \in S_n \times S_n$ and $A \in M_n(H)$ we define
\[A^{(\tau, \nu)} = \sum_{i=1}^n P\left(\varphi_{\tau(i)}^{-1} \nu \varphi_i \right) A_{g_i} P\left(g_i \varphi_i^{-1} \nu^{-1} \varphi_{\tau(i)} g_i^{-1} \right), \quad (4.1) \]
i.e., for $i = 1, 2, \ldots, n$, (τ, ν) permutes the entries within the g_i-diagonal of A by $\varphi_{\tau(i)}^{-1} \nu \varphi_i$ and then transforms the entries in the g_i-diagonal to the $g_{\tau(i)}$-diagonal. For $A, B \in M_n(H)$, since A_{g_i} and B_{g_i} are g_i-diagonal matrices, it can be shown that $(A \ast B)^{\tau, \nu} = A^{(\tau, \nu)} \ast B^{(\tau, \nu)}$, and clearly $A^{(\tau, \nu)} = J$ if and only if $A = J$. Therefore (τ, ν) is an automorphism of $M_n(H)$. Also, if $(\tau, \nu), (\sigma, \mu) \in S_n \times S_n$ and $A \in M_n(H)$, it can be shown that $(A^{(\tau, \nu)})^{(\sigma, \mu)} = A^{(\sigma, \mu)(\tau, \nu)}$. For $(\sigma, \mu), (\tau, \nu) \in S_n \times S_n$ and $A, B \in M_n(H)$ define
\[\left\langle (\sigma, \mu), A \right\rangle \cdot \left\langle (\tau, \nu), B \right\rangle = \left\langle (\sigma, \mu)(\tau, \nu), A \ast B^{(\sigma, \mu)} \right\rangle \]
and denote by $\langle S_n \times S_n, M_n(H) \rangle$ the corresponding semi-direct product of $M_n(H)$ with $S_n \times S_n$.

Next assume that $n = 2m$ is a positive even integer, and define $1 < q_j^{-1} \nu \varphi_{\tau(j)}(i) \leq m$ if and only if $1 < j < m$ for all $1 < j < n$ and $\tau, \nu \in K_n$. Now by the definition of q_{i}, the numbers $q_{i}(i), i = 1, 2, \ldots, n$, are even if and only if j is even; thus $q_{j}^{-1} \nu \varphi_{\tau(j)}$, $j = 1, 2, \ldots, n$, are well defined and are in S_n. Now for $(\tau, \nu) \in K_n \times K_n$ and $A \in M_n(H)$ define
\[A^{(\tau, \nu)} = \sum_{i=1}^n P\left(\varphi_{\tau(i)}^{-1} \nu \varphi_i \right) A_{g_i} P\left(g_i \varphi_i^{-1} \nu^{-1} \varphi_{\tau(i)} g_i^{-1} \right), \quad (4.2) \]
Then, as in the case where \(n \) is odd, it can be shown that \((\tau, \nu)\) is an automorphism of \(M_n(H) \). Also, since \((q_{\sigma(i)}^{-1} \mu q_{\tau(i)} q_{\nu(i)}^{-1} q_{\tau(i)}^{-1} \mu q_{\nu(i)})=q_{\sigma(i)}^{-1} \mu q_{\nu(i)}, i=1,2,\ldots,n,\) for \((\sigma, \mu), (\tau, \nu) \in K_n \times K_n\) it follows that \((A^{(\tau, \nu)}(\sigma, \mu))=A^{(\sigma, \mu)}(\tau, \nu),\) \(A \in M_n(H)\). Hence for \(A, B \in M_n(H) \) and \((\sigma, \mu), (\tau, \nu) \in K_n \times K_n\) we define

\[
\langle (\sigma, \mu), A \rangle \cdot \langle (\tau, \nu), B \rangle = \langle (\sigma, \mu)(\tau, \nu), A \ast B^{(\sigma, \mu)} \rangle
\]

and denote by \(\langle K_n \times K_n, M_n(H) \rangle \) the semi-direct product of \(M_n(H) \) with \(K_n \times K_n\).

In the following we shall define

\[
1 \leq q_{\sigma(i)}^{-1} \mu q_{\nu(i)}(f), q_{\sigma(i)}^{-1} \mu q_{\nu(i)}(f) \leq m \quad \text{if and only if} \quad 1 \leq f \leq m
\]

for \(\sigma, \mu \) both in \(K_n \) or \(K_n g \) unless otherwise stated.

5. MAIN RESULTS

Let \(D_n \) be the dihedral group of degree \(n \), and \(H \) be a nontrivial group in \(\mathcal{K} \). If \(T \in TP(D_n, H) \) and \(n=3 \) or \(n \geq 5 \), then for \(1 \leq i, j \leq n \) there exist \(1 \leq p, q \leq n \) and \(\alpha_i \in H \) such that

\[
T(E_{ij}) = \alpha_i E_{pq}
\]

and for distinct \((i, j) \) we have distinct \((p, q) \), i.e., the matrix representation of \(T \) is a generalized permutation matrix with respect to the usual basis \(\{E_{ij}; i, j=1,2,\ldots,n\} \) (Lemmas 3 and 6). Furthermore we prove the following results.

Theorem 1. If \(n \) is odd, \(n \geq 3 \), and \(H \) is a nontrivial group in \(\mathcal{K} \), then \(T \in TP(D_n, H) \) if and only if there exist \(\sigma, \mu \in S_n \) and \(\alpha_k \in H, k, l=1,2,\ldots,n, \) such that

\[
T(E_{kg}(k)) = \alpha_{kg}(k) E_{g^{-1} g_i} \mu g_i(k), g_i(0) g_i(1) \mu g_i(k), \quad i, k=1,2,\ldots,n \quad (5.1)
\]

or

\[
T(E_{kg}(k)) = \alpha_{kg}(k) E_{g_i(0) g_i(1) \mu g_i(k), g_i(0) g_i(1) \mu g_i(k),} \quad i, k=1,2,\ldots,n. \quad (5.2)
\]
THEOREM 2. Suppose n is even, $n \geq 6$, and H is a nontrivial group in \mathcal{K}. Then $T \in \mathcal{F}(D_n, H)$ if and only if either

(i) there exist $\sigma, \mu \in K_n$ or $K_n g_i$, $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times G \times \cdots \times G$ and $\alpha_{kl} \in H$, $k, l = 1, 2, \ldots, n$, such that

$$T(E_{\lambda_g, (k)}) = \alpha_{kg, (k)} E_{\lambda_{\omega(k)} \theta_{g(k)} \sigma(k), \mu_{g(k)} \eta_{g(k)}}(k), \quad i, k = 1, 2, \ldots, n; \quad (5.3)$$

(ii) there exist $\tau, \nu \in K_n$ or $K_n g$, $(\kappa_1, \kappa_2, \ldots, \kappa_n) \in G \times G \times \cdots \times G$ and $\alpha_{kl} \in H$, $k, l = 1, 2, \ldots, n$, such that

$$T(E_{\kappa_g, (k)}) = \alpha_{kg, (k)} E_{\kappa_{\omega(k)} \theta_{g(k)} \sigma(k), \mu_{g(k)} \eta_{g(k)}}(k), \quad i, k = 1, 2, \ldots, n, \quad (5.4)$$

or

(iii) there exist $\omega, \omega', \pi, \pi' \in K_n$ or $K_n g$, $\alpha_{kl} \in H$, $k, l = 1, 2, \ldots, n$; for $i \in \Omega_1$ there exists $\lambda^{(i)} \in G$; and for $i \in \Omega_2$ there exists $\kappa^{(i)} \in G$, such that for $i \in \Omega_1$,

$$T(E_{\lambda_g, (k)}) = \alpha_{kg, (k)} E_{\lambda_{\omega(k)} \theta_{g(k)} \sigma(k), \mu_{g(k)} \eta_{g(k)}}(k), \quad k = 1, 2, \ldots, n; \quad (5.5a)$$

and for $i \in \Omega_2$,

$$T(E_{\kappa_g, (k)}) = \alpha_{kg, (k)} E_{\kappa_{\omega(k)} \theta_{g(k)} \sigma(k), \mu_{g(k)} \eta_{g(k)}}(k), \quad k = 1, 2, \ldots, n \quad (5.5b)$$

where $\Omega_1 = \{2i - 1: i = 1, 2, \ldots, m\}$ or $\{2i: i = 1, 2, \ldots, m\}$, and $\Omega_2 = \{1, 2, \ldots, n\} - \Omega_1$.

Generally speaking, Theorems 1 and 2 state that for $n = 3$ or $n > 5$, if T is in $\mathcal{F}(D_n, H)$, then T is a composition of three linear transformations, i.e., $T = T_3 \circ T_2 \circ T_1$, where T_1 permutes the entries within each diagonal, T_2 permutes the diagonals, and T_3 multiplies each entry by an element in H. For example, in (5.4), T_1 permutes the entries at the positions $(k, g_i(k))$, $k = 1, 2, \ldots, n$, by $\eta = \kappa^{(i)} \theta^{(i)} \sigma^{(i)} \omega^{(i)}$, i.e., T_1 transforms the entry at the position $(k, g_i(k))$ to the position $(\eta(k), g_i(k))$; T_2 transforms the entries in the diagonal g_i to the diagonal $g_{\tau^{(i)}(k)} h_i$, i.e., T_2 transforms the entry at the position $(\eta(k), g_i(k))$ to $(\eta(k), g_{\tau^{(i)}(k)} h_i(k))$; and T_3 multiplies the entry at $(\eta(k), g_{\tau^{(i)}(k)} h_i(k))$ by $\alpha_{kg, (k)}$ in H. Recall the notation in Sec. 1. For $n = 3$ or $n > 5$ and $T \in \mathcal{F}(D_n, H)$, $T_2 \circ T_1$ is, in fact, equivalent to a permutation among the diagonals g_i, $g_i h_i$, $i = 1, 2, \ldots, n$, i.e., T transforms the ordered $2n$-tuple $(g_{\xi_1}, g_{\xi_2}, \ldots, g_{\xi_{2n}})$ to $(g_{\psi_1}, g_{\psi_2}, \ldots, g_{\psi_{2n}})$. More specifically, for n odd and $n \geq 3$, T is (5.1) if and only if ψ is in the group $S_n \circ S((n + 1, n + 2, \ldots, 2n))$, and T is (5.2) if and only if ψ is in $S_n \circ S((n + 1, n + 2, \ldots, 2n))$.
For n even and $n > 6$, if we write
\[G_1 = S(\{1,3,\ldots,n-1\}) \circ S(\{2,4,\ldots,n\}) \]
\[\circ S(\{n+1,n+3,\ldots,2n-1\}) \circ S(\{n+2,n+4,\ldots,2n\}), \]
\[\alpha = (12)(34) \cdots (n-1n)(n+1n+2) \cdots (2n-12), \]
\[\beta = (1n+1)(3n+3) \cdots (n-12n-1), \]
\[\gamma = (2n+2)(4n+4) \cdots (n2n), \]
then we have the correspondences in Table 2.

<table>
<thead>
<tr>
<th>T is</th>
<th>if and only if ψ is in</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5.3) with $\sigma, \mu \in K_n$</td>
<td>G_1</td>
</tr>
<tr>
<td>(5.3) with $\sigma, \mu \in K_n g$</td>
<td>$G_1 \circ \alpha$</td>
</tr>
<tr>
<td>(5.4) with $\tau, \nu \in K_n$</td>
<td>$G_1 \circ \alpha \circ \beta \circ \gamma$</td>
</tr>
<tr>
<td>(5.4) with $\tau, \nu \in K_n g$</td>
<td>$G_1 \circ \alpha \circ \beta \circ \gamma$</td>
</tr>
<tr>
<td>(5.5) with $\omega, \omega', \pi, \pi' \in K_n$ and $\Omega_1 = {1,3,\ldots,n-1}$</td>
<td>$G_1 \circ \gamma$</td>
</tr>
<tr>
<td>(5.5) with $\omega, \omega', \pi, \pi' \in K_n$ and $\Omega_1 = {2,4,\ldots,n}$</td>
<td>$G_1 \circ \beta$</td>
</tr>
<tr>
<td>(5.5) with $\omega, \omega', \pi, \pi' \in K_n g$ and $\Omega_1 = {1,3,\ldots,n-1}$</td>
<td>$G_1 \circ \alpha \circ \gamma$</td>
</tr>
<tr>
<td>(5.5) with $\omega, \omega', \pi, \pi' \in K_n g$ and $\Omega_1 = {2,4,\ldots,n}$</td>
<td>$G_1 \circ \alpha \circ \beta$</td>
</tr>
</tbody>
</table>

Regarding the structure of the group $\mathcal{G}P(D_n, H)$, we have

Theorem 3. Let n be odd, $n > 3$, and H be a nontrivial group in \mathcal{K}. If $\langle (\alpha, \mu), A \rangle \in \langle S_n, XS_n, M_n(H) \rangle$ we define

\[X^{\langle (\alpha, \mu), A \rangle} = \Lambda \sum_{\substack{i=1}}^{n} P(q_{\alpha(i)}^{-1}q_{\mu(i)}^{-1}q_{\alpha(i)} q_{\mu(i)}^{-1} q_{\alpha(i)} q_{\mu(i)}^{-1}), \quad X \in M_n(F), \]
then \(\mathcal{T}P(D_n, H) \) is equal to the group

\[
\langle S_n \times S_n, M_n(H) \rangle \circ \{ I, R \}.
\]

As an abstract group, there exists a subgroup \(\mathcal{H}_1 P(D_n, H) \) of index 2 in \(\mathcal{H}P(D_n, H) \), and \(\mathcal{H}_1 P(D_n, H) \) is isomorphic to the group

\[
\left\langle S_n \times S_n, H \times H \times \cdots \times H \right\rangle. \quad n^2 \text{ times}
\]

If \(|H| \) is finite, the order of \(\mathcal{H}P(D_n, H) \) is \(2(n!)^2 |H|^{n^2} \).

Theorem 4. Suppose \(n \) is even, \(n \geq 6 \), and \(H \) is a nontrivial group in \(\mathcal{H} \). If for \(\langle (\sigma, \mu), A \rangle \in \langle K_n \times K_n, M_n(H) \rangle \) we define

\[
X^{\langle (\sigma, \mu), A \rangle} = A \ast \sum_{i=1}^{n} P(\varphi_{A(i)}^{-1} \mu \varphi_i) X g_i P(g_i \varphi_i^{-1} \mu^{-1} \varphi_{A(i)}^{-1} g_{A(i)}^{-1}), \quad X \in M_n(F),
\]

then \(\mathcal{H}P(D_n, H) \) is equal to the group

\[
\Lambda \circ \left\langle K_n \times K_n, M_n(H) \right\rangle \circ \{ I, U \} \circ \{ I, R \} \circ \{ I, V \}.
\]

As an abstract group, \(\mathcal{H}P(D_n, H) \) has subgroups \(\mathcal{H}_i P(D_n, H) \), \(i = 0, 1, 2, 3 \), such that

\[
\mathcal{H}_1 P(D_n, H) \triangle \mathcal{H}_2 P(D_n, H) \triangle \mathcal{H}_3 P(D_n, H) \triangle \mathcal{H}P(D_n, H)
\]

is a composition series, \(\mathcal{H}_1 P(D_n, H) \triangle \mathcal{H}P(D_n, H) \), \(\mathcal{H}_0 P(D_n, H) \) is a subgroup of index \(2^{n^2/2} \) in \(\mathcal{H}_1 P(D_n, H) \), and

\[
\mathcal{H}_0 P(D_n, H) \cong \left\langle K_n \times K_n, H \times H \times \cdots \times H \right\rangle, \quad n^2 \text{ times}
\]

\[
\frac{\mathcal{H}P(D_n, H)}{\mathcal{H}_1 P(D_n, H)} \cong D_4,
\]

where \(\cong \) is the group isomorphism. If \(|H| \) is finite, the order of \(\mathcal{H}P(D_n, H) \) is \(2^{mn} + 3(m!)^4 |H|^{n^2} \), where \(m = n/2 \).

To complete the list we have
THEOREM 5. If \(|H| > 2\) and \(H \in \mathcal{H}\), then Theorems 2 and 4 are true when \(n = 4\). If \(H = \{1, -1\}\), then \(\mathcal{P}(D_4, H)\) consists of the group of linear transformations generated by those stated in Theorem 2 (when \(n = 4\)) together with the linear transformation \(S\) defined as follows:

\[
S(E_{11}) = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad S(E_{13}) = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

\[
S(E_{31}) = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad S(E_{33}) = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

\[S(E_{ij}) = E_{ij} \text{ if } (i, j) \notin \{(1, 1), (1, 3), (3, 1), (3, 3)\}.
\]

6. ASSUMED RESULTS

We will make use of the following results whose proof can be found in [5]. Suppose \(K\) is a nonempty subset of \(S_n\), and \(H\) is a nontrivial group in \(\mathcal{H}\). A subset \(E = \{A_1, A_2, \ldots, A_n\}\) of \(M_n(F)\) is called a \(K-H\) unitary set if \(E\) is a linearly independent set and for \(\alpha = (a_1, a_2, \ldots, a_n) \in \Gamma_n(H)\), \(\sum_{i=1}^{n} a_i A_i \in P(K, H)\).

Proposition 1. Suppose \(|H| > 2\), and \(\{A_1, A_2, \ldots, A_n\} \subseteq M_n(F)\) is a \(K-H\) unitary set. Then there exist \(a_1, a_2, \ldots, a_n \in H\), \(\tau \in S_n\), \(\sigma \in K\) such that

\[A_i = a_i E_{\sigma(i) \tau(i)}, \quad i = 1, 2, \ldots, n.\]

Proposition 2. If \(|H| = 2\) and \(\{A_1, A_2, \ldots, A_n\} \subseteq M_n(F)\) is a \(K-H\) unitary set, then there exist permutation matrices \(P\) and \(Q\), an integer \(r (0 < r < n)\) and \(\epsilon_\tau, \epsilon_j \in H\) such that \(n - r\) is even and if \(P\{A_1, A_2, \ldots, A_n\}Q = \{E_1, E_2, \ldots, E_n\}\), then

\[E_1 = [\epsilon_1] \oplus O_{n-1},\]

\[E_2 = O_1 \oplus [\epsilon_2] \oplus O_{n-2},\]

\[\vdots\]

\[E_r = O_{r-1} \oplus [\epsilon_r] \oplus O_{n-r},\]
\[E_{r+1} = O_r \oplus \frac{1}{2} \begin{bmatrix} \xi_{11} & \xi_{12} \\ \xi_{13} & \xi_{14} \end{bmatrix} \oplus O_{n-r+2}, \]

\[E_{r+2} = O_r \oplus \frac{1}{2} \begin{bmatrix} \pm \xi_{11} & \pm \xi_{12} \\ \mp \xi_{13} & \pm \xi_{14} \end{bmatrix} \oplus O_{n-r-2}, \]

\[\vdots \]

\[E_{n-1} = O_{n-2} \oplus \frac{1}{2} \begin{bmatrix} \xi_{t1} & \xi_{t2} \\ \xi_{t3} & \xi_{t4} \end{bmatrix}, \quad t = \frac{1}{2}(n-r), \]

\[E_n = O_{n-2} \oplus \frac{1}{2} \begin{bmatrix} \pm \xi_{t1} & \pm \xi_{t2} \\ \mp \xi_{t3} & \pm \xi_{t4} \end{bmatrix}. \]

Proposition 3. If \(K \) is a transitive subset of \(S_n \) and \(H \) is a nontrivial subgroup of \(F^* \), then \(\mathcal{P}(K,H) \) is a subgroup of the group of all nonsingular \(n^2 \times n^2 \) matrices over \(F \).

Lemma 1. Suppose \(K \) is a transitive subset of \(S_n \) and \(H \) is a nontrivial subgroup of \(F^* \). If \(T \in \mathcal{P}(K,H) \) and \(a \in K \), then \(T(a^{-1}) \) is a \(K-H \) unitary set.

7. **The Structure of the Group** \(\mathcal{P}(D_n,H) \), \(n \) Odd and \(n \geq 3 \)

In this section we assume that \(H \) is a nontrivial group in \(\mathfrak{X} \) and \(n \) is an odd positive integer, \(n \geq 3 \).

Lemma 2. For each pair \(g, g_k h \) in \(D_n \), \(1 \leq j,k \leq n \), we have \(|D(g_j) \cap D(g_k h)| = 1 \). In fact

\[D(g_j) \cap D(g_k h) = \{ (q_j^{-1}(k), g_j q_j^{-1}(k)) \} = \{ (\theta_k^{-1}(i), g_k h \theta_k^{-1}(j)) \}. \]

Proof. Since \(\varphi_j \in S_n \), there exists exactly one \(i, 1 \leq i \leq n \), such that \(\varphi_j(i) = k \). By the definition of \(\varphi_j \), \(g_j(i) = g_k h(i) \) and \(\theta_k(i) = j \). \(\square \)
Lemma 3. If \(n \) odd, \(n > 3 \), and \(T \in \mathcal{S}(D_n, H) \), then for \(1 \leq i, j \leq n \) there exist integers \(1 \leq p, q \leq n \) and \(\alpha_{ij} \in H \) such that

\[
T(E_{ij}) = \alpha_{ij}E_{pq}.
\]

Proof. If \(|H| > 2 \), then the result follows from Proposition 1 and Lemma 1, since there exists \(g_k \) such that \(g_k(i) = i \), and we consider the \(D_n \)-\(H \) unitary set \(T(g_k) \). We suppose that \(|H| = 2 \); then Proposition 2 and Lemma 1 apply. If \(r = n \) [i.e., no matrices of the second type appear in \(T(g_k) \)], the result follows. Hence we assume for some \(i' \neq i \) (only writing the appropriate 2-square matrices)

\[
T(E_{ig_k(i)}) = \frac{1}{2} \begin{bmatrix} \epsilon_1 & \epsilon_2 \\ \pm \epsilon_3 & \mp \epsilon_4 \end{bmatrix},
\]

Now since \(g_k(i) = g_k(i)h(i) \), we have

\[
T(E_{ig_k(i)h(i)}) = \frac{1}{2} \begin{bmatrix} \epsilon_1 & \epsilon_2 \\ \pm \epsilon_3 & \mp \epsilon_4 \end{bmatrix}.
\]

Repeating the argument for \(T(g_k(i)h) \), by Proposition 2 there must exist \(l \neq i \) such that

\[
T(E_{lg_k(i)h(l)}) = \frac{1}{2} \begin{bmatrix} \pm \epsilon_1 & \mp \epsilon_2 \\ \mp \epsilon_3 & \pm \epsilon_4 \end{bmatrix} = T(F_{ig_k(i)}) + T(F_{ig_k(i)}) = \pm T(F_{ig_k(i)}).
\]

By Lemma 2, \((i', g_k(i')) \neq (l, g_k(i)h(l)) \). Hence \(T \) is singular, which is, by Proposition 3, a contradiction.

Now by Lemma 1, for each \(g' \in D_n \), \(T(g') \) is a \(D_n \)-\(H \) unitary set; hence \(T(g') = \{ T(E_{ig''(i)}): i = 1, 2, \ldots, n \} \) for some \(g'' \in D_n \), and we write \(T(D(g')) = D(g'') \).
LEMMA 4. If \(n \) is odd, \(n > 3 \), and \(T \in \mathcal{J}P(D_n, H) \), then either

\[
T(D(g_i)) = D(g_{\sigma(i)}), \quad T(D(g_h)) = D(g_{\mu(i)}h), \quad i = 1, 2, \ldots, n, \tag{7.1}
\]

for some \(\sigma, \mu \in S_n \) or

\[
T(D(g_i)) = D(g_{\tau(i)}h), \quad T(D(g_h)) = D(g_{\nu(i)}), \quad i = 1, 2, \ldots, n, \tag{7.2}
\]

for some \(\tau, \nu \in S_n \).

Proof. Suppose \(T(D(g_i)) = D(g_k) \) and \(T(D(g_j)) = D(g_lh) \) for some \(1 \leq i, j, k, l \leq n \). Since \(|D(g_i) \cap D(g_j)| = n \) or 0 and \(|D(g_k) \cap D(g_lh)| = 1 \), it follows that \(T \) is singular, a contradiction.

Now by Lemma 2,

\[
|D(g_i) \cap D(g_j)| = |D(g_{\sigma(i)}) \cap D(g_{\mu(i)}h)| = 1,
\]

\[
|D(g_i) \cap D(g_j)| = |D(g_{\tau(i)}h) \cap D(g_{\nu(i)})| = 1.
\]

Hence each of (7.1) and (7.2) completely describes the linear transformation \(T \). On the other hand, it is easy to see that for any choices of \(\sigma, \mu, \tau, \nu \) in \(S_n \), the \(T \)'s are in \(\mathcal{J}P(D_n, H) \). Let

\[
\mathcal{J}_1 P(D_n, H) = \{ T \in \mathcal{J}P(D_n, H) : T \text{ satisfies (7.1) with } \sigma, \mu \in S_n \},
\]

\[
\mathcal{J}_2 P(D_n, H) = \{ T \in \mathcal{J}P(D_n, H) : T \text{ satisfies (7.2) with } \tau, \nu \in S_n \}.
\]

For \(T \in \mathcal{J}_1 P(D_n, H) \), since

\[
D(g_i) \cap D(g_j) = \{(p_i^{-1}(j), g_j p_i^{-1}(j))\},
\]

\[
D(g_{\sigma(i)} \cap D(g_{\mu(i)}h) = \{(p_{\sigma(i)}^{-1}(j), g_{\mu(i)} p_{\sigma(i)}^{-1}(j))\},
\]

it follows that

\[
T(E_{p_i^{-1}(j), g_j p_i^{-1}(j)}) = a_{p_i^{-1}(j), g_j p_i^{-1}(j)} E_{p_{\sigma(i)}^{-1}(j), g_{\mu(i)} p_{\sigma(i)}^{-1}(j)}.
\]
or, if we set \(k = q_i^{-1}(j) \),

\[
T'(E_{k_i}(k)) = \alpha_{k_i}(k)E_{q_i^{-1}(i)}\mu q_i(k), \quad i, k = 1, 2, \ldots, n.
\]

(7.3)

Similarly, if \(T' \in \mathcal{G}_2 P(D_n, H) \), it follows from

\[
D(g) \cap D(g h) = \left\{ (q_i^{-1}(j), g q_i^{-1}(j)) \right\},
\]

\[
D(g_{\tau(i)} h) \cap D(g_{\tau(i)} f) = \left\{ (\theta_{\tau(i)}^{-1} f(j), g_{\tau(i)} h \theta_{\tau(i)}^{-1} f(j)) \right\}
\]

that

\[
T'(E_{q_i^{-1}(j)} g q_i^{-1}(j)) = \alpha_{q_i^{-1}(j)} g q_i^{-1}(j)E_{q_i^{-1}(j)}\mu q_i(k), \quad i, k = 1, 2, \ldots, n.
\]

This proves Theorem 1.

Now for \(T \in \mathcal{G}_1 P(D_n, H) \), since \(X_{g_i} = \sum_{i=1}^n x_{k_i}(k)E_{k_i}(k) \), it follows from

(7.3) that

\[
T(X_{g_i}) = \sum_{k=1}^n \alpha_{k_i}(k) x_{k_i}(k)E_{q_i^{-1}(i)}\mu q_i(k), \quad i = 1, 2, \ldots, n.
\]

Set \(q_{\sigma(i)}^{-1} \mu q_i = \omega^1 \) and \(\omega^{-1}(k) = l \). Then \(k = \omega(l) \), and

\[
T(X_{g_i}) = \sum_{l=1}^n \alpha_{\omega(l)}(l) g_{\omega(l)}(l) x_{\omega(l)}(l) g_{\omega(l)}(l)E_{g_{\omega(l)}(l)}(l), \quad i = 1, 2, \ldots, n.
\]

Since for \(\sigma \in S_n \),

\[
\sum_{i=1}^n a_{\sigma(i)} E_{\sigma(i)} = \text{diag}(a_{1\sigma(1)}, a_{2\sigma(2)}, \ldots, a_{n\sigma(n)}) P(\sigma^{-1})
\]

and

\[
\text{diag}(a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)}) = P(\sigma^{-1}) \text{diag}(a_1, \ldots, a_n) P(\sigma),
\]
where diag(a_1, a_2, \ldots, a_n) is the matrix with entry a_i at the (i, i) position and zero elsewhere, it follows that

$$T(X_g) = P(\omega^{-1}) \text{diag}(x_{1g,(1)}a_{1g,(1)}, \ldots, x_{ng,(n)}a_{ng,(n)})P(\omega g^{-1}_\sigma(i))$$

$$= P(q_{\sigma(i)}^{-1}g^{-1}_{\sigma(i)})X_g \ast A'_g P(g_{\sigma(i)}q_{\sigma(i)}^{-1}q_{\sigma(i)}^{-1}g_{\sigma(i)})$$

where $A' = (\alpha_{jk}) \in M_n(H)$. Since $X = \sum_{i=1}^n X_{g_i}$,

$$T(X) = A \ast \sum_{i=1}^n P(q_{\sigma(i)}^{-1}g_{\sigma(i)}q_{\sigma(i)}^{-1}g_{\sigma(i)})X_g \in M_n(F)$$

where

$$A = \sum_{i=1}^n P(q_{\sigma(i)}^{-1}q_{\sigma(i)}^{-1}g_{\sigma(i)}q_{\sigma(i)}^{-1}g_{\sigma(i)}^{-1}) \in M_n(H).$$

Let S be another element in $\mathcal{P}(D_n, H)$ which is associated with a pair $\sigma', \mu' \in S_n$ and $B \in M_n(H)$, i.e.,

$$S(X) = B \ast \sum_{i=1}^n P(q_{\sigma(i)}^{-1}g_{\sigma(i)}q_{\sigma(i)}^{-1}g_{\sigma(i)})X_g \in M_n(F).$$

Then a few step computation shows that

$$ST(X) = B \ast A^{(\sigma', \mu')} \ast \sum_{i=1}^n P(q_{\sigma'\sigma(i)}^{-1}q_{\sigma'\sigma(i)}^{-1}g_{\sigma'\sigma(i)}^{-1}g_{\sigma'\sigma(i)}^{-1})X_g \in M_n(F)$$

where $A^{(\sigma', \mu')}$ is defined by (4.1), i.e., ST is associated with the $\sigma', \mu' \in S_n$ and $B \ast A^{(\sigma', \mu')} \in M_n(H)$. Also, if $T \in \mathcal{P}(D_n, H)$ is associated with $\sigma = \mu = 1$ (the identity element of S_n) and $A = I$, then T is the identity linear transformation on $M_n(F)$. This shows that $\mathcal{P}(D_n, H)$ is isomorphic to the group $\langle S_n \times S_n, M_n(H) \rangle$.

Recall that $R(X) = X$, $X \in M_n(F)$. Clearly R is in $\mathcal{P}(D_n, H)$ and satisfies

$$R(D(g_i)) = D(g_{\sigma(i)}h), R(D(g_{\sigma(i)}) h) = D(g_{\sigma(i)}), \quad i = 1, 2, \ldots, n,$$
where \(\tau(i) = v(i) = n - i + 1 \), \(i = 1, 2, \ldots, n \). If \(T \in \mathcal{T}_1 P(D_n, H) \) and is associated with \(\sigma, \mu \in S_n \), then

\[
TR(D(g_i)) = D(g_{\sigma v(i)} h), \quad T(D(g_i h)) = D(g_{\sigma v(i)}), \quad i = 1, 2, \ldots, n,
\]

i.e., \(TR \in \mathcal{T}_2 P(D_n, H) \). On the other hand, if \(S \in \mathcal{T}_2 P(D_n, H) \) and is associated with \(\tau', v' \in S_n \), then since \(R \) is nonsingular, \(R^{-1} \) exists and

\[
R^{-1}(D(g_i)) = D(g_{\tau'^{-1}(i)} h), \quad R^{-1}(D(g_i h)) = D(g_{\tau'^{-1}(i)}), \quad i = 1, 2, \ldots, n,
\]

we obtain

\[
SR^{-1}(D(g_i)) = D(g_{\tau'^{-1}(i)}), \quad SR^{-1}(D(g_i h)) = D(g_{\tau'^{-1}(i)}), \quad i = 1, 2, \ldots, n,
\]

i.e., \(SR^{-1} \) is in \(\mathcal{T}_1 P(D_n, H) \). Hence \(S \) is in \(\mathcal{T}_2 P(D_n, H) \) if and only if \(S = TR \), where \(T \) is in \(\mathcal{T}_1 P(D_n, H) \), and Theorem 3 follows.

8. STRUCTURE OF \(\mathcal{T}_P(D_n, H) \): \(n \) EVEN AND \(n \geq 6 \)

Let \(H \) be a nontrivial group in \(\mathcal{H} \), and \(n \) be a positive even integer, \(n = 2m \). In Lemma 5, we assume \(1 < \varphi_k^{-1}(i), \theta_k^{-1}(i) < m \) for all appropriate \(i \) and \(k \).

Lemma 5. For each pair \(g_i, g_k h \) in \(D_n \) \((j, k = 1, 2, \ldots, n) \), \(|D(g_i) \cap D(g_k h)| = 0 \) if \(2 \nmid j-k \) and \(|D(g_i) \cap D(g_k h)| = 2 \) if \(2|j-k \). In fact, if \(2|(j-k) \),

\[
D(g_i) \cap D(g_k h) = \{ (\varphi_i^{-1}(k), g_i \varphi_i^{-1}(k)), (\varphi_i^{-1}(k) + m, g_i (\varphi_i^{-1}(k) + m)) \}
\]

\[
= \{ (\theta_k^{-1}(j), g_k h \theta_k^{-1}(j)), (\theta_k^{-1}(j) + m, g_k h (\theta_k^{-1}(j) + m)) \}.
\]

Proof. \(\varphi_i(i) \) is even if and only if \(j \) is even for all \(i = 1, 2, \ldots, n \), \(\varphi_i(i) = \varphi_i(i + m) \) for \(i = 1, 2, \ldots, m \), and \(\varphi_i(i) \neq \varphi_i(k) \) if \(1 < i, k < m, i \neq k \). Therefore we see that if \(j, k \) are both even or both odd, then there exist \(i, 1 < i < m \), such that \(g_i(i) = g_k h(i), g_i(i + m) = g_k h(i + m) \); and if one of \(j, k \) is odd and the other is even, then \(g_i(i) \neq g_k h(i) \) for all \(i = 1, 2, \ldots, n \).
LEMMA 6. Let \(n \) be even and \(n > 6 \). If \(T \in \mathcal{P}(D_n, H) \) and \(1 \leq i, j \leq n \), then there exist \(1 \leq p, q \leq n \) and \(\alpha_{ij} \in H \) such that

\[
T(E_{ij}) = \alpha_{ij} E_{pq}.
\]

Proof. As in the case that \(n \) is odd (Lemma 3), the result follows from Proposition 1 and Lemma 1 if \(|H| > 2 \), since for \(1 \leq i, j \leq n \) there exist \(g_k \in D_n \) such that \(g_k(i) = j \). Consider the \(D_n-H \) unitary set \(T(g_k) \). Suppose \(|H| = 2 \); then again Proposition 2 and Lemma 1 apply. If the \(r \) in Proposition 2 is equal to \(n \) [i.e., no matrices of the second type appear in \(T(g_k) \)], the result follows. Hence we assume that there exist \(1 \leq i, i' < n \), \(i \neq i' \) such that (only writing the appropriate 2-square matrices)

\[
T(E_{gg(i),i}) = \frac{1}{2} \begin{bmatrix}
\alpha_{ru} & \alpha_{rv} \\
\alpha_{su} & \alpha_{sv}
\end{bmatrix}, \quad T(E_{gg(i),i'}) = \frac{1}{2} \begin{bmatrix}
\pm \alpha_{ru} & \mp \alpha_{rv} \\
\mp \alpha_{su} & \pm \alpha_{sv}
\end{bmatrix},
\]

where \(1 \leq r, s, u, v < n \), \(r \neq s \), \(u \neq v \), and \(\alpha_{ru}, \alpha_{rv}, \alpha_{su}, \alpha_{sv} \in H \). Since \(g_{gg(i),i}h(i) = g_k(i) \), there exist \(1 \leq i'', n < i'' \neq i \) such that

\[
T(E_{gg(i),h(i'')}) = \frac{1}{2} \begin{bmatrix}
\pm \alpha_{ru} & \mp \alpha_{rv}
\mp \alpha_{su} & \pm \alpha_{sv}
\end{bmatrix} = \pm T(E_{gg(i),i}).
\]

If \(i'' \neq i' \) or \(g_{gg(i),i}h(i'') \neq g_k(i') \) then \(T \) is singular, a contradiction. Hence \(i'' = i' \), \(g_{gg(i),i}h(i'') = g_k(i') \), and therefore \(i'' = i'' = i + m \). We may assume that there exists an integer \(1 \leq t \leq m \) such that

\[
T(E_{gg(i),t}) = \frac{1}{2} \begin{bmatrix}
\alpha_{nu} & \alpha_{nv} \\
\alpha_{su} & \alpha_{sv}
\end{bmatrix}, \quad T(E_{t+m,gg(i),t+m}) = \frac{1}{2} \begin{bmatrix}
\pm \alpha_{nu} & \mp \alpha_{nv} \\
\mp \alpha_{su} & \pm \alpha_{sv}
\end{bmatrix}, \quad 1 \leq l \leq t,
\]

where \(u_i \neq v_i, \eta_i \neq s_i \); \(u_i \neq u_p, v_i \neq v_p, \eta_i \neq r_p, s_i \neq s_p \) if \(l \neq p \); and \(T(E_{gg(i),l}), l \neq 1, 2, \ldots, t, 1+m, 2+m, \ldots, t+m \), are of the first type. Then

\[
\sum_{l=1}^{n} T(E_{gg(i),l}) = P(\alpha, \sigma),
\]

\[
\sum_{l \neq 1+m} T(E_{gg(i),l}) - T(E_{1+m,gg(i),1+m}) = P(\beta, \tau),
\]
where $\alpha, \beta \in \Gamma_n(H)$, $\sigma, \tau \in D_n$, and $\sigma(r_i) \neq \tau(r_i)$, $\sigma(s_i) \neq \tau(s_i)$, $\sigma(l) = \tau(l)$ for all $l \neq r_i, s_i$. By Lemma 5, $|D(\sigma) \cap D(\tau)| = 0$ or 2, which requires $n \leq 4$, a contradiction, so the result follows.

In the following we assume that $n \geq 6$.

Lemma 7. Suppose $n = 2m$, where $m \geq 3$ and $T \in \overline{\mathbb{P}}(D_n, H)$.

(i) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(ii) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(iii) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(iv) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(v) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(vi) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(vii) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(viii) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

(ix) If $T(D(g_i)) = D(g_j)$, $T(D(g_k)) = D(g_k)$, then $2|i - k$ if and only if $2|j - l$.

Proof.

(i) First assume that $2|i - k$. Then either both i, k are even or both are odd. If both i, k are even, then $D(g_i) \cap D(g_k) \neq \emptyset$ and $D(g_i) \cap D(g_{2h}) \neq \emptyset$. Hence there exist $(r, g_{2h}(r)) \in D(g_i)$, $(s, g_{2h}(s)) \in D(g_k)$, $1 \leq r, s \leq n$, and

$$T(E_{rg_{2h}(r)}) = \alpha_{rg_{2h}(r)} E_{rg_{2h}(r)}, \quad \text{for some } 1 \leq t \leq n,$$

$$T(E_{sg_{2h}(s)}) = \alpha_{sg_{2h}(s)} E_{sg_{2h}(s)}, \quad \text{for some } 1 \leq u \leq n.$$

If $2|i - l$, then $g_j \neq g_l$; hence $T(D(g_l)) = D(g_l)$ for some $1 \leq v \leq n$. But for each $1 \leq q \leq n$ either $D(g_q) \cap D(g_j) = \emptyset$ or $D(g_q) \cap D(g_j) = \emptyset$, a contradiction. If i, k are both odd, then $D(g_i) \cap D(g_k) \neq \emptyset$, $D(g_i) \cap D(g_{2h}) \neq \emptyset$ and the result can be obtained in the same way. On the other hand if $2|i - l$ we can proceed as above to prove that $2|i - k$.

(ii) and (iv) can be proved as in (i).
(iii) Suppose $2 | j - k$. If $2 \nmid j - l$, then $D(g_j) \cap D(g_kh) \neq \varnothing$ and $D(g_j) \cap D(g_kh) = \varnothing$, which is impossible. Similarly $2 | j - l$ implies that $2 | i - k$.

Since T^{-1} exists, (v) follows from (iv). (vi) can be proved as in (iii).

(vii) Suppose $2 | i - k$ and i, k are odd. If $2 | j - l$, then $D(g_j) \cap D(g_kh) \neq \varnothing$. But $D(g_j) \cap D(g_k) = \varnothing$, a contradiction; hence $2 \nmid j - l$. We first assume that j is odd and l is even. Let q be odd and $1 \leq q < n$. If $T(D(g_qh)) = D(g_h)$ for some $1 \leq r < n$, then $D(g_qh) \cap D(g_k) \neq \varnothing$, $D(g_j) \cap D(g_i) = \varnothing$ if r is odd; $D(g_qh) \cap D(g_k) \neq \varnothing$, $D(g_h) \cap D(g_j) = \varnothing$ if r is even; and both are impossible. Hence consider $T(D(g_qh)) = D(g_q)$ for some $1 \leq r < n$. If r is odd, then $D(g_qh) \cap D(g_k) \neq \varnothing$ and $D(g_q) \cap D(g_qh) = \varnothing$, which is impossible. If r is even, then $D(g_qh) \cap D(g_k) \neq \varnothing$ and $D(g_q) \cap D(g_j) = \varnothing$, which is again impossible. If j is even and l is odd, we can proceed as above to obtain the result.

(viii) can be proved as in (vii).

(ix) Since T is nonsingular, $j \neq l$. If $2 | i - k$, then $D(g_j) \cap D(g_kh) \neq \varnothing$ and $D(g_j) \cap D(g_kh) = \varnothing$, a contradiction.

(x) can be proved as in (ix).

Now if $T \in \mathcal{G}(D_n, H)$ and $g' \in D_n$, then $T(D(g')) = D(g'')$ for some $g'' \in D_n$. Hence either

(I) $T(D(g_i)) = D(g_{\sigma(i)})$, $T(D(g_kh)) = D(g_{\mu(i)}h)$, $i = 1, 2, \ldots, n$, for some $\sigma, \mu \in S_n$;

(II) $T(D(g_i)) = D(g_{\tau(i)}h)$, $T(D(g_kh)) = D(g_{\sigma(i)}h)$, $i = 1, 2, \ldots, n$, for some $\tau, \nu \in S_n$;

(III) there exist partitions $\{\Omega_1, \Omega_2\}$, $\{\Omega_3, \Omega_4\}$ of $\{1, 2, \ldots, n\}$ such that

$$T(D(g_i)) = D(g_{\omega(i)}) \quad \text{for} \ i \in \Omega_1, \quad T(D(g_i)) = D(g_{\rho(i)}h) \quad \text{for} \ i \in \Omega_2$$

and

$$T(D(g_kh)) = D(g_{\omega'(i)}h) \quad \text{for} \ i \in \Omega_3, \quad T(D(g_kh)) = D(g_{\pi(i)}h) \quad \text{for} \ i \in \Omega_4,$$

where $\omega, \omega', \rho, \pi \in S_n$.

We shall consider the three cases separately in the following.

Case (I)

In view of Lemma 7(i) and (ii), $2 | i - k$ if and only if $2 | \sigma(i) - \sigma(k)$ and $2 | i - k$ if and only if $2 | \mu(i) - \mu(k)$, i.e., σ maps all even integers into even integers or all even into odd, and μ has the same form. By Lemma 7(iii), σ maps all even into even if and only if μ maps all even into even. Now let $K_n = \{\sigma \in S_n : \sigma \text{ maps all even integers into even integers}\}$. It is easy to see
that K_n is a subgroup of S_n, K_n is isomorphic to $S_m \times S_m$, and the elements in K_n map all even integers into odd integers. Hence if $T \in \mathcal{F}(D_n, H)$ and is of type (I), then $\sigma, \mu \in K_n$ or $\sigma, \mu \in K_n g$.

Proposition 4. $T \in \mathcal{F}(D_n, H)$ and is of type (I) if and only if there exist $\sigma, \mu \in K_n$ or $\sigma, \mu \in K_n g$, $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G$ and $\alpha_{kl} \in H$, $k, l = 1, 2, \ldots, n$, such that

$$
T\left(E_{\alpha_{kl}(k)}\right) = \alpha_{\alpha_{kl}(k)} E_{\lambda_\sigma(i) \lambda_\sigma(i) \mu_{\sigma(i)} \mu_{\sigma(i)} \mu_{\sigma(i)}} \alpha_{\alpha_{kl}(k)}, \quad 1 \leq i, k \leq n.
$$

Proof. We first define $1 < q_i^{-1}(j) < m$ for all appropriate i and j. By the above remark, $T(D(g)) = D(g_{i(j)}, i = 1, 2, \ldots, n$, and $T(D(g_{j})) = D(g_{j(h)}, j = 1, 2, \ldots, n$, where σ, μ are both in K_n or both in $K_n g$. By Lemma 5, if $2|i - j$ and $1 \leq i, j \leq n$, then

$$
D(g) \cap D(g_j h) = \left\{(q_i^{-1}(j), g_{q_i^{-1}(j)}), (q_i^{-1}(j) + m, g_{q_i^{-1}(j) + m})\right\},
$$

$$
D(g_{i(\sigma)}) \cap D(g_{j(\mu)}) = \left\{(q_{\alpha(i)}^{-1}(j), g_{\alpha(i)}(q_{\alpha(i)}^{-1}(j)), (q_{\alpha(i)}^{-1}(j) + m, g_{\alpha(i)}(q_{\alpha(i)}^{-1}(j) + m))\right\}.
$$

Hence by Lemma 6 either

$$
T\left(E_{q_i^{-1}(j)} g_{q_i^{-1}(j)} \right) = \alpha_{q_i^{-1}(j)} E_{q_{\sigma(i)}^{-1}(j)} g_{q_{\sigma(i)}^{-1}(j)},
$$

$$
T\left(E_{q_i^{-1}(j)} + m, g_{i(q_i^{-1}(j) + m)} \right) = \alpha_{q_i^{-1}(j) + m} E_{q_{\sigma(i)}^{-1}(j) + m} g_{i(q_{\sigma(i)}^{-1}(j) + m)}
$$
or

$$
T\left(E_{q_i^{-1}(j)} + m, g_{i(q_i^{-1}(j) + m)} \right) = \alpha_{q_i^{-1}(j) + m} E_{q_{\sigma(i)}^{-1}(j) + m} g_{i(q_{\sigma(i)}^{-1}(j) + m)} g_{i(q_{\sigma(i)}^{-1}(j) + m)}
$$

That is, there exist $(\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G$ such that

$$
T\left(E_{q_i^{-1}(j)} g_{q_i^{-1}(j)} \right) = \alpha_{q_i^{-1}(j)} E_{q_i^{-1}(j)} g_{q_i^{-1}(j)},
$$

$$
T\left(E_{q_i^{-1}(j)} + m, g_{i(q_i^{-1}(j) + m)} \right) = \alpha_{q_i^{-1}(j) + m} E_{q_i^{-1}(j) + m} g_{i(q_i^{-1}(j) + m)}
$$

$$\times E_{q_{\sigma(i)}^{-1}(j) + m} g_{i(q_{\sigma(i)}^{-1}(j) + m)} g_{i(q_{\sigma(i)}^{-1}(j) + m)}.$$
Set \(q_i^{-1}(j) = k \). Then for \(k = 1, 2, \ldots, m \),

\[
T\left(E_{kg_i(k)}\right) = \alpha_{kg_i(k)}E_{\lambda_i(i(q_{o(i)})^{-1}q_{i(k)})g_{o(i)}\lambda_i(i(q_{o(i)})^{-1}q_{i(k)})},
\]

\[
T\left(E_{k+m,g_i(k+m)}\right) = \alpha_{k+m,g_i(k+m)}E_{\lambda_i(i(q_{o(i)})^{-1}q_{i(k)}+m)g_{o(i)}\lambda_i(i(q_{o(i)})^{-1}q_{i(k)}+m)}.
\]

If we define \(1 \leq q_{o(i)}^{-1}q_{i(k)} < m \) if and only if \(1 \leq k \leq m \), the result follows.

Conversely, for any choice of \((\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G \), \(\alpha_{kl} \in H \) and \(\sigma, \mu \in K_n \) or \(K_n g \), it is easy to see that the \(T \) is in \(\mathcal{T} P(D_n, H) \) and is of type (I).

Now let \(\mathcal{T}_1 P(D_n, H) \) be the set of all linear transformations in \(\mathcal{T} P(D_n, H) \) and of type (I) with \(\sigma, \mu \in K_n \). Since \(K_n \) is a group, \(\mathcal{T}_1 P(D_n, H) \) is a subgroup of \(\mathcal{T} P(D_n, H) \). Suppose \(T \in \mathcal{T}_1 P(D_n, H) \). Then in view of Proposition 4 and since \(X_i = \sum_{k=1}^{n} X_{g_i(k)} E_{kg_i(k)} \), it follows by a few step computation as in Sec. 7 that

\[
T(X) = \left(A' \right) \sum_{i=1}^{n} P\left(\lambda_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) P\left(g_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) X_{g_i}, \quad X \in M_n(F),
\]

where \(A' = (\alpha_{kl}) \in M_n(H) \). Since \(X = \sum_{i=1}^{n} X_{g_i} \), it follows that

\[
T(X) = A \sum_{i=1}^{n} P\left(\lambda_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) X_{g_i} P\left(g_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) X_{g_i}, \quad X \in M_n(F),
\]

where

\[
A = \sum_{i=1}^{n} P\left(\lambda_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) A' P\left(g_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right) \in M_n(H).
\]

Let \(\mathcal{T}_0 P(D_n, H) \) be the set of all linear transformations in \(\mathcal{T}_1 P(D_n, H) \) with \(\lambda_1 = \lambda_2 = \cdots = \lambda_n = 1 \), the identity element of \(S_n \), i.e., \(T \in \mathcal{T}_0 P(D_n, H) \) if and only if

\[
T(X) = A \sum_{i=1}^{n} P\left(q_{o(i)}^{-1} q_{i(i)} \right) X_{g_i} P\left(g_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right), \quad X \in M_n(F),
\]

with \(\sigma, \mu \in K_n \) and \(A \in M_n(H) \). Let \(T' \in \mathcal{T}_0 P(D_n, H) \) and be associated with \(\sigma', \mu' \in K_n \) and \(B \in M_n(H) \), i.e.,

\[
T'(X) = B \sum_{i=1}^{n} P\left(q_{o(i)}^{-1} q_{i(i)} \right) X_{g_i} P\left(g_{o(i)} q_{o(i)}^{-1} q_{i(i)} \right), \quad X \in M_n(F).
\]
Then
\[
T' T(X) = B \sum_{i=1}^{n} P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) A g_i P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \times \sum_{i=1}^{n} P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) X g_i P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \right) \times P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \right).
\]

\[
= B A^{(\sigma', \mu')} \sum_{i=1}^{n} P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) X g_i P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \right).
\]

if we define \(A^{(\sigma', \tau)} \) by (4.2). Hence \(T' T \) associates with the matrix \(B A^{(\sigma', \tau)} \) in \(M_n(H) \) and \(\sigma', \mu', \mu \in \mathbb{K}_n \). Also if \(T \) is associated with the identity matrix \(A = I \) in \(M_n(H) \) and \(\sigma = \mu = 1 \) (the identity element in \(\mathbb{K}_n \)), then clearly \(T \) is the identity linear transformation on \(M_n(F) \). Hence \(\mathcal{S}_0 P(D_n, H) \) is isomorphic to the group \(\langle K_n \times K_n, M_n(H) \rangle \).

Now for \((\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G \) it is clearly the case that \(\Lambda_i \Lambda_1, \Lambda_2, \ldots \Lambda_n \) is in \(\mathcal{S}_1 P(D_n, H) \) associated with \(\sigma = \mu = 1 \), \(A = I \), and \((\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G \). Furthermore \(S \) is in \(\mathcal{S}_0 P(D_n, H) \) associated with \((\lambda_1, \lambda_2, \ldots, \lambda_n) \in G \times \cdots \times G \), \(\sigma, \mu \in \mathbb{K}_n \) if and only if \(S = \Lambda(\lambda_1, \lambda_2, \ldots, \lambda_n) T \), where \(T \) is in \(\mathcal{S}_0 P(D_n, H) \) associated with \(\sigma, \mu \in \mathbb{K}_n \) for

\[
A \sum_{i=1}^{n} P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) X g_i P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \right) = \Lambda(\lambda_1, \ldots, \lambda_n) \left(A'' \sum_{i=1}^{n} P \left(\varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right) X g_i P \left(g_i \varphi_{\sigma(i)}^{-1} \mu' \varphi_i \right)^{-1} g_{\sigma(i)}^{-1} \right),
\]

where \(A'' = \sum_{i=1}^{n} P(\lambda_i) A g_i P(g_i \varphi_{\sigma(i)}^{-1}) \). Hence \(\mathcal{S}_1 P(D_n, H) = \Lambda \circ \mathcal{S}_0 P(D_n, H) \). Also, since \(G \) is the group generated by the transpositions \((1 m + 1), \ldots, (m - 12 m - 1), (m - 2 m) \), we have \(|G| = 2^m \). Hence \(|G \times G \times \cdots \times G| = 2^{mn} = 2^{n^2/2} \), and \(\mathcal{S}_0 P(D_n, H) \) is a subgroup of index \(2^{n^2/2} \) in \(\mathcal{S}_1 P(D_n, H) \).

Recall that \(U(X) = XP(g^{-1}) \) for every \(X \in M_n(F) \). Since \(U(X) \)

\[
(U(X))_{i g_j(i)} = x_{i g_j(i)} = x_{i g_j(i)},
\]

\[
(U(X))_{j g_i(h)} = x_{j g_i(h)} = x_{i g_j(i)}.
\]
for $i, j = 1, 2, \ldots, n$, it follows that

$$U(D(g_i)) = D(g_{U(i)}), \quad U(D(g_ih)) = D(g_{U(i)}h), \quad j = 1, 2, \ldots, n,$$

i.e., U is of type (I) and is associated with g in K_n^g and $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 1$, $A = J$. Let $\mathcal{S}_2 P(D_n, H) = \{ T \in \mathcal{S}P(D_n, H) : T$ is of type (I) \}. Since $K_n \cup K_n^g$ is a group, it follows that $\mathcal{S}_2 P(D_n, H)$ is a group. Also it is easy to see that $\mathcal{S}_2 P(D_n, H) = \mathcal{S}_1 P(D_n, H) \circ \{ I, U \}$.

Case (II)

As in (I), by Lemma 7(iv), (v) and (vi), if $T \in \mathcal{S}P(D_n, H)$ and T is of type (II), then $\tau, \nu \in K_n$ or K_n^g. We first state a proposition whose proof is similar to that of Proposition 4.

Proposition 5. $T \in \mathcal{S}P(D_n, H)$ and T is of type (II) if and only if there exist $\tau, \nu \in K_n$ or K_n^g, $(\kappa_1, \ldots, \kappa_n) \in G \times \cdots \times G$ and $\alpha_{kl} \in H$, $k, l = 1, 2, \ldots, n$, such that

$$T(E_{kg_i}(k)) = \alpha_{kg_i(k)}E_{\kappa_{i(0)}\alpha_{i(0)}}(k), \quad i, k = 1, 2, \ldots, n.$$

Recall that R is a linear transformation which satisfies $R(D(g_i)) = D(g_{\tau(i)}), R(D(g_ih)) = R(g_{\nu(i)}), \quad i = 1, 2, \ldots, n$, where $\tau(i) = \nu(i) = n - i + 1, i = 1, 2, \ldots, n$. Hence τ, ν are in K_n^g, and R is of type (II) in $\mathcal{S}P(D_n, H)$ associated with $\kappa_1 = \kappa_2 = \cdots = \kappa_n = 1$. Now let S be of type (II) in $\mathcal{S}P(D_n, H)$, i.e., there exist $\tau, \nu \in K_n$ or K_n^g such that

$$S(D(g_i)) = D(g_{\tau(i)}h), \quad S(D(g_ih)) = D(g_{\nu(i)}), \quad i = 1, 2, \ldots, n. \quad (8.1)$$

Then since R^{-1} exists in $\mathcal{S}P(D_n, H)$,

$$SR^{-1}(D(g_i)) = D(g_{\nu^{-1}(i)}), \quad SR^{-1}(D(g_ih)) = D(g_{\tau(i)}h), \quad i = 1, 2, \ldots, n.$$
Then \(\mathcal{P}(D_n, H) \) and it is easily seen that \(\mathcal{P}(D_n, H) \) is a group.

Case (III)

By Lemma 7(vii) we have either \(\Omega_1 = \{2i : i = 1, 2, \ldots, m\} \) or \(\Omega_1 = \{2i - 1 : i = 1, 2, \ldots, m\} \), and by Lemma 7(viii) either \(\Omega_3 = \{2i : i = 1, 2, \ldots, m\} \) or \(\Omega_3 = \{2i - 1 : i = 1, 2, \ldots, m\} \). By Lemma 7(ix) and (x) we have \(\Omega_1 = \Omega_3 \) and \(\Omega_2 = \Omega_4 \). By Lemma 7(iii), either both \(\omega, \omega' \) are in \(K_n \) or both are in \(K_{ng} \), and by Lemma 7(vi) either both \(\pi, \pi' \) are in \(K_n \) or both are in \(K_{ng} \). By Lemma 7(vii), (viii), (ix) and (x) \(\omega, \omega' \in K_n \) if and only if \(\pi, \pi' \in K_n \). Hence either all \(\omega, \omega', \pi, \pi' \) are in \(K_n \) or all are in \(K_{ng} \).

Proposition 6. \(T \in \mathcal{P}(D_n, H) \) and \(T \) is of type (III) if and only if there exist \(\omega, \omega', \pi, \pi' \in K_n \) or in \(K_{ng} \), \(\alpha_{kl} \in H \), \(k, l = 1, 2, \ldots, n \), and for each \(i \in \Omega_1 \) there exists \(\lambda_{\omega(i)} \) in \(G \), for each \(i \in \Omega_2 \) there exists \(\kappa_{\pi(i)} \) in \(G \) such that for \(i \in \Omega_1 \),

\[
T(E_{g_\omega(k)}(k)) = \alpha_{g_\omega(k)}E_{\lambda_{\omega(i)}}(g_{\omega'(i)})\phi_{\omega(i)}(k), \quad k = 1, 2, \ldots, n
\]

and for \(i \in \Omega_2 \),

\[
T(E_{g_\omega(k)}(k)) = \alpha_{g_\omega(k)}E_{\phi_{\omega(i)}}(g_{\omega'(i)})\phi_{\omega(i)}(k), \quad k = 1, 2, \ldots, n,
\]

where \(\Omega_1 = \{2i : i = 1, 2, \ldots, m\} \) or \(\Omega_1 = \{2i - 1 : i = 1, 2, \ldots, m\} \), and \(\Omega_2 = \{1, 2, \ldots, n\} - \Omega_1 \).

Proof. By the above remark there exist \(\omega, \omega', \pi, \pi' \in K_n \) or \(K_{ng} \) and a partition \(\{\Omega_1, \Omega_2\} \) of \(\{1, 2, \ldots, n\} \), where \(\Omega_1 \) is equal to either \(\{2i : i = 1, 2, \ldots, m\} \) or \(\{2i - 1 : i = 1, 2, \ldots, m\} \), such that

\[
T(D(g_i)) = D(g_{\omega(i)}), \quad i \in \Omega_1; \quad T(D(g_i)) = D(g_{\omega'(i)}h), \quad i \in \Omega_2;
\]

\[
T(D(g_ih)) = D(g_{\omega'(i)}), \quad j \in \Omega_1; \quad T(D(g_ih)) = D(g_{\omega'(i)}), \quad j \in \Omega_2.
\]

By Lemma 5, if \(i, j \in \Omega_1 \) or \(\Omega_2 \),

\[
D(g_i) \cap D(g_j) = \{(\varphi_i^{-1}(i)g_\varphi_i^{-1}(i)), (\varphi_i^{-1}(i) + mg_\varphi_i^{-1}(i) + m)\};
\]

if \(i, j \in \Omega_1 \), then

\[
D(g_{\omega(i)}) \cap D(g_{\omega'(i)}h) = \{(\varphi_{\omega(i)}^{-1}\omega(j)g_{\varphi_{\omega(i)}^{-1}\omega'(j)}), (\varphi_{\omega(i)}^{-1}\omega'(j) + mg_{\varphi_{\omega(i)}^{-1}\omega'(j)} + m)\},
\]
and if \(i,j \in \Omega_2 \), then

\[
D(g_{\pi(i)}h) \cap D(g_{\pi(j)}) = \left\{ \left(\theta_{\pi(i)}^{-1} \pi'(j) g_{\pi(i)}h \theta_{\pi(i)}^{-1} \pi'(i) \right), \right.
\]

\[
\left(\theta_{\pi(i)}^{-1} \pi'(j) + m \theta_{\pi(i)}h \left(\theta_{\pi(i)}^{-1} \pi'(i) + m \right) \right) \},
\]

where \(1 \leq q_k^{-1}(l), \theta_k^{-1}(l) \leq m \) for all appropriate \(k \) and \(l \). Then if we proceed as in Proposition 4, the result follows.

Recall that \(V(X) = X_{c_0} + R(X_cP\left(g^{-1} \right)) \) for all \(X \in M_n(F) \). Since \(k + g_i(k) = 2k + i - 1 \) for \(i,k = 1,2,\ldots,n \), it follows that \((X_0)_{k_+(i)} \neq 0 \) and \((X_c)_{k_-(i)} = 0 \) if and only if \(i \) is odd. Now \(n - g_i(k) + 1 = g_{n-i+1}h(k) \) for \(i,k = 1,2,\ldots,n \), and it follows that for \(i \) even,

\[
(R(X_cP\left(g^{-1} \right)))_{k_+(i)} = \left(X_cP\left(g^{-1} \right) \right)_{k_n-g_i(k)} = \left(X_cP\left(g^{-1} \right) \right)_{k_n-i+1} = \left(X_cP\left(g^{-1} \right) \right)_{k_n-i+1} \]

\[
= x_{k_n-g_i(h(k))},
\]

\[
(R(X_cP\left(g^{-1} \right)))_{k_-(i)} = \left(X_cP\left(g^{-1} \right) \right)_{k_n-g_i(h(k))} = \left(X_cP\left(g^{-1} \right) \right)_{k_n-i+1} = x_{k_n-i}(h(k))
\]

i.e., \(V \) is in \(\mathcal{T}P(D_n,H) \) of type (III) corresponding to

\[
\Omega_0^0 = \Omega_3^0 = \{2i-1: i = 1,2,\ldots,m\}, \quad \Omega_2^0 = \Omega_4^0 = \{2i: i = 1,2,\ldots,m\},
\]

and \(\omega_0 = \omega'_0 = 1, \pi_0(i) = \pi'_0(i) = n - i, i = 1,2,\ldots,n \), or in other words \(\omega_0, \omega'_0, \pi_0, \pi'_0 \) are in \(K_n \). Hence

\[
V(D(g_i)) = D(g_i), \quad V(D(g_ih)) = D(g_ih) \quad \text{if} \quad i \in \Omega_1^0;
\]

\[
V(D(g_i)) = D(g_{\sigma_0(i)}h), \quad V(D(g_ih)) = D(g_{\sigma_0(i)}h) \quad \text{if} \quad i \in \Omega_2^0.
\]

We contend that \(S \in \mathcal{T}P(D_n,H) \) and is of type (III) if and only if \(S = TV \), where \(T \) is of type (I) or of type (II) in \(\mathcal{T}P(D_n,H) \). In fact, if \(T \in \mathcal{T}P(D_n,H) \) and is of type (I) associated with \(\sigma, \mu \in K_n \) or \(K_ng \), i.e.,

\[
T(D(g)) = D(g_{\sigma(i)}), \quad T(D(g_ih)) = D(g_{\mu(i)}h), \quad i = 1,2,\ldots,n \quad (8.2)
\]
then for i odd,

$$TV(D(g_i)) = D(g_{\omega(i)}), \quad TV(D(g_h)) = D(g_{\mu(i)} h).$$

and for i even,

$$TV(D(g_i)) = D(g_{\mu\pi(i)}), \quad TV(D(g_h)) = D(g_{\mu\pi(i)} h).$$

Since TV is in $\mathcal{P}(D_n, H)$ and $\sigma, \mu \in K_n$ if and only if $\mu\pi_0, \sigma\pi_0 \in K_n$, TV is of type (III). If T is of type (II), it can be shown that TV is of type (III) in the same way. On the other hand, suppose S is in $\mathcal{P}(D_n, H)$ and of type (III), i.e.,

$$S(D(g_i)) = D(g_{\omega(i)}), \quad S(D(g_h)) = D(g_{\omega(i)} h), \quad i \in \Omega_1,$$

$$S(D(g_i)) = D(g_{\omega(i)} h), \quad S(D(g_h)) = D(g_{\omega(i)}), \quad i \in \Omega_2,$$

(8.3)

where $\omega, \omega', \pi, \pi' \in K_n$ or $K_n g$. Then if $\Omega_1 = \Omega_1^0, \Omega_2 = \Omega_2^0$, we have

$$SV^{-1}(D(g_i)) = D(g_{\omega(i)}), \quad SV^{-1}(D(g_h)) = D(g_{\omega'(i)})$$

if $i \in \Omega_1^0$, and

$$SV^{-1}(D(g_i)) = D(g_{\omega'\pi_0^{-1}(i)}), \quad SV^{-1}(D(g_h)) = D(g_{\omega'\pi_0^{-1}(i)} h)$$

if $i \in \Omega_2^0$. Clearly $\omega, \omega', \pi, \pi' \in K_n$ if and only if $\omega, \omega', \pi\pi_0^{-1}, \pi'\pi_0^{-1} \in K_n$; and if we define

$$\sigma(i) = \begin{cases} \omega(i) & \text{if } i \in \Omega_1^0, \\ \pi'\pi_0^{-1}(i) & \text{if } i \in \Omega_2^0, \end{cases}$$

$$\mu(i) = \begin{cases} \omega'(i) & \text{if } i \in \Omega_1^0, \\ \pi\pi_0^{-1}(i) & \text{if } i \in \Omega_2^0, \end{cases}$$

then $\sigma, \mu \in K_n$ or $K_n g$. Now SV^{-1} is in $\mathcal{P}(D_n, H)$ and hence is of type (I). If $\Omega_1 = \Omega_2^0, \Omega_2 = \Omega_1^0$, then for $i \in \Omega_1^0$,

$$SV^{-1}(D(g_i)) = D(g_{\sigma(i)} h), \quad SV^{-1}(D(g_h)) = D(g_{\sigma(i)}),$$

$$SV^{-1}(D(g_i)) = D(g_{\mu(i)} h), \quad SV^{-1}(D(g_h)) = D(g_{\mu(i)}).$$
and for $i \in \Omega_2$,

$$SV^{-1}(D(g_i)) = D(g_{\omega \pi_0^{-1}(i)h}), \quad SV^{-1}(D(gh)) = D(g_{\omega \pi_0^{-1}(i)}h).$$

Again $\omega, \omega', \sigma, \pi' \in K_n$ if and only if $\pi, \pi', \omega \pi_0^{-1}, \omega \pi_0^{-1} \in K_n$; and if we define

$$\tau(i) = \begin{cases} \pi(i) & \text{if } i \in \Omega_1^0, \\ \omega \pi_0^{-1}(i) & \text{if } i \in \Omega_2^0, \end{cases}$$

$$\nu(i) = \begin{cases} \pi'(i) & \text{if } i \in \Omega_1^0, \\ \omega \pi_0^{-1}(i) & \text{if } i \in \Omega_2^0, \end{cases}$$

then both τ, ν are in K_n or in K_ng. Hence SV^{-1} is of type (II). This proves our assertion. Consequently the group $\mathfrak{F}P(D_n,H)$ is equal to $\mathfrak{F}P(D_n,H) \circ \{I, V\}$.

Since $\mathfrak{T}_i P(D_n,H)$ is a subgroup of index 2 in $\mathfrak{T}_{i+1} P(D_n,H)$ for $i = 1, 2, 3$, where $\mathfrak{T}_4 P(D_n,H) = \mathfrak{T}_i P(D_n,H)$, it follows that

$$\mathfrak{T}_1 P(D_n,H) \triangle \mathfrak{T}_2 P(D_n,H) \triangle \mathfrak{T}_3 P(D_n,H) \triangle \mathfrak{T}_i P(D_n,H)$$

is a composition series. We shall show that $\mathfrak{T}_1 P(D_n,H)$ is a normal subgroup of $\mathfrak{T}_i P(D_n,H)$.

Let $T \in \mathfrak{T}_1 P(D_n,H)$ and S be of type (III) in $\mathfrak{T}_i P(D_n,H)$, i.e., T satisfies (8.2) with $\sigma, \mu \in K_n$ and S satisfies (8.3). If $\omega, \omega', \sigma, \pi' \in K_n$, then for $i \in \Omega_1$,

$$STS^{-1}(D(g_i)) = D(g_{\omega \sigma \omega^{-1}(i)}), \quad STS^{-1}(D(gh)) = D(g_{\omega \sigma \omega^{-1}(i)}h),$$

and for $i \in \Omega_2$,

$$STS^{-1}(D(g_i)) = D(g_{\omega \pi_0 \mu^{-1}(i)}), \quad STS^{-1}(D(gh)) = D(g_{\omega \pi_0 \mu^{-1}(i)}h).$$

If $\omega, \omega', \sigma, \pi' \in K_ng$, then for $i \in \Omega_1$,

$$STS^{-1}(D(g_i)) = D(g_{\omega \pi_0 \mu^{-1}(i)}), \quad STS^{-1}(D(gh)) = D(g_{\omega \pi_0 \mu^{-1}(i)}h),$$

and for $i \in \Omega_2$,

$$STS^{-1}(D(g_i)) = D(g_{\omega \pi_0 \omega^{-1}(i)}), \quad STS^{-1}(D(gh)) = D(g_{\omega \pi_0 \mu^{-1}(i)}h).$$
It is easily seen that for \(\sigma, \mu \in K_n \) and \(\omega, \omega', \sigma, \sigma' \in K_n \) or \(K_n \), we have \(\omega \sigma \omega^{-1}, \omega' \sigma \omega'^{-1}, \sigma' \sigma^{-1} \in K_n \). Hence \(STS^{-1} \) is in \(\mathcal{T}_1 P(D_n, H) \).

Now let \(T \in \mathcal{T}_1 P(D_n, H) \) and \(S \) be of type (II) in \(\mathcal{T}_1 P(D_n, H) \), i.e., \(S \) satisfies (8.1) and \(T \) satisfies (8.2) with \(\sigma, \mu \in K_n \). Then for \(i = 1, 2, \ldots, n \),

\[
STS^{-1}(D(g_i)) = D(g_{\sigma \mu^{-1}(i)}), \quad STS^{-1}(D(gh)) = D(g_{\sigma \sigma^{-1}(i)}h).
\]

It is clearly that for \(\sigma, \mu \in K_n \) and \(\tau, \nu \in K_n \) or \(K_n \), we have \(\nu \mu \nu^{-1}, \tau \sigma \tau^{-1} \in K_n \). Hence \(STS^{-1} \in \mathcal{T}_1 P(D_n, H) \). Also \(\mathcal{T}_1 P(D_n, H) \triangle \mathcal{T}_2 P(D_n, H) \). Thus we conclude that \(\mathcal{T}_1 P(D_n, H) \triangle \mathcal{T}_2 P(D_n, H) \).

Finally, for \(S \in \mathcal{T}_1 P(D_n, H) \) we write \(\mathcal{T}_1 P(D_n, H) \circ S = \mathcal{T}_1 P(D_n, H) \). Then \(\mathcal{T}_1 P(D_n, H) \circ \mathcal{T}_1 P(D_n, H) = (I, U, R, V, UR, UV, RV, URV) \). By a routine computation \(U, R, V, UR, UV \) are of order 2 and \(UR, RV \) are of order 4, i.e., \(\mathcal{T}_1 P(D_n, H) \circ \mathcal{T}_1 P(D_n, H) \) is isomorphic to \(D_4 \).

This completes the proof of Theorem 4.

9. EXAMPLE

Let \(n = 6 \). Then \(g_1 = 1, g_2 = (123456), g_3 = (135)(246), g_4 = (14)(25)(36), g_5 = (153)(264), g_6 = (165432); g_1 h = (26)(35), g_2 h = (12)(35)(45), g_3 h = (13)(46), g_4 h = (14)(23)(56), g_5 h = (15)(24), g_6 h = (16)(25)(43), and

\[
\begin{bmatrix}
x_{1g_1}(1) & x_{1g_2}(1) & x_{1g_3}(1) & x_{1g_4}(1) & x_{1g_5}(1) & x_{1g_6}(1) \\
x_{2g_1}(2) & x_{2g_2}(2) & x_{2g_3}(2) & x_{2g_4}(2) & x_{2g_5}(2) & x_{2g_6}(2) \\
x_{3g_1}(3) & x_{3g_2}(3) & x_{3g_3}(3) & x_{3g_4}(3) & x_{3g_5}(3) & x_{3g_6}(3) \\
x_{4g_1}(4) & x_{4g_2}(4) & x_{4g_3}(4) & x_{4g_4}(4) & x_{4g_5}(4) & x_{4g_6}(4) \\
x_{5g_1}(5) & x_{5g_2}(5) & x_{5g_3}(5) & x_{5g_4}(5) & x_{5g_5}(5) & x_{5g_6}(5) \\
x_{6g_1}(6) & x_{6g_2}(6) & x_{6g_3}(6) & x_{6g_4}(6) & x_{6g_5}(6) & x_{6g_6}(6)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
x_{1g_1h}(1) & x_{1g_2h}(1) & x_{1g_3h}(1) & x_{1g_4h}(1) & x_{1g_5h}(1) & x_{1g_6h}(1) \\
x_{2g_1h}(2) & x_{2g_2h}(2) & x_{2g_3h}(2) & x_{2g_4h}(2) & x_{2g_5h}(2) & x_{2g_6h}(2) \\
x_{3g_1h}(3) & x_{3g_2h}(3) & x_{3g_3h}(3) & x_{3g_4h}(3) & x_{3g_5h}(3) & x_{3g_6h}(3) \\
x_{4g_1h}(4) & x_{4g_2h}(4) & x_{4g_3h}(4) & x_{4g_4h}(4) & x_{4g_5h}(4) & x_{4g_6h}(4) \\
x_{5g_1h}(5) & x_{5g_2h}(5) & x_{5g_3h}(5) & x_{5g_4h}(5) & x_{5g_5h}(5) & x_{5g_6h}(5) \\
x_{6g_1h}(6) & x_{6g_2h}(6) & x_{6g_3h}(6) & x_{6g_4h}(6) & x_{6g_5h}(6) & x_{6g_6h}(6)
\end{bmatrix}
\]
Hence
\[\varphi_1 = \begin{pmatrix} 123456 \\ 135135 \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} 123456 \\ 246246 \end{pmatrix}, \quad \varphi_3 = \begin{pmatrix} 123456 \\ 351351 \end{pmatrix}, \]
\[\varphi_4 = \begin{pmatrix} 123456 \\ 462462 \end{pmatrix}, \quad \varphi_5 = \begin{pmatrix} 123456 \\ 513513 \end{pmatrix}, \quad \varphi_6 = \begin{pmatrix} 123456 \\ 624624 \end{pmatrix}; \]
\[\theta_1 = \begin{pmatrix} 123456 \\ 153153 \end{pmatrix}, \quad \theta_2 = \begin{pmatrix} 123456 \\ 264264 \end{pmatrix}, \quad \theta_3 = \begin{pmatrix} 123456 \\ 315315 \end{pmatrix}, \]
\[\theta_4 = \begin{pmatrix} 123456 \\ 426426 \end{pmatrix}, \quad \theta_5 = \begin{pmatrix} 123456 \\ 531531 \end{pmatrix}, \quad \theta_6 = \begin{pmatrix} 123456 \\ 642642 \end{pmatrix}. \]

Let \(H \in \mathcal{H} \) and \(T \in \mathcal{D}(D_6, H) \) be of type (III) associated with \(\Omega_1 = \Omega_3 = \{1, 3, 5\}, \quad \Omega_2 = \Omega_4 = \{2, 4, 6\}, \quad \omega = (14)(25)(36), \quad \omega' = (14)(23)(56), \quad \pi = \pi' = (16)(23)(45), \quad \lambda_2 = (14), \quad \lambda_4 = (25), \quad \lambda_6 = (14)(36), \quad \kappa_1 = (14)(25), \quad \kappa_3 = (36), \quad \kappa_5 = 1, \quad \Lambda = J. \) Then

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\lambda_{\omega(i)} \varphi_{\omega(i)}^{-1} \omega' \varphi_i)</th>
<th>(g_{\omega(i)} \lambda_{\omega(i)} \varphi_{\omega(i)}^{-1} \omega' \varphi_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2356)</td>
<td>(14)(2653)</td>
</tr>
<tr>
<td>3</td>
<td>(1245)(36)</td>
<td>(2356)</td>
</tr>
<tr>
<td>5</td>
<td>(1346)</td>
<td>(14)(2356)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\kappa_{\pi(i)} \theta_{\pi(i)}^{-1} \pi' \varphi_i)</th>
<th>(g_{\pi(i)} \kappa_{\pi(i)} \theta_{\pi(i)}^{-1} \pi' \varphi_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(23)(56)</td>
<td>(132)(465)</td>
</tr>
<tr>
<td>4</td>
<td>(23)(56)</td>
<td>(156)(234)</td>
</tr>
<tr>
<td>6</td>
<td>(14)(2356)</td>
<td>(14)(25)</td>
</tr>
</tbody>
</table>

and

\[
T = \begin{pmatrix}
 x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
 x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
 x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \\
 x_{41} & x_{42} & x_{43} & x_{44} & x_{45} & x_{46} \\
 x_{51} & x_{52} & x_{53} & x_{54} & x_{55} & x_{56} \\
 x_{61} & x_{62} & x_{63} & x_{64} & x_{65} & x_{66}
\end{pmatrix} = \begin{pmatrix}
 x_{43} & x_{44} & x_{45} & x_{46} & x_{41} & x_{42} \\
 x_{53} & x_{54} & x_{55} & x_{56} & x_{51} & x_{52} \\
 x_{63} & x_{64} & x_{65} & x_{66} & x_{61} & x_{62} \\
 x_{13} & x_{14} & x_{15} & x_{16} & x_{11} & x_{12} \\
 x_{23} & x_{24} & x_{25} & x_{26} & x_{21} & x_{22} \\
 x_{33} & x_{34} & x_{35} & x_{36} & x_{31} & x_{32} \\
 x_{43} & x_{44} & x_{45} & x_{46} & x_{41} & x_{42} \\
 x_{53} & x_{54} & x_{55} & x_{56} & x_{51} & x_{52} \\
 x_{63} & x_{64} & x_{65} & x_{66} & x_{61} & x_{62}
\end{pmatrix},
\]

\(x_{ij} \in F. \)
Hence

\[T \begin{bmatrix} x_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & x_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & x_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & x_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{66} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & x_{11} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{66} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{44} & 0 & 0 \\ 0 & 0 & x_{33} & 0 & 0 & 0 \\ 0 & 0 & x_{55} & 0 & 0 & 0 \end{bmatrix}, \]

\[T \begin{bmatrix} 0 & x_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & x_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{34} & 0 & 0 \\ 0 & 0 & 0 & 0 & x_{45} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{56} \\ x_{61} & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & x_{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{34} & 0 & 0 \\ 0 & 0 & 0 & 0 & x_{23} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{45} \\ 0 & 0 & 0 & 0 & 0 & x_{61} \\ 0 & 0 & 0 & 0 & x_{56} & 0 \end{bmatrix}, \]

\[T \begin{bmatrix} x_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{26} \\ 0 & 0 & 0 & 0 & x_{35} & 0 \\ 0 & 0 & 0 & x_{44} & 0 & 0 \\ 0 & 0 & x_{53} & 0 & 0 & 0 \\ 0 & x_{62} & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & x_{11} & 0 & 0 \\ 0 & 0 & x_{26} & 0 & 0 & 0 \\ 0 & x_{62} & 0 & 0 & 0 & 0 \\ x_{44} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & x_{53} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{35} \end{bmatrix}, \]

\[T \begin{bmatrix} 0 & x_{12} & 0 & 0 & 0 & 0 \\ x_{21} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{36} \\ 0 & 0 & 0 & 0 & x_{45} & 0 \\ 0 & 0 & x_{54} & 0 & 0 & 0 \\ 0 & x_{63} & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & x_{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{36} & 0 & 0 \\ 0 & 0 & 0 & 0 & x_{21} & 0 \\ 0 & 0 & 0 & 0 & 0 & x_{45} \\ x_{63} & 0 & 0 & 0 & 0 & 0 \\ 0 & x_{54} & 0 & 0 & 0 & 0 \end{bmatrix}, \]

etc.
REFERENCES

Received 25 July 1975; revised 18 September 1975