
Information and Computation 201 (2005) 1–54

www.elsevier.com/locate/ic

The Seal Calculus

G. Castagna a,∗, J. Vitek b, F. Zappa Nardelli c

aENS Paris, France
bCERIAS, Department of Computer Sciences, Purdue University, West Lafayette, IN, USA

cINRIA Rocquencourt, France

Received 16 May 2003; revised 12 May 2004
Available online 29 June 2005

Abstract

The Seal Calculus is a process language for describing mobile computation. Threads and resources are tree
structured; the nodes thereof correspond to agents, the units of mobility. The Calculus extends a �-calculus
core with synchronous, objective mobility of agents over channels. This paper systematically compares all
previous variants of Seal Calculus. We study their operational behaviour with labelled transition systems
and bisimulations; by comparing the resulting algebraic theories we highlight the differences between these
apparently similar approaches. This leads us to identify the dialect of Seal that is most amenable to opera-
tional reasoning and can form the basis of a distributed programming language. We propose type systems for
characterising the communications in which an agent can engage. The type systems thus enforce a discipline
of agent mobility, since the latter is coded in terms of higher-order communication.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Process mobility adds a new dimension to distributed computing systems. By endowing program
logic with location-awareness and control over the logical and physical location of computation,
mobile programming systems aim to enable the development of adaptive and reconfigurable sys-
tems that respond to changes in their execution environment in bothwide area and ad-hoc networks

∗ Corresponding author.
E-mail address: Giuseppe.Castagna@ens.fr (G. Castagna).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2004.11.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82671939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 G. Castagna et al. / Information and Computation 201 (2005) 1–54

[56,32,63,27]. The Seal project is among the first attempts to explore the design space of program-
ming languages for mobile systems. The results presented in this paper summarize our work on
formal foundations of mobile languages. This paper refines and extends an earlier version of the
calculus [61]. Many of the changes were also influenced by our experiences with implementations
of Seal and the engineering medium-sized mobile applications [4,2].
The original impetus for location-aware and mobile computation grew out of experience with

distributed programming languages such as Emerald [35] and Obliq [9], and middleware infrastruc-
tures such as Linda [20,25] that strove to facilitate distributed programming by presenting a, mostly,
transparent programming model in which remote resources can be accessed without having worry
about their location relative to the current computation. While these systems are well suited to ap-
plications distributed over centrally administered local area networks, they are not appropriate for
building applications on wide area and ad hoc networks. The shift away from local area networks
involves rethinking some of the assumption underlying the design of these systems. While it is usual
for local area networks to be under a single common administrative domain and thus share secu-
rity policies, this is not the case in wide area networks. Hosts are, in general, spread over different
administrative domains with a variety of policies controlling access to local resources. The impact
of decentralized control is compounded by issues of scale and connectivity. Local area network are
usually small, enjoy good connectivity and low latencies, whereas wide area networks are several
orders of magnitude larger with intermittent connectivity and highly variable bandwidth. Finally,
communication errors and host failures are common. This degree of heterogeneity can not easily
be papered over by a location transparent programming model [62]. This observation holds for
process calculi such as the �-calculus [41] which do not expose locations.
Finding abstractions suited to programming wide area networks is a challenging problem as one

has to balance the need for the kind of simple and clean semantics that allows reasoning about
program behavior with the need for efficient implementations. Our approach is to explore the lan-
guage design space and, in parallel, investigate the foundations of mobile computation following
four design principles:

Location-awareness. Locality is crucial in wide area computing. Observables such as latency, com-
munication errors, and security restrictions, impact the semantics of resource access. Locations,
be they logical or physical, thus need to be exposed to distinguish remote interactions from local
ones.

Self-reliance. As hosts may experience partial connectivity, and systems may have to scale to large
configuration, the semantics should not impose availability of global state and the need for
distributed synchronization should be minimized.

Reconfigurability. Wide area and ad hoc networks are inherently dynamic in their topology as well
as resources available to computations. Reconfigurability must be accounted for in the semantics
of a distributed language.

Hierarchical access control. While security is an essential constituent of any distributed infrastruc-
ture, it is unreasonable to assume a global security policy and enforcement mechanism. Hierar-
chical access control models which allow different parts of network to define their own policies
are better suited to distributed systems.

These guidelines led to the definition of the Seal Calculus. In the Seal Calculus the main concepts of
distributed computing are distilled down to three abstractions: processes, resources, and locations.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 3

Fig. 1. Seal Calculus term and configuration tree.

• Process are sequential threads of control modeled on the �-calculus with terms to denote the
inert process, sequential and parallel composition, and replication.

• Physical and logical resources are modeled by channels, which are named computational struc-
tures used to synchronize processes.

• Locations are denoted by terms called seals which stand for physical locations, such as hosts
or networks, and logical locations, such as operating system processes or finer grained software
components. To play these different roles, seals are arranged in a tree-like hierarchy, each level
modeling some real world entity.

As an example, a system composed of a computer running a Java virtual machine on top of an
operating system can be represented by three nested seals, one for each entity. Furthermore, the
address space of the virtual machine can be decomposed into several isolated subcomputations, one
per applet, modeled as seals. The sample configuration of Fig. 1 depicts a network with two hosts
running three applications, one of which is executing with a protection domain. The configuration
tree in the same figure is an alternate graphical representation of the seal term.
Seals differ from ambients [10] in three important ways. First, the association between names and

seals is weak. Names are merely tags used by parent seals to tell their children apart. They can be
changed at the parent’s whim. Contrast this to theAmbient Calculus inwhich names are capabilities
used for access control. Second, unlike ambients, the boundary around seals cannot be dissolved.
Thus, a process contained in a seal can be deactivated by blocking every possible interaction it
can have with the surrounding context, it can also be destroyed or passed along, but it can never
be separated from its boundary.1 Finally, while the Ambient Calculus uses subjective mobility (an
agent moves itself) in the Seal Calculus mobility is objective (an agent is moved by its context) as
this makes the enforcement of security requirements easier.
The Seal Calculus has been designed so as to allow seals to confine subseals and control their

access to resources. Several features of Seal have been specifically chosen with this goal in mind.
Seal boundaries give us a way to delineate groups of processes. This makes it possible, for instance,
to assign trust levels to each group. The choice to disallow boundary dissolution greatly simplifies
reasoning as we do not have to worry about arbitrary processes set loose in the local environment.
The main resource access control mechanism of the Seal Calculus is complete mediation. Since
interaction is limited to direct parent–child, any remote interaction between seals that are not in

1 This feature is the one that is at the origin of the name of “Seal,” as we thought it as a calculus of “sealed objects.”

4 G. Castagna et al. / Information and Computation 201 (2005) 1–54

direct contact is mediated by all the intervening seals. When coupled with the hierarchical organiza-
tion of seals this gives rise to programming styles that emphasize interposition techniques [44]. For
instance a seal can set up a monitor process which through careful use of restrictions can intercept
all communications of a child seal and filter or route outgoingmessages. An important precondition
to mediation is the ability to choose subseal names. When a parent performs the receive action that
allows a new seal to move in, it chooses the name under which the seal will operate.
We opted for a symmetric interaction model. Remote interaction requires an explicit agreement

between two partners. This should be contrastedwithMobileAmbients where actions are asymmet-
ric as one of the two partners simply undergoes move actions. Symmetry implies that either parent
or child may prevent the other from accessing its local resources. Mobility actions are objective
in the sense that seals are moved by their parent seal. Again, we contrast this with the subjective
mobility of Ambients where moves are initiated by the ambient that is the subject of the move.
Migration is thus totally under the control of a seal’s environment which decides whether and when
it occurs. For example, Trojan Horses can be detected in Seal, while in a model with subjective
mobility complex coarse-grained analysis techniques are needed (e.g., see [5,43]).

1.1. Overview

This article is intended to be a reference publication for the Seal Calculus. Several process lan-
guages are today know as Seal Calculus: our investigation aims to tidy up the picture offered by
these dialects, as well as to develop solid foundations for Seal. In Section 2, we give a uniform
presentation of the syntax and of the reduction semantics of all of the dialects. We also summarize
the evolution of the Seal Calculus and we examine the influence that the research on Seal had on
other process calculi. Section 3 opens with a preliminary investigation of behavioural theories of
the dialects that highlights the deep differences between these process calculi. We concentrate on
the dialect that appears to be, at the same time, a suitable kernel for a programming language and
a process calculus amenable to theoretical investigation. We propose a labelled transition system,
its definition points out some of the particularities of the Seal model of computation. On top of the
LTS we build a labelled bisimilarity and we prove that it is a sound proof technique for reduction
barbed congruence. The labelled bisimilarity is subsequently used to prove some algebraic laws. In
Section 4, a type system aimed at understanding what typing mobility means is presented. Related
works are discussed throughout the article.
Besides their technical importance, the results on equivalences reflect a common theme in mobile

calculi. Our results demonstrate that properties that required extensions in the original Ambient
calculus (such as the results of [36,38]) hold for Seal as it is. A posteriori this is not surprising as
expressive equivalence theories require tight control on interaction, exactly as security—one of the
main Seal’s design guidelines—does. Therefore, this confirms the pertinence of our design choices.
Finally it is noteworthy that the work presented here is the only one we are aware of that accounts
for process duplication. Although Sangiorgi’s research on higher-order �-calculus [47,48] accounts
for (inactive) process duplication, mobility frameworks usually restrict their analyses to the far
simpler case where duplication is not allowed.
The version of Seal Calculus presented here is based on [61] and on the second author’s PhD

Thesis [60] from which it inherits syntax and most design choices. This calculus is essentially the
one defined in [17], to which the introduction of the equivalence theory of Section 3 is also due.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 5

The development of the equivalence theory is taken from Chapter 3 of third author’s PhD Thesis
[65]. The type system of Section 4, although based on the one in [16], is essentially original to this
work as it uses new forms of judgments and a much more precise typing technique that types agent
generators that are parametric on channel names.

2. The Seal Calculus

The Seal Calculus was introduced in [61] as formal counterpart to a kernel for programming
mobile agents [4] on top of the Java Virtual Machine. Since then, the name Seal Calculus has been
used to denote a family of process calculi that originate from the same design choices and provide
the programmer with the same set of abstractions. At the same time, the little differences that char-
acterise their reduction semantics have a big impact on the programming pragmatics. We introduce
these different dialects, and we define their reduction semantics in a uniform framework. All along
the paper, the different developments will highlight the differences between these apparently sim-
ilar dialects, and will point out a dialect which is both amenable of theoretical investigation and
reasonable as core of a programming language.

Located and shared Seal. A distinctive feature of the Seal model of computation is that process
interactions are restricted to channels that are ‘close enough’ in the seal hierarchy. We distinguish
two interpretations of this notion of proximity, called, respectively, located channels and shared
channels. In the first case, channels are associated to seals and channel denotations specify the seal
in which a channel is located. In the second interpretation, channels are shared uniquely between
communicating entities, so that channel denotations specify the partner the channel is shared with.
Fig. 2A illustrates a configuration in the located interpretation. Channels x and y are localised in
two different seals. Synchronisation between these seals can happen over both channels: to syn-
chronise over x, process P must specify that it refers to a local channel, while Q will specify access
to a channel located in its direct parent. Thus, channel x will be referred as x∗ by process P , and as
channel x↑ by Q, while channel y is referred as yb by P , and as y∗ by Q. Fig. 2B depicts a similar
configuration in the shared interpretation. In this interpretation only the channel x can be used to
synchronise processes P and Q, and it will be referred to as xb by P and as x↑ by Q.
Mobility and extrusion of names. Scoping is lexical in the Seal Calculus and, as in �-calculus, the
scope of a name can be enlarged after an interaction. Although scope extrusion is fundamental to
expressivity, it desirable to limit it in some cases. In particular, there are reasons to prevent extru-
sion when it entails a name escaping the enclosing seal’s boundary as a consequence of a mobility

Fig. 2. Channels in the Seal Calculus.

6 G. Castagna et al. / Information and Computation 201 (2005) 1–54

interaction. Intuitively, this is a security risk as the name may represent a password or capability.
We refer to this constraint as the e-condition.
Seal dialects. As localisation of channels and the e-condition are orthogonal features, they define
four dialects of the Seal Calculus. All of them have been investigated in previous work, and should
not be confused as they have rather different properties:

• L-Seal: located channels; (almost) the original Seal Calculus, as presented in [61];
• eL-Seal: located channels and e-condition; introduced in [17];
• S-Seal: shared channels; appears in [16];
• eS-Seal: shared channels and e-condition; introduced in [17].

One of the aims of this paper is to precisely characterize the differences between these calculi,
and to develop solid foundations for the Seal Calculus.

2.1. Syntax and reduction semantics

The syntax of the Seal Calculus is defined in Table 1, where N denotes an infinite set of names.
Following the �-calculus, the inert process is denoted by 0 . A process �.P is composed of an action �

Table 1
The Syntax of the Seal Calculus

Names: a, . . . , u, v, x, y , z, . . . ∈ N

Locations:
� ::= ∗ local∣∣∣ ↑ up

∣∣∣ z down

Actions:
� ::= x�(y1, · · · , yn) output∣∣∣ x�(y1, · · · , yn) input

∣∣∣ x�y send
∣∣∣ x�y1, · · · , yn receive

for n ≥ 0.

Processes:
P ,Q,R ::= 0 inactivity∣∣∣ P | Q parallel composition

∣∣∣ (�x)P restriction
∣∣∣ �.P prefixing
∣∣∣ n[P] seal
∣∣∣ !�.P replication

G. Castagna et al. / Information and Computation 201 (2005) 1–54 7

and a continuation P ; it denotes a process waiting to perform� and then behave as P . The term P | Q
denotes a process composed of two subprocesses, P and Q running in parallel. A seal is represented
by the term a[P], where the process P is running at a. A seal is itself a process, it can thus be nested
within another seal; so if P contains one or more seals, saym1 · · ·mn, then n is called the direct parent
of eachmi . The term !�.P creates an unbound number of copies of �.P running in parallel. Guarded
replication was chosen because it yields a simpler LTS (Section 3.3) without loss of generality. In the
�-calculus replicated input has the same expressive power as full replication [34] and recursion
[40,50].
We work modulo �-conversion and thus assume all bound variables in the same process to be

distinct. Some useful notations: we write �xn (or simply �x) to denote the tuple x1, . . . , xn. We also write
(��xn)P (or (��x)P), for (�x1) · · · (�xn)P . We omit ∗ locations and trailing 0 processes. In the input
action x�(y1, . . . , yn) the yi’s are required to be pairwise distinct (however, this is not required in the
receiving action, see below). We use P [y/x] to denote the process obtained from P by substituting y

for all free occurrences of x, and use P [�yn/�xn] to denote the process obtained from P by simultaneous
substitution of yi for xi . The latter is not defined for vectors of different arity.
The free names of actions and processes are defined as:

fn(0) = ∅ fn(↑) = ∅

fn(∗) = ∅ fn(x) = {x}
fn(P | Q) = fn(P) ∪ fn(Q) fn(!�.P) = fn(�.P)
fn(x[P]) = fn(P) ∪ {x} fn((�x)P) = fn(P) \ {x}

fn(x�(�y).P) = (fn(P) \ �y) ∪ {x} ∪ fn(�) fn(x�(�y).P) = fn(P) ∪ �y ∪ {x} ∪ fn(�)
fn(x�y.P) = fn(P) ∪ {y} ∪ {x} ∪ fn(�) fn(x� �y.P) = fn(P) ∪ �y ∪ {x} ∪ fn(�)

Contrary to what happens with the input action, the receive action is not a binding operation. As
a consequence, the names yi are not required to be pairwise distinct. As we will see shortly, a name
specified in the receive action denotes the name of a seal that will run in parallel with the receiving
process. It seems an undue restriction to limit the scope of the names of incoming seals to the sole
continuation of the receive action. If a similar behaviour is needed, it can be easily programmed.

Actions. Every interaction takes place over named, localised channels. The Seal Calculus differenti-
ates between local and remote interaction. Interaction is local if the processes that synchronise are
located in the same seal. Interaction is remote if the processes are located in seals in parent–child
relationship: depending on the interpretation, they synchronise over a shared channel or a channel
located in one of the host seals. Processes that are not in seals in parent–child relationship can not
communicate, thus any interaction that spans more than a single seal boundary has to be encoded
explicitly. Channel synchronisation is used both for communication (exchange of names) and for
mobility (exchange of seals).

Communication. x�(�y).P denotes a process ready to output �y on channel x� and then continue as
P , and x�(�z).Q denotes a process that will read from channel x� and then continue as Q where
the free occurrences of �zi are replaced by the corresponding messages.
As an example, in the configuration of Fig. 2A, the reduction below illustrates the exchange of
the name w between P and Q over the channel y located inside the seal b:

a[yb(w).R︸ ︷︷ ︸
P

| b[y∗(z).S︸ ︷︷ ︸
Q

]] −� a[R | b[S[w/z]]].

8 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Referring to Fig. 2B, a similar interaction carried on in the shared interpretation looks like

a[xb(z).R︸ ︷︷ ︸
P

| b[x↑(w).S︸ ︷︷ ︸
Q

]] −� a[R[w/z] | b[S]].

Remark that the (sum and matching free) polyadic �-calculus is a sub-calculus of the Seal Cal-
culus as it can be obtained by forbidding the use of seal processes, of send and receive actions,
and of up and down locations.

Mobility. x�y.p denotes a process ready to send a child seal named y along channel x�; x��zn.P
denotes a process that will receive a seal along channel x� and reactivate n copies of it inside
newly created seals called, respectively, zi .
The nesting of seals is represented as a tree, and mobility corresponds to a tree rewriting opera-
tion, as shown in Fig. 3. A move disconnects a subtree rooted at some seal y and grafts it either
onto the parent of y (configuration (B)), onto one of the children of y (configuration (C)), or
back ‘onto y itself (configuration (D)). The rewriting operation relabels the edge associated to
the moved seal, and can also create a finite number of copies of the subtree rooted at the moved
seal. These tree transformations correspond to mobility reduction rules of the calculus.
So, for example, the transformation from (A) to (B) using a channel c located in y corresponds
to the following reduction:

cym.R′︸ ︷︷ ︸
R

| y[c∗n︸ ︷︷ ︸
Q

| x[P] | n[S]] −�R′ | m[S] | y[x[P]].

Seal duplication. A straightforward application of the semantics of mobility is the implementation
of a copy operation

(copy x as z).P
def= (�y)(y∗x | y∗x , z.P).

The term copy n as m | n[P] reduces to n[P] | m[P]. The copy process creates a brand new channel
name y to prevent other processes from interfering with the protocol. Then, the left-hand side sub-
process attempts to move n over the local channel, while the right-hand side process receives it and
instantiates two copies of it under names n andm. The same technique can be used to destroy a seal:

(destroy x).P
def= (�y)(y∗x | y∗.P).

Fig. 3. Mobility as restructuring the tree of locations.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 9

Here, the receive action instantiates zero copies of the sent seal, thus destroying it. Duplication
differs from replication, !�.P , because replication creates copies of inert processes while duplication
copies running processes. This is similar to higher-order �-calculi [47,48] in which duplication is
also restricted to inactive processes.

Synchronisation.Wedefine the reduction semantics of the calculus in chemical style, using a structur-
al congruence relation and a set of reduction rules. The semantics is parametric on the interpretation
of channels. For that, we introduce two predicates

synchS , synchL : Var × Loc× Loc → Bool ,
ranged over by synch. Intuitively, synchy(�1, �2) holds if and only if for any channel x an action on
x�1 performed in some parent seal may synchronise with a coaction on x�2 performed in a child seal
named y (in this case we say that �1 and �2 are ‘y-corresponding’ locations).

Definition 2.1 (y-correspondence). Let �1, �2 be locations and y a name. We define:

Shared channels: synchSy(�1, �2)
def= (�1 = y ∧ �2 =↑);

Located channels: synchLy(�1, �2)
def= (�1 = y ∧ �2 = ∗) ∨ (�1 = ∗ ∧ �2 =↑).

Definition 2.2 (Contexts). A context is a term containing a hole, denoted −, generated by the fol-
lowing grammar in which P is an arbitrary process, � an arbitrary action, and n an arbitrary name:

C[−] ::= − ∣∣C[−] | P ∣∣ P | C[−] ∣∣ n[C[−]] ∣∣�.C[−] ∣∣ (�n)C[−].
A static context is a context where the hole does not appear under prefix.

Definition 2.3 (Structural congruence). Structural congruence is the smallest relation over processes
that is preserved by static contexts and that satisfies the following axioms:

P | 0 ≡ P (�x)(�y)P ≡ (�y)(�x)P x �= y
P | Q≡Q | P (�x)(P | Q)≡ P | (�x)Q x �∈ fn(P)

P | (Q | R)≡ (P | Q) | R (�x)0 ≡ 0
!�.P ≡ �.P | !�.P

Seal duplication has an interesting consequence on the semantics of the Seal Calculus: the struc-
tural rule

(�x)y[P] ≡ y[(�x)P] x �= y (1)

found in the semantics of Mobile Ambients is not sound as processes (�x)y[P] and y[(�x)P] are not
equivalent. If we compose the terms with the process Q = copy y as z we obtain

y[(�x)P] | Q −� y[(�x)P] | z[(�x)P] and (�x)y[P] | Q −� (�x)(y[P] | z[P]) .
The first process yields a configuration where seals y and z have each a private channel x, while
the second process reduces to a configuration where y and z share a common channel x. This
unsoundness result is proved in Section 3.2.

10 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Table 2
Reduction rules for the Seal calculus

(write local) x∗(�u).P | x∗(�v).Q −� P [�v/�u] | Q
(write in) x�1(�w).P | y[(��z)(x�2 (�u).Q1 | Q2)] −� P | y[(��z)(Q1[�w/�u] | Q2)]
(write out) x�1(�u).P | y[(��z)(x�2 (�v).Q1 | Q2)] −� (��v ∩ �z)(P [�v/�u] | y[(��z \ �v)(Q1 | Q2)])
(move local) x∗�u.P1 | x∗v.P2 | v[Q] −� P1 | u1[Q] | · · · | un[Q] | P2
(move in) x�1v.P | v[S] | y[(��z)(x�2�u.Q1 | Q2)] −� P | y[(��z)(Q1 | Q2 | u1[S] | · · · | un[S])]
(move out) x�1�u.P | y[(��z)(x�2v.Q1 | v[R] | Q2)]

−� P | (�fn(R) ∩ �z)(u1[R] | · · · | un[R] | y[(��z \ fn(R))(Q1 | Q2)])
(red struct) P ≡ P ′ ∧ P ′ −�Q′ ∧ Q′ ≡ Q implies P −�Q

With x �∈ �z, �w ∩ �z = ∅, fn(S) ∩ �z = ∅ and synchy(�1, �2).

Reduction. Since we work modulo �-conversion we can suppose that in the term (��x)P the names
x1, . . . , xn are all distinct. Structural congruence states that their order is not important as they can
be freely permuted. This justifies the use of set-theoretic operations such as (��x ∩ �y)P or (��x \ �y)P ,
with the convention that (�∅)P = P .

Definition 2.4 (Reduction relation). The reduction relation, −� is the smallest relation between
processes that satisfies the rules of Table 2 and is preserved by static contexts. Its reflexive and
transitive closure is denoted −�∗.

As structural congruence cannot move restrictions across seal boundaries, the reduction rules
(write out) and (move out) explicitly extrude restrictions through seal boundaries. The non-local rules
are parametric in synch: different remote interaction patterns are obtained according towhether synch

is replaced by synchS (shared channels), or synchL (located channels).
The first three rules define the semantics of communications. Rule (write local) gives local com-

munication the same semantics as found in polyadic �-calculus.
Rule (write in) describes the communication of a tuple �w from a parent to its child y . Reduction

takes place provided that channel x is not locally restricted (i.e., x �∈ �z), and no name capture arises.
(i.e., �w ∩ �z = ∅). Rule (write out) captures the case when a child y communicates a vector of names �v
to its parent. Names local to y in �vmay be extruded across the boundaries of y . The three remaining
rules define the semantics of mobility. In local mobility (rule (move local)) the body of the seal
specified by the send action is copied n times, named as specified by the receive action. A seal can
be moved inside a child y (rule (move in)) provided that no variable free in the moved process is
captured (i.e., fn(R) ∩ �z = ∅). A seal can be moved out of its enclosing seal (rule (move out)). Names
local to y but free in Rmay be extruded across the boundaries of y . All non-local rules require that
�1 and �2 are y-corresponding locations and that channel x is not locally restricted (i.e., x �∈ �z).
The e-condition. There is a tension whether to allow extrusion of names as a consequence of a
mobility action. Names private to a seal can be considered its private resources, and it is legitimate
to prevent these names to be extruded to the enclosing seal as a consequence of a mobility action.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 11

In a distributed implementation locally restricted channels would correspond to local variables
(e.g., pointers). Moving these channels outside the enclosing location then requires to implicitly
transform them into globally unique identifiers. If the restrictive option is chosen, then all variables
free in a seal must already be known by the parent either because they are non-local or because they
have been previously communicated. In the example below, the output action extrudes the name y ,
so that there is no harm in moving the seal m out of n:

n[(�y)(u↑(y).x↑m | m[y↑()])].
Extrusion of names across seal boundaries as a consequence of mobility can be forbidden by

adding the condition

fn(R) ∩ �z = ∅ (2)

to rule (move out). We refer to the Eq. (2) as the e-condition. In this case, the (move out) rule can be
simplified, and rewritten as

x�1�u.P | y[(��z)(x�2v.Q1 | v[R] | Q2)] −� P | u1[R] | · · · | un[R] | y[(��z)(Q1 | Q2)],
where fn(R) ∩ �z = ∅, x �∈ �z, and synchy(�1, �2) holds.
Adding the e-condition to the semantics of the Seal Calculus has surprising effects on its behav-

ioural theory, as we will see shortly.

3. Behavioural theories

The study of the behavioural theories of the dialects highlights the deep differences between these
process calculi, only apparently similar.We then concentrate on the dialect that appears at the same
time a suitable kernel for a programming language and a process calculus amenable of theoretical
investigation.

3.1. Reduction barbed congruence

We introduce an equivalence constructed from natural properties, that will be our reference no-
tion of equivalence. We focus on a slight variant of Milner and Sangiorgi’s [42] barbed congruence,
called reduction barbed congruence. This relation was first studied byHonda andYoshida [33] under
the name of maximum sound theory.

Definition 3.1 (Reduction closed).A relationR over processes is reduction closed if P R Q and P −� P ′
implies the existence of some Q′ such that Q −�∗Q′ and P ′ R Q′.

Definition 3.2 (Contextual).A relationR over processes is contextual if P R Q impliesC[P] R C[Q]
for all contexts C[−].
We build our analysis on the assumption that the basic observable entity in Seal is the presence

of a seal whose name is public at top-level. This observation, originally due to Cardelli and Gordon

12 G. Castagna et al. / Information and Computation 201 (2005) 1–54

[10,11], can be interpreted as the ability of the top-level process to interact with that seal. In Section
3.5.1 we will see that the reduction barbed congruence is insensitive to the exact observation chosen.

Definition 3.3 (Barbs).We write P ↓ n if and only if there exist Q, R, �x such that P ≡ (��x)(n[Q] | R)
where n �∈ �x. We write P ⇓ n if there exists P ′ such that P −�∗P ′ and P ′ ↓ n.

Definition 3.4 (Barb preserving).We say that a relationR over processes is barb preserving if P R Q

and P ↓ n implies Q ⇓ n.

Definition 3.5 (Reduction barbed congruence).Reductionbarbed congruence,written ∼=, is the largest
symmetric relation over terms which is reduction closed, contextual, and barb preserving.

In the sequel we will use the following properties of reduction barbed congruence.

Lemma 3.6. If P ∼=Q then

1. P ⇓ n if and only if Q ⇓ n;
2. P −�∗ P ′ implies that there exists a process Q′ such that Q −�∗Q′ and P ′ ∼=Q′.

3.2. Seal dialects and reduction barbed congruence

To gain familiarity with the characteristics of reduction barbed congruence, we show that in all
Seal dialects the process P = (�x)n[R] is not equivalent to Q = n[(�x)R]. In this way we prove the
unsoundness of rule (1) informally discussed in the previous section. Take

R = y�(x) | x�()
and consider the context

C[−] = copy n as m.yn(u).um().b[0] | [−]
in which b is fresh, and � is such that synchu(n, �) holds in the desired channel interpretation (this also
implies synchu(m, �)). Then C[P] −�∗ P ′ and P ′ ↓ b (in particular P ′ = (�x)n[x�()] | m[y�(x)] | b[0])
while there is no Q′ such that C[Q] −�∗Q′ and Q′ ⇓ b.

Although it may appear that the four dialects of Seal define essentially the same language, deep
differences are exposed by the study of their behavioural theory. To avoid confusion between the
different semantics, we label∼= with the name of the calculus we are considering. So,∼=eS stands for
reduction barbed congruence over Seal with shared channels and the e-condition; similarly for the
other dialects.

Observing free names. Perhaps the biggest surprise of our study: Seal contexts can observe the free
names of terms.
It is not difficult to prove this claim in a dialect that includes the e-condition. Let P andQ be two

processes, and let x be a name such that x ∈ fn(P) but x �∈ fn(Q). Independently of their behaviour,
the context

C[−] = zyn | y[(�x)(z↑n | n[−])]

G. Castagna et al. / Information and Computation 201 (2005) 1–54 13

exploits the name x to tell P and Q apart. In fact, while the move of n[Q] out of y can freely occur,
the presence of x free in P forbids the move of n[P]. The same example applies to eL-Seal.
If the dialect does not include the e-condition, then we need a fairly complex context to observe

the free names of a process.2 Consider the context

C[−] = m[(�x)(a[−] | w↑a.R)] | wm.y∗m1,m2 | y∗m

and, as before, let P and Q be two processes such that x ∈ fn(P) and x �∈ fn(Q). Now,

C[P] −�∗ (�x)(m1[R] | m2[R] | a[P])

while

C[Q] −�∗m1[(�x)R] | m2[(�x)R] | a[Q].

In general, the two subterms (�x)(m1[R] | m2[R]) and m1[(�x)R] | m2[(�x)R] are not equivalent, as
shown above.
In the Seal Calculus, contextuality is source of a great discriminating power, difficult to justify

purely in terms of behaviour. In fact two processes are not equivalent if they contain different free
names even in deadlocked subprocesses.
As an aside remark, this is similar to what happens to languages that offer reflection: contextual

equivalence becomes dependent not only on the runtime behaviour of a program, but also on the
raw code of the program as it is possible to examine the programs definitions at runtime. Whether
this is desirable is open to debate, but it is clearly a feature that deserves more attention.

L-Seal. Extrusion is subtle in the Located Seal dialect, as demonstrated by the following reduction:

x∗(u).P | (�z)z[x↑(v).Q] −� (�z)(P [v/u] | z[Q]).

In L-Seal, a process can synchronise with a child seal without knowing that seal’s name. This
characteristic of the extrusion rules significantly complicates the task of controlling interference.
For instance, (�cxy)cx | cy | x[P] is not equivalent to (�cxy)y[P]. If P contains an action, e.g.,
z↑(c), that exposes c to its environment, interference will be possible. The consequence is a poor
algebraic theory and a programming model that is error prone.

S-Seal. The Seal Calculus with shared channels and without the e-condition appears to be the most
amenable of theoretical investigation. Our intuitions about its semantics have not been contradicted
by basic observations on its behavioural theory. Also it seems to constitute the core of a sensible
programming language. For these reasons, in the rest of this section we will focus exclusively on
S-Seal, and we will abbreviate its name to Seal. In particular, we will look for a bisimulation based
proof method, to learn more about its behaviour, and further investigate its algebraic theory.

2 We are grateful to Thomas Hildebrandt and Mikkel Bundgaard for pointing us to this example.

14 G. Castagna et al. / Information and Computation 201 (2005) 1–54

3.3. A labelled transition semantics

In Table 4, we report a labelled transition system for Seal. Our labelled transition system uses
actions of the form

A P
�−−→ P ′,

whereA is a finite set of names such that fn(P) ⊆ A; the judgement should be read as ‘in a state where
names in A may be known by process P and by its environment, the process P can perform � and
become P ′.’ This presentation, borrowed from [53] and [52], allows us to drop many side conditions
when dealing with the extrusion of names.
In the name environment A we use commas to denote disjoint union, that is, A, y means A

.∪ {y}
and A, �y means A

.∪ �y . We write P
�−−→ as a shorthand for ‘there exist a set of names A and a process

Q such that A P
�−−→ Q.’ We write ⇒ to denote the reflexive and transitive closure of

 −−→. We
denote the composition of the relationsR and S asRS; this notation is also extended to transitions.
Labels. The � labels, defined in Table 3, give a precise description of how the process P evolves,
either autonomously, or by interacting with a possible context. We define an early semantics, that
is, a semantics where receiving actions are instantiated with their actual arguments when the capa-
bility is unleashed, rather than when interaction occurs. This avoids dealing explicitly with process
substitutions, and also simplifies the definition of the labelled bisimilarity. This is not surprising, as
our bisimulation will be a context bisimulation in the sense of [48] and, in general, a transition in an
early LTS clearly identifies the context the process is interacting with.
The free names of a label, fn(�), are defined by the rules below:

fn() = ∅ fn(Pz) = fn(P z) = {z} ∪ fn(P) fn(![a]) = fn(!) ∪ fn(a)
fn(x�(�y)) = fn(x�(�y)) = {x, �y} ∪ fn(�) fn(x�y) = {x, y} ∪ fn(�)
fn(x�P) = fn(x�P) = {x} ∪ fn(�) ∪ fn(P) fn(x�z) = {x, z} ∪ fn(�)

While synchronization of communications in Seal is pretty standard, the Seal model of mobility
requires a three-party synchronisation between the sender, the receiver, and the seal being moved.
The labelled transition system we propose uses intermediate transitions to express partial syn-
chronisations. Actions can be roughly grouped into three groups: the actions that are the direct

Table 3
S-Seal actions

Labels Activities Locations

� ::= internal action∣∣∣ Pz seal freeze
∣∣∣ P z seal chained
∣∣∣ ![a] activity a at !

a ::= x�(�y) input∣∣∣ x�(�y) output
∣∣∣ x�y send
∣∣∣ x�P capsule
∣∣∣ x�P receive
∣∣∣ x

�
z lock

� ::= ∗ here∣∣∣ z inside z

G. Castagna et al. / Information and Computation 201 (2005) 1–54 15

Table 4
A labelled transition system for the Seal Calculus

Congruence
(PAR)

A P
�−−→ P ′

A P | Q
�−−→ P ′ | Q

(RES) u �∈ fn(�)

A, u P
�−−→ P ′

A (�u)P
�−−→ (�u)P ′

(BANG)

A �.P
�−−→ P ′

A !�.P
�−−→ P | !�.P

(OPEN COM) y , �, ! �= u; u ∈ �x
A, u P

![y�(�x)]−−−−−−−→ P ′

A (�u)P
![y�(�x)]−−−−−−−→ P ′

(OPEN FREEZE) z �∈ u; u ∈ fn(S)

A, u P
Sz−−−→ P ′

A (�u)P
Sz−−−→ P ′

(SEAL TAU)

A P
 −−→ P ′

A x[P] −−→ x[P ′]

(OPEN CAPSULE) y , �, ! �∈ �u; u ∈ fn(S)

A, u P
![y−∗�S]−−−−−−→ P ′

A (�u)P
![y−∗�S]−−−−−−→ P ′

(SEAL LABEL)

A P
∗[a]−−−−→ P ′ a ∈ {y↑(�z), y↑(�z), y↑Q, y−∗ ↑ Q}

A x[P] x[a]−−−−→ x[P ′]
Communication
(OUT)

A x�(�y).P ∗[x�(�y)]−−−−−−−→ P

(IN)

A x�(�y).P ∗[x�(�v)]−−−−−−−→ P [�v/ �y]
Mobility
(SND)

A x�y.P
∗[x�y]−−−−−−−−→ P

(RCV)

A x� �y.P
∗[x�Q]−−−−−−−−→ P | y1[Q] | · · · | yn[Q]

(CAPSULE)

A P
Sz−−−→ P ′ A Q

∗[x�z]−−−−−−−→ Q′

A P | Q
∗[x�S]−−−−−−−−→ P ′ | Q′

(LOCK) ! = � = ∗ or (! �= ∗ ∧ � =↑)
A P

Sz−−−→ P ′ A Q
![x�S]−−−−−−−−→ Q′

A P | Q
![x�z]−−−−−→ (�fn(S) \ A)(P ′ | Q′)

(FREEZE)

A x[P] Px−−−→ 0

(CHAIN) ! = �1 = �2 = ∗ or (�1 = ! ∧ �2 =↑)
A P

∗[x�1y]−−−−−−−−→ P ′ A Q
![x�2S]−−−−−−−−−→ Q′

A P | Q
Sy

−−−→ P ′ | Q′

Synchronisation
(SYNC) �1��2

A P
�1−−→ P ′ A Q

�2−−−→ Q′

A P | Q
 −−→ (�(fn(�1) ∪ fn(�2)) \ A)(P ′ | Q′)

The symmetric rules for (PAR), (CAPSULE), (LOCK), and (CHAIN) are omitted.

consequence of the exercise of a capability, those that denote a partial synchronisation, and the
internal reduction. Let us describe each group in detail.

Exercise of capabilities. A process can exert a capability, emitting the corresponding activity. The
corresponding rules are (IN), (OUT), (SND), and (RCV). The activities input x�(�y) and output x�(�y)

16 G. Castagna et al. / Information and Computation 201 (2005) 1–54

account for communication. They are analogous to the corresponding rules of an early LTS for
�-calculus.
The activities send x�y and receive x�Q account for mobility. The former simply expresses

that the process is willing to send a seal named y over the channel x�. The latter expresses that the
process is willing to receive a seal over the channel x�. The early LTS supposes that the arbitrary seal
body Q is provided by the context, and the outcome is exactly the process that would be obtained
if the process exerting the capability received the seal body Q.
To this group belong also the Pz label. A consequence of the Seal’s mobility model is that a seal

can at any time be moved by a context. This implies that a seal z[P] must be able to offer itself to
be moved. This is accomplished by the (FREEZE) rule: a seal freezes itself, emitting the Pz label,
that is by communicating to the environment its name and its content, and turning into an inactive
process.

Partial synchronisation. Three labels denote that two of the three components of a (mobility) syn-
chronisation already interacted and are waiting for an action of the third component to yield an
internal reduction.
As the diagram in Fig. 4 illustrates, the LTS can generate transitions independently from the

order in which labels match. This requires three intermediate labels, called ‘capsule’ x�P, ‘lock’
x
�
z , and ‘seal chained’ P z . The label x�P represents the action of serialising a seal: its emission
indicates that a process willing to send a seal over a channel found it, serialised it, and is now
waiting to synchronise with a receiver. The label x�z denotes that a process willing to receive a
seal at x� synchronised with the corresponding frozen seal named z, and is now looking for a
sender. Remark that the names to be extruded are concretized by the (LOCK) rule: the seman-
tics defined by the LTS performs the smallest number of extrusions needed. The label P z denotes
that a process willing to move a seal named z and a process willing to receive a seal with body
P synchronised, and are now looking for the frozen seal (named z and whose body is P) to be
moved.

Internal reduction. The label denotes internal synchronisation. Given two matching actions,
the (SYNC) rule constructs the process resulting from interaction: it puts the outcomes in
parallel and concretizes the extruded names. Matching actions are identified by the �
relation.

Definition 3.7. Let � be the smallest binary symmetric relation on labels containing the following
relation:

{(!1[x�1(�y)], !2[x�2(�y)]) | M} ∪ { (!1[x�1S] , !2[x�2S]) | M}
∪ {(!1[x�1z] , !2[x�2z]) | M} ∪ { (Sz , Sz) },

where M def= (!1 = �1 = !2 = �2 = ∗) ∨ (!1 = ∗ ∧ synch!2(�1, �2)) ∨ (!2 = ∗ ∧ synch!1(�2, �1)).

Congruence rules. An action observable at top-level can take place either at top-level, or inside a
top-level seal. The labels keep track of where an action a takes place by tagging it with ∗[a] if the
action is a top level action, andwith x[a] if the action is unleashed inside a seal x. The (SEAL LABEL)
rule transforms a ∗[a] label into a x[a] label provided that the action a can be observed from the

G. Castagna et al. / Information and Computation 201 (2005) 1–54 17

Fig. 4. Synchronisation paths for mobility.

outside of the seal x. For instance, in the process x[z[P]] the seal z[P] cannot be observed and

this is reflected in LTS by the absence of a transition x[z[P]] x[Pz]−−−−→. The rules (OPEN FREEZE)
and (OPEN CAPSULE) are responsible for the extrusion of names as a consequence of mobility
actions.
The remaining congruence rules are fairly standard.

3.4. Basic properties of the LTS

We prove some properties of the labelled transition semantics. In particular, we investigate how
transitions are preserved and reflected by injective renaming, and we prove the correspondence
between the LTS and the semantics in chemical style.
First of all, we remark that for a given transition A P

�−−→ O the structure of the process P and
of the outcome O can be characterised up to structural congruence.

Lemma 3.8 (Transition analysis). For fn(P) ⊆ A, consider the derivation A P
�−−→ O. Let

P = x�z.P ′ Q = x� �y.Q′ R = z[S].

According to the legend

(R | P) | Q ����� (R | Q) | P �� (P | Q) | R ��

the diagram below depicts the possible interaction paths.

� = ∗[x�(�z)] implies

P ≡ (��u)(x�(�z).R1 | R2), with x, � �∈ �u;
O ≡ (��u \ �z)(R1 | R2);

18 G. Castagna et al. / Information and Computation 201 (2005) 1–54

� = a[x↑(�z)] implies

P ≡ (��u)(a[(��v)(x↑(�z).R1 | R2)] | R3), with x �∈ (�u ∪ �v) and a �∈ �u;
O ≡ (��u \ �z)(a[(��v \ �z)(R1 | R2)] | R3);

� = ∗[x�(�z)] implies

P ≡ (��u)(x�(�y).R1 | R2), with x, �, �y , �z �∈ �u;
O ≡ (��u)(R1[�z/ �y] | R2);

� = a[x↑(�z)] implies

P ≡ (��u)(a[(��v)(x↑(�y).R1 | R2)] | R3), with x, �y , �z �∈ (�u ∪ �v), and a �∈ �u;
O ≡ (��u \ {a})(a[(��v)(R1[�z/ �y] | R2)] | R3);

� = Sz implies

P ≡ (��u)(z[S] | R1), with z �∈ �u;
O ≡ (��u \ fn(S))R1;

� = Sz implies either

P ≡ (��u)(x∗z.R1 | x∗ �y.R2 | R3) with z, fn(S) �∈ �u;
O ≡ (��u)(R1 | R2 | y1[S] | · · · | yn[S] | R3);

or

P ≡ (��u)(xaz.R1 | R2 | a[x↑ �y.R3 | R4]) with z �∈ �u, fn(S) �∈ �u;
O ≡ (��u)(R1 | R2 | a[y1[S] | · · · | yn[S] | R3 | R4]);

� = ∗[x�y] implies

P ≡ (��u)(x�y.R1 | R2), with x, �, y �∈ �u;
O ≡ (��u)(R1 | R2);

� = ∗[x�S] implies

P ≡ (��u)(x�y.R1 | y[S] | R2), with x, � �∈ �u;
O ≡ (��u \ fn(S))(R1 | R2);

� = a[x↑S] implies

P ≡ (��u)(a[(��v)(x↑y.R1 | y[S] | R2)] | R3), with x �∈ (�u ∪ �v), and a �∈ �u;
O ≡ (��u \ fn(S))(a[(��v \ fn(S))(R1 | R2)] | R3);

G. Castagna et al. / Information and Computation 201 (2005) 1–54 19

� = ∗[x�S] implies

P ≡ (��u)(x� �y.R1 | R2), with x, �, fn(S) �∈ �u;
O ≡ (��u)(R1 | y1[S] | · · · | yn[S] | R2);

� = a[x↑S] implies

P ≡ (��u)(a[(��v)(x↑ �y.R1 | R2)] | R3), with x, y , fn(S) �∈ �u ∪ �v, and a �∈ �u;
O ≡ (��u \ {a})(a[(��v)(R1 | y1[S] | · · · | yn[S] | R2)] | R3);

� = ∗[x∗z] implies

P ≡ (��u)(z[S] | x∗ �y.R1 | R2), with x, z �∈ �u;
O ≡ (��u)(R1 | y1[S] | · · · | yn[S] | R2);

� = a[x↑z] implies

P ≡ (��u)(z[S] | R1 | a[(��v)(x↑ �y.R2 | R3)]), with z �∈ �u, x �∈ �u ∪ �v, and a �∈ �u;
O ≡ (��u)(R1 | a[(��v)(R2 | y1[S] | · · · | yn[S] | R3)]);

where �u and �v are disjoint.

Proof. Induction on derivations of transitions. To avoid unnecessary complications in the grammar
of the labels, we included the label [x�y] even if no process can emit it. �
We now show how injective renaming preserves and reflects transitions. These theorems are

fundamental to prove that the bisimulation based equivalence that we will build on top of
the LTS is preserved by injective substitutions. It is convenient to introduce some special no-
tations for injective substitutions. Given an injective function f : A → B between two finite
sets of names A = {a1, . . . , an} and B, and a process P such that fn(P) ⊆ A, we write fP for
P [f(a1), . . . , f(an)/a1, . . . , an]. We denote dom(f) and img(f), respectively, the domain and the
image of f . We also use the convention that f(∗) = (∗) and f(↑) =↑. Given f : A → B and
A′ ⊆ A, we write f �A′ for f restricted to A′. Given f : A1 → B1 and g : A2 → B2 with A1 ∩ A2 =
∅, we write f + g : A1

.∪ A2 → B1 ∪ B2 for the function obtained by the set theoretic union of
the graphs.

Lemma 3.9 (Injective substitution). If A P
�−−→ P ′, and f : A → B and g : (fn(�) \ A) → (N \ B)

are injective, then B fP
(f+g)�−−−−−−→ (f + g)P ′.

Proof. Induction on derivations of transitions.

(IN) Consider A x�(�y).P ∗[x�(�v)]−−−−−−→ P [�v/ �y]. By �-conversion, we suppose �y �∈ (A ∪ B ∪ (fn(�) \
A) ∪ img(g)). Then f(x�(�y).P) = fxf�(�y).fP and fn(fxf�(�y).fP) ⊆ B. By (IN) B fxf�(�y).
fP

∗[fxf�((f+g)�v)]−−−−−−−−−−−−→ fP [(f + g)�v/ �y]. Now fn(P) ⊆ A, �y so fn(P) ∩ dom(g) = ∅, so fP = (f + g)P .

20 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Hence fP [(f + g)�v/ �y] = (f + g)P [(f + g)�v/ �y] = (f + g)(P [�v/ �y]), so we have the transition B
fxf�(�y).fP (f+g)∗[x�(�v)]−−−−−−−−−−→ (f + g)P [�v/ �y].
(RCV) Consider A x� �y.P

∗[x�Q]−−−−−−−→ P | y1[Q] | · · · | yn[Q]. By (RCV) B fxf�f �y.

fP
∗[fxf�Q′]−−−−−−−−−→ fP | fy1[Q′] | · · · | fyn[Q′] for all processesQ′. Inparticular, takingQ′ = (f + g)Q,

B fxf�f �y.fP
∗[fxf�(f+g)Q]−−−−−−−−−−−−−→ fP | fy1[(f + g)Q] | · · · | fyn[(f + g)Q].As fn(P) ⊆ Aand �y ⊆

A, we have the transition B f(x� �y.P)
(f+g)(∗[x�Q])−−−−−−−−−−−−−→ (f + g)(P | y1[Q] | · · · | yn[Q]).

(OPEN COM) Define f ′ : (A, u) → (B, g(u)) as f + (u $→ g(u)), and g′ = g�(fn(![y�(�x)]) \ {u}).
By the induction hypothesis B, g(u) f ′P

(f ′+g′)![y�(�x)]−−−−−−−−−−−−→ (f ′ + g′)P ′, so by (OPEN COM) B
(�g(u))f ′P

(f ′+g′)![y�(�x)]−−−−−−−−−−−−→ (f ′ + g′)P ′. Notice that by �-conversion and the definition of f ′ we
have (�g(u))f ′P = (�u)fP . Therefore, since f ′ + g′ = f + g we have B f(�u)P

(f+g)![y�(�x)]−−−−−−−−−−−→
(f + g)P ′.
(OPEN FREEZE), (OPEN CAPSULE) Similar to (OPEN COM).
(SYNC) The argument depends on the shape of the matching labels; we detail the case when syn-

chronisation is communication. Other cases are similar. We also suppose �2 = ![x�2(�y)]. fn() = ∅,
so we have f : A → B and g : ∅ → (N \ B). Take some g′ : (fn(!2[x�2(�y)]) \ A) → (N \ B) injec-
tive. By the induction hypothesis and (COM) we have

B fP
(f+g′)!1[x�1 (�y)]−−−−−−−−−−−−→ (f + g′)P ′ B fQ

(f+g′)!2[x�2 (�y)]−−−−−−−−−−−−→ (f + g′)Q′

B f(P | Q)
 −−→ (�((f + g′) �y) \ B)(f + g′)(P ′ | Q′)

.

Now (f + g′) �y \ B = img(g′), so B f(P | Q)
 −−→ (�img(g′))(f + g′)(P ′ | Q′). We have

f((�dom(g′))(P ′ | Q′)) = (�img(g′))(f + g′)(P ′ | Q′), so B f(P | Q)
 −−→ f((�(�y \ B))(P ′ | Q′)).

(LOCK) Similar to (SYNC).
(OUT), (SND), (FREEZE) Immediate.
(CAPSULE), (CHAIN), (PAR), (BANG), (SEAL TAU), (SEAL LABEL) Straightforward use of the

induction hypothesis. �
Lemma 3.10 (Shifting).

1. (A P
![x�(�u)]−−−−−−→ P ′ ∧ v ∈ (�u \ A)) if and only if (A, v P

![x�(�u)]−−−−−−→ P ′ ∧ v ∈ �u \ fn(P));
2. (A P

![x�Q]−−−−−−−−→ P ′ ∧ v ∈ (fn(Q) \ A)) if and only if (A, v P
![x�Q]−−−−−−−−→ P ′ ∧ v ∈ fn(Q) \

fn(P));
3. (A P

Qy

−−−→ P ′ ∧ v ∈ (fn(Q) \ A)) if and only if (A, v P
Qy

−−−→ P ′ ∧ v ∈ fn(Q) \ fn(P)).

Proof.We detail the second part, others are similar (Part 3 depends on Part 2.).

Wewant to show thatA P
![x�Q]−−−−−−−−→ P ′ if and only ifA, v P

![x�Q]−−−−−−−−→ P ′, where v ∈ fn(Q) \
A. We perform two inductions on derivations of transitions.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 21

(RCV) Straightforward.

(PAR), (BANG) Straightforward use of the induction hypothesis.
(RES) Consider

A, y P
![x�Q]−−−−−−−−→ P ′

A (�y)P
![x�Q]−−−−−−−−→ (�y)P ′

v ∈ (fn(Q) \ A)

y �∈ ! , x, �

A, v, y P
![x�Q]−−−−−−−−→ P ′

A, v (�y)P
![x�Q]−−−−−−−−→ (�y)P ′

v ∈ (fn(Q) \ fn((�y)P))
y �∈ ! , x, �

For the left-to-right implication, note that v ∈ fn(Q) \ (A, y), so by the induction hypothesisA, v, y
P

![x�Q]−−−−−−−−→ P ′ and v ∈ (fn(Q) \ fn((�y)P)). For the right-to-left implication, note that as A, v, y

is well formed we have x ∈ fn(Q) \ fn(P), so by induction hypothesis A, y P
![x�Q]−−−−−−−−→ P ′ and

v ∈ fn(Q) \ (A, y).

The other cases are vacuous. �
The transitions of an injectively substituted process fP are determined by the transitions of P as

follows.

Lemma 3.11 (Converse to injective substitution). For f : A → B injective, if B fP
�′−−→ Q′

then

1. there exist a label � and a process Q,
2. there exist two sets of names H , I with H ∩ I = ∅, H ∪ I = fn(�) \ A,
3. there exists g : I → B′ bijective with B′ ∩ B = ∅,
4. there exists h : H → (B \ img(f)) injective,

such that

a. A P
�−−→ Q, and �′ = (f + g+ h)�, and Q′ = (f + g+ h)Q; and

b. if �′ �∈ {![x�(�y)], ![x�R],Ry | for some ! , x, �, �y ,R} then H = ∅.

Proof. Induction on derivations of transitions.

(OUT)We have B f(x�(�y).P)
f(∗[x�(�y)])−−−−−−−−→ fP . TakeQ = P , � = ∗[x�(�y)]. Also takeH = I = ∅,

g : ∅ → ∅, h : ∅ → B \ img(f). Then A x�(�y).P ∗[x�(�y)]−−−−−−→ P .

(IN) We can suppose without loss of generality that �y �∈ A ∪ B. Then we have B f(x�(�y).P)
∗[fxf�(�z)]−−−−−−−−→ (fP)[�z/ �y]. We scan �z according to the rules below, and in doing so we construct a new

set of names �v, and H , I ,B′, g, h. Start with I = H = B′ = ∅, and g, h always undefined functions.
Then, for all i:

22 G. Castagna et al. / Information and Computation 201 (2005) 1–54

• if zi ∈ img(f) then vi = u for u ∈ A such that f(u) = zi;
• if zi ∈ B \ img(f) and for all j < i, zj �= zi, then take some fresh oi such that oi �∈ A. Add oi to
H , add h : oi $→ zi to the current graph of h, and let vi = oi; if zj = zi for some j < i, then let
vi = vj;

• if zi �∈ B and for all j < i, zj �= zi, then take some new oi such that oi �∈ A. Add oi to I , add zi to
B′, add g : oi $→ zi to the current graph of g, and let vi = oi; if zj = zi for some j < i, then let
vi = vj .

Take � = ∗[x�(�v)], Q = P [�v/ �y]. Also take the H , I , g, h constructed while generating �v. Then
H ∩ I = ∅, H ∪ I = fn(�) \ A, g : I → B′ is a bijection, h : H → (B \ img(f)) is injective. Moreover,

�′ = (f + g+ h)�, Q′ = (f + g+ h)Q, and A x�(�y).P ∗[x�(�v)]−−−−−−→ P [�v/ �y].
(SND), (FREEZE) Similar to (OUT).

(RCV)WehaveB f(x� �y.P)
fxf�R′−−−−−−−→ fP | fy1[R′] | · · · | fyn[R′].We construct �v,H , I ,B′, g, h

as we have done in (INP), but where �z is replaced by−−−→fn(R′) (the ordering is not important). Then let
R = R′[�v/−−−→fn(R′)], and take � = ∗[x�R], and Q = P | y1[R] | · · · | yn[R].
(LOCK) Consider an instance

B fP
Sz−−→ P ′ B fQ

![x�S]−−−−−−−→ Q′

B f(P | Q)
![x�z]−−−−→ (�fn(S) \ B)(P ′ | Q′)

.

By induction hypothesis, there exist P ′0, S0, z0, and g : (fn(S0) \ A) → B′ such that A P
S0z0−−−−→ P ′0

and (f + g)S0 = S , f(z0) = z, (f + g)P ′0 = P ′. This also forces H to be empty. Again, by induction

hypothesis, there exist Q′
1, !1, x1, �1, S1, and g′ : (fn(S1) \ A) → B′ such that A Q

!1[x1�1S1]−−−−−−−−−→ Q′
1

and (f + g′)S1 = S , (f + g′)Q′
1 = Q′, f!1 = ! , f�1 = �. By Lemma 3.9, as g and g′ are bijection,

A Q
!1[x1�1S0]−−−−−−−−−→ g−1(g′(Q′

1)). By (LINK), A P | Q !1[x1�1z1]−−−−−−→ (�fn(S0) \ A)(P ′ | Q′). It remains
only to note that (f + g)((�fn(S0) \ A)(P ′0 | g−1(g′(Q′

1)))) = (�fn(S) \ B)(P ′ | Q′).
(CHAIN), (CAPSULE), (SYNC) These cases are similar to (LOCK).

(PAR), (BANG), (SEAL TAU), (SEAL LABEL) By the induction hypothesis.
(RES) Consider an instance

A, u′ P ′ �′−−→ Q′

A (�u′)P ′ �′−−→ (�u′)Q′
u′ �∈ fn(�),

where fP = (�u′)P ′. There exists u �∈ A such that P = (�u)P0 and P ′ = (f + [u′/u])P0. By the induc-
tion hypothesis there exist �,Q0,H , I , and g′ : I → B′, h : H → (B \ img(f)), where H ∪ I = fn(�) \
(A ∪ {u}), such that A, u P0

�−−→ Q0, and �′ = (f + [u′/u] + g′ + h)�, and Q′ = (f + [u′/u] + g′ +

G. Castagna et al. / Information and Computation 201 (2005) 1–54 23

h)Q0. Since u′ �∈ fn(�′), it follows that u � fn(�). By (RES), A P
�−−→ (�u)Q0. The case follows taking

g = g′ + [u′/u] and Q = (�u)Q0.

(OPEN COM) Consider an instance

B, u′ P ′
![y�(�x′)]−−−−−−−→ Q′

B (�u′)P ′
![y�(�x′)]−−−−−−−→ Q′

y , �, ! �= u′; u′ ∈ �x′,

where fP = (�u′)P ′. There exist u �∈ A and P0 such that P = (�u)P0 and P ′ = (f + [u′/u])P0. By in-
duction hypothesis, there exist �,Q, g′ : fn(� \ (A, u)) → B′ such that A, u P0

�−−→ Q, where � =
!0[y0�0(�x0)], and f!0 = ! , fy0 = y , f�0 = �, and (f + g′ + [u′/u])�x0 = �x. By (OPEN COM) A
P

!0[y0�0 (�x0)]−−−−−−−−−→ Q, and the case follows taking g = g′ + [u′/u].
(OPEN FREEZE), (OPEN CAPSULE) Similar to (OPEN COM). �

Corollary 3.12. Let f : A → B injective, and fn(P) ⊆ A. A P
 −−→ P ′ if and only if B fP

 −−→ fP ′.

To conclude this section, we state and prove the equivalence between the LTS and the semantics
in chemical style.

Lemma 3.13. If A P
�−−→ Q and P ′ ≡ P then A P ′ �−−→ Q′ for some Q′ ≡ Q.

Proof. Induction on the size of the derivation of P ′ ≡ P . �

Theorem 3.14. Let P be a process:

1. if fn(P) ⊆ A and A P
 −−→ Q, then P −� Q;

2. if P −� Q then there exists A ⊇ fn(P) such that A P
 −−→ Q′, where Q′ ≡ Q.

Proof. Both parts are proved by transition induction.

Part 1. If there is a derivation of A P
 −−→ Q, then one of the following applies:

1. the last rule applied to derive A P
 −−→ Q is (SYNC);

2. there are processes P ′,Q′ and a contextC[−] such that P = C[P ′],Q = C[Q′], andA P ′ −−→ Q′.

We proceed by induction on the structure of the context C[−].
Base case. There are two processes P1 and P2 such that P = P1 | P2,A P1

�1−−→ P ′1 ,A P2
�2−−→ P ′2,

and �1��2. Lemma 3.8 describes the structure of a process P and the outcome O for each label �
after each transition. It remains to verify that the LTS and the � relation characterise matching
processes in the reduction relation. This requires checking all the possible matching labels in the �
relation. We detail the case for �1 = ∗[xaS], �2 = a[x↑S]. Other cases are similar.
The derivation P1

∗[xaS]−−−−−−−→ P ′1 implies that P1 ≡ (��z)(xay.R1 | y[S] | R2) and P ′1 ≡ (��z \ fn(S))
(R1 | R2), with x, a �∈ �z.

24 G. Castagna et al. / Information and Computation 201 (2005) 1–54

The derivation P2
a[x↑S]−−−−−−−→ P ′2 implies that P2 ≡ (��u)(a[(��v)(x↑ �y.R1 | R2)] | R3) and P ′2 ≡

(��u)(a[(��v)(R1 | y1[S] | · · · | yn[S] | R2)] | R3), with x, y , fn(S) �∈ (�u ∪ �v) and a �∈ �u.
Observe that fn(S) \ A = fn(S) ∩ �z. It holds

P1 | P2 ≡ (��z)(xay.R1 | y[S] | R2) | (��u)(a[(��v)(x↑ �y.R1 | R2)] | R3)
−� (�(fn(S) ∪ {a}) \ A)((��z \ fn(S))(R1 | R2)

| (��u)(a[(��v)(R1 | y1[S] | · · · | yn[S] | R2)] | R3))
≡ P ′1 | P ′2 .

Inductive step. Follows easily from the congruence laws of reduction.
Part 2.We detail one of the base cases, the others are similar. Rule (move out) says:

xa�u.P | a[(��z)(x↑v.Q1 | v[R] | Q2)]
−� (�fn(R) ∩ �z)(P | u1[R] | · · · | un[R] | a[(��z \ fn(R))(Q1 | Q2)]),

where x �∈ �z. Let A = fn(P). From the LTS, we can derive:

1. A xa�u.P
∗[xaR]−−−−−−−→ P | u1[R] | · · · | un[R]

2. As x �∈ �z the following is a valid derivation:

A x↑v.Q1
∗[x↑v]−−−−−−−→ Q1 A v[R] Rv−−−→ 0

A x↑v.Q1 | v[R] ∗[x↑R]−−−−−−−→ Q1 | 0

A x↑v.Q1 | v[R] | Q2
∗[x↑R]−−−−−−−→ Q1 | 0 | Q2

A (��z)(x↑v.Q1 | v[R] | Q2)
∗[x↑R]−−−−−−−→ (��z \ fn(R))(Q1 | 0 | Q2)

A a[(��z \ fn(R))(x↑v.Q1 | v[R] | Q2)] a[x↑R]−−−−−−−→ a[(��z \ fn(R))(Q1 | 0 | Q2)].

As ∗[xaR]�a[x↑R], we can apply the rule (SYNC) to derive

xa�u.P | a[(��z)(x↑v.Q1 | v[R] | Q2)]
 −−→ (�fn(R) ∩ �z)(P | u1[R] | · · · | un[R] | a[(��z \ fn(R))(Q1 | 0 | Q2)])

as desired.
To complete the inductive step, observe that the congruence cases follow because the label can

cross every context (rules (PAR), (RES), (SEAL TAU)), and the insensitivity to structural congruence
follows from Lemma 3.13. �

G. Castagna et al. / Information and Computation 201 (2005) 1–54 25

3.5. A proof method

In this section, we use the LTS defined in the previous section to define a bisimulation based
relation contained in reduction barbed congruence. This will be an useful proof method to ensure
equivalence between terms, and will be subsequently used to explore the behavioural theory of
S-Seal. At the same time, its development will point out some peculiarities of Seal semantics.

3.5.1. LTS and observable actions
We first reexamine the definition of reduction barbed congruence, and we show that it is very

robust under changes to the definition of barbs.
The predicate P ↓ n detects the ability of a process P to interact with the environment via the

seal n. In other process calculi, like the �-calculus, barbs are defined using visible actions. We show
that reduction barbed congruence is not affected if we change our definition of barb with barbs
inherited from the visible actions of the LTS. We refer to barbs as of Definition 3.3 as natural barbs.
First, we remark that the exposure of a natural barb corresponds to the emission of a ‘freeze’

label in the labelled transition system:

Lemma 3.15. P ↓ n if and only if A P
Qn−−−→ P ′ for some P ′, Q, and A, with fn(P) ⊆ A.

Proof.The ‘if’ part is a consequence of Lemma 3.8, while the ‘only if’ part follows straightforwardly
from Definition 3.5. �
We now prove that for all classes of visible actions of our LTS the resulting definitions of barbed

congruence collapse and coincide with ∼=. For that we classify the actions of the LTS according to
the axiom or rule responsible for generating them (that is, according to their ‘shape’):

Definition 3.16 (,-barbs).We define the following sets of actions:

L∗SND∗ = { ∗[x∗y] | for all x, y } L∗LOCK∗ = { ∗[x∗z] | for all x, z },
L∗SND↑ = { ∗[x↑y] | for all x, y } L∗LOCK↑ = { ∗[x↑z] | for all x, z },
L∗RCV ∗ = { ∗[x∗S] | for all x, S } W∗CAPS∗ = { ∗[x∗S] | for all x, S },
L∗RCV ↑ = { ∗[x↑S] | for all x, S } W∗CAPS↑ = { ∗[x↑S] | for all x, S },
LkRCV ↑ = { k[x↑S] | for all x, S } WkCAPS↑ = { k[x↑S] | for all x, S },

and we refer to each of them as a class of actions.
Let L = ⋃

, L,. For ω ∈ L, we write P ↓ ω if P
ω−−→, and P ⇓ ω if P ⇒ ω−−→.

Let W = ⋃
, W,. We write P ↓ ![x��] if there exists a process S such that P

![x�S]−−−−−−−→. We

write P ⇓ ![x��] if there exists a process S such that P ⇒ ![x�S]−−−−−−−→.
Let A = L ∪W , and let , range over the classes of actions. We call ,-barbs all the barbs that

belong to the class ,.

Definition 3.17. For each class of actions ,, let ∼=, be the largest congruence over processes that is
reduction closed and preserves ,-barbs.

26 G. Castagna et al. / Information and Computation 201 (2005) 1–54

For example, if P∼=∗SND
∗ Q and P ↓ ∗[a∗z] (that is, P ∗[a∗z]−−−−−−−→), then Q ⇓ ∗[a∗z] (that is,

Q ⇒ ∗[a∗z]−−−−−−−→). And if P∼=∗CAPS
∗ Q and P ↓ ∗[a∗�] (that is, P ∗[a∗R]−−−−−−−→ for some R), then

Q ⇓ ∗[a∗�] (that is, Q ⇒ ∗[a∗S]−−−−−−−→ for some S).

Lemma 3.18. Consider the contexts defined in Table 5. Then Cω[P] ⇓ o if and only if P ⇓ ω.

Proof. The if direction is a direct consequence of Lemma 3.8.
For the only if direction, the proof depends on the actionω. Themain argument is that the process

Cω[P] can unleash the seal named o only if P performs the action ω.
The most interesting case is for ω = ∗[x∗y]. The term

C∗[x∗y][P] = y[a↑()] | x∗i.ai().o[] | P ,

must consume the two actions x∗i and ai() to activate the seal named o. The first one synchronises
either with x∗y (as we desire) or x∗S. In this last case the moved seal is provided by P and it
cannot perform an interaction over the channel a, that has been chosen fresh for P . In turn, the
second action can be consumed only if the seal y provided by the context is moved and renamed
into i. This guarantees that P ⇓ x∗y.
The other cases are straightforward. �

Lemma 3.19. Consider the contexts defined in Table 6. Then Dω
n [P] ⇓ ω if and only if P ⇓ n.

Proof. Each context can be rewritten as − | a∗n | a∗n.X , where X is depends on the particular
context. As the name a is fresh, the prefix a∗n is consumed only if the process that fills the hole
offers a seal named n at top-level, that is, it emits ↓ n. The continuation X is then responsible for
generating the appropriate ,-barb. �
Theorem 3.20. Let P and Q be two processes, and let , be a class of actions. Then P ∼=Q if and only if
P ∼=, Q.

Proof. Since ∼= and ∼=, differ only in the barb which is used, it suffices to show ↓ n and ↓ , imply
each other. First we prove that P ∼=, Q implies P ∼=Q. Let P ∼=Q and P ↓ ω for ω ∈ ,. We want

Table 5
Contexts that transform a ,-barb into a natural barb

C∗[x∗y][−] = y[a↑()] | x∗i.ai().o[] | − C∗[x∗z][−] = x∗z.o[] | −
C∗[x↑y][−] = y[a↑()] | xui.ai().o[] | u[−] C

k[x↑z][−] = xkz.o[] | −
C∗[x∗S][−] = a[S] | x∗a.o[] | − C∗[x∗�][−] = x∗a.o[] | −
C∗[x↑S][−] = a[S] | xua.o[] | u[−] C∗[x↑�][−] = xua.o[] | u[−]
C
k[x↑S][−] = a[S] | xka.o[] | − C

k[x↑�][−] = xka.o[] | −
where a, i, o, u are fresh names.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 27

Table 6
Contexts that transform a natural barb into a ,-barb

D
∗[x∗y]
n [−] = − | a∗n | a∗n.x∗y D

∗[x∗z]
n [−] = − | a∗n | a∗n.(x∗z | z[0])

D
∗[x↑y]
n [−] = − | a∗n | a∗n.x↑y D

k[x↑z]
n [−] = − | a∗n | a∗n.(k[x∗z] | z[0])

D
∗[x∗S]
n [−] = − | a∗n | a∗n.x∗ D

∗[x∗�]
n [−] = − | a∗n | a∗n.x∗0

D
∗[x↑S]
n [−] = − | a∗n | a∗n.x↑ D

∗[x↑�]
n [−] = − | a∗n | a∗n.x↑0

D
k[x↑S]
n [−] = − | a∗n | a∗n.k[x↑] D

k[x↑�]
n [−] = − | a∗n | a∗n.k[x↑0]

where a is a fresh name.

to conclude that Q ⇓ ω. As ∼= is contextual, it holds Cω[P]∼=Cω[Q]. Lemma 3.18 guarantees that
Cω[P] ⇓ o. As∼= preserves natural barbs, it must holdCω[Q] ⇓ o. Lemma 3.18 allows us to conclude
Q ⇓ ω.
For the other implication, suppose P ∼=, Q and P ↓ n. We want to conclude that Q ⇓ n. Let ω be

a label in ,. As ∼=, is contextual, it holds Dω
n [P]∼=Dω

n [Q]. Lemma 3.19 guarantees that Dω
n [P] ⇓ ω.

As ∼= preserves ,-barbs, it must hold Dω
n [Q] ⇓ ω. Lemma 3.19 allows us to conclude Q ⇓ n. �

To shorten the presentation, in the definition of ,-barbs we did not include actions related to
communication. Unsurprisingly, the theorem above can easily be expanded to take into account
also barbs exposing communication actions.
Theorem 3.20 brings out two peculiarities of the LTS. First, the class of action generated by the

(Chain) rule does not appear among the classes for which reduction ,-barbed congruence coincides
with reduction barbed congruence. As we will discuss in Section 3.6, these actions cannot be ob-
served by a context. Second, as with natural barbs, the classes of action !CAPS

�
do not report the

body of the moved seal in their prototypical action. This is typical of our treatment of some of the
higher order actions, where weak matching requirements on the transmitted processes are imposed.

3.5.2. Higher-order actions and bisimulation
Lemma 3.15 shows that the observation used in the contextual equivalence is insensitive to the

particular process Q occurring in the label of the corresponding ‘freeze’ transition. Thus, we expect
an LTS-based characterisation of this equivalence not to be strict in matching higher-order labels.
The difficulties of defining equivalences based on LTS whose labels may contain processes are

well known. To avoid themwe resort to the intuition underlying the definition of Sangiorgi’s context
bisimulation for HO-� [47,48], and require that the outcomes of two bisimilar processes emitting
higher order transitionsmust be equivalent with respect to every possible interaction with a context.
Processes appear in four kinds of higher-order labels: ![x�S], Sz ,Rz , and ![x�R]. We focus

on the contexts with which a process emitting a higher-order label can interact, with the aim of
finding out how to apply context bisimulation to our framework.

Receiving a seal body. Suppose that A P
![x�S]−−−−−−−→ P ′, and letQ be a process supposed equivalent

to P . The process P ′ is the outcome of the interaction between P and a context C[−] sending a seal
body S over the channel x�. In the bisimulation game, if the process Q can receive an arbitrary
seal body over the channel x�, then a context cannot easily separate P from Q. At the same time, it

28 G. Castagna et al. / Information and Computation 201 (2005) 1–54

should be stressed that the process S appearing in the label is offered by the context, and as such
the processes P and Q must both be ready to receive it. Therefore, when comparing processes that
receive a seal body, it is not restrictive to require syntactically identical processes in higher-order
labels.
The case for Sz is analogous since, again, the process S is offered by the environment.

Emitting a seal body. Suppose that A P
Rz−−−→ P ′. This can be seen as the offer of an interaction

with a context that can move and/or duplicate the seal z. We must at least require that there exists

a process Q′ such that A Q
Sz−−→ Q′ for some seal body S , otherwise a context can easily separate

P from Q. At the same time, imposing S to be syntactically the same as R is overly restrictive. This
is a consequence of the fact that the context cannot directly investigate the seal body S , but it must
move and/or duplicate it before being able to interact with it. Thus, we do not impose directly
any condition on S . Rather, we ask that the outcomes obtained after interacting with an arbitrary
context that receives (that is, moves and/or copies) the seal are equivalent.
The case for x�R is similar: the only advantage is that it is known where the interacting context

is going to reactivate the copies of the seal.
To state the equivalence of processes emitting a seal body, we must characterise all the possible

outcomes obtained after an interaction between a mobility offer and a context willing to receive
the seal body being sent. This role is played by the receiving contexts.
Receiving contexts represent all the processes that may result from the migration of a seal. An

example is probably helpful here. Let A be a set of names. In this ‘universe’, consider a process P
that emits the label z[x↑R] and becomes P ′:

A P
z[x↑R]−−−−−−−→ P ′.

A context that synchronises with P over this label must have the shape C ′[−] ≡ C[− | xz �y.V],
for some C[−] and V . The resulting reduction is

C ′[P] ≡ C[P | xz �y.V] −� C[(�fn(R) \ A)(P ′ | y1[R] | · · · | yn[R] | V)].
The process V cannot know any name in fn(R) \ A, so we rewrite the above reduction as

C[P | xz �y.V] −�C[(�fn(R) \ A)(P ′ | y1[R] | · · · | yn[R]) | V]. (3)

Our aim is to define a bisimulation based equivalence, ≈, such that contexts like C ′[−] cannot dis-
tinguish equivalent processes. In the example above, this means that the process C ′[Q]must reduce
to a process equivalent to the outcome of (3). An easy way to achieve this is to require that in the
bisimulation game Q emits a label that consumes the action xz �y.V , that is

A Q
z[x↑S]−−−−−−−→ Q′ for some S ,Q′,

and that the outcome of C ′[P] is equivalent to the outcome of C ′[Q]:
C[(�fn(R) \ A)(P ′ | y1[R] | · · · | yn[R]) | V] ≈ C[(�fn(S) \ A)(Q′ | y1[S] | · · · | yn[S]) | V].

G. Castagna et al. / Information and Computation 201 (2005) 1–54 29

Some housekeeping now: we factor out the context common to both members of the equation,
C[[−] | V], and we check that the following equivalence holds:

(�fn(R) \ A)(P ′ | y1[R] | · · · | yn[R]) ≈ (�fn(S) \ A)(Q′ | y1[S] | · · · | yn[S]) .

This idea can be generalised. Consider two processes (like P and Q) that in an universe A send
two (possibly different) seal bodies from a location z toward their parent ↑. We consider these two
processes as equivalent only if the substitutions of the sent seal bodies for Y and of the outcomes
for X in the following pattern:

(�fn(Y) \ A)(X | y1[Y] | · · · | yn[Y]),

yield equivalent processes. The pattern process above is called a receiving context, from z toward ↑
in A, and is noted as DA

z,↑[X , Y]. Its associated environment is the set of free variables of the process
obtained after instantiating X and Y .

Definition 3.21 (Receiving context).LetAbe a set of variables.Given twoprocessesX and Y such that
fn(X) ⊆ A, a receiving context DA

! ,�[X , Y] and its associated environment ADA
! ,�[X ,Y] are, respectively,

a process and a set of names defined as:

if ! , � = ∗, ∗, or ! , � = z,↑, then

DA
! ,�[X , Y] = (�fn(Y) \ A)(X | z1[Y] | · · · | zn[Y]),

where the names �z satisfy fn(DA
! ,�[X , Y]) ⊆ A ∪ �z.

Its associated environment ADA
! ,�[X ,Y] is A ∪ �z;

if ! , � = ∗, z, then

DA∗,z[X , Y] = (�fn(Y) \ A)(X | z[(z1[Y] | · · · | zn[Y] | U)]),

where the names �z and the process U satisfy fn(DA∗,z[X , Y]) ⊆ A ∪ �z.
Its associated environment ADA∗,z[X ,Y] is A ∪ �z;

if ! , � = ∗,↑, then

DA∗,↑[X , Y] = z[X | U] | z1[Y] | · · · | zn[Y],

where the names z, �z and the process U satisfy fn(DA∗,↑[X , Y]) ⊆ A ∪ �z ∪ {z}.
Its associated environment ADA∗,↑[X ,Y] is A ∪ �z ∪ {z}.

WewriteDA[X , Y]whenwequantify over all ! , � and abbreviateADA
! ,�[X ,Y] byAD whenno ambiguity

arises.

30 G. Castagna et al. / Information and Computation 201 (2005) 1–54

3.5.3. Bisimulation for S-Seal
According to our analysis, we are now ready to define a bisimulation based equivalence relation

over seal processes.

Definition 3.22 (Bisimilarity). Let bisimilarity, denoted≈, be the family of largest relations indexed
by finite sets of names such that each ≈A is a symmetric relation over {P | fn(P) ⊆ A} and for all
P ≈A Q the following conditions hold:

0. fn(P) = fn(Q);
1. if A P

 −−→ P ′ then there exists a Q′ such that A Q ⇒ Q′ and P ′ ≈A Q′;
2. if A P

�−−→ P ′ and � ∈ { ![x�(�y)], ![x�(�y)], ∗[x�y], ![x�S], Sz , ![x�z] }, then there exists a Q′

such that A Q ⇒ �−−→ Q′ and P ′ ≈A∪fn(�) Q
′;

3. if A P
Rz−−−→ P ′ then there exist Q′, S such that A Q ⇒ Sz−−→ Q′ and for all admissible contexts

DA[−,−] it holds DA[P ′,R] ≈AD DA[Q′, S];
4. if A P

![x�R]−−−−−−−→ P ′ then there exist Q′, S such that A Q ⇒ ![x�S]−−−−−−−→ Q′ and for all admis-
sible contexts DA

! ,�[−,−] it holds DA
! ,�[P ′,R] ≈AD DA

! ,�[Q′, S];
5. for all substitutions 5 such that dom(5) ⊆ A and img(5) ⊆ A, P5 ≈A Q5;

where a contextDA[−,−] is admissible if both process substitutionsDA[P ′,R] andDA[Q′, S] are well
formed (i.e., no name capture arises).

Intuitively, the first two cases of Definition 3.22 handle all first-order labels, as well as labels
originating from receive actions: these do not deserve a special treatment because our early se-
mantics implicitly tests all possible interactions. The cases 3. and 4. check processes that offer
a seal body. Condition 5. ensures that ≈ is preserved by contexts where the hole in under a
input prefix.
Standard reasoning, albeit here for an indexed relation, guarantees that the following proposition

holds.

Proposition 3.23. The relation ≈ exists uniquely and is an equivalence.

Bisimilarity is preserved by all the constructors of the calculus, albeit working with an indexed
relation requires a little care even to state the congruence property, to keep the A-indexing straight.
Following [52], we resort to the notion of indexed congruence.

Definition 3.24 (Indexed congruence). Consider a family R of relations indexed by finite sets of
names such that each RA is a relation over {P | fn(P) ⊆ A}. R is an indexed congruence if each RA

is an equivalence relation and the following hold:

P RA, �y Q x, fn(�) ⊆ A

x�(�y).P RA x�(�y).Q
P RA Q � �= x�(y), fn(�) ⊆ A

�.P RA �.Q
,

P RA, �y Q x, fn(�) ⊆ A

!x�(�y).P RA !x�(�y).Q
P RA Q � �= x�(y), fn(�) ⊆ A

!�.P RA !�.Q
,

G. Castagna et al. / Information and Computation 201 (2005) 1–54 31

P RA Q x ∈ A

x[P] RA x[Q]
P RA Q fn(R) ⊆ A

P | R RA Q | R
R | P RA R | Q

P RA,x Q

(�x)P RA (�x)Q
.

Our aim here is to prove that bisimilarity is an indexed congruence. It is easier to prove separate-
ly that bisimilarity is preserved by the different constructs of the language. Before proceeding, we
recall an elementary but useful up-to proof technique.

Lemma 3.25. If R is a bisimulation up to structural congruence, then R ⊆ ≈ .

Proof. Let SA = {(P ,Q) | (P1,Q1) ∈ RA, P1 ≡ P and Q1 ≡ Q}, where A is a set of names. Clearly, for
every A, it holds RA ⊆ SA, and

⋃
A RA ⊆ ⋃

A SA. Because of Lemma 3.13, a diagram chasing argu-
ment allows us to show that for every set of names A, the relation SA is closed under the conditions
to be a bisimulation, as required. �
Lemma 3.26. If P ≈A Q, then x[P] ≈A x[Q] for all x ∈ A.

Proof. Define SA = {(x[P], x[Q]) | P ≈A Q, x ∈ A} ∪ ≈A and let S = ⋃
A SA. We show that S is a

bisimulation. Consider (R, S) ∈ S . Then there exists A such that either R ≈A S holds, or R = x[P]
and S = x[Q] for x ∈ A and P ≈A Q. In the former case the result follows straightforwardly.We next
consider the possible transitions in the latter case. It is clear that if fn(P) = fn(Q) then fn(x[P]) =
fn(x[Q]). A simple inspection of the rules of LTS shows that if x[P] emits a label, then one of the
following cases holds:

• A x[P] x[a]−−−−→ x[P ′] for some P ′, where a ∈ {y↑(�z), y↑(�z), y↑Q} and A P
∗[a]−−−−→ P ′. We have

A Q ⇒ ∗[a]−−−−→ Q′ and P ′ ≈A∪fn(a) Q
′ because of the definition of bisimulation. Since x ∈ A, we

have A x[Q] ⇒ x[a]−−−−→ x[Q′], and x[P ′] SA∪fn(a) x[Q′] follows from the definition of S. The case
A x[P] −−→ x[P ′] is similar.

• A x[P] x[y↑R]−−−−−−−→ x[P ′] for some P ′, where A P
∗[y↑R]−−−−−−−−→ P ′. The definition of bisimulation

ensures that (i) A Q ⇒ ∗[y↑S]−−−−−−−→ Q′ for someQ′, S; and (ii) DA∗,↑[P ′,R] ≈AD DA∗,↑[Q′, S] for ev-
ery possible such a pair of receiving contexts. From (i) we deduce that A x[Q] ⇒ x[y↑S]−−−−−−−→
x[Q′]. Now use (ii) and notice that every process that is a receiving contextDA

x,↑[x[O],−] is also a
receiving contextDA∗,↑[O,−]. Therefore (ii) implies thatDA

x,↑[x[P ′],R] ≈AD DA
x,↑[x[Q′], S], which,

by definition of S implies

DA
x,↑[x[P ′],R] SAD DA

x,↑[x[Q′], S].

The last property we have to check for is closure under substitutions. Let 5 be a substitution
defined on A. Let (R, S) ∈ S . Then there exists A such that either R ≈A S holds, or R = x[P] and
S = x[Q] for x ∈ A and P ≈A Q. In the first case P5 ≈A5 Q5 holds because ≈ is closed under ar-
bitrary substitution. Then P5 SA5 Q5 follows from the construction of S . In the latter, observe
that x5 ∈ A5 because x ∈ A, and R5 ≈A5 S5 holds because≈ is closed under arbitrary substitution.

32 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Thedefinitionof substitutionassures that x5[R5] = (x[R])5 and x5[S5] = (x[S])5. Then (x[R])5 SA5

(x[S])5 follows because of the construction of S . �
Lemma 3.27. If P ≈A Q, then P | R ≈A Q | R and (�x)P ≈A\x (�x)Q, for all x ∈ A, and for all R such
that fn(R) ⊆ A.

Proof.DefineSA = {((��u)(P | R) , (��u)(Q | R)) ∣∣ P ≈A,�u Q, (fn(R) \ �u) ⊆ A}, and letS = ⋃
A SA.We

show that S is a bisimulation up to structural congruence. Suppose P ≈A Q. As a useful shorthand,
we write P̄ for (��u)(P | R), and Q̄ for (��u)(Q | R).
We perform a case analysis on the transitions performed by P̄ . We detail all the most difficult and

interesting situations (namely higher-order synchronisation and scope extrusion): the others follow
accordingly.

• Suppose A P̄
![x�z]−−−−→ O1 because A · �u P

![x�F]−−−−−−−→ P ′ and A · �u R
Fz−−→ R′. From the defi-

nition of bisimulation it follows that A · �u Q ⇒ ![x�F]−−−−−−−→ Q′ and

P ′ ≈A∪�u∪fn(F) Q
′. (4)

Remark that fn(R′) ⊆ A ∪ �u ∪ fn(Fz) = A ∪ �u ∪ fn(F) since z ∈ A. Thus, A Q̄ ⇒ ![x�z]−−−−→ O2. The
outcomesare respectivelyof the formO1 ≡ (��u)(�fn(F) \ (A ∪ �u))(P ′ | R′)andO2 ≡ (��u)(�fn(F) \
(A ∪ �u))(Q′ | R′). Thus, from (4) we can conclude O1 SA O2 because of the construction of S .

• Suppose A P̄
∗[x�F]−−−−−−−→ O1 because A · �u P

Fz−−→ P ′ and A · �u R
∗[x�z]−−−−−−−→ R′. From the

definition of bisimulation it follows that A Q ⇒ Gz−−−→ Q′ and

DA,�u[P ′, F] ≈AD DA,�u[Q′,G]. (5)

Thus, A Q̄ ⇒ ∗[x�G]−−−−−−−→ O2. We must prove that for all admissible contexts EA∗,�[−,−] it holds
EA∗,�[O1, F] SAE EA∗,�[O2,G]. We have to consider different cases according to whether the names
in �u are extruded or not.
Suppose fn(F) ⊆ A and fn(G) ⊆ A. In this case, the outcomes are respectively of the form O1 ≡
(��u)(P ′ | R′) andO2 ≡ (��u)(Q′ | R′) (no extrusion occurs). The structure of the context E depends
on the localisation � of the mobility offer:
◦ If � = ∗, then (5) states that for all names �z it holds:

(�fn(F) \ (A, �u))(P ′ | z1[F] | · · · | zn[F]) ≈AD (�fn(G) \ (A, �u))(Q′ | z1[G] | · · · | zn[G]).

Since fn(F), fn(G) ⊆ A, then the leading restrictions are empty. Combining this with the ob-
servation that ≈AD⊆ SAD , we obtain:

P ′ | z1[F] | · · · | zn[F] SAD Q′ | z1[G] | · · · | zn[G]. (6)

G. Castagna et al. / Information and Computation 201 (2005) 1–54 33

Remark that AD = A ∪ �z ∪ �u and recall that A ∩ �u = ∅. Since S is closed under parallel com-
position and restriction we can write:

(��u)(P ′ | R′ | z1[F] | · · · | zn[F]) SA,�z (��u)(Q′ | R′ | z1[G] | · · · | zn[G]).
Since (5) holds for all admissible receiving contexts, in particular it holds for those receiving
contexts of form (6) where �z ∩ �u = ∅. For these particular receiving contexts we can rearrange
both sides of the equation (6) by structural congruence, obtaining:

(��u)(P ′ | R′) | z1[F] | · · · | zn[F] SA,�z (��u)(Q′ | R′) | z1[G] | · · · | zn[G],

that is EA∗,∗[O1, F] SA,�z EA∗,∗[O2,G]. The result EA,�u∗,∗ [O1, F] SAE EA,�u∗,∗ [O2,G] follows because the
receiving context is generated by ! = ∗, � = ∗, and so AE = A, �z.
◦The case � = z is analogous to the previous one.
◦ If � =↑ then from (5), case ! , � = ∗,↑ we can deduce that for all U ′ it holds

z[P ′ | R′ | U ′] | z1[F] | · · · | zn[F] ≈A∪�z∪�u z[Q′ | R′ | U ′] | z1[G] | · · · | zn[G]
(it suffices to take U = U ′ | R′). The construction of S then guarantees that

(��u)z[P ′ | R′ | U ′] | z1[F] | · · · | zn[F] ≈A∪�z (��u)z[Q′ | R′ | U ′] | z1[G] | · · · | zn[G],
and up to structural congruence we obtain

z[(��u)(P ′ | R′ | U ′)] | z1[F] | · · · | zn[F] ≈A∪�z z[(��u)(Q′ | R′ | U ′)] | z1[G] | · · · | zn[G].
This can be written using receiving contexts as EA∗,↑[O1, F] SAE EA∗,↑[O2,G], as required.

Suppose now that fn(F) �⊆ A and fn(G) ⊆ A. This means that in P̄ some of the names in �u are
extruded by themobility offer. conditionAs before, we perform a case analysis on the localisation
�.We detail only the case � = ∗: the others are similar. If � = ∗, then the outcomes are respectively
of the form O1 ≡ (��u \ fn(F))(P ′ | R′) and O2 ≡ (��u)(Q′ | R′).We spell out (5) for ! , � = ∗, ∗. It
holds P ′ | z1[F] | · · · | zn[F] ≈A∪�u∪�z Q′ | z1[G] | · · · | zn[G]. This implies that for all �z it holds

(��u)(P ′ | R′ | z1[F] | · · · | zn[F]) SA∪�z (��u)(Q′ | R′ | z1[G] | · · · | zn[G]),

Now notice that since A P̄ = (��u)(P | R) ∗[x�F]−−−−−−−→ then F occurs in P̄ and therefore fn(F) ⊆
A ∪ �u. From the last formula we obtain fn(F) \ A ⊆ �u from which it is possible to deduce that
�u = (fn(F) \ A) ∪ (�u \ fn(F)). Therefore we have:

(�fn(F) \ A)(��u \ fn(F))(P ′ | R′ | z1[F] | · · · | zn[F])SA∪�z (��u)(Q′ | R′ | z1[G] | · · · | zn[G]),
Since the equation above holds for all �z, then in particular it holds for those �z such that �u ∩ �z = ∅.
In this case then we can extrude the zi’s from the scope of the inner restriction in the left hand-side
of the above equation above. Furthermore recall that A ∩ �u = ∅ and fn(G) ⊆ A, which implies

34 G. Castagna et al. / Information and Computation 201 (2005) 1–54

fn(G) ∩ �u = ∅. Then we can extrude these seals in the right hand-side. Up to structural congru-
ence we have:

(�fn(F) \ A)(((��u \ fn(F))(P ′ | R′)) | z1[F] | · · · | zn[F])
SA∪�z (��u)(Q′ | R′) | z1[G] | · · · | zn[G],

that is EA∗,∗[O1, F] SAE EA∗,∗[O2,G].
Finally, the remaining two cases, that is fn(F) ⊆ A, fn(G) �⊆ A and fn(F) �⊆ A, fn(G) �⊆ A, are
similar to the previous one.

• Suppose A P̄
 −−→ O1, where A · �u P

Fz−−→ P ′ and A · �u R
F z

−−−→ R1.
ByLemma3.8 eitherR1 ≡ (��w)(R3 | z1[F] | · · · | zn[F])orR1 ≡ (��w)(R3 | z[R4 | z1[F] | · · · | zn[F]])
hold.Fromthedefinitionofbisimulation it follows thatA · �u Q ⇒ Gz−−−→ Q′, and forallDA,�u[−,−]
admissible it holds

DA,�u[P ′, F] ≈AD DA,�u[Q′,G]. (7)

The early nature of the LTS allows process R to receive G as well: A · �u R
Gz

−−−→ R2, with R2
either in the formR2 ≡ (��w)(R3 | z1[G] | · · · | zn[G]), orR2 ≡ (��w)(R3 | z[R4 | z1[G] | · · · | zn[G]]).
Thus, A Q̄ ⇒ −−→ O2.

Consider the first case.
Before going on, we point out that as A · �u R

F z

−−−→≡ (��w)(R3 | z1[F] | · · · | zn[F]), the condition
�z ⊆ A ∪ �u ∪ �wmust hold.Also, fn(R3) ⊆ A ∪ �u ∪ �w. To seewhy, remember thatR3 is formedby the
parallel composition of two residuals: the continuation of the receiving action, and the continua-
tion of the send action. The free variables of the first process must be contained in A ∪ �u ∪ �z ∪ {x}
where x is the channel on which the move takes place; those of the second process are instead
contained in A ∪ �u ∪ {z} ∪ {x}. Thus, fn(R3) ⊆ A ∪ �u ∪ �z ∪ {z} ∪ {x}. But {z} ∪ {x} ⊆ A ∪ �u as they
obviously occur free in the sending process (cf. rule (SND)). So, �z ⊆ A ∪ �w and we conclude that
fn(R3) ⊆ A ∪ �u ∪ �w.
The outcomes are respectively of the form

O1 ≡ (��u)(�fn(F) \ (A ∪ �u))(P ′ | (��w)(R3 | z1[F] | · · · | zn[F]))
O2 ≡ (��u)(�fn(G) \ (A ∪ �u))(Q′ | (��w)(R3 | z1[G] | · · · | zn[G])) .

Since fn(R3) ⊆ A ∪ �u ∪ �w we have fn(R3) ∩ (fn(F) \ (A ∪ �u)) = ∅, and similarly fn(R3) ∩ (fn(G) \
(A ∪ �u)) = ∅. We can then extrude R3 from the scope of the inner restriction as follows:

O1 ≡ (��u)(��w)(R3 | (�fn(F) \ (A ∪ �u))(P ′ | z1[F] | · · · | zn[F]))
O2 ≡ (��u)(��w)(R3 | (�fn(G) \ (A ∪ �u))(Q′ | z1[G] | · · · | zn[G])) .

The case ! , � = ∗, ∗ of (7) implies that
(�fn(F) \ (A ∪ �u))(P ′ | z1[F] | · · · zn[F])

≈A∪�z∪�u (�fn(G) \ (A ∪ �u))(Q′ | z1[G] | · · · zn[G]). (8)

G. Castagna et al. / Information and Computation 201 (2005) 1–54 35

The construction of S allows us to deriveO1 S(A∪�u∪�z)\(�u∪�w) O2 from 8. As �z ⊆ A ∪ �u ∪ �w, (A ∪ �u ∪
�z) \ (�u ∪ �w) = A, and we conclude O1 SA O2, as required.
The latter case follows accordingly. �

Theorem 3.28. Bisimilarity is an indexed congruence.

Proof. It is straightforward to prove that ≈ is preserved by prefix and replication. The other cases
are covered by Lemma 3.26 and Lemma 3.27. The proof of the symmetric case of congruence with
respect to parallel composition is analogous to the proof of Lemma 3.27. �
Lemma 3.29 (Injective substitution—bisimulation). If P ≈A Q and f : A → B is injective then
fP ≈B fQ.

Proof.We check

RB = { (fP , fQ) | f : A →inj B and P ≈A Q }
is a bisimulation.
Suppose B fP

�′−−→ P ′1 . We perform a case analysis on the label �′.
Case � = . By Corollary 3.12, there exists P ′ such that A P

 −−→ P ′ and P ′1 = fP ′. By bisimula-
tion, there exists Q′ such that A Q ⇒ Q′ and P ′ ≈A Q′. By Corollary 3.12, B fQ ⇒ fQ′. Finally
fP ′RBfQ

′.
Case� ∈ {![x�(�y)], ![x�(�y)], ∗[x�y], ![x�S], Sz , ![x�z] }.ByLemma3.11, there exist�, P ′,H , I , g :

I →bij B
′, h : H →inj (B \ img(f)) : such that B′ ∩ B = ∅, H ∪ I = fn(�) \ A, H ∩ I = ∅, and

A P
�−−→ P ′ P ′1 = (f + g+ h)P ′ �′ = (f + g+ h)� .

By bisimulation, there exists Q′ such that A Q ⇒ l−−→ Q′ and P ′ ≈A∪fn(�) Q
′.

Then, forf , g, hasabove,wehaveB fQ ⇒ (f+g+h)�−−−−−−−−→ (f + g+ h)Q′. Finally, (f + g+ h)P ′ RB

(f + g+ h)Q′ follows from the construction of R.

Case � = Rz. Then, B fP
Rz−−−→ P ′1 . By Lemma 3.11, there exist �, P ′ and I , g : I →bij B

′ with
I ∩ A = ∅ and B′ ∩ B = ∅, such that

A P
�−−→ P ′ (f + g)� = Rz (f + g)P ′ = P ′1 .

Observe that � must be of the form R′z′ for some R′, z′ such that (f + g)R′ = R and fz′ = z. Then

by bisimulation there exists a Q′ such that A Q
S ′
z′−−−→ Q′ and for all admissible contexts DA[−,−]

it holds DA[P ′,R′] ≈AD DA[Q′, S ′]. By Lemma 3.9 we have B fQ
Sz−−→ Q′

1, where S = (f + g)S ′
and Q′

1 = (f + g)Q′. To conclude that for all admissible contexts EB[−,−] it holds EB[P ′1 ,R] RAE
EB[Q′

1, S], observe that every context EB[−,−] can be written as (f + g)DA[−,−] for a receiving
context DA[−,−] because (f + g) is injective and because g(fn(R′) \ A) = fn((f + g)R) \ B.

36 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Case � = ![x�R]. Similar to � = Rz .

It remains to prove that R is closed under substitution. For that, suppose fP RB fQ and let
5 : B → C be a substitution. We want to show that (fP)5 RB5 (fQ)5. By definition of R, P RA Q

for some A, f : A →inj B. The composition of 5 and f is a substitution 5f : A → C . As ≈A is
closed under substitution, P(5f) RA(5f) Q(5f), that is, (fP)5 R(fA)5 (fQ)5. Let i : (fA)5 → B5 be
the injection of the set (fA)5 into B5 (the injection exists because fA ⊆ B). Then

(fP)5 = i((fP)5) RB5 i((fQ)5) = (fQ)5

as required. �
The soundness of ourbisimulationbasedproofmethod is an easy consequenceof the twoLemmas

above.

Theorem 3.30 (Soundness). Bisimilarity is sound with respect to barbed congruence: if P ≈A Q for
some A, then P∼=Q.

Proof. Suppose P ≈A Q for some A. By Definition 3.22.1 bisimilarity ≈ is reduction closed. bisim-
ilarity is preserved by arbitrary contexts because it is an indexed congruence (Lemma 3.28), and
because it is preserved by injective renaming (Lemma 3.29). It remains to prove that if P ↓ n then
Q ⇓ n. For this, note that the first part of condition 3 in Definition 3.22 ensures that whenever

A P
Fn−−→ for some process F , A Q ⇒ Gn−−−→ for some process G. Therefore, the thesis follows by

Lemma 3.15. �

3.6. On completeness

Bisimilarity is not complete with respect to barbed congruence, for several reasons. First of all,

there is a technical cause: bisimilarity is a delay bisimilarity, as such the weak transitions⇒ �−−→ do
not allow moves after a visible action. We keep the delay formulation of the bisimulation because
it is easier to apply in practice. Also, the delay formulation captures the intuition that a process that
performs an higher-order action needs the contribution of a receiving context before continuing.
Reasons also lurk in the design of the calculus, both in the communication and in the mobility

subsystems. Seal communication is an extension of the �-calculus. With an LTS analogous to ours,
the matching operator is necessary to obtain completeness for the �-calculus, thus the same opera-
tor might be required in Seal. Seal mobility raises the most interesting issue. A direct consequence
of Seal’s model of computation is that a seal can not detect if the environment moves it or not. By
exploiting this feature, we construct the two processes:

P = (�x)(x∗y | x∗y) and Q = 0 .

Let A ⊇ fn(P). Then for all processes S , it holds A P
Sy

−−−→, while Q does not emit anything. Thus
P �≈ Q. At the same time no context can separate P fromQ: evenC[−] = − | y[S], that is offering a
seal to be moved, does not help, because the context cannot determine if the seal y has been moved
or not. In technical terms, this example shows that no context can reliably test for a Sz action.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 37

As a consequence, reduction barbed congruence is not insensitive to replacing natural barbs with
barbs inherited from the Sz action.
This observation might suggest that for the same reasons it should be difficult for a context to

distinguish the label ![x�y] from ![x�S], and ∗[x�S] from ∗[x�z]. It is not the case: a careful
use of fresh names leads to the definition of contexts that differentiate these actions, as seen in
Section 3.5.1.

3.7. Algebraic theory

The following equation, suggestively named the perfect sandbox equation, holds in S-Seal:

Lemma 3.31 (Perfect sandbox). For all processes P and Q such that fn(P) = fn(Q), it holds:
(�n)n[!P] ∼= (�n)n[!Q] .

Proof. Let SA = { ((�n)n[!P], (�n)n[!Q]) | fn(P) = fn(Q) ⊆ A }=, where R= denotes the symmetric
closure ofR. Let S = ∪ASA. The process (�n)n[!P] can not emit any label: if n[!P] performs a visible
action, then it is of the form n[a] or P ′n, where P ⇒ P ′. In both cases n belongs to the free names of
the label, and it can not be observed under (�n). The same holds for (�n)n[!Q]. So S is a bisimulation.
The lemma follows because ≈ ⊆ ∼=. �
This equation formalizes how restriction on a seal’s name prevents it from interacting with its en-
vironment (the replication guarantees that the lhs and the rhs of the equation always have the same
set of free names). This justifies processes like

(halt x.P)
def= (�n)(x be n.(P | x∗(z).n be x)),

(restart x)
def= x∗(x).P ,

where be is the renaming operator defined as

(n be m).P
def= (�x)(x∗n | x∗m.P).

These operators do not modify the process running within the seal, rather they affect its communi-
cation capabilities. In fact,

halt x.P | x[Q] −� P | (�n)(n[Q] | x∗().n be x)

and the previously active seal x is prevented from interacting with the environment because it has
been renamed into n, a secret name (the context can still observe the free names of Q, but this is of
little use). The same seal can be freed by executing restart x

(�n)(n[Q] | x∗().n be x) | restart x −� x[Q] .
Thus, the perfect sandbox equation is an useful aid to the programmer.
When we defined Seal our goal was to be able to observe (and control) agent mobility, since

we were interested in modeling programs roaming over untrusted networks. The analysis of the

38 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Seal model of computation presented in this section validates this design choice: (�n) n[Q] has no
interaction whatsoever with the environment, except for possibly originating scope extrusions. In
contrast, in Mobile Ambients, terms like (�n) n[P], while under the condition that n does not occur
free in P cannot be distinguished from the inactive process, can still enter another ambient that runs
in parallel or exit the ambient they reside in. In other words, restricting the name of the enclosing
ambients, does not prevent ambient mobility.
In the proposition below, we enumerate a collection of algebraic laws that describe the use of

restriction to avoid interference in mobility and communication. The same equations hold if seals
are duplicated, and vector of names transmitted.

Proposition 3.32. For all processes P ,Q, and R, if fn(lhs) = fn(rhs) then:

1. (�m, x)(m[P] | x∗m.Q | x∗n.R) ≈ (�m, x)(n[P] | Q | R)
2. (�m, x, o)(m[P] | xom.Q | o[x↑n.R]) ≈ (�m, x, o)(Q | o[n[P] | R])
3. (�x, o)(xon.Q | o[m[P] | x↑m.R]) ≈ (�x, o)(n[P] | Q | o[R])
4. (�x)(x∗(v).Q | x∗(u).R) ≈ (�x)(Q | R[v/u])
5. (�x, o)(xo(v).Q | o[x↑(u).R]) ≈ (�x, o)(Q | o[R[v/u]])
6. (�x, o)(xo(u).R | o[x↑(v).R]) ≈ (�x, o)(Q[v/u] | o[Q]).

Proof. The proofs of the above laws are by exhibiting the appropriate bisimulation. In all cases the
bisimulation has a similar form

S = {(lhs, rhs), (rhs, lhs)} ∪ I
where lhs and rhs denote respectively the left hand side and the right hand side of the equation, and
I is the identical relation over processes. �
Limits of the proof method. In the other dialects of the Seal Calculus, the perfect sandbox equation
does not hold. But in all dialects, a safe way to isolate a seal consists in enclosing it in a secret
sandbox.

Lemma 3.33 (Universal sandbox). For all processes P ,Q such that fn(P) = fn(Q), it holds:
(�a)a[n[!P]] ∼= (�a)a[n[!Q]] .

In S-Seal, it is easy to prove the universal sandbox equation using our proof method.
We conjecture that a stronger equation holds.

Conjecture 3.34 (Sandbox). For all processes P ,Q such that fn(P) = fn(Q), it holds:

a[n[!P]] ∼= a[n[!Q]] .
This equation captures the key idea that all interactions a seal can perform are under control of its
enclosing seal. Unfortunately, it is far from easy to guess the smallest bisimulation relating a[n[!P]]
and a[n[!Q]]. In fact, the seal a can be duplicated by an arbitrary context in almost arbitrary lo-
cations (receiving contexts can have very complex shapes, especially after few iterations), and the
bisimulation candidate quickly becomes intractable.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 39

3.8. Related works

Our approach was influenced by the work of Merro and Hennessy [38] on the behavioural the-
ory of a dialect of Mobile Ambients. Their work starts from Sangiorgi’s observation in [49] that
the model of computation offered by Mobile Ambients presents several difficulties. The goal of
[38] is thus to modify Ambients to endow them with an equational theory that is (i) richer, (ii)
reasonable, (iii) adequate, and (iv) practical. What do these four properties mean? Richer: that it
proves equivalences more interesting than the simple structural congruence relation; reasonable:
that it is a contextual equivalence that preserves reductions and some simple observational proper-
ty; adequate: that it is invariant to different choices of observations (technically, of barbs); practical:
that it can be expressed in terms of bisimulation, whose coinductive nature ensures the existence of
powerful proof techniques.
Levi and Sangiorgi [36] opened the way by extending Ambients with coactions. In their system

a reduction takes place only if an action synchronizes with a corresponding coaction. This yields a
more satisfactory equational theory.However the contextual equivalence does not enjoy the last two
properties.Merro andHennessy go further by also adding toAmbients passwords: an action and the
corresponding coaction synchronize only if they possess the same password (which incidentally is
quite similar to channel communication). Then, Merro and Hennessy define a bisimulation-based
equivalence that is invariant for a large choice of observations. Their extension enjoys the four
above mentioned properties.
It is interesting to notice that all these modifications bring Ambients ever closer to the Seal calcu-

lus. [36] requires mobility to be the consequence of a process synchronization. [38] simply requires
that the mobility takes place on (what we can assimilate to) channels. (Merro and Hennessy also
modify Levi and Sangiorgi’s calculus so that the coaction of an out must be placed exactly as a
receive action in Seal.) The very last step that distinguishes these Ambient variations from Seal
is that Seal uses objective mobility—the agent is sent by the surrounding environment—while in
Ambient-based calculi mobility is subjective—the agent sends itself—(as an aside, note that objec-
tive moves have also been added to Ambients by Cardelli et al. [15] in order to have more refined
typings).
Adapting Merro and Hennessy techniques to Seal turned to be quite difficult, because of the

three parties synchronisations, and in general because of the subtle rules governing Seals.
Other related works, include the higher-order LTSs for Mobile Ambients that can be found

in [13,11,59,21]. But we are not aware of any form of bisimilarity defined using these LTSs. A
simple first-order LTS for MA without restriction is proposed by Sangiorgi in [49]. Using this
LTS the author defines an intensional bisimilarity for MA that separates terms on the basis of
their internal structure. Merro and Zappa Nardelli [39] define a new LTS for Mobile Ambients
and associated bisimulation that coincides with the natural contextual equivalence, thus solving
the original problem of providing a behavioural theory for Mobile Ambients. In the extend-
ed version of [8] the authors present a sound and complete coinductive characterization of a
contextual equivalence for the New Boxed Ambients; an analogous result is presented for the
calculus of Mobile Resources in [26]. Other forms of labelled bisimilarity for higher-order dis-
tributed calculi, such as Distributed �-calculus [46], Safe D� [31], and Nomadic Pict [58] can be
found in [28,8,31,58], but only the first three prove labelled characterisations of a contextually
defined notion of equivalence.

40 G. Castagna et al. / Information and Computation 201 (2005) 1–54

4. Types for mobility

A goal of the Seal project was to integrate security from the very beginning into the design of
the language. Although the calculus allows to define secure systems, security properties cannot, and
should not, rely solely on the language dynamic semantics. A well-accepted way to provide strong
security guarantees is to statically restrict the behavior of processes by a type system. There are
many advantages to a type-based approach. By restricting the possible interactions types restrict
the search space for possible insecure behaviors. Furthermore types have a descriptive role and as
such they constitute an approximation of the behavior of processes. Finally, types can be used in a
prescriptive way by giving the programmer the possibility to ban some dangerous interactions by
appropriate type definitions.
In this section we develop a type system for each variant of the Seal Calculus. We distinguish two

variants (rather than the four dialects), namely located vs. shared channels (the e-condition does
impact the type system). Each type system statically ensures the property that channels are used
as declared, that is, that they transport messages with the right arity and types. More importantly,
each type system provides a description of seals. In particular, types characterize the possible in-
teractions that a seal can engage in with its environment, thus resulting in a partial specification
of seals. It is noteworthy that since Seal mobility takes place on channels, then by typing mobility
channels we type mobility itself. This allows us to use types to specify, constrain, and enforce the
mobility properties and behavior of a seal. This can be framed in a more general use of such type
systems, that is to statically define and enforce security properties, for example by restricting the
use of private names. Finally, for the located channels version we will show that these types can be
used to specify fine-grained resource access control policies.

4.1. Interfaces

Thebasic idea is to type seals bydescribing interactions a sealmayhavewith the surrounding envi-
ronment.Weknowthat in the sharedvariant such interactions takeplaceover the channels that cross
the seal boundary while in the localized variant they may take place on local channels, as well. Thus
these channels partially specify the interaction protocol of a seal. Keeping track of the set of upward
exchanges (that is, exchanges with the parent) that a seal may establish can be statically achieved
by keeping track of the channels that would be employed: this gives rise to a notion of interface of
an a seal as a set of upward channels, i.e., channels that can synchronize with a process in the parent.
Actually not all the upward channels are interesting for describing the interaction protocol of a

seal. Those the seal is listening on suffice:

The interface of a seal is the set of upward channels that the process local to the seal may be
listening on, with the type expected from interactions on them.

To see why such a definition is sensible one may consider the example of a networked host. For the
outer world the interface of the computer –the description of how it is possible to interact with it–
is given by the set of ports on which a dæmon is listening, together with the type of messages (i.e.,
the protocol) that they support. So the interface can be described as a set of pairs (port:type). For
example in our system a typical ftp and mail server would be characterized by an interface of the
following form [21:ftp ; 23:telnet ; 79:finger ; 110:pop3 ; 143:imap ; . . .].

G. Castagna et al. / Information and Computation 201 (2005) 1–54 41

A different justification for our definition of interface comes from the analogy with object-ori-
ented programming. If we consider a seal as an object, then a process contained in it that listens
on an upward channel m is very similar to a method associated to the message m. In other words
sending messagemwith argument v to an object x can be modeled in Seal by the actionmx(v), which
would type check in our type system only if the pair m:M is present in the type of the seal x (with
M the type of v). The set of all possible such pairs constitutes the interface of the seal.
Hence, we consider interfaces such as, say, [x1:�;x2:Ch T ; x3:A;x4:Id A]which characterizes seals that

may: (i) synchronize with an input operation on the upward channel x1 (� is the type of the empty
tuple which is used to denote synchronization signals); (ii) read over x2 a channel name of type
Ch T (the name of a channel that transports items of type T); (iii) receive over x3 a seal whose
interface is A; (iv) read over x4 the name of a seal whose interface is A. It is important to stress the
difference between what can be transmitted over x3 and x4, respectively seals and seal names: the
former requires mobility primitives, the latter communication primitives.

4.2. Type syntax

Both variants of the Seal Calculus share the following syntax for the types (where n ≥ 1):

Exchange Types Annotations

T ::= M1 × · · · ×Mn messages Z ::= � mobile∣∣ A agents
∣∣ � immobile

Message Types Interfaces

M ::= � empty A ::= [x1:T1; · · · ; xn:Tn] agents∣∣ Ch T channel names∣∣ IdZA agent names

There are four syntactic categories in the type syntax, T ,M , Z , and A respectively denoting exchange
types, message types, mobility annotations and agent interfaces. We use the term agent and seal in-
terchangeably. In the previous section we informally described three of them, omitting annotations.
We now consider them all:

T : Types T classify exchangeable values, that is computational entities that can be either moved
or communicated (we speak of exchange or transmission to denote either communication or
mobility) over a channel. While in �-calculus only channel names can be exchanged on chan-
nels, in Seal, channels transport both messages –that is base values, channel names, and agent
names– and seals.

M : Message typesM classify messages, that is entities that can be communicated over channels. A
message can be either a synchronization message (without any content) of type �, or a name.
In the syntax there is no distinction between channel names and seal names. This distinction
is done at the type level: if x : Ch T , then x is the name of a channel that transports values of
type T ; if x : IdZA, then x is the name of a seal with interface A and with mobility attribute Z .

Z : Along the lines of [14] we use mobility attributes to specify elementary mobility properties of
seals: a � attribute characterizes a mobile seal, while a � attribute characterizes an immobile

42 G. Castagna et al. / Information and Computation 201 (2005) 1–54

one. Being able to discriminate between mobile and immobile agents is one of the simplest
properties related to mobility. Contrary to what happens in [14], adding this feature does not
require any syntactic modification to the Seal calculus.

A: Interfaces A classify the agents of the calculus, keeping track of their interface, that is of
the set of their upward channels together with their types. The notation [x1:T1; · · · ; xn:Tn] is
used to record the information about the interface of an agent and denotes a set of pairs
channel_name : type, defining a functional relation. Interfaces are used in the type expressions
IdZA to classify names denoting agents of interface A, and in the type expressions Ch A to
classify channels over which agents with interface A can be moved.

The introduction of types requires minimal modifications to the syntax of the untyped calculus of
Section 2. We have to add message-type annotations to the two binders of the language: (� x : M)

and x�(y1:M1, . . . , yn:Mn) (the latter will be often abbreviated as x�(�y: �M)), and to redefine the set of
free names fn() as follows.
fn(x) = {x} fn((� x:M)P) = (fn(P) \ {x }) ∪ fn(M) fn(↑) = fn(∗) = fn(�)=∅

fn([x1:T1; . . . ; xn:Tn]) = {x1, . . . , xn} ∪ fn(T1) ∪ . . . ∪ fn(Tn) fn(Ch T) = fn(T) fn(IdZA) = fn(A)
fn(x�(y1:M1 . . . , yn:Mn).P) = (fn(P) \ {y1, . . . , yn}) ∪ fn(M1) ∪ ... ∪ fn(Mn) ∪ fn(�) ∪ {x}
The rule of structural congruence that swaps binders has to be modified as well:

(� x :M) (� y :M ′)P ≡ (� y :M ′) (� x :M)P for x �∈ fn(M ′) ∧ y �∈ fn(M) ∧ x �= y

Consequently, the set-theoretic shorthands used in the reduction rules must be seen as operations
on lists.

4.3. Type dependencies

The notion of interface introduces names of the calculus at the type level. Since names are first
order terms, type dependencies may arise. Consider for example the following terms in S-Seal.

P ′ = x∗(y:Ch M).y↑(z:M) P = x∗(w) | P ′,

P ′ offers upward input on channel y . Hence, a naive syntax based analysis would allow P ′ (and thus
P) to be the body of some seal u only if the interface of u declares at least the channel y with type
M . More precisely, assume that when verifying the well formation of a process P we record as an
index of the turnstile symbol the name u of the current ambient, that is of the innermost ambient
that contains P (in object-orientation we would use the reserved keyword self instead of a generic
variable u). Then the least type environment in which the well formation of P can be deduced is:

u:[y:M], x:Ch(Ch M), y:Ch M , w:Ch M u P.

However, the process P may perform an internal reduction on the channel x, and then it would
offer upward input on channel w, hence changing the requirement on the interface type of u:

x∗(w) | x∗(y:Ch M).y↑(z:M)︸ ︷︷ ︸
u:[y:M]

−� w↑(z:M)︸ ︷︷ ︸
u:[w:M]

.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 43

This is the recurrent problem when trying to define non-trivial channel-based types for pro-
cesses: to solve it one may consider using dependent types and deal explicitly with types that
change during computation. Dependent types work fine for calculi where the notion of inter-
action is syntactically well determined, as in ,-calculus. Unfortunately in process calculi, where
interaction is a consequence of parallel composition (which admits arbitrary rearrangements of
sub-terms), all known attempts were somewhat unsatisfactory: they are usually restricted to a
subset of the calculus, allowing dependent types only in particular, well-determined construc-
tions (e.g., [64]).
Following a suggestion of Davide Sangiorgi, we decide to disallow input on channel names

bound by an input action. In this way interfaces cannot change during reduction: for example
the process P above is not well typed, since y is first bound by an input on x and then used
to perform an input from ↑. This restriction is obtained by a subtle blend of the formation
rules of type environments and of interfaces and the typing rules for the input and restriction
binders, as explained later on.
This restriction does not seem to limit the expressive power of the calculus: besides being theo-

retically well studied (see for example [37]), nearly all programming languages based on �-calculus
impose this constraint, while programs written in concurrent languages that do not, mostly seem
to use a programming pattern that obeys to the same condition.

4.4. Typing rules

To complete the presentation of the type system it remains to define the typing rules. The
rules describe a system that is close to the one of [16]. But the present version is a much sim-
pler, more understandable, and, more expressive type system. In particular in [16], interfaces
are built up during the checking of the processes, and this requires the use of two different
typing environments and a subtyping relation. All of this is avoided in the system presented
here as all the necessary information can be deduced by recording in the index of the turn-
stile the name of the “current” seal as described in the previous section. The result is a type
system that is more flexible insofar as it makes it possible to type “agent generators”, that
is, agents that are parametric (also) in their interfaces (see later on). A further advantage of
the technique used here is that the resulting system is syntax-directed and, as such, describes
a deterministic typing algorithm. Formally, the rules we present next are used to derive four
different judgments:

�) stating that � is a well-formed environment;
� T stating that T is well formed in �;
� x : M stating that x has type M in �;
� u P stating that process P is well typed when contained in the seal u.

The typing rules aremostly the same in the two seal variants but, of course, there are small differences
when dealing with the typing of channels. We start by defining the type system for shared channels.
This is the easiest case as the upward channels characterizing the interface of a seal are univocally
identified by the ↑ location. We discuss the rules in detail and then show the few simple modifica-
tions needed for the shared variant for which we show that a different interesting interpretation of
the type system as resource access control is possible.

44 G. Castagna et al. / Information and Computation 201 (2005) 1–54

4.4.1. Shared channels
In the case of shared channels we want the interface of a seal to record all input and receive

channels occurring with a ↑ location. The type system will forbid a write or send operation on xz

whenever x does not appear with the right type in the interface of z. This is obtained by the rules in
Table 7.

Table 7

Environment

(Env Empty)

∅)
(Env Add) x /∈ dom(�)

� M

� · x:M)

(Var)
�)

� x:�(x)

Well-formed types
(Type �)
�)
� �

(Type Id)
� A

� IdZA

(Type Ch)
� T

� Ch T

(Type Tuple)
� M1 . . .� Mn

� M1 × · · · ×Mn

(Type Interface)
�) ∀i∈ 1..n � xi:Ch Ti

� [x1:T1, . . . , xn:Tn]

Processes
(Dead)
�)
� u 0

(Par)
� u P1 � u P2

� u P1 | P2

(Bang)
� u P

� u !P

(Res)
� · x:M u P

� u (� x :M)P

(Seal)
� x : IdZA � x P

� u x[P]

(Output Local)
� x : Ch �M � �y : �M � u P

� u x∗(�y).P

(Input Local)
� x : Ch �M � · �y: �M u P

� u x∗(�y: �M).P

(Output Up)
� x : Ch �M � �y : �M � u P

� u x↑(�y).P

(Input Up) (x: �M) ∈ A

� u : IdZA � x : Ch �M � · �y: �M u P

� u x↑(�y: �M).P

(Output Down) (x: �M) ∈ A

� z : IdZA � �y : �M � u P

� u xz(�y).P

(Input Down)
� u z : IdZA � x : Ch �M � · �y: �M u P

� u xz(�y: �M).P

(Snd Local)
� x : Ch A � y : Id�A � u P

� u x∗y.P

(Rcv Local)
� x : Ch A � yi : IdZiA (i=1..n) � u P

� u x∗ �y.P

(Snd Up)
� x : Ch A � y : Id�A � u P

� u x↑y.P

(Rcv Up) (x:A) ∈ B

� u : IdYB � x : Ch A � yi : IdZiA (i=1..n) � u P

� u x↑ �y.P
(Snd Down) (x:B) ∈ A

� z : IdZA � y : Id�B � u P

� u xzy.P

(Rcv Down)
� z : IdYB � x : ChA � yi : IdZiA (i=1..n) � u P

� u xz �y.P

where � �y: �M stands for � y1:M1 · · ·� yn:Mn, and � · �x: �M for � · x1:M1 · ... · xn:Mn.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 45

We discuss the most important rules:
(Env Add). Environments are ordered lists of name and message-type pairs. A new declaration can
be added to an environment � provided that the name is not already declared in � and that the
type is well formed under �.

(Type Interface). An interface type is well formed if every name in it has been previously declared
with the correct type in �. The premise �) ensures the well formation of the type environment
for the case of the empty interface.

(Dead). The main interest of this rule is that it starts the deduction of a judgment indexed by a
variable u (the other rule doing it is the (Seal) rule). This variable stores the name of the current
seal, that is the innermost seal in which the process being typed is enclosed. Note that this rule
does not impose any restriction on u; in particular u can even be not declared in � (this is typically
the case when we check a top-level process). Restrictions on the current seal are imposed later in
the deduction by the rules (Seal), (Receive Up), and (Input Up): they all require the current seal
to be declared with a Id type in �, and the last two rules further require the presence of a given
channel-type pair in its interface.

(Res).Despite of its apparent simplicity, the (Res) rule is by far the most complex rule of the system
since through it the type system imposes subtle conditions on names appearing in an interface.
First of all, it is easy to see that if� · x: T u P is provable then� · x: T is well formed and therefore

x �∈ dom(�) (see Property 4.1 in Section 4.5). This is quite important as it means that no confusion
is possible when typing two nested bindings of the same variable as in that case type deductions
have to resort to alpha conversion to proceed.
Consider now the processes

(� x:Ch M) (� y:Id [x:M]) y [x↑(u:M)]
and

(� x:Ch M) (� y:Id [x:M]) y[(� x:Ch M) x↑(u:M)]
which differ only for the restriction in the y seal present in the latter but not in the former. The first
is well typed while the second is not: in the latter the input operation refers to an input channel x
that is different from the one appearing in the interface. A channel name that is used by a seal to
read from its environment must already exist in the environment where the seal is declared. This is
a very desirable feature of the type system: the interface’s names must be public.
In terms of the example in Section 4.1, this means that we can declare that a machine x has inter-

face [23 : telnet] only if the channel named 23 and the type telnet are both already known (that is,
declared) in the environment.
Another facet of the same phenomena appears when studying whether and when channels ap-

pearing in the interface of a seal can be renamed. For instance, the process

(�y:Id [u:M]) y[x∗(z) | x∗(u).u↑(v:M)]
is not well typed because the channel u over which the input is performed has nothing to do with
the channel u declared in the interface (just apply an alpha-conversion). This means that, as we

46 G. Castagna et al. / Information and Computation 201 (2005) 1–54

discussed at length in Section 4.3, channels appearing in the interface of an active seal, that is, a seal
not prefixed by any action, can not be bound in an input operation. This implies that seal interfaces,
and thus types, do not change during reduction. On the other hand, consider the process

x∗(u:M).((� y:Id [u:M]) y[u↑(v:M)])

which is similar to the previous one, with the only difference that the input operation now prefixes
the whole seal (which, thus, is no longer active). This process is well typed and models a seal “gener-
ator” parametric in the channel of their interface. When it is put in parallel with, say, (� z :M) x∗(z)
it reduces to

((� z:M) (� y :Id [z:M]) y[z↑(v:M)])

that corresponds to an instance of the generator where, in particular, the interface is [z:M].
In this way the type system allows the definition of inactive agents whose interface can be decided

dynamically at the moment of their initialization (for example, an agent may get its definitive shape
only once it is arrived to its destination). This was not possible in the system of [16].

(Input _). The action x�(�y: �M).P binds �y in P . Thus �y must be added to the environment to type
P , provided that its type matches the type of x. In (Input Local), the input operation is local and
nothing more has to be done. In (Input Down) we also check that the name of the seal from which
the process wants to read is indeed declared in � as a name of seal. In (Input Up) the input is from
↑, therefore the channel the process wants to read from must appear in the interface that has been
declared for the enclosing seal u.

(Output _). In the case of local and upward output actions the rules (Output Local) and (Output
Up) check that the types of the channel and of the argumentmatch. The rule (Output Down) further
checks that the channel appears with the right type in the interface of the target seal. This enforces
the interpretation of the interfaces: a process can write down to a seal only if the processes local to
the seal has declared in its interface that it is going to read it.

(Rcv _). The typing rules for mobility actions do not differ from the respective communication
actions. The main point is that since a receive operation does not bind the seal names it specifies,
they are not added to the environment used to type the continuation. Remark that in order to send
a seal on a channel, it must be declared to be mobile (attribute �). In the Seal’s model of mobility,
when a seal is received it gets a name chosen by the receiver process. We use this feature, together
with the fact that the mobility attribute is tied to seals names, to turn amobile seal into an immobile
one. For instance,

(� x:Ch A) (� a :Id�A) (� b :Id�A) x∗a | x∗b | a[P] −� (� b :Id�A) b[P]

turns the mobile seal named a into an immobile seal named b. This is achieved by imposing no
constraints on the mobility attribute of the receiving name in the receive typing rule. Neither this
nor the opposite is possible in Ambients with mobility attributes [14]. Note also that the different
instances of a received seal may have different mobility attributes.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 47

4.4.2. Located channels
In the case of located channels, collecting in the interface of a seal all the channels occurringwith a

↑ location is not very useful: downward transmissions synchronize with channels local to the target
seal, thus it is more interesting to include in the interface local channels rather than the ↑-labeled
ones. Furthermore, in the previous systems it was interesting to collect in the interface of a seal all the
↑-located channels occurring in it, since any ↑-located channel not included in the interface would
have been useless.Here instead a local channel that does not appear in the interface can still synchro-
nize locally. Therefore in the located-channels variant the interface of a seal contains just some of the
local channels on which the seal commits to listen. This induces a nice interpretation of the resulting
type system as a system for resource access control: a seal declares in its interface the local resources
it makes available to the surrounding environment, all the others being reserved to private use.
The rules that characterize such a type system are easily defined: they are the same rules as those

of Section 4.4.1 with the only difference that in the rules (InputUp) and (RcvUp) each side condition
(x:T) ∈ T ′ is replaced by the extra premise � x:Ch T . Note that in this case the local resources
declared in an interface, that is, the ‘public’ resources, must comply with the conditions discussed
for the rule (Res) and in particular they cannot be renamed in active seals.

4.5. Properties

A first property that straightforwardly holds is the decidability of all the previous type systems.
The rules are syntax-directed and satisfy the subformula property; they univocally describe a deter-
ministic algorithm that for given �, P , u determines whether � u P is provable. A simple induction
shows that it always terminates.
Other interesting properties that follow by induction on the depth of the derivation are the

following

Property 4.1.

1. if either � u P , or � x:M , or � T is provable, then also �) is provable;
2. if � · x:M) then fn(M) ⊆ dom(�).

These properties give some insight on the way the typing rules work. In particular they show that
in the rules in which the type environment is extended (that is, the three (Input _) rules and (Res))
the new variables cannot have been declared in the old environment. Actually, 4.1:2 tells us more,
as the new variables cannot occur in the old environment. This rules out environments such as
� · y:Id[x:M ′] · x:M , and as we discussed, it is the key property that forbids the channels of the
interface of an active seal to be bound in an input action.
The substitution lemma below captures a key feature of the type system, namely that names that

get substituted can not appear in interfaces of seals.

Lemma 4.2. If �, x:M u P and � y : M , then � u P {y/x}.
Proof (Sketch).Theproof is longbut standard. The key observation that deserves to be highlighted is
that if � · �z: �M u : [x1:M1, . . . , xn : Mn] is a valid derivation, then � · x:M). This, by construction
of � · x:M , that for all i it holds z �= xi . �

48 G. Castagna et al. / Information and Computation 201 (2005) 1–54

Finally, the soundness of the various systems is obtained by proving the subject reduction prop-
erty, which for both variants is stated as follows:

Theorem 4.3 (Subject Reduction). For all u, P ,Q, if � u P and P −� Q, then � u Q.

Proof. Induction on the derivation of P −�Q.
We detail two base cases, showing how types are preserved by communication and mobility

reductions. The other base cases follow along the same lines.

• Suppose x∗(�y).P | x∗(�z : �M).Q −� P | Q{ �y/�z}. By hypothesis, we know that � u x∗(�y).P |
x∗(�z : �M).Q. This implies � x : Ch �M , � �y : �M , � u P , and � · �z: �M u Q. Using the substi-
tution lemma we derive� u Q{ �y/�z}. The type rule of parallel composition allows us to conclude
� u P | Q.

• Suppose n[(��r : �M)(x↑ �y.P | Q)] | xnz.R | z[S] −� n[(��r : �M)(P | Q | y1[S] | · · · | yn[S])] | R.
By hypothesis, we know that� u n[(��r : �M)(x↑ �y.P | Q)] | xnz.R | z[S]. This implies� u R,
� n : [· · · x:A · · ·], � z : Id A , � z S , and that for all i we have � · �r: �M yi : Id A . These
three last judgements allow us to derive� · (��r: �M) n yi[S], for all i. Thenwe can construct a der-
ivation for � n (��r: �M)(P | Q | y1[S] | · · · | yn[S]), and it is easy to construct a valid derivation
for � u n[(��r : �M)(P | Q | y1[S] | · · · | yn[S])] | R.

Induction steps are standard. �

4.6. Related work

Yoshida andHennessy propose in [64] a type system for ahigher-order�-calculus that canbeused
to control the effects of migrating code on local environments. The type of a process takes the form
of an interface limiting the resources to which it has access, and the type at which they may be used.
In their type system both input and output channels can appear in the interface, appearing strictly
more expressive than the system we propose here, where input channels are only considered. How-
ever, they do not allow active agents, but only pieces of code, to be sent over a channel.When code is
received it can be activated, possibly after parameter instantiation. Besides, their type system limits
the application of dependent types to the instantiation of parameters, resulting in the impossibility
of giving an informative type to processes in which an output operation depends on an input one.
Hennessy andRiely [30] defineD�, a distributed variant of the �-calculuswhere agents are “locat-

ed” (i.e., “named”) threads. Themain difference with respect to our work is that locations cannot be
nested (that is, locations are not threads), and therefore mobility in [30] consist in spawning passive
code rather than migrating active agents. In [30] locations types have the form loc{x1: T1, . . . xn: Tn}
where xi’s are channels belonging to the location. They are located resources and as such D� is
much closer to the located Seal Calculus. The same holds true for the type systems.
Types for locations have been extensively studied in a series of papers [12,15,14] on the Ambient

Calculus. We already stressed that Seal Calculus differs from Ambient Calculus in many aspects,
indissoluble boundaries, tight connection of agents with the names and objective vs. subjective mo-
bility being the main ones. From the viewpoint of types the most prominent difference between
Ambient Calculus and Seal Calculus is that the former does not provide an explicit “physical”
support for mobility, while in the latter this support is provided by channels. In other words while

G. Castagna et al. / Information and Computation 201 (2005) 1–54 49

in Ambients mobility take place on some unmaterialized ethereal transport medium, in Seal the
medium is materialized by channels. Therefore the main novelty of seal types is that not only we
type locations (agents or seals), but we also type mobility (more precisely, its support). In some
sense we introduce higher-order typing: while in Ambient Calculus an agent can not discriminate
which agents can traverse its boundaries, this is possible in our type system. For the same reason
we can make a mobile location become immobile, while this is not possible in the cited works on
Ambient Calculus.

5. Conclusion

To conclude this paper, we review the evolution of the Seal Calculus and we briefly discuss the
Seal experience in the broader context of process languages for mobile computation.

The evolution of Seal. The original presentation of the Seal calculus [61] was tailored with an imple-
mentation in mind, and offered features that were considered important from a practical viewpoint
but turned out to be inessential for its theoretical study. The most visible difference is that [61]
included a further security ingredient called portals. The aim of portals was to specify access control
policies independently from process behavior. In a similar manner as access rights are specified in
modern operating systems, portals allow a process to count (and limit) the number of times a chan-
nel can be used. The idea is that if a seal awants to use seal b’s channel x, then bmust “open” a portal
for a at x. A portal is best viewed as an linear channel access permission, a temporary capability
since as soon as synchronization takes place the portal is closed again. The action to open a portal
is either x� to allow seal � to read the local channel x once, or x� to allow � to write once on local
channel x. Portals are akin to capabilities; they are managed by the environment and can be used
for controlling access to resources, and even for revocation. Portals were also needed to limit the
scope of multicast operations, for example, x̄∗y | xa | xb limits the scope of the out operation to
local processes and processes in subseals a and b. Although such a construction is useful, it was not
retained in later version of the calculus as it introduces undue complexity in the formal treatment
(e.g., portals induce a cumbersome four parties synchronization).
Another point of difference is that the calculus in [61] considered channels that were localized

inside seals as this gave a clear way to structure the implementation. The shared channels variant
of Seal was introduced in [16] to have a clear definition of the interface of a Seal. This variant is also
easier to study, because it halves the number of cases of remote interaction. The generalization we
do here is essentially the one in [17] where a reduction semantics parametric on the localization of
the channels was given. There are also many minor differences with respect to the calculus of [61].
Among these it is worthmention the handling of extrusions and of free names of moving seals (such
as the e-condition), as these have non-trivial consequences on the theoretical study of the calculus.
Thesemodifications were coupled to a general clean-up of the definition of Seal, and in particular of
its semantics that contrary to what happens in [61] is given in pure chemical style without resorting
to auxiliary definitions (we think of the heating relation of [61]).

Seal in perspective. We now review the place of Seal in the landscapes of languages for mobile
computations. The difficulties of modeling some key aspect of distributed computing, in particular
failures, within the �-calculus motivated a number of researchers to specify distributed extensions

50 G. Castagna et al. / Information and Computation 201 (2005) 1–54

[1,45]. But these did not take into account security and disconnected operation. In another research
direction distributed shared memory systems such as Linda were extended with explicit localities
and the ability to evaluate dynamically scoped processes at a given locality [20]. But security re-
mained a significant problem in this approach. Process mobility was first addressed by Thomsen in
his calculus of higher order processes (or CHOCS) [57]. Sangiorgi’s elegant encoding [47] of higher
order process demonstrated that it was not necessary to transmit processes on labels. One main
difference between these treatments of mobility and the one advocated here is that the processes
being exchanged are inactive ones, while in Seal or Ambients, active processes can move. Fournet
and Gonthier proposed the distributed join-calculus [22] which supports agent mobility [23,24],
and failures. The differences with Seal are mostly in the treatment of communication. Join assumes
channels are rooted at locations. Thus possession of a channel name entails the ability to communi-
cate with the owner of the channel. In a wide area network a global location service is needed which
represents a non-trivial challenge as shown by Nomadic Pict [55]. This choice also implies that the
mediation property can not be easily achieved. In practical terms this means that isolation policies
can not be straightforwardly implemented. More subtly, the lack of syntactic difference between
local and remote resources promotes a programming style in which computations are spread over
a number of different nodes, thus increasing the degree of interdependency and making computa-
tion potentially more sensitive to failures. Several researchers have proposed to rely on types for
resource access control [29,19,51]. The work of Hennessy and Riely is innovative as it deals with
open networks where a subset of hosts may be malicious. This raises challenging problems which
include, but are not restricted to, handing out an ill-typed value to a mobile application which is
detected by the type system before the value is used, but this remains a genuine attack as the process
holding the value will experience a runtime type violation.
The Ambient Calculus of Cardelli and Gordon [10] is of course the most closely related research

effort. Ambients resemble seals as they are named hierarchically structured locations. The calculi
differ in their mobility models. Ambient can trigger a move action by exercising a capability, this
is termed subjective mobility. Moreover, with the proper capability an ambient may enter another
ambient at any time. Ourmodel allows the parent to control mobility of its subseals.While trapping
a migrating ambient is not entirely straightforward, a parent seal can enforce confinement on any
subseal. Another significant difference is that the boundary around an ambient can be dissolved,
thus releasing the ambient’s content in the current environment.
Seal influenced other works in the field. Location mobility as a result of process synchronization

was first introduced in Seal as a natural extension of �-calculus communication primitives. It was
later introduced for ambients by Levi and Sangiorgi in [36], and then in several other Ambient
variants. The Seal calculus also had a direct influence on the design of Boxed Ambients [6,7], a
variant of the Ambient calculus obtained by suppressing the open capability and where non-local
communication are made possible by enriching the calculus with the communication primitives of
the located Seal calculus. The communication primitives of the shared Seal calculus, first defined in
[16], were adapted to BoxedAmbients in [18] in order to ease static detection of insecure information
flows. The difference in expressiveness of the communication primitives of the located and shared
variant of the primitives is at the origin of the NBA (New Boxed Ambients) calculus defined in [8],
which enriches the shared channel communication of Seal they borrow from [16] with name captur-
ing receiving actions (however these are useful only because they conform to the ambient calculus
model where names are tightly bound to agents and are not modified by mobility: since in Seal the

G. Castagna et al. / Information and Computation 201 (2005) 1–54 51

receiving agents decide the name of incoming seals this feature would be useless in the Seal model).
The interaction pattern introduced in Seal for mobility of exiting agents is first used for ambients in
[38]. Seal has inspired the calculus of mobile resources of [26] which inherits the interaction pattern
for exiting agents and the fact that mobility takes place on the anonymous content of locations. It
has also played a role in the design of the crypto-loc calculus [3] which has a similar communication
model. Finally Seal primitives are also at the basis of the definition of Boxed-�, an extension of the
�-calculus for securely integrating trusted and untrusted off-the-shelf software components [53,54].

Acknowledgments

The authors are grateful to the anonymous referees for their detailed comments. The authors
thank Luca Cardelli for his kind advice and encouragement; Peter Sewell for insights into process
calculi and language design; Christian Tschudin for many discussions on mobile code; Doug Lea
for patiently explaining distributed object systems;Walter Binder, Ciaran Bryce, AndreasKrall and
Manuel Serrano for the Java implementation of Seal; Dimtri Konstantas and Jean-Henri Morin
for using seal in practice. Francesco ZappaNardelli is grateful to the S3 group of PurdueUniversity
for their hospitality. This work was partially supported by the European FET contract MyThS,
IST-2001-32617 and NSF under grant CCR–0093282 “CAREER: Foundations and Implementa-
tion of Mobile Object Systems” and CCR-0209083 “Distributed Access Control for Accountable
Systems.”

References

[1] R.M. Amadio, An asynchronous model of locality, failure, and process mobility, in: Proceedings of COORDI-
NATION ’97, Springer-Verlag, 1997, Full version as Rapport Interne, LIM Marseille, and Rapport de Recherche
RR-3109, INRIA Sophia-Antipolis, 1997.

[2] W. Binder, J-SEAL2: a secure high-performance mobile agent system, Electronic Commerce Research 1 (1/2) (2001)
131–148.

[3] B. Blanchet, B. Aziz, A calculus for secure mobility, in: Eighth Asian Computing Science Conference (ASIAN’03),
Mumbai, India, Dec. 2003, pp. 188–204.

[4] C. Bryce, J. Vitek, The JavaSeal mobile agent kernel, Autonomous Agents and Multi-Agent Systems 4 (4) (2001)
359–384.

[5] M. Bugliesi, G. Castagna, Secure safe ambients, in: Proc. of POPL’01, ACM Press, New York, 2001, pp. 222–235.
[6] M. Bugliesi, G. Castagna, S. Crafa, Boxed ambients, in: TACS’01, Lecture Notes in Computer Science, vol. 2215,

Springer-Verlag, Berlin, 2001, pp. 38–63.
[7] M. Bugliesi, G. Castagna, S. Crafa, Reasoning about security in mobile asmbients, in: CONCUR’01, Lecture Notes

in Computer Science, vol. 2154, Springer-Verlag, Berlin, 2001, pp. 102–120.
[8] M. Bugliesi, S. Crafa, M. Merro, V. Sassone,Communication interference in mobile boxed am-

bients, in: FST&TCS ’02, 22th Conference on the Foundations of Software Technology and
TheoreticalComputer Science, Springer, Dec. 2002, pp. 85–96. Extended version available from:
<http://www.cogs.susx.ac.uk/users/vs/research/paps/nba-subm.ps.gz>.

[9] L. Cardelli, A language with distributed scope, Computing Systems 8 (1) (1995) 27–59.
[10] L. Cardelli, A. Gordon, Mobile ambients, in: Proceedings of F0SSaCS’98, Lecture Notes in Computer Science, vol.

1378, Springer-Verlag, Berlin, 2001, pp. 140–155.
[11] L. Cardelli, A. Gordon, Equational properties for mobile ambients, in: Proceedings FoSSaCS ’99, Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 1999.

52 G. Castagna et al. / Information and Computation 201 (2005) 1–54

[12] L. Cardelli, A. Gordon, Types for mobile ambients, in: Proceedings of POPL ’99, ACM Press, New York, 1999, pp.
79–92.

[13] L. Cardelli, A. Gordon, A commitment relationfor the Ambient Calculus, Oct. 2000. Available from:
<http://research.microsoft.com/∼/adg/Publications/ambient-commitment.pdf>.

[14] L. Cardelli, G. Ghelli, A. Gordon, Mobility types for mobile ambients, in: Proceedings of ICALP ’99, Lecture Notes
in Computer Science, vol. 1644, Springer-Verlag, Berlin, 1999, pp. 230–239.

[15] L. Cardelli, G. Ghelli, A.D. Gordon, Ambient groups and mobility types, in: International Conference IFIP TCS,
Lecture Notes in Computer Science, vol. 1872, Springer-Verlag, Berlin, 2000, pp. 333–347.

[16] G. Castagna, G. Ghelli, F. Zappa Nardelli, Typing mobility in the seal calculus, in: CONCUR’01, Lecture Notes in
Computer Science, vol. 2154, Springer-Verlag, Berlin, 2001, pp. 82–101.

[17] G. Castagna, F. Zappa Nardelli, The seal calculus revisited: contextual equivalence and bisimilarity, in: FST&TCS
’02, 22th Conference on the Foundations of Software Technology and Theoretical Computer Science, Springer, 2002,
pp. 85–96.

[18] S. Crafa, M. Bugliesi, G. Castagna, Information flow security for Boxed Ambients, in: Foundations of Wide Area
Network Computing (F-WAN), Elsevier Science B.V., 2002.

[19] R. De Nicola, G. Ferrari, R. Pugliese, Coordinating mobile agents via blackboards and access rights, in: Proceedings
of COORDINATION’97, Springer-Verlag, Berlin, 1997.

[20] R. De Nicola, G. Ferrari, R. Pugliese, Locality based Linda: programming with explicit localities, in: Proceedings of
FASE-TAPSOFT’97, Springer-Verlag, Berlin, 1997.

[21] G. Ferrari, U. Montanari, E. Tuosto, A LTS semantics of ambients via graph synchronization with mobility, in:
Proceedings ICTCS, Lecture Notes in Computer Science, vol. 2202, 2001.

[22] C. Fournet, G. Gonthier, The reflexive chemical abstract machine and the join-calculus, in: Proceedings of POPL’96,
pp. 372–385.

[23] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, D. Rémy, A calculus of mobile agents, in: Seventh International
Conference on Concurrency Theory (CONCUR ’96), Lecture Notes in Computer Science, vol. 1119, Springer-Verlag,
1996, pp. 406–421.

[24] C. Fournet, J.-J. Levy,A. Schmitt,Anasynchronous, distributed implementationofmobile ambients, in: International
Conference IFIP TCS, Lecture Notes in Computer Science, vol. 1872, Springer-Verlag, 2000.

[25] D. Gelernter, Generative communication in Linda, ACM Transactions on Programming Languages and Systems 7
(1) (1985) 80–112.

[26] J.C. Godskesen, T. Hildebrandt, V. Sassone, A calculus of mobile resources, in: CONCUR 2002 (13th. International
Conference on Concurrency Theory), Lecture Notes in Computer Science, Springer, Berlin, 2002.

[27] R.S. Gray, Agent Tcl: A flexible and secure mobile-agent system. Technical Report PCS-TR98-327, Dartmouth
College, Computer Science, Hanover, NH, Jan. 1998.

[28] M. Hennessy, M. Merro, J. Rathke, Towards a behavioural theory of access and mobility control in distributed
system, in: Proc. 5th FoSSaCS ’03, Lecture Notes in Computer Science, Springer Verlag, Berlin, 2003.

[29] M. Hennessy, J. Riely, Type-safe execution of mobile agents in anonymous networks, in: Internet Programming
Languages, Lecture Notes in Computer Science, vol. 1686, Springer-Verlag, Berlin, 1999.

[30] M. Hennessy, J. Riely, Resource access control in systems ofmobile agents, Information andComputation 173 (2002)
82–120.

[31] M.Hennessy, J. Rathke, N. Yoshida, Safedpi: a language for controllingmobile code, in: Proc. FOSSACS 03, Lecture
Notes in Computer Science,vol. 2620, 2003.

[32] M. Hicks, P. Kakkar, J.T. Moore, C.A. Gunter, S. Nettles, PLAN: A packet language for active networks, in: Pro-
ceedings of the Third ACM SIGPLAN International Conference on Functional Programming Languages, ACM,
1998, pp. 86–93. Available from:<www.cis.upenn.edu/ switchware/papers/plan.ps>.

[33] K. Honda, N. Yoshida, On reduction-based process semantics, Theoretical Computer Science 152 (2) (1995) 437–
486.

[34] K. Honda, N. Yoshida, On reduction-based process semantics, Theoretical Computer Science 152 (2) (1995) 437–486.
[35] E. Jul, H. Levy, N. Hutchinson, A. Black, Fine-grained mobility in the emerald system,in: Proceedings of the 11th

ACM Symposium on Operating Systems Principles, Nov. 1987, pp. 62–74.
[36] F. Levi, D. Sangiorgi, Controlling interference in ambients, in: POPL ’00, ACM Press, 2000, pp. 352–364.

G. Castagna et al. / Information and Computation 201 (2005) 1–54 53

[37] M. Merro, Locality in the �-calculus and applications to distributed objects, PhD thesis, École de Mines de Paris,
October 2000.

[38] M. Merro, M. Hennessy, Bisimulation conguences in safe ambients, in: POPL’02, ACM Press, New York, 2002, pp.
71–80.

[39] M. Merro, F. Zappa Nardelli, Bisimulation proof methods for mobile ambients, in: ICALP ’03, LNCS 2003. An
extended version is available as COGS Computer Science Report 2003:01.

[40] R. Milner, The polyadic �-calculus: a tutorial. Technical Report ECS–LFCS–91–180, Laboratory for Foundations
of Computer Science, Department of Computer Science, University of Edinburgh, UK, Oct. 1991,in: F.L. Bauer,
W. Brauer, H. Schwichtenberg, (Ed.), Proceedings of the International Summer School on Logic and Algebra
of Specification, Marktoberdorf, August 1991. Reprinted in Logic and Algebra of Specification, Springer-Verlag,
1993.

[41] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Parts I and II, Information and Computation 100
(1992) 1–77.

[42] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. ICALP 92, Lecture Notes in Computer Science, Springer
Verlag, Berlin, 1992, pp. 685–695.

[43] F. Nielson, H. Riis Nielson, R.R. Hansen, J.G. Jensen, Validating firewalls in mobile ambients, in: Proc. CONCUR
’99, Lecture Notes in Computer Science, vol. 1664, Springer-Verlag, 1999, pp. 463–477.

[44] P. Pardyak, S. Savage, B.N. Bershad, Language and runtime support for dynamic interposition of system code,
Unpublished manuscript, Nov. 1995.

[45] J. Riely, M. Hennessy, Distributed processes and location failures, in: Pierpaolo Degano, Roberto Gorrieri, Alberto
Marchetti-Spaccamela (Eds.), Proceedings of ICALP ’97, Lectures Notes in Computer Science, vol. 1256, Springer-
Verlag, 1997, pp. 471—481. Full version as Report 2/97, University of Sussex, Brighton.

[46] J. Riely, M. Hennessy, A typed language for distributed mobile processes, in: Proceedings of POPL’98, ACM Press,
New York, 1998, pp. 378–390.

[47] D. Sangiorgi, Expressingmobility in process algebras: first-order and higher-order paradigms, PhD thesis CST-99-93,
Department of Computer Science, University of Edinburgh, 1992.

[48] D. Sangiorgi, Bisimulation for higher-order process calculi, Information and Computation 131 (2) (1996) 141–178.
[49] D. Sangiorgi, Extensionality and intensionality of the ambient logic, in: Proceedings of the 28th ACM Symposium

on Principles of Programming Languages, London, ACM Press, New York, 2001.
[50] D. Sangiorgi, D. Walker, The �-Calculus, Cambridge University Press, Cambridge, 2002.
[51] P. Sewell, Global/local subtyping and capability inference for a distributed �-calculus, in: K.G. Larsen, S. Skyum,

G. Winskel (Eds.), Proceedings if ICALP ’98, Lecture Notes in Computer Science, vol. 1443, Springer-Verlag, Berlin,
1998.

[52] P. Sewell, Applied �—a brief tutorial. Technical Report 498, Computer Laboratory, University of Cambridge, 2000.
[53] P. Sewell, J. Vitek, Secure composition of insecure components, in: 12th IEEE Computer Security Foundations

Workshop, 1999.
[54] P. Sewell, J. Vitek, Composition of untrusted code: wrappers and causality types, Journal of Computer Security, 11

(2) (2003) (in press).
[55] P. Sewell, P. Wojciechowski, B. Pierce, Location independence for mobile agents, in: Proceedings of the 1998 Work-

shop on Internet Programming Languages, Chicago, Ill., May 1998.
[56] D. Tennenhouse, Active networks, in: USENIX, editor, 2nd Symposium on Operating Systems Design and Imple-

mentation (OSDI ’96), October 28–31, 1996. Seattle, WA, Berkeley, CA, USA, Oct. 1996. USENIX.
[57] B. Thomsen, Plain CHOCS. A second generation calculus for higher order processes, Acta Informatica 30 (1) (1993)

1–59.
[58] A. Unyapoth, P. Sewell, Nomadic Pict: Correct communication infrastructures for mobile computation, in: Proc.

28th POPL, ACM Press, New York, 2001.
[59] M.G. Vigliotti, Transition systems for the ambient calculus, Master thesis, Imperial College of Science, Technology

and Medicine (University of London). Sep. 1999.
[60] J. Vitek, The Seal model of Mobile Computations, PhD thesis, University of Geneva, 1999.
[61] J. Vitek, G. Castagna, Seal: a framework for secure mobile computations, in: Internet Programming Languages,

Lecture Notes in Computer Science, vol. 1686, Springer-Verlag, Berlin, 1999, pp. 47–77.

54 G. Castagna et al. / Information and Computation 201 (2005) 1–54

[62] J. Waldo, G. Wyant, A. Wollrath, S. Kendall, A note on distributed computing, in: J. Vitek, C. Tschudin (Eds.),
Mobile Object Systems: Towards the Programmable Internet, Springer-Verlag, Berlin, 1997.

[63] J.White,Mobile agents white paper. GeneralMagic, 1996. Available from:<http://www.generalmagic.com>.
[64] N. Yoshida, M. Hennessy, Assigning types to processes, in: Proceedings, Fifteenth Annual IEEE Symposium on

Logic in Computer Science, 2000, pp. 334–348.
[65] F. Zappa Nardelli, De la sémantique des processus d’ordre supérieur, PhD thesis, U. Paris 7, 2003.

