The Dirac Hamiltonian as a Member of a Hierarchy of Matrices*

Alladi Ramakrishnan
MATSCIENCE, Madras, India
"Of strange combinations out of common things"-Shelley

We shall give a method of generating a hierarchy of square matrices L_{m} involving m independent continuous parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ such that

$$
\begin{equation*}
L_{m}^{2}=\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{m}^{2}\right) I, \tag{1}
\end{equation*}
$$

as m takes values $2,3, \ldots$. We shall show that the L matrices can be expressed as a linear combination of m 'generator' matrices independent of the parameters. The L matrices fall into one of two classes, saturated or unsaturated according as m is odd or even.

One of the most interesting features of this hierarchy is that the Pauli matrices are recognized to be the generator matrices which saturate L_{2}, while the Dirac Hamiltonian is an unsaturated L_{4}.

We start by writing

$$
L_{2}=\left[\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right]
$$

and requiring that

$$
L_{2}{ }^{2}=\left[\begin{array}{ll}
a^{2}+b c & (a+d) b \tag{3}\\
(a+d) c & d^{2}+b c
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2} & 0 \\
0 & \lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}
\end{array}\right] .
$$

L_{2} then falls into canonical forms of two distinct types.
Type I

$$
L_{2}=\left[\begin{array}{ccc}
0 & \lambda_{1} & -i \lambda_{2} \tag{4}\\
\lambda_{1}+i \lambda_{2} & 0
\end{array}\right]
$$

or
Type II

$$
L_{2}=\left[\begin{array}{rr}
\lambda_{2} & \lambda_{1} \tag{5}\\
\lambda_{1} & -\lambda_{2}
\end{array}\right]
$$

[^0]Since the relation $L_{2}{ }^{2}=\left(\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}\right) I$ is symmetric in λ_{1} and λ_{2}, we can interchange λ_{1} and λ_{2} or replace λ_{1} or λ_{2} by $-\lambda_{1}$ or $-\lambda_{2}$, but these operations do not alter the type.

To generate L_{3}, we can adopt the same procedure as we did to find L_{2}. We can define

$$
L_{3}=\left[\begin{array}{cc}
0 & L_{2}-i \lambda_{3} I \tag{6}\\
L_{2}+i \lambda_{3} I & 0
\end{array}\right]
$$

or

$$
L_{3}=\left[\begin{array}{cc}
\lambda_{3} I & L_{2} \tag{7}\\
L_{2} & -\lambda_{3} I
\end{array}\right]
$$

or

$$
L_{3}=\left[\begin{array}{cc}
L_{2} & \lambda_{3} I \tag{8}\\
\lambda_{3} I & -L_{2}
\end{array}\right]
$$

or

$$
L_{3}=\left[\begin{array}{cc}
\lambda_{3} & \lambda_{1}-i \lambda_{2} \tag{9}\\
\lambda_{1}+i \lambda_{2} & -\lambda_{3}
\end{array}\right]
$$

We notice that while in the first three cases L_{3} has double the dimension of L_{2}, in the last case the dimension of L_{3} remains the same as that of L_{2}. In general, L_{m+1} can be generated from L_{m} as follows

$$
L_{m+1}=\left[\begin{array}{cc}
0 & L_{m}-i \lambda_{m+1} I \tag{10}\\
L_{m}+i \lambda_{m+1} I & 0
\end{array}\right]
$$

or

$$
L_{m+1}=\left[\begin{array}{cc}
\lambda_{m+1} I & L_{m} \tag{11}\\
L_{m} & -\lambda_{m+1} I
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc}
L_{m} & \lambda_{m+1} I \\
\lambda_{m+1} I & -L_{m}
\end{array}\right]
$$

In all these three cases, the dimension of L_{m+1} is double that of L_{m}. However, if L_{m} is of the form

$$
\left[\begin{array}{cc}
0 & L_{m-1}-i \lambda_{m} \tag{12}\\
L_{m-1}+i \lambda_{m} & 0
\end{array}\right]
$$

then L_{m+1} can be generated with the same dimension as L_{m} by defining

$$
L_{m+1}=\left[\begin{array}{cc}
\lambda_{m+1} I & L_{m-1}-i \lambda_{m} \tag{13}\\
L_{m-1}+i \lambda_{m} & -\lambda_{m+1} I
\end{array}\right]
$$

Thus the most 'economical' way of building L_{m+1} is to 'saturate' the L_{m} if L_{m} is 'unsaturated,' i.e., having zeros on the diagonal. Therefore, L_{m} is of
type II while L_{m+1} is saturated. We thus have the table connecting the number of parameters, dimensions of the matrix and type.

Matrix	Number of parameter	Dimension	Character
L_{1}	1	1	Saturated
L_{2}	2	2	Unsaturated
.	3	2	Saturated
-	4	$2^{2}-4$	Unsaturated
.	5	$2^{2}=4$	Saturated
$L_{2 n}$	$2 n$	2^{n}	Unsaturated
$L_{2 n+1}$	$2 n+1$	2^{n}	Saturated

Thus the saturated L matrices involve an odd number of parameters. $L_{2 n+1}$ can be obtained from $L_{2 n-1}$ bg performing a σ-operation on it defined as

$$
L_{2 n+1}=\sigma\left(L_{2 n-1}\right),
$$

i.e.,

$$
L_{2 n+1}=\left[\begin{array}{cc}
\lambda_{2 n+1} I & L_{2 n-1}-i \lambda_{2 n} I \tag{14}\\
L_{2 n-1}+i \lambda_{2 n} I & -\lambda_{2 n+1} I
\end{array}\right] .
$$

The σ-operation involves the addition of two parameters and the doubling of the dimension.
We shall study these matrices by writing

$$
\begin{equation*}
L_{2 n+1}=\sum_{i=1}^{2 n+1} \lambda_{i} \mathscr{L}_{i}^{2 n+1}, \tag{15}
\end{equation*}
$$

where $\mathscr{L}_{i}^{2 n+1}$ are $(2 n+1)$ 'generator matrices' independent of λ_{i}. Then if

$$
\begin{equation*}
L_{2 n-1}=\sum_{i=1}^{2 n+1} \lambda_{i} \mathscr{L}_{i}^{2 n+1}, \tag{16}
\end{equation*}
$$

we have

$$
\mathscr{L}_{i}^{2 n+1}=\left[\begin{array}{cc}
0 & \mathscr{L}_{i}^{2 n-1} \tag{17}\\
\mathscr{L}_{i}^{2 n-1} & 0
\end{array}\right], \quad i=1,2, \ldots, 2 n-1,
$$

and

$$
\mathscr{L}_{2 n}^{2 n+1}=\left[\begin{array}{cc}
0 & -i \lambda_{2 n} I \tag{18}\\
i \lambda_{2 n} I & 0
\end{array}\right], \quad \mathscr{L}_{2 n+1}^{2 n+1}=\left[\begin{array}{cc}
\lambda_{2 n+1} I & 0 \\
0 & -\lambda_{2 n+1} I
\end{array}\right] .
$$

Thus the σ-operation on $L_{2 n-1}$ consists of generating $\mathscr{L}_{i}^{2 n+1}$ from $\mathscr{L}_{i}^{2 n-1}$ and adding two matrices $\mathscr{L}_{2 n}^{2 n+1}$ and $\mathscr{L}_{2 n+1}^{2 n+1}$.

We now summarize the results we have obtained as follows:

1. A saturated L matrix involves $(2 n+1)$, i.e., an odd number of parameters. Its dimension is 2^{n}. It can be expressed as a linear combination of $(2 n+1)$ matrices $\mathscr{L}_{i}^{2 n+1}, i=1, \ldots,(2 n+1)$ with λ_{i} as their coefficients, respectively.
2. An L matrix involving $2 n$ (even) parameters is unsaturated. Its dimension is 2^{n} and it can be expressed as a linear combination of $2 n$ matrices, i.e., a sct obtaincd by omitting one of the $2 n+1$ matrices.

There are $\left(2^{n}\right)^{2}$ independent matrices of dimension 2^{n} and these can be generated either from the $2 n+1$ matrices which saturate L or the $2 n$ matrices as follows:

The $2 n+1$ matrices have the important feature that their product is 'idempotent.' More precisely,

$$
\begin{equation*}
\mathscr{L}_{1}^{2 n+1} \mathscr{L}_{2}^{2 n+1} \cdots \mathscr{L}_{2 n+1}^{2 n+1}=i^{n} I . \tag{19}
\end{equation*}
$$

Hence to generate all the independent matrices we form products of $2,3, \ldots, n$ matrices. The product of $(n+r)$ matrices is just equal to the product of ($n-r+1$) matrices and a numerical factor, and so no independent matrix can be generated by taking products of more than n matrices out of the $2 n+1$. The number of independent matrices are

$$
\begin{equation*}
\binom{2 n+1}{0}+\binom{2 n+1}{1}+\cdots+\binom{2 n+1}{n}=2^{2 n} \tag{20}
\end{equation*}
$$

The $2 n+1$ matrices anticommute with each other. The idempotent property implies that $2 n+1$ is the maximum number of anticommuting matrices in a set of 2^{n} independent matrices.

If on the other hand we had taken $2 n$ matrices, we can form products of $2,3,4 \cdots 2 n$ matrices and we obtain

$$
\begin{equation*}
\binom{2 n}{0}+\binom{2 n}{1}+\cdots+\binom{2 n}{2 n}=2^{2 n} \tag{21}
\end{equation*}
$$

independent matrices.
The following two properties of the L matrices are immediately noticed.

1. If A is a nonsingular matrix then $A L A^{-1}$ is also an L matrix since

$$
\begin{align*}
\left(A L A^{-1}\right)\left(A L A^{-1}\right) & =\left(A L^{2} A^{-1}\right) \\
& =A \lambda^{2} I A^{-1} \\
& =\lambda^{2} I \tag{22}
\end{align*}
$$

2. If Λ is a diagonal matrix with half its diagonal elements equal to $\pm \lambda$ then the matrix

$$
\begin{equation*}
U=L+\Lambda I \tag{23}
\end{equation*}
$$

satisfies the equation

$$
\begin{equation*}
L U=U \Lambda \tag{24}
\end{equation*}
$$

i.e., the columns of the matrix U are eigenvectors of L with eigenvalues $\pm \lambda$.

Pauli Matrices and the Dirac Hamiltonian

Starting with L_{1}, which is a number

$$
\begin{equation*}
L_{1}=\lambda_{1} \tag{25}
\end{equation*}
$$

L_{3} is obtained by a σ-operation as

$$
L_{3}=\left[\begin{array}{cc}
\lambda_{3} & \lambda_{1}-i \lambda_{2} \tag{26}\\
\lambda_{1}+i \lambda_{2} & -\lambda_{3}
\end{array}\right]=\sum_{i} \lambda_{i} \mathscr{L}_{i}^{3}
$$

If $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are the Pauli matrices defined as

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{27}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right),
$$

we recognize that

$$
\begin{equation*}
\sigma_{x}=\mathscr{L}_{1}^{3}, \quad \sigma_{y}=\mathscr{L}_{2}^{3}, \quad \sigma_{z}=\mathscr{L}_{3}^{3} \tag{28}
\end{equation*}
$$

Performing a σ-operation on L_{3} we obtain L_{5}.

$$
\begin{equation*}
L_{5}=\sum \lambda_{i} \mathscr{L}_{i}^{\overline{5}} \tag{29}
\end{equation*}
$$

If $\alpha_{x}, \alpha_{y}, \alpha_{z}, \beta$ are the Dirac matrices and γ_{5} the product of the four gamma matrices defined as

$$
\begin{gather*}
\alpha_{x}=\left(\begin{array}{cc}
0 & \sigma_{x} \\
\sigma_{x} & 0
\end{array}\right), \quad \alpha_{y}=\left(\begin{array}{rr}
0 & \sigma_{y} \\
\sigma_{y} & 0
\end{array}\right), \quad \alpha_{z}=\left(\begin{array}{cc}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right), \\
\beta=\left(\begin{array}{rr}
I & 0 \\
0 & -I
\end{array}\right), \quad \gamma_{5}=\left(\begin{array}{cc}
0 & i I \\
i I & 0
\end{array}\right), \tag{30}
\end{gather*}
$$

we recognize that

$$
\begin{gather*}
\mathscr{L}_{1}=\alpha_{x}, \quad \mathscr{L}_{2}=\alpha_{y}, \quad \mathscr{L}_{3}=\alpha_{z} \\
\mathscr{L}_{4}=-\beta \gamma_{5}, \quad \mathscr{L}_{5}=\beta . \tag{31}
\end{gather*}
$$

Thus

$$
\begin{equation*}
L_{5} u=\left(\sum \lambda_{i} \mathscr{L}_{i}^{5}\right) u= \pm \lambda u \tag{32}
\end{equation*}
$$

is an eigenvector equation for the saturated matrix L_{5}. From (24) we immediately write the U matrix solution for L_{5} as

$$
\left[\begin{array}{cccc}
\lambda+\lambda_{5} & 0 & \lambda_{3}-i \lambda_{4} & \lambda_{1}-i \lambda_{2} \tag{33}\\
0 & \lambda+\lambda_{5} & \lambda_{1}+i \lambda_{2} & -\lambda_{3}-i \lambda_{4} \\
\lambda_{3}+i \lambda_{4} & \lambda_{1}-i \lambda_{2} & -\lambda+\lambda_{5} & 0 \\
\lambda_{1}+i \lambda_{2} & -\lambda_{3}+i \lambda_{4} & 0 & -\lambda+\lambda_{5}
\end{array}\right],
$$

where each solumn is the eigenvector of L_{5}, corresponding to the eigenvalue $+\lambda$ for the first two columns and $-\lambda$ for the last two columns and

$$
\begin{equation*}
\lambda=+\left(\sqrt{\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}+\lambda_{3}{ }^{2}+\lambda_{4}{ }^{2}+\lambda_{5}^{2}}\right) \tag{34}
\end{equation*}
$$

If we omit L_{4} and λ_{4} and we obtain the equation for an unsaturated L_{4}.

$$
\begin{equation*}
L_{4} u=\left(\lambda_{1} \mathscr{L}_{1}+\lambda_{2} \mathscr{L}_{2}+\lambda_{3} \mathscr{L}_{3}+\lambda_{5} \mathscr{L}_{5}\right) u=\lambda u . \tag{35}
\end{equation*}
$$

If we write

$$
\begin{equation*}
\lambda_{1}=p_{x}, \quad \lambda_{2}=p_{y}, \quad \lambda_{3}=p_{z}, \quad \lambda_{5}=m, \quad \lambda=E \tag{36}
\end{equation*}
$$

where p_{x}, p_{y}, p_{z} are the components of momenta, m the mass and E the energy, we obtain the eigenvalue equation for the Dirac Hamiltonian.

If on the other hand we omit L_{4}, we obtain another unsaturated equation

$$
\begin{equation*}
\left(\alpha \cdot \mathbf{p}-\beta \gamma_{5} m\right) u=E u \tag{37}
\end{equation*}
$$

If the Dirac equation can be written in the form

$$
\begin{equation*}
(\not \vDash-m) u_{D}=0 \tag{38}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma^{\prime}=\gamma^{\mu} p_{\mu}=\gamma \cdot p, \quad \gamma=\beta \alpha, \quad \gamma_{0}=\beta ; \quad \mu=0,1,2,3, \tag{39}
\end{equation*}
$$

then the other unsaturated equation can be written as

$$
\begin{equation*}
(\not \equiv-m) u_{A}=0 \tag{40}
\end{equation*}
$$

with

$$
\begin{equation*}
\not p=\gamma^{\mu} \gamma_{5} p_{\mu} \tag{41}
\end{equation*}
$$

Solving this equation, we can get the spinor solutions u_{A}.

We shall now obtain the relation between u_{A} and u_{D}. The two spinor solutions u_{D} for positive energy are given either in

Form I:

$$
u_{D}^{I}=\frac{1}{\sqrt{E+m}}\left[\begin{array}{c}
E+m \tag{42}\\
0 \\
p_{z} \\
p_{x}+i p_{y}
\end{array}\right], \quad \frac{1}{\sqrt{E+m}}\left[\begin{array}{c}
0 \\
E+m \\
p_{x}-i p_{y} \\
-p_{z}
\end{array}\right]
$$

or
Form II:

$$
u_{D}^{I I}=\frac{1}{\sqrt{E-m}}\left[\begin{array}{c}
p_{z} \tag{43}\\
p_{x}+i p_{y} \\
E-m \\
0
\end{array}\right], \quad \frac{1}{\sqrt{E-m}}\left[\begin{array}{c}
p_{x}-i p_{y} \\
-p_{z} \\
0 \\
E-m
\end{array}\right]
$$

Form II is obtained by operating on Form I with (-i, γ_{5}) and replacing m by $-m$. Form B is unsuitable since in the rest system, the normalization factor $1 / \sqrt{E-m}$ becomes infinite while the spinor vanishes. On the other hand form B is suitable for negative energy.

In a similar way, we get the two solutions u_{A} for positive energy in Form I:

$$
u_{A}^{I}=\frac{1}{\sqrt{E}}\left[\begin{array}{c}
E \tag{44}\\
0 \\
p_{z}+i m \\
p_{x}+i p_{y}
\end{array}\right], \quad \frac{1}{\sqrt{E}}\left[\begin{array}{c}
0 \\
E \\
p_{x}-i p_{y} \\
-p_{z}+i m
\end{array}\right]
$$

or
Form II:

$$
u_{A}^{I I}=\frac{1}{\sqrt{E}}\left[\begin{array}{c}
p_{z}-i m \tag{45}\\
p_{x}+i p_{y} \\
E \\
0
\end{array}\right], \quad \frac{1}{\sqrt{E}}\left[\begin{array}{c}
p_{x}-i p_{y} \\
-p_{z}-i m \\
0 \\
E
\end{array}\right]
$$

We note that interesting feature that both these forms are suitable for the rest system and have the same normalization factor. We also notice that

$$
\begin{equation*}
u_{A}^{I}+i u_{A}^{I I}=\sqrt{\frac{E+m}{E}}\left(1+\gamma_{5}\right) u_{D}^{I} \tag{46}
\end{equation*}
$$

and $\left(1+\gamma_{5}\right) u_{D}^{I}$, is a solution of the other unsaturated equation can be seen from the observation that ${ }^{1}$

$$
\begin{equation*}
\left(\frac{1+\gamma_{5}}{\sqrt{2}}\right)(\alpha \cdot \mathbf{p}+\beta m)\left(\frac{1-\gamma_{5}}{\sqrt{2}}\right)=\left(\alpha \cdot \mathbf{p}-\beta \gamma_{5} m\right) \tag{47}
\end{equation*}
$$

It should be noticed that $\left(1+\gamma_{5}\right) / \sqrt{2}$ is nonsingular and has $\left(1-\gamma_{5}\right) / \sqrt{2}$ as its inverse.

[^1]
[^0]: * Read at the Sixth Anniversary Symposium January 2-12, 1967 at the Institute of Mathematical Sciences, Madras.

[^1]: ${ }^{1}$ This argument is due to Santhanam.

