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The Dirac Hamiltonian as a Member of a Hierarchy of 
Matrices* 

hLAD1 RAlUAKRISHNAlX 

MATSCIENCE, Madras, India 

“Of strange combinations out of common things”-Shelley 

We shall give a method of generating a hierarchy of square matrices L,,, 
involving m independent continuous parameters A, , A, ,..., A, such that 

Lm2 = (X,2 + A,2 + a-- + h,Z)I, (1) 

as m takes values 2, 3,... . We shall show that the L matrices can be expressed 
as a linear combination of m ‘generator’ matrices independent of the param- 
eters. The L matrices fall into one of two classes, saturated or unsaturated 
according as m is odd or even. 

One of the most interesting features of this hierarchy is that the Pauli 
matrices are recognized to be the generator matrices which saturate L, , 
while the Dirac Hamiltonian is an unsaturated L, . 

We start by writing 

and requiring that 

L 2 = 
[ 
a2 + bc (a + 4 b h12 + h,2 

2 
(u + d)c d” + bc = I [ 

0 
0 h,” + h,2 1 * 

(3) 

L, then falls into canonical forms of two distinct types. 

Type I 

L,= O 
L 

A, - ih, 
1 + ih, 0 1 

or 

Type II 

(4) 

(5) 

* Read at the Sixth Anniversary Symposium January 2-12, 1967 at the Institute of 
Mathematical Sciences, Madras. 
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Since the relation Lz2 = (Ai2 + As”) I is symmetric in A, and AZ , we can 
interchange A, and As or replace A, or A, by - A, or - A, , but these operations 
do not alter the type. 

To generate L, , we can adopt the same procedure as we did to find L, . We 
can define 

or 

or 

L,= O 
L 

L, - i&I 
2 + ih,I 0 1 ’ 

or 

L = A31 L2 
3 [ 4 1 - A31 ’ 

L, = h3 
L 

A, - iA, 
1 + 22, 1 - A, ’ 

(6) 

(7) 

(8) 

(9) 

We notice that while in the first three cases L, has double the dimension of 
L, , in the last case the dimension of L, remains the same as that of L, . In 
general, L,+l can be generated from L, as follows 

L 
[ 

0 L,,, - &,,I 
m+l = L, + i&J 0 1 

or 

L L+,I LL 
m+1 = [ L - &+,I I Or L 

Lz ba+,I 
m+J I --LTn - 

(11) 

In all these three cases, the dimension of L,+l is double that of L,,, . However, 
if L,,, is of the form 

1 
0 L,-, - ih, 

L-1 + &t< I 0 ’ (12) 

then -L+l can be generated with the same dimension as L, by defining 

L m+1= L [ 
b?l+J L,-, - ix, 

m-1 + &a 1 - L,lI - (13) 

Thus the most ‘economical’ way of building L,+l is to ‘saturate’ the L, 
if L, is ‘unsaturated,’ i.e., having zeros on the diagonal. Therefore, L, is of 
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type II while L,,, is saturated. We thus have the table connecting the number 
of parameters, dimensions of the matrix and type. 

Matrix Number of parameter Dimension Character 

L 
L2 

L 2” 
L In+1 

1 1 Saturated 
2 2 Unsaturated 
3 2 Saturated 
4 22 = 4 Unsaturated 
5 22 = 4 Saturated 
2n 2n Unsaturated 
2n + 1 20 Saturated 

Thus the saturated L matrices involve an odd number of parameters. L,,,, 
can be obtained from Lznpl bg performing a u-operation on it defined as 

he., 

L - ~&n-d, 2n+1 - 

L 
[ 

Xen+J L2n--1 - 4?J 
2n+1 = Lznpl + ix,,1 1 - hI+,I - 

(14) 

The u-operation involves the addition of two parameters and the doubling 
of the dimension. 

We shall study these matrices by writing 

2n+1 

L 2n+1 = z1 Ge+l, (15) 

where Yyl are (2n + 1) ‘generator matrices’ independent of Xi . Then if 

2n+1 

Len-l = C &s?+l, 
i-l 

(16) 

we have 

*+1 = [pyn-l “%‘I ) i = 1, 2 ,..., 2n - 1, (17) 

and 

2n+1- P2, - 
[ 
,O I 

2n 
- y] , A?;;=; = p2;+11 _ h” I] . (18) 

2n+1 

Thus the u-operation on L2n--1 consists of generating 5??+’ from LZ’y-r and 
adding two matrices ei+r and 9:;::. 
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We now summarize the results we have obtained as follows: 

1. A saturated L matrix involves (272 L I), i.e., an odd number of para- 
meters. Its dimension is 2”. It can be expressed as a linear combination of 

(272 + 1) matrices Py+l, i = I,..., (2~2 + 1) with Ai as their coefficients, 

respectively. 

2. iln L matrix involving 2n (even) parameters is unsaturated. Its dimen- 
sion is 2” and it can be expressed as a linear combination of 211 matrices, i.e., 

a set obtained by omitting one of the 2n -1 1 matrices. 

There are (2”)” independent matrices of dimension 2” and these can be 
generated either from the 2n + 1 matrices which saturate L or the 2n matrices 
as follows: 

The 2n + 1 matrices have the important feature that their product is 
‘idempotent.’ More precisely, 

~f”+l~~“+l . . . ~~~~~ = i”I. (19) 

Hence to generate all the independent matrices we form products of 2, 3,..., n 

matrices. The product of (12 + r) matrices is just equal to the product of 
(E - Y + I) matrices and a numerical factor, and so no independent matrix 
can be generated by taking products of more than n matrices out of the 

2n + 1. The number of independent matrices are 

(2y 1) + (2W i’ 1) + . . . + (‘“,; 1) = 22n. (20) 

The 2n + 1 matrices anticommute with each other. The idempotent 
property implies that 2n + 1 is the maximum number of anticommuting 
matrices in a set of 2” independent matrices. 

If  on the other hand we had taken 2n matrices, we can form products of 
2, 3, 4 *.. 2n matrices and we obtain 

(‘d’) + (:n) + ... + (;I) = Z2” 

independent matrices. 
The following two properties of the L matrices are immediately noticed. 

1. I f  A is a nonsingular matrix then ALA-l is also an L matrix since 

(ALA-I) (ALA-l) = (AL”A-1) 

= /JhZIA-1 

= XjI. (22) 
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2. If tl is a diagonal matrix with half its diagonal elements equal to f h 
then the matrix 

U=L+AI (23) 
satisfies the equation 

LU = UA; (24) 

i.e., the columns of the matrix U are eigenvectors of L with eigenvalues & A. 

PAULI ~UATRICES AND THE DIRAC HAMILTONIAN 

Starting with L, , which is a number 

L, = 4 9 

L, is obtained by a u-operation as 

L, = 4 Ii 
A, - ih, 

1 + i& - A3 1 c = Xi5?~. 
i 

If ux 3 crV , uZ are the Pauli matrices defined as 

0 1, 
u2 = 1 0, > ( ) cry = (p ,i) ) uz = (:, 

we recognize that 

ux = 913, uy = 923, CT, = Y33. 

Performing a u-operation on L, we obtain L, . 

L, = c h$q. 

(25) 

(26) 

0 
) 1. ’ (27) 

(28) 

(29) 

If % 3 %I 7 ffz > /3 are the Dirac matrices and y5 the product of the four gamma 
matrices defined as 

we recognize that 

-% = % 7 =J% = 5l, Lz3 := a1 , 

24 = - lb5 > P5 = 8. (31) 
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Thus 

L,u = (1 A&:) 24 = * Au (32) 

is an eigenvector equation for the saturated matrix L, . From (24) we imme- 
diately write the U matrix solution for L, as 

[ 

x + A, 0 A, - ih, A, - ih, 
0 h +A5 4 + ih, - A, - ih, 

A3 + d, A, - ix, --++h, 0 ’ (33) 

4 + d, --Ah, + ih, 0 --+-tX, I 

where each solumn is the eigenvector of L, , corresponding to the eigenvalue 
+ h for the first two columns and - h for the last two columns and 

A = + (dA,2 + A,” + x,2 + x,2 + h,2). (34) 

If we omit L, and A, and we obtain the equation for an unsaturated L, . 

If we write 

4 = Pa! P A2 =Pl/, 4 =Pz, A5 = m, h = E, (36) 

where p, , p, , p, are the components of momenta, m the mass and E the 
energy, we obtain the eigenvalue equation for the Dirac Hamiltonian. 

If on the other hand we omit L, , we obtain another unsaturated equation 

(a * p - /3y5m) u = Eu. 

If the Dirac equation can be written in the form 

(37) 

(p - m) uD = 0 (38) 
with 

b/ = VP& = Y * P, y =Ba, Yo =B; P = 0, 1,2,3, 

then the other unsaturated equation can be written as 

($ - m) uA = 0 
with 

P = YYYSPP * 

Solving this equation, we can get the spinor solutions uA . 

(39) 

(40) 

(41) 
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We shall now obtain the relation between uA and uD . The two spinor 
solutions uD for positive energy are given either in 

Form I: 

or 

Form II: 

Form II is obtained by operating on Form I with (- iys) and replacing m 
by - m. Form B is unsuitable since in the rest system, the normalization 
factor 1/1/E - m becomes infinite while the spinor vanishes. On the other 
hand form B is suitable for negative energy. 

In a similar way, we get the two solutions uA for positive energy in 

Form I: 

or 

Form II: 

U II A 
- - 
- & (45) 

We note that interesting feature that both these forms are suitable for the 
rest system and have the same normalization factor. We also notice that 

uAI + iuy = (46) 
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and (1 + I+,) uDI, . 1s a solution of the other unsaturated equation can be seen 
from the observation that1 

(3) (a .p + /3n~)i~~~) = (a .p -&,m). 

It should be noticed that (1 + ,)/d/2 is nonsingular and has (1 - n)/dZ 
as its inverse. 

1 This argument is due to Santhanam. 


