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It is shown that if n= 15 mod 18 then it is impossible to find a complete set of 
pairwise-orthogonal n x n latin squares each obtained from the addition table of a 

cyclic group of order n by permuting its rows. This result complements the 
exclusions which can be derived directly from the Bruck-Ryser theorem. ;B 1986 

Academic Press, Inc. 

1. INTRODUCTION 

In [2] Johnson, Dulmage and Mendelsohn considered sets S of 
pairwise-orthogonal n x n latin squares obtained from the addition table of 
a finite group G of order 12 by permuting its rows. In particular they 
remarked that Parker had obtained, by computation, the result that it is 
impossible to find a complete set S (that is, with 1 SI = n - 1) if G is the 
(cyclic) group of order 15. 

We show here that, more generally, if n = 15 mod 18 then it is impossible 
to find a complete set S when G = C,, the cyclic group of order n. This 
result complements the exclusions which can be obtained directly from the 
Bruck-Ryser theorem. 

2. ORTHOGONAL LATIN SQUARES (SEE [ 11) 

Let Z, denote the ring of integers modulo n (n > 2) so that Z,, + is a 
cyclic group of order n. Throughout Section 2 arithmetic will be in Z,, that 
is modulo n. 

For each permutation f: Z, + Z, there is a corresponding n x n latin 
square M(f) with (i, j)-entry 

M,(f) = f(i) + j (O<i,jdn-1). (1) 
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The following lemma, vacuous unless n is odd, is a direct consequence of 
the definitions: 

LEMMA 1. Let f, g be permutations of 2,. Then the latin squares M(f) 
and M(g) are orthogonal if and only if f - g is also a permutation of 2, (see 
[2, Sect. 31 with a different notation). 

Suppose now that S= {M(f,), AI(f*), M(f,- ,)} were a complete set 
of pairwise-orthogonal latin squares based on the cyclic group Z,, + (thus 
nisodd).Then, byLemmal,eachf,-fj(16i,j<n-l,i#j)isalsoa 
permutation of Z,. Without loss of generality we may suppose that each 
h(O) = 0 (otherwise just add a suitable constant to each A). 

We now define an (n - 2) x (n - 1) matrix B with entries in Z, by putting 

B, = fif,(d for l<i<n-2andl<idn-1 (2) 

(that is we disregard f,-, and the zero of Z,). Thus, by assumption, 
each row and each difference of rows (modulo n) of B is a “permutation” of 
{ 1, 2 ,..., n - 1 }. 

It remains therefore to show that no such matrix B can exist if 
n- 15 mod 18. 

3. THE CONTRADICTION 

Let n E 15 mod 18. Throughout Section 3 arithmetic will be modulo 3, 
that is we now apply the further reduction map Z, -+ Z, (a field). Now let 
f, g: Z, + Z, be mappings and put 

(f, g) = C f(m) g(m)EZ3 
m=O 

Then the following lemma is a simple consequence of the fact that 

n-l 

1 m’=(n-l)n(2n-1)/6=1. (4) 
??t=O 

LEMMA 2. Iff, g and f - g are permutations of Z, then (L f) = 1 and 
(“6 &?I= -1. 

From Lemma 2 it follows that 

BB’= A (say) (5) 

where B’ denotes the transpose of B and A has off-diagonal entries -1 and 
diagonal entries + 1. 
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Now since rank(d +I+,)= 1 and trace(d) = 1, it is easily seen that the 
eigenvalues of A are +l and -1 (with multiplicity n - 3). Hence 
det(A) = 1 and so, by (5), rank(B) = n - 2. Further the columns of B sum 
to zero since 

n-l 
5?z=n(n-1)/2=0. (61 

Therefore if C denotes the matrix obtained from B by deleting the last 
column, then C is non-singular and 

C’B=(Z+, Iu)=D(say) (7) 

where u is a column vector with entries -1. 
Thus, from (5), 

DD’= CplA(Cpl)’ (8) 

while, by direct calculation, 

DD’= -A. (9) 

Hence, by equating determinants of the right-hand sides of (8) and (9), 
we obtain: 

-1 =det(C’)*EZ;*= (0, 1) 

the required contradiction. 
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