
p ()
URL: http://www.elsevier.nl/locate/entcs/volume86.html 21 pages

Failure and Equality in Functional Logic
Programming �

F. J. López-Fraguas and J. Sánchez-Hernández 1,2

Dep. Sistemas Informáticos y Programación
Univ. Complutense de Madrid

Madrid, Spain

Abstract

Constructive failure has been proposed recently as a programming construct useful
for functional logic programming, playing a role similar to that of constructive
negation in logic programming. On the other hand, almost any functional logic
program requires the use of some kind of equality test between expressions. We
face in this work in a rigorous way the interaction of failure and equality (even for
non-ground expressions), which is a non trivial issue, requiring in particular the use
of disequality conditions at the level of the operational mechanism of constructive
failure. As an interesting side product, we develop a novel treatment of equality
and disequality in functional logic programming, by giving them a functional status,
which is better suited for practice than previous proposals.

Key words: Constructive Failure, Equality, Narrowing,
Functional Logic Programming

1 Introduction

Functional logic programming (see [10]) attempts to amalgamate into a single
paradigm the best features of functional and logic languages. In a functional
logic language like Curry [11] or T OY [13,1], one should be able to select for
each problem the convenient style (logic, functional or mixed) or feature to
use. From this point of view, there is an important expressive resource of
logic programming –negation as failure [7,4]– that does not readily extend to
the functional logic case and is missed in most works in the field. For this
reason, some works [19,20,15,17,16,18] have addressed the subject of failure of
reduction 3 as a useful programming construct which is the natural extension

� Work partially supported by the Spanish project TIC2002-01167 ‘MELODIAS’
1 Email: fraguas@sip.ucm.es
2 Email: jaime@sip.ucm.es
3 To head normal form, see Sect. 2.

c©2003 Published by Elsevier Science B. V.

123

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82671799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Lopez-Fraguas and Sanchez-Hernandez

of the notion of negation as failure to the functional logic setting.

On the other hand, almost any real program needs to use some kind of
equality test between expressions. But equality is another issue not easy to
extend properly from logic or functional programming to the functional logic
case. Equality is easy to express in logic programming by means of unification.
It can be made explicit by a predicate eq defined by the clause eq(X,X) :-

true. Unfortunately, this simple definition is not legal in constructor based
lazy functional logic languages like Curry or T OY , which require (as func-
tional languages do) heads of rules to be left linear (i.e., variables are not
repeated in heads). Functional languages use strict equality (two expressions
are equal if they can be reduced to the same total constructor term). Al-
though equality is usually built-in, there would be no essential problem, in
the functional setting, with programming strict equality by means of program
rules, like any other function 4 . However, when moving to functional logic
programming, this works fine only for equalities involving ground expressions.
It is known [5,14,1] that a good treatment of equality in presence of non-
ground expressions requires the use of disequality constraints. In this paper
we address the combination of both issues: failure and equality.

Let us clarify our contribution with respect to previous works: in [15,17] we
extended CRWL [8,9] –a well known semantic framework for functional logic
programming– to obtain CRWLF, a proof calculus given as a semantic basis
for failure in functional logic programming; those papers considered equal-
ity and disequality constraints, which were lost in [16], where CRWLF was
reformulated by using a set oriented syntax to reflect more properly the set-
valued nature of expressions in presence of non-deterministic functions typical
of CRWL and CRWLF. The purely semantic, non executable approach of [16]
was completed in [18] with a narrowing-like procedure able to operate with
failure in presence of non-ground expressions (we call this constructive failure,
due to its similarity with constructive negation [23]); equality and disequality
as specific features are again absent in [18].

The combination of constructive failure with a good treatment of equality
is the main contribution of this paper. Equality is realized by means of a
three-valued function (==) returning as possible values true, false or F, (a
specific constructor to express the result of a failed computation). As we
argue at the end of the next section, this is better suited to practice than to
have independent equality and disequality constraints like in [5,14,15,17].

The organization of the paper is as follows: the next section provides ex-
amples motivating the interest of our work. Section 3 summarizes the basic
concepts about the Set Reduction Logic of [16] and extends it with the in-
clusion of the equality function ==. Section 4 is devoted to the operational
mechanism, that extends the relation SNarr presented in [18] with the inclu-
sion of ==. This extension requires a specialized calculus for ==, the ma-

4 At least for constructor-based data types, which is our case of interest.

124

Lopez-Fraguas and Sanchez-Hernandez

nipulation of disequalities and some other technical notions. The last section
summarizes some conclusions.

2 Failure & equality: motivation

We give here a pair of small but not artificial examples recalling the interest
of constructive failure and showing that the operational treatment of equality
of [18] has some drawbacks.

We use in this section the concrete syntax of T OY [13,1], which is a
mixture of Prolog (upper-cased variables, lower-cased constructor symbols)
and Haskell (curried notation). The functions if then and if then

else are defined as usual. The results indicated in the examples cor-
respond, except for some pretty-printing, to the real results obtained with a
small prototype implementing the ideas of this work.

The purpose of a computation is to evaluate a possibly non-ground expres-
sion, obtaining as answer a pair (S,C) where S is a set of values (constructor
terms) and C expresses a condition for the variables in the expression. To con-
sider sets of values instead of single values is the natural thing when dealing
with failure and non-deterministic functions, as shown in [15,17]. When S is
a singleton, we sometimes skip the set braces. The condition C, in ‘ordinary’
functional logic programming, would be simply a substitution. In this paper,
as we will see soon, C might have in addition some disequality conditions.

Our first example, taken from [18], has two purposes:

• to recall the interest of constructive failure in a functional logic language,
and how it is conceived as a two-valued function in [18].

• to show that the operational treatment of equality of [18] has some draw-
backs, and to illustrate how our present work overcomes them.

Example 2.1 A typical way of programming a directed acyclic graph in a
functional logic language is by means of a non-deterministic function next

returning, in different program rules, the adjacents of a given node. A concrete
graph could be given by a data type for nodes:

data node = a | b | c | d

along with a concrete definition of next:

next a = b

next a = c

next b = c

next b = d

Notice that next is indeed non-deterministic. An answer for next X would
be, for example, ({b,c},{X=a}). Now, the predicate path expresses that two
nodes are connected:

125

Lopez-Fraguas and Sanchez-Hernandez

path X Y = if (X == Y) then true

else path (next X) Y

Here, == must be understood as the equality function. As it is well known
(see e.g. [10]), the sensible notion in functional or functional-logic program-
ming is strict equality: e == e’ should be true if e,e’ are reducible to the
same constructor term, and false if they can be reduced to some extent as
to present a constructor clash. In addition, in this paper, we must consider a
third value F, corresponding to failure of the other two; for instance, next c

== d must return F because next c fails, and then the given equality cannot
be reduced neither to true nor to false.

As a simple but illustrative example of the use of failure, consider the
property: ‘a node is safe if it is not connected to the node d’. This is very
easy to program with the aid of failure:

safe X = fails (path X d)

The function fails is intended to return the value true if its argument
finitely fails to be reduced to head normal form (variable or constructor rooted
expression), and to false if a reduction to hnf exists. With this notion, (safe
a) should be reduced to false, while (safe c) should be reduced to true.
Furthermore, failure should be constructive, which means that fails should
operate soundly in presence of variables. For instance, the expression safe X

should have four answers: (false,{X=a}); (false,{X=b}); (true,{X=c}) ;
(false,{X=d}). To achieve the same behavior without constructive failure is
not that easy, and requires to re-program the representation of the graph in
a different way. Existing systems like Curry or T OY are not able to exhibit
such behavior 5 .

Now, to see what happens with equality, assume first that == is seen as
any other function, an therefore defined by rules, like in [18]. There would be
16 rules defining ==:

a == a = true a == b = false . . . a == d = false

b == a = false b == b = true . . . b == d = false

. . .

Consider the goal expression fails (path X Y). The rules above produce
16 different answers consisting of a value (true or false) and a substitution for
X,Y. We find among them: (false,{X=a,Y=a}) (and similarly with X=b,Y=b,
etc.), or (true,{X=c,Y=a}) (and similarly with X=c,Y=b or X=c,Y=d). Notice
that all solutions are ground. In general, with N nodes we obtain N2 ground
answers.

5 From the point of view of implementation, failure is not difficult for ground expressions.
For instance, in Curry one could use encapsulated search. The problems come with con-
structive failure, as in the case of logic programs.

126

Lopez-Fraguas and Sanchez-Hernandez

In contrast, in this paper == has a specific evaluation mechanism involving
disequality conditions which can be a part of answers. The virtue of disequality
conditions is that one single disequality can encompass the same information
as many substitutions. For instance, Y/=c expresses the same as the disjunc-
tion of the substitutions Y=a, Y=b, Y=d. Furthermore, the operational proce-
dure described in Section 4 might produce non ground substitutions where
the above rules for == produced ground ones.

For our goal example fails (path X Y) we obtain 10 answers, among
them: (false,{X=Y}) (abbreviating four different ground answers), or (true,
{X=c, Y/=c}) (abbreviating three different ground answers). In the case of
N nodes, it can be proved that the number of answers is 1 + k1 + . . . + kN ,
where ki is the number of nodes connected to the ith-node.

In our next example constructive failure and equality coexist again, but in
this case the behavior of ==, if defined by program rules, is even worse than
in the previous example.

Example 2.2 Failure can be used to convert predicates (i.e. true-valued
functions) into two-valued boolean functions giving values true or false.
The latter are more useful, while the former are simpler to define. As an
example, consider the following definition of a predicate prefix:

prefix [] Ys = true

prefix [X|Xs] [Y|Ys] = if (X==Y) then prefix Xs Ys

To obtain from it a boolean function fprefix is easy using failure:

fprefix Xs Ys = if fails (prefix Xs Ys) then false else true

To see what happens with equality in this case, assume first that == is
defined by rules. Assume also, for simplicity, that we are dealing with lists of
natural numbers represented by the constructors 0 and suc 6 . The rules for
== would be:

0 == 0 = true 0 == (suc Y) = false

(suc X) == 0 = false (suc X) == (suc Y) = X == Y

With this definition of equality an expression like fprefix Xs [Y] pro-
duces infinitely many answers binding Xs to lists of natural numbers and Y to
a natural number. With the evaluation of equality of this paper, only four an-
swers are obtained: (true,{Xs=[]}); (false,{Xs=[Y,Z|Zs]}); (true,{Xs=
[Y]}); (false,{Xs=[Z|Zs],Y/=Z}). Notice the disequality condition in the
last answer.

6 We are not cheating with this assumption. The situation becomes worse as the number
of constructor symbols grows.

127

Lopez-Fraguas and Sanchez-Hernandez

Some final remarks about our treatment of equality: in [5,14] we consid-
ered equality and disequality as two independent constraints, to be used in
conditional rules. A constraint e == e’ or e /= e’ might succeed or fail. To
use in these works a two-valued boolean equality function, say eq, required to
define it by means of two conditional rules:

X eq Y = true <== X==Y

X eq Y = false <== X/=Y

But this has a penalty in efficiency: to evaluate an equality e eq e’ when
e,e’ are in fact unequal (thus e eq e’ should return false), the first rule
tries to solve the equality, which requires to evaluate e and e’ (and that
might be costly); the failure of the first rule will cause backtracking to the
second rule, where a new re-evaluation of e,e’ will be done. The actual
implementation of T OY replaces the above naive treatment of the function
eq by a more efficient one where one equality is evaluated as far as possible
without guessing in advance the value to obtain; this is done in T OY in a
very ad-hoc way lacking any formal justification with respect to the intended
semantics of equality. Here we fill the gap in a rigorous way and in the
more complex setting of constructive failure where a third value, F, must be
considered for ==.

3 Set Reduction Logic with Failure and ==

In this section we summarize the basic concepts of [16] about the set oriented
syntax, set-expressions and the class of CIS-programs that we use to build
the Set Reduction Logic (SRL for short) as a semantic basis for constructive
failure. In order to extend this proof calculus to deal with equality, we also
use some syntactical notions about strict equality, disequality and their failure
for constructed terms introduced in [17]. We remark that for the theoretical
presentation we use first order notation.

3.1 Technical Preliminaries

We assume a signature Σ = DCΣ ∪ FSΣ ∪ {fails,==}, where DCΣ =⋃
n∈N

DCn
Σ is a set of constructor symbols containing at least the usual boolean

ones true and false, FSΣ =
⋃

n∈N
FSn

Σ is a set of function symbols, all of them
with associated arity and such that DCΣ∩FSΣ = ∅. The functions fails (with
arity 1) and == (infix and with arity 2) do not belong to DC ∪ FS, and will
be defined by specific rules in the SRL-calculus.

We also assume a countable set V of variable symbols. We write TermΣ

for the set of (total) terms (we say also expressions) built over Σ and V in the
usual way, and we distinguish the subset CTermΣ of (total) constructor terms
or (total) cterms, which only makes use of DCΣ and V . The subindex Σ will
usually be omitted. Terms intend to represent possibly reducible expressions,

128

Lopez-Fraguas and Sanchez-Hernandez

while cterms represent data values, not further reducible.

The constant (nullary constructor) symbol F is explicitly used in our terms,
so we consider the signature ΣF = Σ ∪ {F}. This symbol F will be used to
express the result of a failed reduction to hnf. The sets TermF and CTermF

are defined in the natural way. The denotational semantics also uses the
constant symbol ⊥, that plays the role of the undefined value. We define
Σ⊥,F = Σ ∪ {⊥, F}; the sets Term⊥,F and CTerm⊥,F of (partial) terms and
(partial) cterms respectively, are defined in the natural way. Partial cterms
represent the result of partially evaluated expressions; thus, they can be seen
as approximations to the value of expressions in the denotational semantics.
As usual notations we will write X,Y, Z, ... for variables, c, d for constructor
symbols, f, g for functions, e for terms and s, t for cterms.

The sets of substitutions CSubst, CSubstF and CSubst⊥,F are defined as
mappings from V into CTerm,CTermF and CTerm⊥,F respectively. We will
write θ, σ, µ for general substitutions and ε for the identity substitution. The
notation θσ stands for composition of substitutions. All the considered sub-
stitutions are idempotent (θθ = θ). We also write [X1/t1, ..., Xn/tn] for the
substitution that maps X1 into t1, ..., Xn into tn.

Given a set of constructor symbols D, we say that the terms t and t′ have a
D-clash if they have different constructor symbols of D at the same position.
We say that two tuples of cterms t1, ..., tn and t′1, ..., t

′
n have a D-clash if for

some i ∈ {1, ..., n} the cterms ti and t′i have a D-clash.

A natural approximation ordering
 over Term⊥,F can be defined as the
least partial ordering over Term⊥,F satisfying the following properties:

• ⊥
 e for all e ∈ Term⊥,F,

• h(e1, ..., en)
 h(e′1, ..., e
′
n), if ei
 e′i for all i ∈ {1, ..., n}, h ∈ DC ∪ FS ∪

{fails ,==} ∪ {F}
The intended meaning of e
 e′ is that e is less defined or has less information
than e′. Extending
 to sets of terms results in the Egli-Milner preordering
(see e.g. [21]): given D,D′ ⊆ CTerm⊥,F, D
 D′ iff for all t ∈ D there exists
t′ ∈ D′ with t
 t′ and for all t′ ∈ D′ there exists t ∈ D with t
 t′.

Next we define the relations ↓, ↑, �↓ and �↑, expressing, at the level of
cterms, strict equality, disequality, failure of equality and failure of disequality,
respectively.

Definition 3.1 Relations over CTerm⊥,F:

• t ↓ t′ ⇔def t = t′, t ∈ CTerm

• t ↑ t′ ⇔def t and t′ have a DC-clash

• t �↓ t′ ⇔def t or t′ contain F as subterm, or they have a DC-clash

• �↑ is defined as the least symmetric relation over CTerm⊥,F satisfying:

129

Lopez-Fraguas and Sanchez-Hernandez

(i) X �↑ X, for all X ∈ V
(ii) F �↑ t, for all t ∈ CTerm⊥,F

(iii) if t1 �↑ t′1, ..., tn �↑ t′n then c(t1, ..., tn) �↑ c(t′1, ..., t
′
n), for c ∈ DCn

These relations will be extended to general expressions by means of the
function ==, whose semantic meaning will be fixed in the proof calculus SRL
of Section 3.3. Notice that t ↑ t′ ⇒ t �↓ t′ ⇒ ¬(t ↓ t′) and t ↓ t′ ⇒ t �↑ t′ ⇒
¬(t ↑ t′) but the converse implications do not hold in general. Notice also that
t �↓ t′ and t �↑ t′ can be both true for the same t, t′, and in this case neither
strict equality, ↓, nor disequality, ↑, stand for t, t′. This will be used in the
SRL-calculus (Table 1) in the rule 12, which states when == fails. Such a
situation happens, for instance, with suc(0) and suc(F).

3.2 Set Oriented Syntax: Set-expressions and Programs

A set-expression is a syntactical construction designed for manipulating sets of
values. We extend the signature with a new countable set of indexed variables
Γ that will usually be written as α, β, ... A (total) set-expression S is defined
as:

S ::= {t} | f(t) | fails(S1) | t == t′ |
⋃

α∈S1
S2 | S1 ∪ S2

where t, t′ ∈ CTermF, t ∈ CTermF × ...× CTermF, f ∈ FSn, S1,S2 are set-
expressions and α ∈ Γ. We write SetExp for the set of (total) set-expressions.
The set SetExp⊥ of partial set-expressions has the same syntax except that
the cterms t, t′, t can contain ⊥.

Given a set-expression S we distinguish two sets of variables in it: the
set PV (S) ⊂ Γ of produced variables (those of indexed unions of S), and the
remaining FV (S) ⊂ V or free variables. In order to avoid variable renaming
and simplify further definitions, we always assume that produced variables of
a set-expression are indexed only once in the entire set-expression.

We will use substitutions mapping variables of V ∪ Γ into terms built
up over V ∪ Γ. When applying a substitution [. . . , Xi/ti, . . . , αj/sj, . . .] to a
set-expression S, it is ensured throughout the paper that it does not bind
any produced variable of S, i.e. {. . . , αj, . . .} ∩ PV (S) = ∅, and also that no
produced variable is captured, i.e. (. . .∪var(ti)∪. . .∪var(sj)∪. . .)∩PV (S) =
∅. It is easy to achieve these conditions with an adequate variable renaming,
if necessary, of produced variables in S.

We also use set-substitutions for set-expressions: given D = {s1, ..., sn} ⊆
CTerm⊥,F we write S[Y/D] as a shorthand for the distribution S[Y/s1]∪ ...∪
S[Y/sn]. Extending this notation, we also write S[X1/D1, ..., Xn/Dn] (where
D1, ..., Dn ⊆ CTerm⊥,F) as a shorthand for (...(S[X1/D1])...)[Xn/Dn].

It is easy to transform any expression e ∈ Term⊥,F into its corresponding
set-expression S ∈ SetExp⊥,F while preserving the semantics with respect to
the appropriate proof calculus (see [16] for details). As an example, if c is

130

Lopez-Fraguas and Sanchez-Hernandez

a constructor symbol and f and g are function symbols, the set-expression
corresponding to f(c, g(X)) is

⋃
α∈g(X) f(c, α).

Programs consist of rules of the form: f(t1, . . . , tn) � S, where f ∈
FSn, ti ∈ CTerm (notice that F is not allowed to appear in ti), the tu-
ple (t1, . . . , tn) is linear (each variable occurs only once), S ∈ SetExp and
FV (S) ⊆ var((t1, . . . , tn)).

Like in [18], we require programs to be Complete Inductively Sequential
Programs, or CIS-programs for short ([16,18,2]). In this kind of programs the
heads of the rules must be pairwise non-overlapping and cover all the possible
cases of constructor symbols. The interesting point is that for any ground
tuple made of terms t ∈ CTerm there is exactly one program rule that can
be used for reducing a call f(t). Notice that this holds for t ∈ CTerm, but
not necessarily for t ∈ CTermF. If t contains F, which might happen in an
intermediate step of a computation, then there could be no applicable rule.
This corresponds to rule 5 in Table 1.

In [3,16,18] one can find algorithms to transform general programs into
CIS-programs while preserving their semantics. This transformation, as well
as the transformation to set oriented syntax, can be made transparent to the
user in a real implementation, as indeed happens with the small prototype we
have developed for this paper.

For instance, the program of the example in Section 2 becomes the follow-
ing when translated into a CIS-program with first order set oriented syntax:

prefix ([],Ys) � {true} prefix ([X|Xs], []) � {F}

prefix ([X|Xs], [Y |Ys]) �
⋃

β∈X==Y

⋃
γ∈prefix(Xs,Ys) ifThen(β, γ)

fprefix (Xs ,Ys) �
⋃

α∈fails(prefix(Xs,Ys)) ifThenElse(α, false, true)

The functions if then and if then else are translated as:

ifThen(true,X) � {X}
ifThen(false,X) � {F}

ifThenElse(true,X, Y) � {X}
ifThenElse(false,X, Y) � {Y }

Notice that the original definition of prefix is completed in order to cover
all the possible cases for the arguments. In particular, the second rule of
prefix corresponds to a ‘missing’ case in the original definition, thus giving
failure (the value F) in the completed one. Something similar happens with
the second rule of ifThen.

3.3 The proof calculus SRL

Following a well established approach in functional logic programming, we fix
the semantics of programs by means of a proof calculus determining which
logical statements can be derived from a program. The starting point of this

131

Lopez-Fraguas and Sanchez-Hernandez

semantic approach was the CRWL framework [8,9], which included a calculus
to prove reduction statements of the form e → t, meaning that one of the
possible reductions of an expression e results in the (possibly partial) value
t. We extended CRWL to deal with failure, obtaining in [15,17] the calculus
CRWLF; the main insight was to replace single reduction statements by state-
ments e,C, where C are sets of partial values (called Sufficient Approximation
Sets or SAS’s) corresponding to the different possibilities for reducing e. For
example, using the program of the Example 1 in Section 2, CRWLF could
prove next(a) , {b, c}, and also next(c) , {F}.

The calculus CRWLF was adapted to CIS-programs with set oriented syn-
tax in [16,18], and the resulting calculus was called SRL (for Set Reduction
Logic). Here we extend SRL to cope with equality. The new calculus, com-
mented below, is presented in Table 1.

Rules 1 to 4 are “classical” in CRWL(F) [9,17,15,16]. Notice that rule 4
uses a c-instance of a program rule that is unique if it exists (CIS-programs
ensure it). If such c-instance does not exist, then by rule 5, the corresponding
set-expression reduces to {F}. As mentioned before when describing CIS-
programs, this might happen because of the presence of F at some position in
f(t). Rules 6 and 7 establish the meaning of the function fails(S) and rules
8 and 9 are natural to understand from classical set theory. Finally, rules 10,
11 and 12 define the meaning of the function == as a three-valued function:
{true} for the case of equality, {false} for disequality, and {F} if case of failure
of both. Notice that given t, s ∈ CTerm⊥,F the conjunction of t �↓ s and t �↑ s
means that t and s are identical except possibly at the positions (of which
there must be at least one) where t or s contain the symbol F.

Given a program P and S ∈ SetExp⊥ we write P �SRL S , C, or simply
S , C for sort, if the relation S , C is provable with respect to SRL and the
program P. The denotation of S (we also call it the semantics of S) is defined
as [[S]] = {C | S , C}. Then the denotation of a set-expression is a set of sets
of (possibly partial) cterms.

4 Operational Procedure: Set Narrowing with Equality

In this section we enlarge the narrowing relation SNarr of [18] with the equality
function ==. First, set-expressions are enriched by adding sets of disequalities
to them. These disequalities must be manipulated at the operational level, so
we introduce a normalization function solve and appropriate semantic notions
that will be useful later. Then we fix the operational behavior of the equality

function == by means of a specific narrowing relation for it, �θ , and we give

correctness and completeness results for it with respect to SRL. Finally, mak-
ing use of these new capabilities, we integrate the equality function into the
general narrowing relation SNarr, and we show the corresponding correctness
and completeness results, again with respect to SRL.

132

Lopez-Fraguas and Sanchez-Hernandez

(1)
S , {⊥}

S ∈ SetExp⊥

(2)
{X} , {X}

X ∈ V

(3)
{t1} , C1 {tn} , Cn

{c(t1, ..., tn)} , {c(t′) | t′ ∈ C1 × ...× Cn}
c ∈ DC ∪ {F}

(4)
S , C

f(t) , C
(f(t) � S) ∈ {Rθ | R = (f(t) � S) ∈ P,

θ ∈ CSubst⊥,F}

(5)
f(t) , {F}

for all (f(s) � S ′) ∈ P,
t and s have a DC ∪ {F}-clash

(6)
S , {F}

fails(S) , {true}

(7)
S , C

fails(S) , {false}
if there is some t ∈ C with t �= ⊥, t �= F

(8)
S1 , C1 S2[α/C1] , C

⋃
α∈S1

S2 , C

(9)
S1 , C1 S2 , C2

S1 ∪ S2 , C1 ∪ C2

(10)
t == t′ , {true}

if t ↓ t′

(11)
t == t′ , {false}

if t ↑ t′

(12)
t == t′ , {F}

if t �↓ t′ and t �↑ t′

Table 1
Rules for SRL-provability

4.1 Disequality Manipulation

In order to introduce the equality function at the operational level we need an
explicit manipulation of disequalities. We will work with sets δ of disequalities

133

Lopez-Fraguas and Sanchez-Hernandez

of the form t �= s, where t, s ∈ CTerm. A first important notion is that of
solution:

Definition 4.1 Given δ = {t1 �=s1, . . . , tn �=sn} we say that σ ∈ CSubst⊥,F is
a solution for δ, and write σ ∈ Sol(δ), if t1σ↑s1σ, . . . , tnσ ↑snσ.

We are particularly interested in sets of solved forms of disequalities of the
form X �= t (with X �≡ t), where the variable X and those of t are all in V , i.e.,
there are not produced variables in them. We introduce a function solve to
obtain solved forms for sets of disequalities between cterms. As solved forms
are not unique in general, solve returns the set of solved forms from a set of
disequalities:

• solve(∅) = {∅}
• solve({X �= X} ∪ δ) = ∅
• solve({c �= c} ∪ δ) = ∅, for any c ∈ DC0

• solve({c(t) �= d(t
′
)} ∪ δ) = solve(δ), if c �= d

• solve({X �= t} ∪ δ) = {{X �= t} ∪ δ′ | δ′ ∈ solve(δ)}
• solve({c(t1, . . . , tn) �= c(t′1, . . . , t

′
n)} ∪ δ) = {δi ∪ δ′ |δi ∈ solve({ti �= t′i}),

δ′ ∈ solve(δ)}
The interesting property about this function is:

Proposition 4.2 If solve(δ) = {δ1, . . . , δn}, (n≥ 0) then Sol(δ) = Sol(δ1) ∪
. . . ∪ Sol(δn).

Now, the idea is to associate a set of disequalities δ to any set-expression
S, for which we use the notation S✷δ. For such set-expressions with dise-
qualities we extend the notion of semantics in order to obtain a better way
for establishing semantics equivalence between set-expressions. Given S✷δ,
we are interested in the semantics of S under total substitutions that also are
solutions of δ. With this aim we introduce the notion of hyper-semantics:

Definition 4.3 The hyper-semantics of a set-expression with disequalities S✷δ
(with respect to a program P) is defined as:

[[[S✷δ]]] = λσ ∈ CSubst ∩ Sol(δ).[[Sσ]]
This subtle notion requires some explanations:

• We introduce it because the functional nature of [[[]]] reflects better than
[[]] the idea of semantic equivalence between set-expressions with variables.
Consider, for instance, the functions f and g defined as:

f(true) � {true} g(true) � {true}
f(false) � {false} g(false) � {true}

Then we have [[f(X)]] = [[g(X)]] = {⊥}, despite of the fact that f and
g are clearly different. The hyper-semantics captures the difference, since

134

Lopez-Fraguas and Sanchez-Hernandez

[[[f(X)✷∅]]] �= [[[g(X)✷∅]]]: taking the substitution σ = [X/false] we have
[[f(false)]] = {⊥, false} while [[g(false)]] = {⊥, true}.

• The reason of restricting σ to be a solution of δ can be illustrated by con-
sidering δ = {X �= false}: in this case, for the previous program, it is
desirable to have [[[f(X)✷δ]]] = [[[g(X)✷δ]]] because in fact f and g behave
the same over values different from false.

• Finally, the technical reason of restricting σ to be total is to preserve the
hyper-semantics of expressions involving the function ==. For example,
it is desirable to have [[[X == X✷∅]]] = {⊥, true}, but if we allow σ to
introduce ⊥ we could not guarantee Xσ == Xσ , {true}.

4.2 Operational behavior of ==

The mechanism for evaluating the function == is defined by means of the

relation �
θ

of Table 2. The substitution θ ∈ CSubst is the computed sub-

stitution. This relation works on a set of constraints of the form {t1 ==
s1, . . . , tn == sn}, where t1, . . . , tn, s1, . . . sn ∈ CTermF. As an abuse of
notation we will write t1 == s1, . . . , tn == sn, C for representing the set
{t1 == s1, . . . , tn == sn} ∪ C, where C is a set of constraints; it is not rele-
vant any ordering on the constraints and the relation == is symmetric. Some
comments about the rules of Table 2:

Some comments about the rules:

• rule 2 erase a variable identity, 3 is for binding, 4 for decomposition and 7 is
an imitation rule. These are general rules that can be used in intermediate
steps of a �-derivation to obtain any result (true, false or F);

• the result true (equality) can be obtained by applying the general rules and
finally rule 1, that stands for the empty set of constraints;

• false (disequality) is reached by checking a clash of constructor symbols in
rule 5, or by introducing such a clash in rule 8;

• false|X/=u (conditional disequality) can be obtained in rule 6. In this case,
the value false is conditioned to the disequality X �= t. This is the point
where an explicit disequality can be added as part of the solution;

• finally, F is obtained in rule 9 when all the equalities are of the form F == t.
In such case neither a equality nor a disequality can be proved.

Apart from the possible values that can return the calculus, it is possible
that no rule is applicable at a given step in the derivation. This happens
when there are produced variables of Γ that block the evaluation. Notice
that the evaluation of an equality t == s will be required from the narrowing
relation SNarr, where this equality is a part of the full set-expression. So,
t == s can contain produced variables indexed in the corresponding set-
expression. For example, using the function prefix of Section 2, the equality

135

Lopez-Fraguas and Sanchez-Hernandez

(1) ∅ �
ε

true (2) X == X,C �
ε

C if X �∈ Γ

(3) X == t, C �
[X/t]

C[X/t]
if X �= t, X �∈Γ ∪ var(t), Γ ∩ var(t)=∅
and t does not contain F

(4) c(t1, . . . , tn) == c(s1, . . . , sn), C �
ε

t1 == s1, . . . , tn == sn, C

(5) c(t) == d(s), C �
ε
false

(6) X == t, C �
ε
false |X �=t

if X �= t, X �∈ Γ, Γ ∩ var(t) = ∅
and t does not contain F

(7) X == c(t1, . . . , tn), C �
[X/c(Y)]

(Y1 == t1, . . . , Yn == tn, C)[X/c(Y)]

if X �∈ Γ and var(t) ∪ Γ �= ∅ or t contains F, Y fresh vars.

(8) X == c(t1, . . . , tn), C �
[X/d(Y)]

false
if X �∈ Γ and var(t) ∪ Γ �= ∅
or t contains F, Y fresh vars.

(9) F == t1, . . . , F == tn �
ε

F

Table 2
Rules for ==

prefix 0 [0,X]== Y written as set-expression is
⋃

α∈prefix(0,[0,X]) α == Y .

The equality α == Y cannot be reduced by the rules of � because α

blocks the evaluation, i.e., it is associated to an expression (prefix(0, [0, X]))
that requires further evaluation.

The next results state that the operational mechanism for ==, �, behaves
well with respect to the semantic calculus SRL of Section 3.3. We use the

relation ∗�
θ

for 0 or more steps of � , where θ indicates the composition

of θ’s in individual steps.

Theorem 4.4 (Correctness of �) Assume t, s ∈ CTermF. Then:

• t == s ∗�
θ

true ⇒ tθ == sθ , {true}

• t == s ∗�
θ
false ⇒ tθ == sθ , {false}

136

Lopez-Fraguas and Sanchez-Hernandez

• t == s ∗�
θ
false |X �=u⇒ tθσ == sθσ , {false}, for all σ ∈ Sol({X/ = u})

• t == s ∗�
θ

F ⇒ tθ == sθ , {F}

With respect to completeness, consider two cterms t and s, and a substi-
tution θ, such that tθ == sθ can be reduced to some value with SRL. We
must prove that the rules for == are able to get the same value for t == s,
while generalizing the substitution θ. As a technical detail, we must take care
of the set Π of fresh variables introduced by the rules for ==, in particular by
rule 7.

Theorem 4.5 (Completeness with respect to SRL) Let t, s ∈ CTermF

and δ a set of disequalities. Then:

• if tθ == sθ , {true} then t == s ∗�
θ′

true, and ∃µ.θ = (θ′µ) |V−Π

• if tθ == sθ , {false} then:
· t == s ∗�

θ′
false, and ∃µ.θ = (θ′µ) |V−Π, or

· t == s ∗�
θ′
false |Z �=w, and ∃µ.θ = (θ′µ) |V−Π ∧µ ∈ Sol({Z �= w})

• if tθ == sθ , {F} then t == s ∗�
θ′

F, and ∃µ.θ = (θ′µ) |V−Π

where Π is the set of fresh variables introduced in the ∗�
θ′

derivation

In order to simplify the relation SNarr of the next section we consider a
uniform shape (ω, δ) for the results provided by the rules for �, where ω
is the value and δ a set of disequalities (always empty, except for the case
of conditional false). So, with this format the possible results are: (true, ∅),
(false, ∅), (false, {X �= u}) and (F, ∅).

4.3 The operational mechanism

For selecting a redex, SNarr uses the notion of context defined as:

C ::= S | [] | fails(C1) |
⋃

X∈C1
C2 | C1 ∪ C2

where S is a set-expression, and C1 and C2 are contexts.

For defining the operational behavior of fails and also for the completeness
result of Section 4.3 we need the notion of information set:

Definition 4.6 Given a set-expression S its information set S∗ ⊆ CTerm⊥,F

is defined as:

• (f(t))∗ = (fails(S))∗ = (t == s)∗ = {⊥}

137

Lopez-Fraguas and Sanchez-Hernandez

Cntx C [S]✷δ �θ
Cθ [S ′]✷δ′ if S✷δ �θ

S ′✷δ′

Nrrw1 f(t)✷δ �θ |var(t)
Sθ✷δ′

if (f(s) � S) ∈ P, θ ∈ CSubstF is a m.g.u. for s

and t with Dom(θ) ∩ Γ = ∅ and δ′ ∈ solve(δθ)

Nrrw2 f(t)✷δ �ε
{F}✷δ

if for every rule (f(s) � S) ∈ P, s and t have a DC ∪ {F}-clash

Nrrw3 t == s✷δ �θ |var(t)∪var(s)
{ω}✷δ′

if t == s ∗�
θ

(ω, δ′′) and δ′ ∈ solve(δθ ∪ δ′′)

Fail1 fails(S)✷δ �ε
{true}✷δ if S∗ = {F}

Fail2 fails(S)✷δ �ε
{false}✷δ if ∃t ∈ S∗ t �= ⊥, t �= F

Dist
⋃

α∈S1∪S2
S3✷δ �ε

⋃
α∈S1

S3 ∪
⋃

α∈S2
S3✷δ

Bind
⋃

α∈{t} S✷δ �ε
S[α/t]✷δ

Flat
⋃

α∈⋃
β∈S1

S2
S3✷δ �ε

⋃
β∈S1

⋃
α∈S2

S3✷δ

Elim
⋃

α∈S′ S✷δ �ε
S✷δ if α �∈ FV (S)

Table 3
Rules for SNarr

• ({t})∗ = {t}
• (

⋃
α∈S′ S)∗ = (S[α/⊥])∗

• (S1 ∪ S2)
∗ = S∗

1 ∪ S∗
2

Now, we can define one-narrowing-step relation: given a program P, two
set-expressions S,S ′ ∈ SetExp, θ ∈ CSubstF, and δ, δ′ sets of disequalities

in solved form, a narrowing step is expressed as S✷δ �θ
S ′✷δ′ where the

relation S✷δ �θ
S ′✷δ is defined in Table 3. In the following we use SNarr

as the name for this relation.

138

Lopez-Fraguas and Sanchez-Hernandez

(1) fprefix (Xs, [Y])✷∅ �ε (Nrrw1-fprefix)

(2)
⋃

α∈fails(prefix(Xs,[Y])) iTe(α, false, true)✷∅ �
Xs/[B|C]

(Nrrw1-prefix3)

(3)
⋃

α∈fails(
⋃

β∈B==Y

⋃
γ∈prefix(C,[]) iT (β,γ)) iTe(α, false, true)✷∅ �ε (Nrrw3)

B == Y �
ε

(false, {Y �= B}) (by rule 6 of ==)

(4)
⋃

α∈fails(
⋃

β∈{false}
⋃

γ∈prefix(C,[]) iT (β,γ)) iTe(α, false, true)✷{Y �=B}�ε (Bind)

(5)
⋃

α∈fails(
⋃

γ∈prefix(C,[]) iT (false,γ)) iTe(α, false, true)✷{Y �=B}�ε (Nrrw1-iT2)

(6)
⋃

α∈fails(
⋃

γ∈prefix(C,[]){F}) iTe(α, false, true)✷{Y �= B} �ε (Elim)

(7)
⋃

α∈fails({F}) iTe(α, false, true)✷{Y �= B} (Fail1)

(8)
⋃

α∈{true} iTe(α, false, true)✷{Y �= B} (Bind)

(9) iTe(true, false, true)✷{Y �= B} (Nrrw1-iTe1)

(10) {false}✷{Y �= B}

Final answer: ({false}, {Xs = [B|C], Y �= B})
Table 4

Derivation for fprefix Xs [Y]

Rules are essentially those of [18], except for the disequality sets δ and
for the rule Nrrw3, specific for ==. This rule performs a subcomputation
with the rules for == and integrates the result in the current set-expression.
With respect to the other rules: Cntx select a redex in the set-expression,
Nrrw1 evaluates a function call by finding the appropriate (unique if it exists)
applicable rule; Nrrw2 returns a failure if such rule does not exist; rules Fail1,2

evaluate the function fails according to the information set of the current set-
expression. And the rest of rules correspond to easy manipulations from the
point of view of sets.

As an example of derivation, consider again the CIS-program containing
the functions prefix , fprefix , ifThen and ifThenElse of Section 3.2. We show
one of the four possible derivations for the expression fprefix (Xs , [Y]) in Table
4 (we write iT for ifThen and iTe for ifThenElse). At each step we underline
the redex in use, and we point out the rule of SNarr used for the step. In the
case of Nrrw1 we also point out the rule of the program used for the step.

Notice that the computed substitution is found at step (2), by applying
the second rule of prefix to narrow the redex prefix (Xs, [Y]). At step (3), the
rule Nrrw3 throws a subcomputation for the function ==. It succeeds with a

139

Lopez-Fraguas and Sanchez-Hernandez

conditional false that inserts the disequality {Y �= B} into the computation.
The function fails is reduced to true by means of Fail1 at step (7). At the
end we obtain the answer ({false}, {Xs = [B|C], Y/ = B}) as expected. The
three remaining answers showed in Section 2 can be obtained in a similar way.

The correctness of SNarr with respect to SRL is easy to formulate thanks
to the notion of hyper-semantics (Definition 4.3). Essentially it guarantees
that the hyper-semantics of a set-expression is preserved under SNarr deriva-
tions.

Theorem 4.7 (Correctness of SNarr) Let S, S ′ ∈ SetExp, θ ∈ CSubstF

and δ,δ′ sets of solved disequalities. Then: S✷δ
∗�
θ

S ′✷δ′ ⇒ [[[Sθ✷δ′]]] =

[[[S ′✷δ′]]]

The completeness result is quite technical and ensures that the SAS’s ob-
tained by SRL are captured by the information provided by SNarr, that also
finds the appropriate substitutions.

Theorem 4.8 (Completeness of SNarr) Let S✷δ be a set-expression with
disequalities and θ ∈ Sol(δ). If P �SRL Sθ , C then there exists a derivation

S✷δ
∗�
θ′

S ′✷δ′, introducing a set of fresh variables Π, such that:

• θ = (θ′µ) |V−Π, for some µ ∈ CSubst

• C
 (S ′µ)∗

• µ ∈ Sol(δ′)

As a corollary we obtain the following result that essentially says that we
have reached our goal of devising an operational procedure for constructive
failure.

Corollary 4.9 If P �SRL Sθ , {F}, then there exist θ′, µ ∈ CSubst such that

S✷∅ ∗�
θ′

{F}✷δ, θ = θ′µ and µ ∈ Sol(δ).

5 Conclusions and Future Work

We have addressed in a rigorous way in this paper the problem of how to realize
constructive failure in a functional logic language having a built-in equality
function. The motivation was that both failure and equality are important
expressive resources in functional logic programs, but there was a lack of a
convenient combination of them in previous works. We were guided by the
following two aims, hopefully achieved:

• We wanted our work to be technically precise from the theoretical point of
view, not only at the semantic description level but also at the operational

140

Lopez-Fraguas and Sanchez-Hernandez

level, with results relating both levels. For the first level we give a proof
calculus fixing the semantics of programs and expressions. Failure is used in
programs by means of a two-valued function fails giving true or false, while
for equality we use a three-valued function == giving as possible values
true, false or F.

• We wanted failure and equality to be well-behaved from a functional logic
programming perspective, which implies the ability to operate in presence
of non-ground expressions. Thus, following a usual terminology for negation
in logic programming, we expect failure to be constructive, and this, when
combined with equality, required to consider disequality constraints as a
part of the operational procedure, which essentially consists in set-narrowing
(in the spirit of [18]) combined with a (novel) evaluation mechanism for
equality, all proceeding in an ambient of disequality constraints, which can
appear in answers.

The operational procedure that we show, although complex in its descrip-
tion, is amenable for a quite direct implementation. We have a small pro-
totype with which all the examples in the paper have been executed. It in-
cludes the program transformation needed to convert programs in user-friendly
T OY syntax into CIS-programs with set oriented syntax. As a useful tool for
experimentation the prototype includes also the possibility of tracing an exe-
cution by automatically generating and compiling a TeX file with the sequence
of performed steps. The derivation in Table 4 has been obtained with the aid
of this tool.

In the future, we plan to embed the prototype into the T OY system, and
to improve its efficiency.

References

[1] Abengózar-Carneros, M. et al. “T OY: a multiparadigm declarative language,
version 2.0.” Technical report SIP 119/00, UCM Madrid, February 2002.
Available at http://titan.sip.ucm.es/toy/toyreport.pdf.

[2] Antoy, S. Definitional trees. In Proc. Int. Conf. on Algebraic and Logic
Programming (ALP’92), pages 143–157, Springer LNCS 632, 1992.

[3] Antoy, S. Constructor-based conditional narrowing. Proc. Int. Conf. on
Principles and Practice of Declarative Programming (PPDP’01), pages 199–
206, ACM Press, 2001.

[4] Apt, K. R., and R. Bol. Logic programming and negation: A survey. Journal
of Logic Programming 19&20 (1994), 9–71.

[5] Arenas-Sánchez, P., A. Gil-Luezas, and F. J. López Fraguas Combining lazy
narrowing with disequality constraints. In Proc.Int. Symp. on Programming
Languages Implementation and Logic Programming (PLILP’94), pages 385–
399, Springer LNCS 844, 1994.

141

Lopez-Fraguas and Sanchez-Hernandez

[6] Chan, D. Constructive negation based on the completed database. In Proc. Int.
Conf. and Symp. on Logic Programming (ICSLP’88), pages 111–125, 1988.

[7] Clark, K. L. Negation as failure. In H. Gallaire and J. Minker, editors, “Logic
and Data Bases”, pages 293–322, Plenum Press, 1978.

[8] González-Moreno, J. C., T. Hortalá-González, F. J. López-Fraguas, and M.
Rodŕıguez-Artalejo. A rewriting logic for declarative programming. In Proc.
European Symp. on Programming (ESOP’96), pages 156–172, Springer LNCS
1058, 1996.

[9] González-Moreno, J. C., T. Hortalá-González, F. J. López-Fraguas, and M.
Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming 40(1) (1999), 47–87.

[10] Hanus, M. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20 (1994), 583–628.

[11] Hanus, M. (ed.). “Curry: An integrated functional logic language.” Available
at http://www.informatik.uni-kiel.de/~curry/report.html, April 2003.

[12] Hanus, M., and F. Steiner. Controlling search in declarative programs.
In Proc.Int. Symp. on Programming Languages Implementation and Logic
Programming (PLILP/ALP’98), pages 374–390, Springer LNCS 1490, 1998.

[13] López-Fraguas, F. J., and J. Sánchez-Hernández. T OY: A multiparadigm
declarative system. In Proc. Int. Con. on Rewriting Techniques and
Applications (RTA’99), pages 244–247, Springer LNCS 1631, 1999.

[14] López-Fraguas, F. J., and J. Sánchez-Hernández. Disequalities may help to
narrow. Proc. APPIA-GULP-PRODE, pages 89–104, 1999.

[15] López-Fraguas, F. J., and J. Sánchez-Hernández. Proving failure in functional
logic programs. In Proc. Int. Conf. on Computational Logic (CL’00), pages
179–193, Springer LNAI 1861, 2000.

[16] López-Fraguas, F. J., and J. Sánchez-Hernández. Functional logic programming
with failure: A set-oriented view. In Proc. Int. Conf. on Logic Programming and
Automated Reasoning (LPAR’01), pages 455–469, Springer LNAI 2250, 2001.

[17] López-Fraguas, F. J., and J. Sánchez-Hernández. A proof theoretic approach to
failure in functional logic programming. To appear in Theory and Practice of
Logic Programming.

[18] López-Fraguas, F. J., and J. Sánchez-Hernández. Narrowing failure in
functional logic programming. In Proc. Int. Symp. on Functional and Logic
Programming (FLOPS’02), pages 212–227, Springer LNCS 2441, 2002.

[19] Moreno-Navarro, J. J. Default rules: An extension of constructive negation
for narrowing-based languages. In Proc. Int. Conf. on Logic Programming
(ICLP’94), pages 535–549, The MIT Press, 1994.

142

Lopez-Fraguas and Sanchez-Hernandez

[20] Moreno-Navarro, J. J. Extending constructive negation for partial functions
in lazy functional-logic languages. In Proc. Extensions of Logic Programming
(LP’96), pages 213–227, Springer LNAI 1050, 1996.

[21] Reynolds, J. C. “Theories of programming languages”. Cambridge Univ. Press,
1998.

[22] Stuckey, P. J. Constructive negation for constraint logic programming. In Proc.
Int. Conf. on Logic in Computer Science (LICS’91), pages 328–339, 1991.

[23] Stuckey, P. J. Negation and constraint logic programming. Information and
Computation 118 (1995), 12–33.

143

