
FEBS Letters 581 (2007) 5469–5474
Histological mapping of biochemical changes in solid tumors
by FT-IR spectral imaging
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a University of Bordeaux 2, CNRS, UMR 5084, 146 Rue Léo Saignat, F33076, Bordeaux, France
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Abstract Fourier-transform infrared (FT-IR) spectral imaging
was used for analyzing biochemical changes in tumor cells. Met-
abolic parameters of human lung A549/8 adenocarcinoma and
U87 glioma cells were compared under stress conditions in cul-
ture along with tumor progression after cell implantation onto
the chick embryo chorio-allantoic membrane. In cell culture, glu-
cose consumption and lactic acid release were higher in U87
cells. A549/8 cells were less sensitive to oxidative stress as ob-
served through changes in fatty acyl chains. In vivo biochemical
mapping of highly (U87) vs. poorly (A549/8) angiogenic tumors
provided results comparable to culture models. Therefore, FT-IR
imaging allows detecting subtle chemical changes in tumors,
which might be useful for diagnosis.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Many solid tumors, including glioma and lung carcinoma,

pose challenges for disease management and treatment. Beside

histopathological evaluation of tumor grade, novel diagnostic

tools have been developed, such as gene profiling, aiming to

identify prognostic indicators from a variety of molecular

parameters associated to the tumor differentiation stages and

tissue types.

Analyses of the metabolic pathways involved in tumor devel-

opment may also provide useful information for disease diag-

nosis and treatment. Both hypoxia and metabolite deprivation

are commonly observed in solid tumors and modulate the

transcription of genes involved in several cellular processes,

including malignant growth, angiogenesis, and metastasis [1].

As a consequence of hypoxia and of the increased expression

of glycolytic enzymes, tumors are prone to consume more glu-

cose than normal tissues, thus participating to its pericellular
Abbreviations: CAM, chorio-allantoic membrane; FT-IR, Fourier-
transform infrared
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depletion and to the accumulation of waste products and pH

acidification [2]. Solid tumor growth may also induce a local

increase in free radicals, leading to the alteration of normal cel-

lular processes through peroxidation of lipids, proteins, and

nucleic acids [3]. Tumors also differ widely in their energy

requirement, depending on the cell types considered, tumor

grade and tissue locations. Thus, a rapid and accurate determi-

nation of the spatial metabolic profile of tumors is required for

a better diagnosis in order to adopt relevant therapeutic strat-

egies. Biochemical and histological approaches in association

to bioluminescence imaging have been developed to address

this question [4].

Methods based on Fourier-transform infrared (FT-IR) spec-

trometry emerged and developed rapidly during the last decade

[5]. FT-IR spectra are representative of the whole organic con-

tent of biological samples and can therefore be used as molec-

ular signatures of normal and pathological tissues. Reported

applications of FT-IR spectrometry in biomedicine consist of

molecular structure determination, cancer DNA phenotype

recognition and determination of molecular concentration

profiles [6,7]. Fast FT-IR spectral imaging systems are now

available, allowing the acquisition of tissue functional FT-IR

images in only a few minutes.

In this work, we analyzed biochemical parameters using a

chemical FT-IR mapping of two human cancer cell types,

namely U87 glioma and lung A549/8 adenocarcinoma cells, ex-

posed to hypoxic conditions and/or under glucose deprivation

in vitro. U87 and A549/8 malignant cells were also implanted

onto the chorio-allantoic membrane (CAM) of the chicken egg

[8] to develop solid tumors of highly vs. poorly angiogenic phe-

notypes, respectively. FT-IR spectral imaging of these tumors

allowed the detection of biochemical changes within the differ-

ent tumor masses at a 6-micrometer spatial resolution.
2. Materials and methods

2.1. Cell culture
Cell culture in serum-free medium was essentially performed as de-

scribed [9]. Cells were routinely propagated in a humidified 5% CO2

atmosphere at 37 �C. Hypoxic conditions were obtained at 3% O2 in
a Heraeus incubator BB-6060. For FT-IR experiments, sub-confluent
cells in serum-free medium were washed with PBS and incubated for
24 h in serum-free medium containing increasing concentrations of
glucose, as indicated in the figure legends. At the end of each experi-
ment, collected cells were centrifuged and pellets (�106 cells) were
quickly re-suspended in 300 ll of ice-cold sterile water and frozen in
liquid nitrogen.
ation of European Biochemical Societies.
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2.2. FT-IR spectra acquisition
Culture media or cell lysates (35 ll) were deposited on a 96-well sil-

icon-plate (Bruker, Germany), placed for 1 h into a drying vacuum
(2 mm Hg and silica gel), and put into the analysis compartment of a
Bruker Tensor-27 spectrometer equipped with a HTS-XT auto sam-
pler. The spectrometer used a Globar (MIR) source (7 V), a KBr beam
splitter, and a DTGS/B detector (16–28 �C). Beam diameter at the
sample location was 6 mm and sample deposits were 7-lm diameter.
Transmittance spectra were obtained using a 2.0 cm�1 resolution and
32 co-added scans. Triplicate FT-IR spectra were averaged and made
compatible (wavenumber frequencies standardization).

2.3. FT-IR spectra curve fittings
Spectral curve fittings were performed from FT-IR spectra using the

Levenberg–Marquardt method as previously described [10] to deter-
mine the m = (CH), mas(CH3), and mas(CH2) absorptions of fatty acyl
chains (3100–2800 cm�1 spectral interval) and the characteristic m(C–
O) absorptions of glucose (1033 cm�1) and lactic acid (1127 cm�1).
Lactic acid and glucose absorptions were compared to the results of
enzymatic assays (lactic acid dehydrogenase- and hexokinase-derived
assays, respectively; Biosentec, France) to determine molecular IR
absorptivities (mM/a.u.).

2.4. In vivo tumor assay and FT-IR imaging
Tumor xenogratfs were obtained using the experimental model of

the CAM assay [8]. Five million cells were deposited per egg. Six xeno-
grafts were collected for each condition at days 3, 5, and 7 (D3, D5,
and D7) after implantation. Photos of tumors were taken under a ste-
reomicroscope (Nikon SMZ800) equipped with a digital camera (Ni-
kon Coolpix 950). Tumor size was determined and xenografts were
placed into sterile tubes and frozen into liquid nitrogen. After return
to ambient temperature, tumors were laid down flat on cooled glue
(polyvinilic alcohol, �20 �C). Longitudinal tissue sections (20 lm in
thickness) were performed every �200 lm using a Cryostat 3050-TM
(Leica-Microsystems, France) to analyze tumor mass from the top
down to its contact to CAM. Tissue sections were analyzed in the
mid-infrared range (4000–620 cm�1) using a Spotlight 300 FT-IR
imaging system equipped with a Spectrum-One spectrometer (Per-
kin–Elmer, Bucks, UK). FT-IR spectra were obtained using 8 co-
added scans (4000–700 cm�1) in transmission mode with a spatial
resolution of 6.25 lm2 per pixel and a 4 cm�1 spectral resolution.

2.5. FT-IR image data treatment
FT-IR spectra were corrected for CO2 and H2O absorptions. Trans-

versal capillary blood vessels were spotted using the visible image.
Then, successive 50 lm2 areas (7 · 7 pixels corresponding to 49 FT-
Fig. 1. Detection of glucose and of lactic acid in culture medium and in c
900 cm�1 spectral interval of FT-IR spectra obtained from the serum-free c
Same experiment as in A except that culture medium contained 1 mM gluco
IR spectra) were selected starting from the spotted capillaries up to
450 lm in distance. The 49 FT-IR spectra of every area were averaged
and the spectral curve fitting method was applied for determining glu-
cose, lactic acid, and fatty acyl chain IR absorptions. Data are pre-
sented as means ± S.D. Correlations between enzymatic assays and
FT-IR data were tested using Pearson’s coefficient (r) with a P value
below 0.05. Mean prediction error (Sx/y) was also determined to assess
the robustness of the method.
3. Results and discussion

3.1. Metabolic changes in A549/8 and U87 cells subjected to

hypoxia and to glucose deprivation

Glucose and lactic acid concentrations in serum-free culture

media were first determined using their most characteristic IR

absorptions revealed by the curve fitting of the 1200–900 cm�1

spectral interval [10]. Glucose IR absorptivity (Glcabs) at

1033 cm�1 was 0.46 mM per spectral area unit (a.u.) and its

concentrations ( _Cglc) in culture media were determined accord-

ing to the equation: _Cglc (mM) = Glca.u. · Glcabs. Lactic acid

IR absorptivity (L � Aabs) at 1127 cm�1 was 0.187 mM/a.u.,

its concentration ( _CL�A) being determined as follows: _CL�A

(mM) = L � Aa.u. · L � Aabs.

Glucose concentrations determined in culture media using

FT-IR spectrometry were in accordance with those obtained

using enzymatic assays (r = 0.98; P = 0.001). Consistently,

the 1033 cm�1 (glucose) and 1127 cm�1 (lactic acid) IR absorp-

tions were not detected in FT-IR spectra of culture media that

did not contained these two metabolites (Fig. 1). Concentra-

tions of glucose and lactic acid in culture media after incuba-

tion with metabolically active cells also correlated well with

results of enzymatic assays (Supplementary Fig. S1). These re-

sults show the compliance of using spectral curve fitting to

determine glucose and lactic acid concentrations in culture

media using the 1033 and 1127 cm�1 IR absorption bands,

respectively.

A549/8 and U87 cells were then incubated for 24 h with var-

ious amounts of glucose under normoxia or hypoxia. FT-IR

spectrometry analyses were performed from both culture med-
ell lysates. (A) Curve fitting and deconvolution analyses of the 1200–
ulture medium in the complete absence of glucose and lactic acid. (B)
se and 1.23 mM lactic acid.



Fig. 2. Post-culture media analyses by FT-IR spectrometry of A549/8 and U87 cell extracts after exposition to normoxia or to hypoxia.
Concentrations of lactic acid (A), glucose (B) as well as of fatty acyl moieties absorptions (C, D) changes were determined in A549/8 (d, s) cells and
U87 (j, h) cells that were incubated under normoxia (d, j) or hypoxia (s, h) for 24 h in serum-free culture medium containing increasing amounts
of glucose. IR absorptions of fatty acyl moieties were reported as values of the two ratios m = (CH)/mas(CH3) and m = (CH2)/mas(CH3), indicative of the
insaturation level of phospholipids and of cellular oxidative stresses, respectively. m = (CH)/mas(CH3) ratio values are magnified by 10 for
presentation. Each result is the mean of triplicate determination that differed by less of 5%.
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ia and cell extracts to compare various aspects of glucose

metabolism and of cell oxidation. As shown in Fig. 2A and

B, cells subjected to hypoxia contained lower amounts of glu-

cose and higher amounts of lactic acid than cells incubated un-

der normoxia. In addition, glucose consumption was higher in

U87 cells than in A549/8 cells. Indeed, a lower glucose concen-

tration was observed in U87 cells than in A549/8 cells in asso-

ciation to a more marked decrease of the metabolite in the

culture medium of U87 cells. Consistently, glucose was not de-

tected in A549/8 and U87 cells with initial glucose concentra-

tion below 0.5 and 1.11 mM, respectively. Again, enzymatic

assays validated the method based on FT-IR spectral curve fit-

ting (P < 0.05, not shown).

We next analyzed the variations in m = (CH), mas(CH3), and

mas(CH2) IR absorptions (Fig. 2C and D) for determining oxi-

dative stress effects on cells. Although possible contributions

to these absorptions may stem from metabolic free fatty acids

(in very low concentration) and from acetyl groups of proteins,

which are very weak in intensity [11], these absorptions are

mainly due to fatty acyl moieties of membrane phospholipids

of cells [12]. The results obtained from the curve fitting of the

3100–2800 cm�1 spectral interval revealed that the m = (CH)/

mas(CH3) ratio consistently increased in the two cell types ex-

posed to low glucose conditions, a concomitant decrease being

observed for the mas(CH2)/mas(CH3) ratio. IR absorptions

changes were also more pronounced under hypoxic vs. norm-

oxic conditions. Thus, the results agree well with an expected

higher insaturation level of phospholipids under glucose-limit-

ing conditions or under hypoxia [13]. In addition, U87 cells ex-

posed to hypoxia and to low glucose concentrations presented

higher insaturation levels of their fatty acyl moieties than A549/

8 cells, which may reflect various degrees of peroxidation. The

better resistance of A549/8 cells to oxidation may be explained

by the natural occurrence of lung epithelial cells in a more oxi-

dizing microenvironment and to their enhanced protection

using anti-oxidative defense systems [14].
3.2. Phenotypic changes and FT-IR imaging of tumor tissues

Cancer cells deposited onto the CAM surface form solid tu-

mors that exhibit characteristic features of malignant progres-

sion [8]. Phenotypic changes of A549/8 cell- and U87 cell-

derived tumors were analyzed 3, 5, and 7 days following

implantation. U87 cell-derived xenografts grew rapidly and

formed a compact tumor mass at day 3. Tumors then ex-

panded as determined by diameter measurement at days 5

(2.2-fold, P < 0.01) and 7 (3.5-fold, P < 0.01) (Fig. 3A).

A549/8 cell-derived tumor diameters also increased as a func-

tion of time, although at a lesser rate (1.4-fold, P < 0.05 at

D5; 2.7-fold, P < 0.01 at D7).

The two types of tumors also exhibited different angiogenic

patterns. Poorly vascularized A549/8 A549/8 cell-derived tu-

mors usually presented a general whitish aspect whereas highly

angiogenic U87 cell-derived tumors are pinkish/red in relation

to the intensity of angiogenesis. A few blood vessels were ob-

served at day 3 in all (6/6) A549/8 cell-derived tumors, which

is consistent with the fact that pericytes were not detected in

the tumor masses (Fig. 3D and G). The number of blood ves-

sels then progressively increased at day 5 in two out of the six

tumors analyzed (Fig. 3E and H). Finally, all tumors presented

at day 7 a structured vascular network into the whole tumor

mass, with capillaries 100–300 lm distant from each other

(Fig. 3F and I). An increased spreading of pericytes was also

detected in tumor tissues at days 5 and 7 (Fig. 3H and I).

The neovascularization process was also analyzed in U87

cell-derived xenografts. At day 3, none of the six tumors pre-

sented any detectable vascular network whereas an extensive

vascular network developed in all tumors at days 5 and 7

(not shown, see also Ref. [8]).

Serial visible images of the tumor tissue section were used to

confirm the tumor morphology and angiogenic status before

FT-IR spectral imaging was performed (Fig. 3B). Three to se-

ven tissue sections (every �200 lm) covering the thickness of

the tumors were used for FT-IR images acquisition. Spatial dis-
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tribution of glucose, lactic acid, and fatty acyl chain IR absorp-

tions was measured in inter-capillary spaces by selecting succes-

sive 50 lm2-areas units (Fig. 3C). Glucose and lactic acid

absorptions as well as the mas(CH2)/mas(CH3) and m = (CH)/

mas(CH3) ratios were determined in each unit and gradient anal-

yses for A549/8 cell-derived tumors are presented in Fig. 4. As

shown, glucose absorption was expressed as a U-shaped curve,

with the higher values being detected at the edge of capillaries

(Cap.1 and Cap.2) and lower values being obtained at a 150–

200 lm distance from the capillaries, above the critical diffusion

distance for oxygen and nutrients [2]. Consistently, lactic acid

absorption change was expressed as an inverted curve regard-

ing that of glucose, which relates to the decreased capacity of

tissues to eliminate metabolic wastes as the distance to capillar-

ies increases. Similar results were obtained with the two cell

types, even though glucose consumption and lactic acid release

were higher in U87-derived tumors (Supplementary Fig. S2)

than in A549/8-derived tumors. These results are consistent

with those obtained in cell culture.

We next addressed the question of the possible metabolic

variation in tumor microenvironments as a function of their
Fig. 3. Changes in tumor growth and angiogenesis in the CAM assays. (A)
(grey bars) were implanted onto the CAM and tumors were grown for 3, 5, a
(black bar = 500 lm; 10· magnification using a Nikon SMZ stereomicrosco
section (20-lm thickness) and (C) FT-IR image obtained with the same cell de
full spectral absorbance). Arrows in (B) and (C) indicate the presence of blo
selected between two blood capillaries reported as Cap.1 and Cap.2 and spe
spatial distribution of glucose and lactic acid as well as IR absorption changes
A549/8 cell-derived tumors 3, 5, and 7 days after implantation, respectively
histological analyses and observation of the vascularization. Nucleated chi
capillaries which are indicated by red arrowheads. (G–I) Immunofluorescence
days 3, 5, and 7 after implantation, respectively.
growth stage. Spectral curve fitting for the 1200–900 cm�1

and 3100–2800 cm�1 spectral intervals were performed on

50 lm2 tissue areas found at a 200-lm distance from any blood

capillaries. Analyses performed with A549/8 cell-derived tu-

mors at the whole section scale following 3 days of tumor

growth showed that no significant spatial variation was ob-

served in glucose and lactic acid absorptions, or in the

m = (CH)/mas(CH3) and mas(CH2)/mas(CH3) ratios (Fig. 5A–D;

see also results on U87 cell-derived tumors, Supplementary

Fig. S3). Besides, a spatial heterogeneity in molecular content

was observed at days 5 and 7 in relation to the vascularization

status. FT-IR measurements were therefore determined both

at the immediate vicinity of blood capillaries and at a 200-

lm distance from blood capillaries. Glucose and lactic acid

absorption values at the edge of capillaries were found similar

at days 5 and 7 and did not differ significantly from the values

obtained at day 3 (N = 35) (Fig. 5A and B). In contrast, mea-

surements performed at �200 lm from blood capillaries at

days 5 and 7 showed that glucose significantly decreased at a

distal position from blood supply (N = 24) whereas that of lac-

tic acid correlatively increased.
Tumor growth measurement. U87 cells (white bars) and A549/8 cells
nd 7 days (D3, D5, and D7, respectively). (B) Example of visible image
pe) obtained from a cryosection of A549/8 cell-derived tumor tissue

posit at day 7 with a 6.25 lm resolution per pixel (yellow bar = 200 lm;
od capillaries. Successive tissue areas (50 · 50 lm = 9 · 9 spectra) were
ctral curve fitting was applied on averaged spectra for determining the

for fatty acyl moieties. (D–F) Histological examinations performed on
. Tumors were cut into 10 lm cryosections and stained with H&E for
ck erythrocytes, blood vessels lining and red labeling revealed tumor
labeling of pericytes using mouse antibodies directed against desmin at



Fig. 4. Chemical mapping of A549/8 cell-derived tumor development 7 days after implantation. Tumors were removed from the CAM and snap
frozen in liquid nitrogen. Twenty-lm serial cryosections were processed for FT-IR spectrometry. Analyses were performed in different tumor areas.
Biodistribution of glucose and lactic acid (left) as well as the changes in the mas(CH2)/mas(CH3) and m = (CH)/mas(CH3) ratios (right) were determined
according to the distance from capillaries.

Fig. 5. Chemical mapping of A549/8 cell-derived tumors analyzed at days 3 (n = 6), 5 (n = 16), and 7 (n = 31) after implantation. Spectral curve
fitting for the 1200–900 cm�1 and 3100–2800 cm�1 spectral intervals were performed on the 50 · 50 lm tissue areas found at the vicinity (white bars)
and at a 200-lm distance (black bars) from any blood capillaries for determining the glucose, lactic acid, and fatty acyl moieties absorption in
tumors. �: significantly different from value obtained with the preceding measurement at D-2; �: significantly different from measurements at the
vicinity of blood capillaries. P < 0.05.
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Variations in fatty acyl moieties absorptions were also ob-

served in different sub-regions of the tumors (Fig. 5C and

D). Higher m = (CH)/mas(CH3) ratios were obtained at distances

greater than 200 lm from capillaries at day 5 (P < 0.01) and

day 7 (P < 0.01) associated to a concomitant decrease of the

mas(CH2)/mas(CH3) ratio (P < 0.01 at days 5 and 7). This sug-

gests that the oxidative environment differed in discrete regions

of the tumors in relation to glucose degradation and lactic acid

production. Similar results were obtained using U87 cell-de-

rived tumors (Supplementary Fig. S3).

Taken together, these results indicate that FT-IR imaging is

a valuable tool for detecting spatial metabolic changes within

tumors. This approach may therefore be useful in deciphering

in situ biochemical aspects of tumor development, including

altered metabolism regulation and oxidative stress effects.

3.3. FT-IR imaging for a molecular histopathology

Various non-invasive technologies allow clinical examina-

tions of tumor tissues. However, the use of contrast reagents

is often required due to a poor sensitivity (MRI) and/or a poor

resolution (PET). Still, their applications remain limited to

medium- and large-size specimens. Therefore, there is a need

for an imaging technique able to provide real time information
on the metabolic and structural status of smaller tissues. In the

context of surgical resection of tumors, FT-IR imaging

appears as a promising technique to rapidly generate multi-

parametric information from biochemical events underlining

a pathological status [6,15], as exemplified in this study

by the tissue distribution of glucose and lactic acid in

tumors. Critical information on structural modifications of

macromolecules may also be obtained, as shown for the mea-

surement of fatty acyl chains peroxidation level. Thus, FT-IR

imaging may be developed into a valuable method for the ra-

pid detection of diagnosis and prognosis markers of malignant

diseases.
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Supplementary data associated with this article can be
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10.052.

http://dx.doi.org/10.1016/j.febslet.2007.10.052
http://dx.doi.org/10.1016/j.febslet.2007.10.052


5474 C. Petibois et al. / FEBS Letters 581 (2007) 5469–5474
References

[1] Pouysségur, J., Dayan, F. and Mazure, N.M. (2006) Hypoxia
signalling in cancer and approaches to enforce tumour regression.
Nature 441, 437–443.

[2] Gatenby, R.A. and Gillies, R.J. (2004) Why do cancers have high
aerobic glycolysis? Nat. Rev. Cancer 4, 891–899.

[3] Trachootham, D. et al. (2006) Selective killing of oncogenically
transformed cells through a ROS mediated mechanism by b-
phenylethyl isothiocyanate. Cancer Cell 10, 241–252.

[4] Schroeder, T., Yuan, H., Viglianti, B.L., Peltz, C., Asopa, S.,
Vujaskovic, Z. and Dewhirst, M.W. (2005) Spatial heterogeneity
and oxygen dependence of glucose consumption in R3230Ac and
fibrosarcomas of the Fischer 344 rat. Cancer Res. 65, 5163–5171.

[5] Ellis, D.I. and Goodacre, R. (2006) Metabolic fingerprinting in
disease diagnosis: biomedical applications of infrared and Raman
spectroscopy. Analyst 131, 875–885.
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