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Abstract 

The problem of generating "random" geometric objects is motivated by the need to generate test instances for 
geometric algorithms. We examine the specific problem of generating a random x-monotone polygon on a given 
set of n vertices. Here, "random" is taken to mean that we select uniformly at random a polygon, from among all 
those x-monotone polygons having the given n vertices. We give an algorithm that generates a random monotone 
polygon in O(n) time and space after O(K) preprocessing time, where n < K < n 2 is the number of edges of 
the visibility graph of the x-monotone chain of the given vertex set. We also give an O(n 3) time algorithm for 
generating a random convex polygon whose vertices are a subset of a given set of n points. Finally, we discuss 
some further extensions, as well as the challenging open problem of generating random simple polygons. 

"Anyone who attempts to generate random numbers by deterministic means 
is, o f  course, living in a state o f  sin." - -  John von Neumann 

1. Introduction 

In addition to being of theoretical interest, the generation of random geometric objects has ap- 
plications that include the testing and verification of time complexity for computational geometry 
algorithms. In order to have some control over the characteristics of the output, we would like to fix 
the vertex set and then generate uniformly at random a simple polygon with the chosen vertices. 

This paper details some results of our study of generating random simple polygons. In particular, 
we describe an algorithm for generating, uniformly at random, x-monotone polygons on a given set 
of n vertices. We also discuss the problem of generating random convex polygons whose vertices 
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are a subset of a given set of vertices and the problem of generating nested monotone polygons. We 
conclude with a brief discussion of generating random simple polygons, a problem that remains open. 

Others have considered generating random simple polygons by various processes that move vertices 
(e.g., [11]). When vertices are fixed, there are a couple of related works: Epstein and Sack [4] gave 
an O(n 4) algorithm to generate a triangulation of a given simple polygon at random. Meijer and 
Rappaport [8] studied monotone traveling salesmen tours and show that the number of  x-monotone 
polygons on n vertices is between (2 + V/'5) (n-3)/2 and (v/5)(n-2). 

2. Counting and random generation 

In this section, we establish an easy connection between the problem of counting the number of  
ways to complete a sequence (polygon) and the problem of randomly generating an instance of a 
sequence (polygon). We conclude that whatever one can count, one can generate uniformly at random. 

Given a set S = {Sl, SE, . . . ,Sn} of n elements our goal is to generate an ordered sequence, 
a = (~rl,...  ,¢rk) with ~ri E S, for 1 ~< i ~< k. Let S denote the set of all finite sequences, and let 
7 9 C S denote a given subset of sequences. We think of 79 as specifying a set of sequences having a 
certain property; e.g., if S is a set of n points in the plane, 79 may denote the set of sequences that 
correspond to the upper chain of some z-monotone n-gon having vertex set S. 

Let X E 79 be a random sequence. Then we say that sequence X is chosen uniformly at random 
(or, simply, "at random") from 79 if 

P ( X  = a) = if cr E 79; 

otherwise. 

We say that cr = ( a l , . . . ,  at) E S is an extension of sequence T = (71, . . . ,  Tk) E S if l /> k and 
ai = Ti for 1 ~< i ~< k. Given a sequence T = ( ' r l , . . . ,Tk)  E ,9, we let 79r denote the set of all 
sequences a = (am, . . . ,  at) E 79 that are extensions of T. Finally, let 0 denote the "empty" sequence; 
any sequence is an extension of 0. 

Consider the following incremental algorithm, which iteratively extends a sequence, with selection 
probabilities based on the counts on the number of feasible extensions of the sequence chosen so far. 
Let X0 = 0. Then, for i /> 1, select Xi  according to the conditional distribution 

{ 179 1 
P(Xi = a I X~-I = T) = ~ if a is an extension of ~-; 

0 otherwise. 

Since we consider only finite sequences, the algorithm must terminate with a sequence X = Xk E 79. 
It is an elementary consequence of conditional probability that this incremental procedure yields a 
random sequence. 

Lemma 2.1. The sequence X obtained by the incremental algorithm above is chosen uniformly at 
random from the set 79. 

Proof. Let X0, Xl . . . . .  X~ = X be the random variables and let a ° = 0,  cri . . . . .  a k be the k 
distinct sequences chosen in the incremental algorithm. By conditional probability, 
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P(Xk = 0 - k ) = p ( x k  = 0 -k [Xk- ,  = 0-k-,) × . . .  

× P (  X 2  = 0"2 [ X ,  = 0"1) X P ( X  1 = 0"1 I X 0  = 0 ) .  

But the algorithm gives 0"1,0"2..., 0"k according to the conditional probabilities given above, so we 
get, upon substituting that 

1 ' 21 1 _ [ _ _  1 
P ( X  = _ x . . . ×  x 17,0 -I 01 

where we have used the facts that [7~rk] = 1 (since 0-k E T ~) and 79 0 = T ~. [] 

The question that remains is how to extend subsequences with the indicated probabilities. This will 
be answered in specific cases throughout the rest of the paper. In general, we will establish recurrence 
relations to allow us to count ]7~1. In the next section, on monotone polygons, we explicitly work 
backwards through the counting recurrence to generate the polygon of a given number; the fact that the 
resulting polygon is chosen at random from the set of N possible polygons follows from establishing 
a bijection between the set of polygons and the integers { 1 , . . . ,  N}. In the case of convex polygons, 
we will generate the polygon incrementally using the conditional probabilities established in the above 
algorithm. The randomness of the resulting polygon will then follow directly from the lemma. 

We assume a Real RAM model of computation, in which arithmetic operations take constant 
time [12]. Because we may be counting exponentially many polygons, the more appropriate log- 
cost RAM increases the running time by a linear factor. The conditional probabilities approach reveals 
that it is the proportions, and not the exact counts, that are important. If one is lucky enough to have 
reducible fractions then storing the proportions may require fewer bits. 

3. Generating random monotone polygons 

Let Sn = {sl, 82, . . - ,  8r~) be a set of n points in the plane, sorted according to their z-coordinate. 
We assume in this section that no two points have the same :c-coordinates. We will generate uniformly 
at random a monotone polygon with vertex set Sn. "Monotone" in this paper will always mean 
z-monotone. 

Let Si = {sl, s 2 , . . . ,  si} for 1 <~ i ~< n. Any monotone polygon constructed from Si can be divided 
into two monotone chains--a top chain and a bottom chain as depicted in Fig. l - - fo r  which the 
leftmost vertex is sl and the rightmost vertex is si. Points Sl and si are on both chains; any other 
point in Si is on either the top or bottom chain. Let N(i) denote the number of monotone polygons 

2 , • 11 
.,~, ,"" '", 7 . . . . . .  0 . .  12 

i , "  ',3/" 0 " "  9 

• a 5 

Fig. 1. Monotone chains. 
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with vertex set Si. The number N(i)  will turn out to be the number of completions of subsequences 
of monotone polygons that go from 8i_ 1 to sn and back to si. 

For convenience, we frequently denote the line segment or polygon edge ~ by (i, j )  and the line 
by g(i,j). 

We generate a random monotone polygon by scanning Sn forward and counting all monotone 
polygons, then picking a random number and scanning backward to generate the polygon of that 
number. We show how to count monotone polygons in Section 3.1 and how to generate one at random 
in Section 3.3. Our algorithms depend on having the visibility graph of the monotone chain joining 
the vertices of Sn; this is discussed in Section 3.2. 

3.1. Counting completions to monotone polygons 

We begin by establishing a recurrence that counts the monotone polygons on Si in terms of those 
on Sj for j < i. 

Note that a monotone polygon with vertex set Si has edge (i - 1, i) as one of the two edges incident 
to si. Let 7-(i) be the set of monotone polygons with vertex set Si that have edge (i - 1, i) on their 
top chain and define the number of these polygons T(i) = IT(i)I. Similarly, let B(i) be the set of  
monotone polygons with vertex set Si that have edge (i - 1,i)' on their bottom chain and define 
B(i) = It (i)l. We will see that our recurrence actually counts T(i) in terms of B(j)  for j < i. We 
begin by noting the relationship between N(k),  T(k) and B(k) in Lemma 3.1. 

Lemma 3.1. For any point set Sk with k > 2, the number of monotone polygons with vertices Sk is 

N(k)  = T(k) + B(k).  (1) 

Proof. The sets 7-(k) and B(k) are disjoint and cover the set of monotone polygons on Sk, since each 
monotone polygon has the edge (k - 1, k) on either the top or bottom chain and only the degenerate 
two-vertex polygon has the edge on both chains. [] 

We say that a point si is above-visible from sk if i < (k - 1) and s~ is above the line g(j, k), for 
all points sj with i < j < k. Similarly, si is below-visible from sk if i < (k - 1) and s~ is below 
g(j, k), for i < j < k. In other words, if we treat the monotone chain on S,~ as an "obstacle", then si 
is above-visible (or below-visible) from sk if the two vertices are visible to each other, in the usual 
sense, and the segment ( i , j )  lies above (or below) the obstacle. Let Vy(k) be the set of points that 

5 
1 ~ 10 

6 8 ', 
16 

3 

Fig. 2. VT(12)  = {10} and VB(12)  = {7 ,9} .  
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Fig. 3. The original polygon and its set of completions B(j + 1). 

are above-visible from point sk, and let VB (k) be the set of points that are below-visible from point 
sk, as in Fig. 2. We can now count monotone polygons on Sk where both edges into sk are specified. 

Lemma  3.2. The number of polygons in T(k) that contain edge (j, k), for j E VB(k), is B(j  + 1). 
The number in B(k) that contain edge (j, k), for j E VT(k), is T(j  + 1). 

Proof. Let P(j, k) be the set of polygons in 7-(k) with (j, k) as a bottom edge, for j E VB(k). For 
the polygons in P(j, k), we know that points sj and sk are on the bottom chains, and S j + l , . . . ,  sk 
are on the top chains. So the path of sj, sk, sk-1, ~ sj+l is fixed. We can treat this path as an edge 
(j , j  + 1) that is on the bottom chain. Fig. 3 shows an example. Thus, IP(j,k)[ equals the number 
of monotone polygons generated from Sj+I with the edge (j , j  + 1) on the bottom chains, which is 
B(j  + 1). [3 

Theorem 3.3. For any point set Sk with k > 2, we have 

T(k)---- E B ( j + I ) ,  
j eVB(k)  

B(k) = E T(j  + I). 
jeVT(k) 

(2) 

(3) 

Proof. We prove formula (2). According to the definition of below-visible, the bottom edge (j, k) of 
any P E T(k) uses a point sj E VB(k). By Lemma 3.2 there are B(j + 1) monotone polygons having 
edges (k - 1, k) and (j, k). Therefore, we have )-']jeYB(k) B(j + 1) polygons in total. [] 

This theorem gives us a procedure to calculate T(n) and B(n) ,  assuming that we have VB(k) and 
VT(k). We can start with T(2) = B(2) = 1, since in the degenerate case of two vertices the line 
segment can be considered as the top and the bottom edge of a degenerate polygon. Then we use the 
recurrence to determine T(i) and B(i) for i := 3 to n. 

3.2. Computing visibility 

The counting in the previous section needed the above-visible and below-visible sets, VT(k) and 
VB(k) for k = 1 , . . .  ,n,  which comprise the visibility graph of the monotone chain on Sn. These 
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Fig. 4. Point set $5 and tree(5). 

sets can be constructed in time proportional to their total size by the output-sensitive algorithm of 
Hershberger [7], which works for arbitrary simple polygons. A closer look shows that these sets are 
needed in increasing order for one index i at a time, which allows us to compute them in O(n) 
space. Hershberger's algorithm can be simplified in our special case of a monotone chain, so we 
include details for completeness. We focus on VT(k) because the computation of VB(k) is analo- 
gous. 

Let Sk denote the monotone chain with vertices sl, s2, . , . ,  sk. If we think of Sk as a fence and 
compute the shortest paths in the plane above Sk from sk to each si with i ~< k, then we obtain a 
tree that is known as the shortest path tree rooted at sk [5,6], which we denote tree(k). The above- 
visible set VT(k) is exactly the set of children of sk in tree(k). Thus, we will incrementally compute 
tree(l),  . . . ,  tree(k) to get the above-visible sets. We compute VT(k) from VT(k - 1) by computing 
a shortest path tree tree(k) from tree(k - 1). The idea is the following. 

We represent a shortest path tree tree(k) (in which a node may have many children) by a binary tree 
in which each node has pointers to its uppermost child and next sibling. For each vertex j E [1, n], 
we have a record 

j: ptr  

upc 

sib 

p tr  stores the coordinates of vertex j ;  

pointer upc points to the upper child of j in tree(k); 

pointer sib points to the sibling of j in tree(k). 

The initial tree, tree(l),  has a single record with 1.ptr = sl, 1.upc = nil and 1.sib = nil. We assume 
that tree(i - 1) has been computed and call the procedure Make_top( i  - 1, i, trap) to calculate the 
tree(i). The upper child pointer i .upc will be set to tmp.sib. 

Make_ top( j ,  k, V a r  : lastsib) 
While j .upc # nil and k is above e(j.upc, j )  

Make_ top( j .upc ,  k, V a r  : lastsib); / ,  Make subtree for this child of j, which is visible from k. */ 
j .upc = j.upc.sib; / ,  Consider next child of j. */ 

End While 
lastsib.sib = j; / ,  Make the connection to j, one of the children of k. */ 
lastsib = j; 
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Let r be a record in tree(k). We define r.sib ° = r, and r.sib i = r.sib ~-1 .sib, for any integer i /> 0. 
Let CT-(k) be the set of points {j [ j = k.upc.(sib) ~ for i 7> 0}; these are the children of k in tree(k). 
We show, in the next theorem, that these are the only vertices visible from k. 

Theorem 3.4. The above-visible vertices VT( k ) = C T (  k ) - { k - 1 }. 

Proof. If VT(k) = @ then no point is above line g(k - 1, k). This means that there is no g(i, k - 1) that 
is below k. From Hake_ top ( ) ,  we know that C T ( k )  = {k - 1}, hence VT(k) = C T ( k )  - {k - 1}. 
Conversely, if C T ( k )  = {k - 1} then no g(i, k - 1) is below k for 1 ~< i < k - 1. So there exists no 
point that is above e(k - 1, k). Hence 

VT(k) : @ : C T ( k )  - {k - 1}. 

In the general situation, each j 6 VT(k) is above all e(i, k) for j < / < k. Thus, k is above all 
e(j, i) for j < i < k. Now we prove j = k.upc.(sib) i, for some / ~> 0. If there is no j '  6 VT(k) 
and j '  < j such that k is above e(j ' , j )  then j = k.upc. Otherwise, j = j ' .sib. Similarly this 
induction can be applied to j ' ,  that is, j '  = k.upc.(sib) ¢. Then we have j = k.upc.(sib) ¢+1. So 
VT(k) c_ CT(k) - {k - I}. 

For each j E CT"(k) - {k - 1} we know that j = k.upc.(sib) i. Then j is above all e(i ,k) ,  for 
j < i < k. Otherwise, there exists a point, say j ' ,  such that j '  > j and j is below e(j', k). Then 
e(j, k) is below e(j', k), which means that k is below e(j,j ') .  From Make_ top  0 we know that j can 
not be expressed as k.upc.(sib) i, for i /> 0. This contradiction proves that j is above all e(i, k), for 
j < / < k. Therefore j 6 VT(k) and we conclude that VT(k) D_ C T ( k )  - {k - 1}. We conclude that 
VT(k) = OT(k) - {k- I}. [] 

We observe that H a k e _ t o p  0 runs in time proportional to the number of edges that it finds, and 
thus that we can count T ( k )  and B(k) in time proportional to their sizes. 

Lemma 3.5. The runtime of  H a k e _ t o p ( k  - 1, k, V a r :  t) is O(IVT(k)l). 

Proof. Each call to Make_top() ,  except the first, implies that the calling procedure found a child of 
k. All other work in the procedure takes constant time per call. [] 

Corollary 3.6. Our algorithm determines T( i )  and 13(i), for  1 <<, i <<, n, using O(n) space and 
O(T(n)  + B(n) )  time overall. 

3.3. Generating monotone polygons uniformly 

Once we have T(i )  and B(i),  for all i ~< n, we can generate a monotone polygon on vertex set Sn 
uniformly at random using the conditional probabilities of Section 3.1. The G e n e r a t e ( )  algorithm 
extends a subsequence from right to left to generate a monotone polygon. It runs in O(n) time and 
space by constructing only a linear number of the visibility edges. 
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Generate(Sn) 
Pick x e [1, N(n)]  at random; 
Add sn to top_chain; 
Add Sn to bottom_chain; 
If x <~ T ( n )  

Add Sn-1 to top_chain; 
G e n e r a t e _ T o p ( n ,  x); 

Else 
x = x - T(n);  
Add sn-1 to bottom_chain; 
Generate_Bottom(n, x); 

Generate_Top(k, X) 
1. If k ~< 2 then Add sl to top_chain; return; 
2. sum = 0; i = t = k -  1; 
3. Loop / ,  Find partial sum >1 x. */  
4. i = i - 1 ;  
5. If si is below line/~(t, k) 
6. t = i; / ,  New visibility edge (i, k) , /  
7. sum = sum + B ( i  + 1); 
8. Until x <~ sum; 
9. Add si to bottom_chain; 
10. Add sk-2, sk-3, • • •, Si+l to top_chain; 
11. k = i + l ;  
12. x = x - (sum - B ( i  + 1)); 
13. G e n e r a t e . _ B o t t o m ( k ,  x) 

Generate_ToP0 and Generate_Bottom 0 a r e  two mutually recursive procedures. Generate_ 
Bottom() can be obtained from Generate_ToP0 by swapping "top"s and "bottom"s, "T"s and 
"B"s,  "above"s and "belows." 

G e n e r a t e _ T o P 0  completes a polygon sequence in which sk-1 is on the top chain and sk is on 
the bottom; thus, (k - 1, k) is an edge of the top chain in the completion polygon. It generates the 
edge of the completion that joins to sk with the appropriate probability by starting with a random 
integer x C [1 . . .  T(k)] and determining which partial sum has 

x <-G E B(j + 1). 
(j~VB(k))^0>~0 

These partial sums are evaluated starting with the high indices so that each point can be considered 
as the left endpoint of  a below-visible edge at most once. 

Theorem 3.7. Given T ( i )  and B ( i )  f o r  1 <. i <<. n, one can generate a monotone polygon on Sn 
uniformly at random in O(n)  time and space. 

Proof. We need to argue that the probabilities are correct and that the algorithm runs in linear time. 
We sketch the pieces of the induction that proves correctness. The initial computation in 

G e n e r a t e ( )  insures that x is chosen uniformly at random in [1 . . . T ( n ) ]  before calling 
G e n e r a t e _ T o p ( n ,  x). If we assume that x is chosen uniformly at random in [1 . . .  T(k)], then we 
know by Eq. (2) that there is an index i < k with 

B ( j + I )  < x <. B ( j + I ) .  
(dEVB(k))A(j>i) (jEVB(k))A(j>~i) 

The loop in lines 3-8 finds this index i by accumulating the partial sums whenever it finds a new 
visibility edge in VB(k). The final edge (i, k) is added to current sequence on the bottom chain and 
vertices are added to the top chain to catch up. Because x was chosen at random, this new sequence 
has the correct probability, B ( i  + 1 ) / T ( k ) .  The new value of x computed in line 12 also lies randomly 
in [ 1 . . . B ( i  + 1)]. 
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For the running time of a call G e n e r a t e _ T o p ( k ,  x), suppose that the loop in lines 3-8 is executed 
m times. Because rn >~ 1, the amount of work performed in lines 1-12 of the procedure is proportional 
to m. For the recursive call in line 13, k has decreased to k - m. Because the recursion bottoms out 
when k ~< 2, the total amount of work is linear. [] 

3.4. Generating nested monotone polygons 

We can modify our algorithm to generate, on a given vertex set Sn, a random x-monotone polygon 
that is nested inside another x-monotone polygon P.  All we need to change is the definition and 
computation of visibility. 

We say that si is below-visible from sk if i < (k - 1), the line segment (i, k) does not intersect 
the exterior of P ,  and s~ is below g(j, k), for i < j < k. Similarly, si is above-visible from sk if 
i < (k - 1), the line segment (i, k) does not intersect the exterior of P ,  and si is above e(j, k), for 
i < j < k .  

The visible sets VT(k) and VB(k) under this new definition of visibility can be computed both 
forward and backwards in time proportional to their size with a time and space overhead of O ( n +  IPI). 
The additional computation is essentially to compute the relative convex hull of P [5,13] and Sk up 
to the vertical line through the point sk. 

Theorem 3.8. One can count the monotone polygons having vertex set Sn that are nested inside a 
monotone polygon P in O(n + IPI) space and O(n + IPI + K)  time, where K is the total number 
of  above-visible and below-visible points. Thereafter, one can generate these polygons uniformly at 
random in O(n + IPI) time. 

Remark .  Note that there may be no polygon within P whose vertex set is Sn; in this case, our 
algorithm reports that none exists. 

4. Generating convex polygons 

Researchers have studied several ways to generate random convex polygons, including random 
point processes [14], random line processes [1,10], and Voronoi cells of random points [2,3]. These 
approaches, however, generate the polygon vertices at random; they do not allow one to influence the 
distribution by generating a random n-gon from a given set of n points. Of course, a given n points 
admit at most one convex n-gon. Thus, we consider the problem of generating at random a convex 
polygon from among all convex polygons whose vertex set is a subset of the given n points. 

Let S = {sl,  s 2 , . . . ,  Sn} be a set of n distinct points in the plane. We consider the problem of 
generating a random convex polygon whose vertices are from set S. If n />  3, there is always at least 
one convex polygon on S. Of course, for k > 3, there may not exist a convex k-gon determined 
by points S. (Consider the example of n /3  concentric, homothetic, equilateral triangles; there are no 
nondegenerate convex k-gons determined by the n comers, for k ~> 4.) It is known how to count the 
number of convex polygons determined by n points in time O(n 3) [9]. We now show how this leads 
to a polynomial-time algorithm for random generation of convex polygons. 

A convex k-gon P can be associated uniquely with the sequence a = ( a l , . . . ,  crk, or1), where ai E S 
(1 ~< i ~< k) are the vertices of P ,  and al is the vertex of P having minimum y coordinate. (Assume 
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for simplicity that no two points of S have the same y coordinate.) Let 79 denote the set of all such 
sequences, for all k ~< n. We explicitly append 01 to the end of 0 in order to discriminate between 
the sequence corresponding to the closed polygon (Ol , . . . ,  ak, a l )  and the sequence corresponding to 
the open convex chain (01 , . . . ,  ak), which may have a completion into a convex polygon with more 
than k vertices. 

Let us be specific about how the incremental construction method applies to this case. We begin 
with X0 = 0. We then select 01 E S according to the rule that P(al = s) = 1/L(s), where L(s) is 
the number of convex polygons with vertices among S, such that s E S is the lowest vertex. Thus, 
L(s) is the number of elements of 79 that are the completion of the one-element sequence (s). Next, 
we select 02 from among S \ {01 }, according to 

P(a2 = s )  - -  f ( a l , S ; a l )  
L(a l )  ' 

where f (p,  q; 01) is the number of convex chains from q to Ol that lie above tr 1 and to the left of the 
(directed) segment pq. We select 03 from among S \ {al, o2}, according to 

P(o3 = s) - f(o2,8;Ol) 
f (o l ,  0"2; o1)" 

Continuing, we select oi (for i ~> 4) from among S \ {o2, . . . ,  0i-1}, according to 

P(ai = s) = f ( a i - l , s ;a l )  
f (0i-2, a i - l ;  a l ) "  

Note that we allow ai to equal trl for i ~> 4, so that the polygon can close and the algorithm 
terminate. 

It remains to describe how to tabulate the functions L(s) and f(p, q; s). This is done in [9]; we 
include it here for completeness. Our discussion follows that of [9]. First, we define Hp,q to be the 
open halfplane that lies to the left of the directed line through pq. Next, we fix point s and we restrict 
ourselves to points of S that lie above s (in y coordinate). Now, visit points q E S (q ~ s) in clockwise 
order about s, evaluating 

rEHs,q 

and 

f(p,q;8) = 1 + ~ f (q ,r;s) .  
~eHp,q\Hq,, 

The justification of the expression for f(p,  q; s) is simple: in any convex chain joining q to s, lying 
left of pq, either we join q to s directly, thereby closing the polygon, or we join q to a point r that 
is left of pq and not left of qs. As written, these recursions can be evaluated in O(n) time for each 
choice of p, q, s, giving O(n  4) time overall. This can be improved by noting that, for fixed values of 
q and s, we can evaluate f(p,  q; s) incrementally for points p in clockwise order about q. Specifically, 
if the points are labelled P l ,P2 , . . .  in clockwise order about q (with pl being the first point hit by 
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rotating clockwise the ray from q in the direction opposite to s), then we can compute f(pi, q; s) from 
f (Pi-1, q; s) according to 

f(pi, q;s) = f (p i - l ,q;s )  + E f(q,r;s) .  
reHpi,q\Hni_t ,q 

The result is that, for the fixed choice of s, the values f(p, q; s) can be tabulated in O(n 2) time using 
O(n 2) storage. (It is also possible to decrease the storage space to O(n), at the expense of a factor 
of n in the running time. We omit details here.) Finally, we compute 

L(s) = E f ( s , q ; s ) ,  
q 

and store this value with point s. As we loop through all choices of s, the total time required is O(n3). 
To generate a random polygon, we select the bottom point, a l ,  and compute and store the values of 
f(p, q; al ) ;  this takes O(n 2) time and space. 

Theorem 4.1. After O(n 3) preprocessing on a set S of n points, one can in O(n 2) time generate 
uniformly at random a convex polygon whose vertices are among the points S. 

Remark .  Using similar recurrences and an extra factor of n in running time, one can compute the 
number of convex k-gons, for all 1 ~< k <~ n, that are determined by a given set of n points; see [9]. 
This leads to a method of generating random convex k-gons, for a given value of k, from among 
those determined by n points. 

5. Generating simple polygons 

In applications, we frequently want to generate random simple polygons. Unfortunately, the counting 
problem for simple polygons appears to be quite difficult. It is open whether or not one can compute 
the number of simple n-gons with a given vertex set in time bounded by a polynomial of n. 

One can, of course, generate permutations at random and check for simplicity. The worst-case 
for this approach occurs when the points are in convex position----only 2n of the n! permutations 
correspond to the convex hull, which is the only simple polygon. In general, for a given vertex set, we 
would like to count and to enumerate only those permutations that correspond to simple polygons. We 
know of no efficient enumeration procedure for simple polygons and no polynomial-time algorithm 
for counting the number of simple polygons on a given vertex set. 

One approach that leads to a polynomial-time algorithm is to generate a random permutation and 
then apply 2-opt moves to pairs of intersecting edges--removing two intersecting edges and replacing 
them with two non-intersecting edges so as to keep the polygon connected. One can observe that this 
replacement decreases total length and therefore converges to a simple polygon. (Indeed, this was a 
Putnam examination problem.) Van Leeuwen and Schoone [15] showed that at most O(n  3) of these 
"untangling 2-opt" moves can be applied, no matter in what order they are done; the geometric dual 
of their argument is a good example of the power of duality. Even though this approach does generate 
each possible simple polygon with some positive probability, it does not generate simple polygons 
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Fig. 5. Polygons obtained by "untangling 2-opt" for the given six vertices. The numbers are how many different polygons 
are obtained by rotating or reflecting the point set. 

uniformly at random: Some polygons in Fig. 5 have a single permutation that generates them, while 
others have several. 

One practical approximation method, suggested by one of the referees, is to start with a monotone 
simple polygon and apply some simplicity-preserving, reversible operations (including the identity) 
with the property that any simple polygon is reachable by a sequence of operations. Let d(P) be 
the number of operations applicable to polygon P.  If one randomly chooses an operation, then one 
obtains an ergodic Markov chain that converges to a stationary distribution where polygon P has 
probability proportional to d(P). After applying a large number of operations, therefore, one can 
accept the resulting polygon P with probability 1/d(P). It is interesting to study the complexity and 
convergence rates of different operations. 

6. Conclusion 

In this paper we have considered the problem of generating a polygon at random, using a given 
vertex set. This definition of "random polygons" separates the choice of vertex set from the choice 
of edges. As we have shown, the random generation problem is then intimately connected with the 
counting problem. 

For the special case of monotone polygons, we solve the counting and generation problems. Specif- 
ically, we have shown how to count and to generate, uniformly at random, the x-monotone polygons 
that have a given n-point set Sn as their vertices. Counting takes O(n) space and O(K)  time, where 
n < K < n 2 is the number of edges of the visibility graph of the monotone chain on Sn. After count- 
ing, generation takes O(n) space and time. This algorithm has been implemented using O(K)  space; 
it works well for small values of n, but requires extended precision when the number of polygons on 
a set exceeds the largest integer that can be stored. 

For the special case of convex polygons, we have given an O(n 2) algorithm (after a n  O(n 3) 
preprocessing step) for generating a random convex polygon whose vertices are among a given set 
of n points. 
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We also gave extensions to some related random generation problems. Our algorithm for monotone 
polygons generalizes to allow us to generate a random z-monotone polygon that is nested inside a 
given simple polygon P.  This is a useful feature in generating test instances for GIS algorithms on map 
data that consists of polygonal subdivisions with nesting faces. Other generalizations of our approach 
leads to polynomial-time methods to 
• Generate a random z-monotone polygon that has a given number k < n of vertices from the set S. 
• Generate multiply nested hierarchies of a constant number of nested monotone polygons. 
• Generate a random simple polygon whose boundary consists of at most a constant number of 

z-monotone chains using the vertex set S. 
In each of these generalizations, the principal idea is to set up recursions to count the number of 
feasible completions for the given restricted class of polygons. In each case, the fact that there is 
only a constant-size description of a partial polygon allows the counting to proceed, by recursion, in 
polynomial time and space. The exponent of the polynomial depends, of course, on the "constant." 
This fact makes many of these generalizations impractical in most cases. 

Finally, we have briefly discussed the difficulty of generating random simple polygons. It is a 
challenging open problem to determine if a polynomial-time algorithm exists to generate a simple 
polygon at random, from the set of all simple polygons on a given vertex set. 
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