
INFORMATION AND COMPUTATION 83, 245-263 (1989)

Decision Problems of Object Histories*

YONGKYUN CHO AND SEYMOUR GINSBURG

Computer Science Department, University of Southern California,
Los Angeles. Cal(fbrniu 90089-0782

In an earlier paper, a record-based computation-oriented data model was
introduced to describe historical data (here called “object history” and represented
by a sequence of “computation tuples”). The major construct in the model is a
computation-tuple sequence scheme (CSS), which specifies the set of all possible
“valid” histories for the object of interest. In subsequent papers, a number of
properties of the model were identified and studied in their own right. The present
investigation considers decision problems related to two of these properties, namely
“local” constraints and “bad-subsequence” constraints, as well as decision problems
for several set-theoretic relations concerning the sets of object histories described
by CSS. All of the decision problems considered are shown to be recursively
unsolvable. The technique employed in each case is to exhibit a special class of CSS
and use a reduction argument based on a known undecidable problem for context-
free languages. (1989 Academic Press, Inc.

INTRODUCTION

In Ginsburg and Tanaka (1986) a record-based computation-oriented
data model was introduced to describe historical data (here called “object
history” and represented by a sequence of “computation tuples”). The
major construct in the model is a computation-tuple sequence scheme
(CSS), which specifies the set of all possible “valid” histories for the object
of interest. In subsequent papers (Ginsburg and Tanaka, 1984; Ginsburg
and Gyssens, 1987; Ginsburg and Tang, 1986, 1989; Dong and Ginsburg,
1986), various properties of the model, in particular, projection, “local”
constraints, and “bad-subsequence” constraints, were investigated. From
time to time, various researchers, including a referee of Ginsburg and
Gyssens (1987), asked one of the authors about decision problems for
object histories. One such problem related to projection was discussed and
shown to be recursively unsolvable in Ginsburg and Tang (1986). The pur-
pose of the present paper is to consider decision problems related to local
constraints and bad-subsequence constraints, as well as decision problems

*This work was supported in part by the National Science Foundation under Grant
DCR-831-8752.

245
0890-5401/89 $3.00

Copynght :S 1989 by Academic Press. Inc
All rlghts of reproductmn in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82671677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

246 CHO AND GINSBURG

for several set-theoretic relations concerning the set of object histories
described by CSS.

To deal in a reasonable way with decision problems, we limit our
attention to those CSS in which every component is recursive. All the
decidability problems considered (except whether or not an arbitrary com-
putation-tuple sequence is valid) turn out to be recursively unsolvable.
Furthermore, our recursive unsolvability results are obtained for proper
subfamilies of CSS. None of the proofs is particularly profound, each being
based on reduction of a known unsolvable problem for context-free
languages.

The paper itself consists of live sections (besides this Introduction). The
first section reviews the object history model (for a simplified version).
Section 2 deals mainly with unsolvability results about equivalence and
inclusion of the sets of valid computation-tuple sequences determined by
CSS. Sections 3 and 4 establish unsolvability results related to CSS with
local constraints and bad-subsequence constraints, respectively. The last
section presents two open decision questions.

1. PRELIMINARIES

In this section, we review the model of “object histories” introduced in
Ginsburg and Tanaka (1986), to which the reader is refered for additional
details and examples.

Informally, an object history is a historical record of an object (such as
a person’s checking account, a company’s sales record of an item, etc.). An
object history is a sequence of occurrences, each occurrence consisting of
some input data and, possibly, some calculation. (For example, in a
checking account history, one occurrence might be, in part, the amount
to be deposited or withdrawn, together with the computation of the new
balance.) In the model, each object history is represented as a sequence of
tuples (over the same attributes), called a “computation-tuple sequence.”
A computation-tuple sequence scheme (abbreviated CSS) is a construct
which defines the set of all possible “valid” computation-tuple sequences.
(For example, a CSS for objects of the type “checking accounts” specifies
the set of all possible “valid” individual checking account histories.) A CSS
consists of:

(d 1) a set of attributes, partitioned into state, input, and evaluation
attributes, according to their roles;

(42) functions which calculate values for state and evaluation
attributes;

DECISION PROBLEMS 247

(43) semantic constraints whose satisfaction is to hold uniformly
throughout a computation-tuple sequence; and

(44) a set of specific computation-tuple sequences of some bounded
length with which to start a valid computation-tuple sequence, until all
state and evaluation functions can be applied.

As mentioned in the Introduction, our concern in this paper is with
certain decision problems. All of those considered here will turn out to be
recursively unsolvable. In establishing our results, we shall show that these
problems are unsolvable for CSS which have exactly one state attribute
and no evaluation attributes (and thus no evaluation functions). Further-
more, these problems are only meaningful within an environment in which
every component is recursive. Accordingly, the formal model we now
present is a special case of the more general one given in Ginsburg and
Tanaka (1986) in that there will be exactly one state attribute, no evalua-
tion attributes, no evaluation functions, and all given components will be
recursive.’

Turning to our simplified version of the model, Dom,m is an infinite set
of elements (called domain values) and U,, is an infinite set of symbols
(called attributes). For each A in U,, Dam(A) (called the domain of A) is
a recursive subset of Dom, of at least two elements. All attributes occur-
ring are assumed to be elements of U, .

Let X be a finite nonempty subset of U, and A,, A, some fixed listing
of the distinct elements of X. Then (X) denotes the sequence (written
without commas) A, . . . A, and Dom((X)) the Cartesian product
Dom(A,) x . . . x Dom(A,).

We now formalize the notions of occurrence and sequence of occurrences
as used earlier. (Instead of “occurrence” and “sequence of occurrences,” we
shall use the terms “computation tuple” and “computation-tuple
sequence.“)

DEFINITION. Let (U> be a sequence of attributes. A computation tuple
over (U) is an ordered pair ((U), u), or u when (U) is understood,
where u is an element of Dom((U)). A computation-tuple sequence over
(U) is a nonempty finite sequence of computation tuples over (U). The
set of all computation-tuple sequences over (U) is denoted by SEQ((U)).

Unless otherwise stated, u and u (possibly subscripted or primed) denote
computation tuples. Similarly, ii and V denote computation-tuple sequences.

Using the previous notation, we now formalize (Al) and (42).

’ We assume that the reader is familiar with the basic notions of recursive function theory,
as found, for example, in Hopcroft and Ullman (1979) and Machtey and Young (1978).

248 CHOANDGINSBURG

DEFINITION. A computation scheme (abbreviated CS) over (U) is a
triple %? = (A, (Z), fA), where

(i) (U) =,4(Z), with A in U and la nonempty subset of U- (A}.
A is called a state attribute and each element of I is called an input
attribute. (Given A and (I) = B, . . . B,, A(Z) = AB, .,. B,.)

(ii) fA is a partial recursive function (called a state function) from
Dom((U)) into Dam(A) such that { u[fA(u) is defined) is recursive.

We illustrate the above with the following:

EXAMPLE 1.1 (Apartment rental). Consider the sequences of rental
records for a particular apartment, each rental record consisting of the four
attributes SEQ-NO, DATE, TENANT, and AMOUNT. Each apartment
rental occurrence is represented as a 4-tuple u. Here, (a) u(SEQ-NO) is the
sequential number of the record; (b) u(DATE) is the year, month, and day
on which the record is being listed; (c) u(TENANT) is the name of the
tenant; and (d) u(AMOUNT) is the amount of the (monthly) rent received.
Also, Dom(SEQ-NO) is the set of positive integers, Dom(DATE) the
set of all date values in which the day of the month is either 1 or 152,
Dom(TENANT) the set of people names plus the value VACANT, and
Dom(AMOUNT) the set of nonnegative numbers. SEQ-NO is the state
attribute, and DATE, TENANT, and AMOUNT are input attributes.
Thus, (U) = A (I), where A = SEQ-NO and (I) = DATE TENANT
AMOUNT. The state function fSEQeNO is defined by fsEQeNO(u) =
u(SEQ-NO) + 1 for all u in Dom((U)).

The purpose of a computation scheme is to select those computation-
tuple sequences whose values for the state attributes are determined by the
corresponding state functions. More formally, we have:

Notation. Let %” = (A, (I), f.,) be a CS over (U). For each A in S, let

VSEQ(g) = { ui . . . u,inSEQ((U))Iuj(A)=f,(uiP,)foreachi,26i6m).

Thus, VSEQ(%?) is the set of computation-tuple sequences over (U)
“consistent” with the computation scheme. Note that VSEQ($?) is a recur-
sive set.

Turning to (43) we have

DEFINITION. A constraint c over (U) is a total recursive mapping from
SEQ((17)) into {true, false}. If a(c) = true, also denoted by il /= c, then ti

2 This domain is selected because later we insist that rent always be paid on either the 1st
or 15th of the month.

DECISION PROBLEMS 249

is said to satisfy (T. For each set C of constraints over (U), the set {ii in
SEQ((U)) (U + IJ for each (T in C} is denoted by VSEQ(.Z).

Note that each VSE,Q(a), as well as VSEQ(C), is a recursive set.
Without further limitations, constraints can permit highly pathological

situations. To avoid these undesirable cases and to retain the intuitive
feeling that intervals of history are also history in some sense, we restrict
ourselves to a class called uniform.

DEFINITION. A constraint 0 over (U) is uniform if u1 . . . u, k (T implies
ui . . . ui k fl for all u1 . . . u, in SEQ((U)) and all iand j, 1 <i,j<m.

Clearly, VSEQ(C) is interval closed if each CJ in Z is uniform.
Uniform constraints are natural, mathematically tractable, cover most

situations arising in practice, and eliminate many pathological cases.

EXAMPLE 1.1 (Continued). The conditions involved in the tenancy are
as follows. Rent is due once a month, always on the day of the month
(either the 1st or 15th) the current tenant took possesion of the apartment.
Because of rent control, rent for a continuing tenant cannot be changed
more than once every 12 months (by a variable percentage determined by
law). When a tenant vacates the premises, then the next tenant’s rent
becomes negotiable.

The above conditions translate into the following five constraints: For
each ii = II 1 . . . u, in SEQ((U)),

(a) ii k crl iff for each i, 1 <i-cm, ui+,(DATE) 2 ui(DATE), where
1 denotes calendar-wise ordering;

(b) ii /= ts2 iff for each i, 1 <i-cm, ui+ ,(TENANT) = ui(TENANT)
implies ui+ ,(DATE) = ui(DATE) 0 1 month, 0 denoting calendar-wise
addition;

(c) ii + (TV iff for each i, 1 < i 6 m, ui(TENANT) = VACANT implies
u,(AMOUNT) = 0;

(d) U k o4 iff there exist i and j, 1 6 i < j < m, such that
ui(AMOUNT) # ui+ ,(AMOUNT), uj(AMOUNT) # uj+ ,(AMOUNT),
ui(TENANT) = ui+ ,(TENANT) = ... = u,(TENANT) = u,+ ,(TENANT),
and j-i< 12; and

(e) ii F c5 iff there exist i and j, 1 < i < j < m, such that
ui(TENANT)#u;+l(TENANT), u;+,(TENANT)= ... =u,+,(TENANT),
uj+ ,(AMOUNT) # ui+ ,(AMOUNT), and j- i< 12.

Thus, u, requires the tuples to follow each other in calendar-wise order,
oz says that the tenant payments occur exactly one month apart, g3
declares that there is no rent money when the apartment is unoccupied, (TV

250 CHO AND GINSBURG

insists that no continuing tenant has the rent changed twice in any 12
month period, and os asserts that the rent stay fixed at least 12 months
after a tenant moves in. Clearly, each constraint is uniform.

Finally, we formalize (44), the notion of how to get started or “initializa-
tion,”

DEFINITION. Given a finite set C of uniform constraints over (U),
an initialization (with respect to C) is any recursive subset 9 of
VSEQ(Z) n Dom((V)). For each initialization 9, let VSEQ(9) =
9u {utilu in 9, U in SEQ((U))}.

Note that VSEQ(Y) is recursive.

EXAMPLE 1.1 (Continued). We shall assume that the apartment is
initially vacant. Thus, the initialization is

9= ((l,d, VACANT,O)jd in Dom(DATE)}.

Using the concepts already defined, we are now able to formalize the
fundamental notion of “computation-tuple sequence scheme.”

DEFINITION. A computation-tuple sequence scheme (abbreviated CSS)
over (U) is a triple T = (69, C, Y), where

(i) 5%’ is a computation scheme over (U);

(ii) C is a finite set of uniform constraints over (U); and

(iii) 3 is an initialization with respect to C.

A CSS determines a set of “valid” computation-tuple sequences as
follows:

DEFINITION. For each CSS T= (%, Z, 3) over (U),

VSEQ(7’) = VSEQ(%) n VSEQ(L’) n VSEQ(S).

A computation-tuple sequence is said to be valid (for 7’) if it is in
VSEQ(T).

Note that VSEQ(T) is recursive.

EXAMPLE 1.1 (Continued). A CSS for the apartment rental situation
is T= ((4 (0, .fA), { ol, 02, c3, 04, a,}, Y), where the individual com-
ponents are as already defined. One valid computation-tuple sequence is
given in Table I.

DECISION PROBLEMS 251

TABLE I

SEQ-NO DATE TENANT AMOUNT
-

1 l-15-85 Vacant 0
2 2-l-85 Jones 550
3 3-l-85 Jones 550
4 4-l-85 Jones 550
5 5-l-85 Vacant 0
6 5-15-85 Smith 575
I 6-15-85 Smith 515
8 7-15-85 Smith 575
9 8-l 5-85 Smith 575

10 9-15-85 Smith 515

SEQ-NO DATE TENANT AMOUNT

11
12
13
14
15
16
17
18
19
20

10-15-85 Smith 515
I l-15-85 Smith 515
12-15-85 Smith 515

l-15-86 Smith 575
2-15-86 Smith 515
3-15-86 Smith 515
4-15-86 Smith 515
5-15-86 Smith 603
6-l 5-86 Smith 603
l-15-86 Smith 603

2. SET-THEORETIC PROPERTIES

In this section, we consider the decision problems for the set-theoretic
properties of emptiness (non-emptiness), infiniteness, equivalence, and
inclusion. We shall establish the recursive unsolvability of these problems
by using reductions of known unsolvability results in context-free language
theory. 3

We start with the problems for emptiness (non-emptiness), infiniteness,
and non-empty finiteness. First though, we recall several well-known
results (Ginsburg, 1966; Harrison, 1978; Hopcroft and Ullman, 1979) from
formal language theory.

THEOREM 2A. (a) Each context-free language is recursive.

(b) It is recursively unsolvable to decide for an arbitrary context-free
grammar (CFG) G over an alphabet A of at least two elements whether or
not L(G) = A*.

(c) It is recursively unsolvable to determine for arbitrary CFG G, and
G2 over an alphabet A of at least two elements whether or not
UC,) n L(G2) = $2.

(d) It is recursively unsolvable to determine for arbitrary CFG G, and
G, over an alphabet A of at least two elements whether or not
L(G,) = L(G,), resp., L(G,) c L(G,).

3 We assume that the reader is familiar with the terminology and basic notions of context-
free language theory, as found, e.g., in Ginsburg (1966), Harrison (1978) and Hopcroft and
Ullman (1979).

643’83’2.9

252 CHOANDGINSBURG

THEOREM 2.1. It is recursively unsolvable to determine for an arbitrary
CSS T whether or not

(a) VSEQ(T) = $3;
(b) VSEQ(T) is infinite;

(c) VSEQ(T) is nonempty finite.

ProoJ: Let Dam(A) = { 1,2, 3, . ..} and &(u) = u(A)+ 1 for all u in
Dom((U)), U defined below.

Consider (a). Let A = {a, b } and (U) = AB, where Dam(B) = A*.4 For
each CFG G over A, let To = (%‘, {(TV}, 9) be defined as follows:

(i) g= (A, B, .A);
(ii) (TV is the constraint over (U) defined by VSEQ(o,) = { u1 . . . u,

in SEQ((U))jm>l and for alli, 16i6m, u,(B) is not in L(G)); and

(iii) 9 = Dom((U)) n VSEQ(a,).

By (a) of Theorem 2A and the fact that VSEQ(a,) = SEQ(AB’), where
Dom(B’) = A* - L(G), it follows that crG is recursive. Also, crc is obviously
uniform. Thus To is a CSS over (U). From the construction of T,, it is
readily seen that

(1) VSEQ(TG I= $3 iff L(G) = A*.

From (1) and (b) of Theorem 2A, (a) is recursively unsolvable.5
Consider (b). Let A = (a, b) and c be a new symbol. Let (U) = AB,

where Dom(B) = A* u (c}. For arbitrary CFG G, and G, over A, let
TG,G> = (q, ~G,G? >, 4) be defined as follows:

(iv) W = (A, B, A);

(v) VSEQ(ao, ~2)=Dom((U))u {ul . . . u,,inSEQ((U))/u,(B)isin
L(G,)nL(G,) for alli, 2<i<m, m32); and

(vi) Y= ((1, c)j.

Obviously, cc, G2 is a uniform constraint. Hence, To,,, is a CSS over <U).
Also, it is easy to see that

(2) VSEQ(TGIG2) is infinite iff L(G,) n L(G,) # @.

From (2) and (c) of Theorem 2A, (b) is recursively unsolvable.

4Consistent with the definition of a domain value, we regard each word in d* as a
distinguished symbol. This artifice is used throughout the paper.

5 Throughout this paper, we omit from the proofs the ordinary reduction arguments
standard in recursive function theory.

DECISION PROBLEMS 253

Finally, consider (c). Let TGIGZ be as in (b). Since (1, c) is in

VSEQ(T,,.,), VSEQ(T,,.,) # 0. BY (21, we have

(3) VSEQ(To, G2) is nonempty finite iff L(G,) n L(G2) = 0.

From (3) and (c) of Theorem 2A, (c) is recursively unsolvable. 1

Letting T, = T, = T, we immediately get

COROLLARY. It is recursively unsolvable to decide for arbitrary CSS
T, = (‘G!?‘, C,, #,) and T, = (%?, C,, &) whether or not

(a) VSEQ(T,) n VSEQ(T,) = 0;
(b) VSEQ(T,) n VSEQ(T2) is infinite;
(c) VSEQ(T,) n VSEQ(T,) is nonempty finite.

We now turn to the equality and containment problems between
VSEQ(T).

THEOREM 2.2. It is recursively unsolvable to decide for arbitrary CSS
T, = (%‘, C,, 9,) and T, = (%‘, C,, Yz) whether or not

(a) VSEQ(T,) = VSEQ(T2);

(b) VSEQ(T,) G VSEQ(T,).

Proof Let A, B, and fA be as in (a) of Theorem 2.1, and let (U) = A B.
For each CFG G over A, let T, = (59, {a,}, 9) be defined as follows:

(i) g=M B,f,);
(ii) VSEQ(a,) = { u1 . . . u, in SEQ((U))l ui(B) is in L(G) for all i,

1 <i<m, m>, l}; and

(iii) 4 = Dom((U)) n VSEQ(a,).

It is obvious that To is a CSS over (U) for each CFG G. It is also clear
that, for arbitrary CFG G, and Gz over A,

(1) VSEQ(T,,)=VSEQ(T,,) iff L(G,)=L(G,), and

(2) VSEQ(T,,) c VSEQ(To,) iff L(G,) c L(G,).

The recursive unsolvability of (a) and (b) then follows from (1), (2), and
(d) of Theorem 2A. 1

3. LOCAL Css

In this section, we focus our attention on decision problems related to
the special class of uniform constraints called “local.” We start by recalling
some notions.

254 CHO AND GINSBURG

DEFINITION. A constraint e over (U) is k-local (k 2 1) if, for all U of
length at least k, U k rr iff V k e for all intervals V of U of length k. That
is, for all U= U, . . . u,, m>k, Uk c iff u~...u~+~-, b cr for eachi,
1 < i 6 m -k + 1. A constraint is local if it is k-local for some k.

k-local constraints are important for two reasons:

(1) Many real-life constraints are of this type. In particular, for the
constraints in Example 1.1, rri and o2 are 2-local, ran is l-local, and c4 and
c5 are 13-local. See Ginsburg and Tanaka (1986); Ginsburg and Gyssens
(1987); Ginsburg and Tang (1986); Dong and Ginsburg (1986) for more
examples. One major exception is most functional dependencies.

(2) They have the property that satisfaction by a computation-tuple
sequence under addition of a computation tuple can be maintained by
merely examining satisfaction of the last k tuples in the new sequence. That
is, suppose (r is k-local and 11 = U, . . . u,, m > k, satisfies rs. Then, Uu satisfies
0 iff zfmpkfZ .,. U,U satisfies 0.

DEFINITION. A set Z of constraints over (U> is k-local (resp. local), if
each constraint in .Z is k-local (resp. local). A CSS T= (%, .L’, 9) is k-local
(resp. local), if Z is k-local (resp. local).6

It is known (Ginsburg and Tanaka, 1986) that if e is k-local, then it is
k’-local for all k’ 2 k. Thus, a finite set C of local constraints is k-local for
some k. The set of constraints in Example 1.1 is 13-local.

Prior to considering decision problems related to localness, note that the
unsolvability results in Section 2 (i.e., Theorem 2.1 and its corollary and
Theorem 2.2) still hold if the CSS are restricted to local CSS. Indeed, all
the constraints arising in their proofs are 2-local.

We now turn to the results of Section 3. Our first theorem considers the
decision problems for T being local.

THEOREM 3.1. It is recursively unsolvable to decide for an arbitrary CSS
T whether or not

(a) T is k-local for some given k >, l;?

(b) T is local.

Proof Let A and fA be as in Theorem 2.1. Let A = {a, b} and c and d

6 In the more extended version of a CSS T= (U, .E, $a), that is, the one including evaluation
attributes and evaluation functions, one has the extended notion of T being (k,, k,)-local if
k, is greater than the “rank” of %? and Z is k2-local.

‘The version for (a) in the extended model becomes “T is (k,. k,)-local for given k, and
k,.” The proof for the simpler model also holds for the extended model.

DECISION PROBLEMS 255

be two new symbols. Let (U) = AB, B,, where Dom(B,) = A* u {c) and
Dom(B,) = A* u {d}. F or arbitrary CFG G, and Gz over A, let TG,02 =

w5 bG,Gz }, 9) be defined as follows:

(if %‘=(A, B,&,f,L
(ii) VSEQ(a,,,2) = {u, . . . u, in SEQ((U)) (for all i and j,

1 <i,.j<m, m> 1, u,(B,) is in L(G,)u {c}, uj(B2) is in L(G,)u (d}, and
ui(B,) f u,(&)}; and

(iii) .P=Dom((U))nVSEQ(a,,.2).

Obviously, T,, o2 is a CSS over (CJ).
We first note that

(1) if L(G,) n L(G,) = /21, then Tc,oz is l-local (and thus k-local for
all k > 1);

(2) if L(G,) n L(G,) # (21, then TGIGZ is not local; and

(3) TG,G~ is local iff L(G,) n L(G,) = 0.

Clearly (1) is true, and (3) follows from (1) and (2). Consider (2). Suppose
L(G,)nL(G,)# 0, say w is in L(G,)nL(G,). Assume CJ~,~? is local, say
k-local for somek. Let U=U,...U~+~, where ~~=(l,w,A), uk+,=
(k + 1, c, w), and u, = (i, c, d) for all i, 1 < i< k. Then, 6 + eCIG2 for each
interval V of ti of length k. However, ii k oGIG2 (since u,(B,)=
uk + ,(B,) = w), a contradiction. Thus, cG,G2 is not local, whence T,,,, is
not local.

From (l), (2), and (c) of Theorem 2A, it follows that (a) is recursively
unsolvable. Similarly, the recursive unsolvability of (b) follows from (3)
and (c) of Theorem 2A. 1

Our next result shows the recursive unsolvability for finding the
smallest k for which a local CSS is k-local.

THEOREM 3.2. For each k > 2, it is recursively unsolvable to decide for an
arbitrary k-local CSS T whether or not there exists some k’, 1 <k’ <k, such
that T is k’-local.

Proof: Let A and fA be as in Theorem 2.1. Let A = (a, b), c and d be
two new symbols, and k 2 2. Let (U) = AB, where &m(B) = A* u (c, d}.
For arbitrary CFG G, and G, over A, let TG,G2L (abbreviated TGIGZ) =

(%t b,G2k }, 9jj) (abbreviated (%, {c G,CZ}, .a)), be defined as follows:

ii) V= (A, B, fA);

(ii) VSEQ(oG,,2)= {U] . . . u, in SEQ((U))lfor eachi, 16i<m, if
ui(A)=Omod k, then ui(B) is in L(G,)u {c) and u,(B)#u,(B) for eachj,

256 CHOANDGINSBURG

i~j,<min{i+k-1,m};ifui(A)#Omodk,thenui(B)isinL(G,)u{d}};
and

(iii) 9 = Dom((V)) n VSEQ(a,,.,).

It is readily seen that To,02 is a k-local CSS. It is also readily observed
that

(1) If UC,) n L(Gd = 0, then cGlG2 is l-local and thus k’-local for
all k’ 3 1; and

(2) If L(G,)nL(G,) # 0, then there is no k’, 1 < k’<k such that
oGIG2 is a k’-local.

Indeed, (1) is clearly true. Consider (2). Suppose L(G,) n L(G,) # 0. Then
there exists a word MI in L(G,) n L(G,). Let II = u1 . . . uk, where u1 = (1, w),
uk = (k, w) and uj = (i, d) for all i, 1 < i < k. Each interval of length k - 1 of
U is in VSEQ(a,,&. H owever, U does not satisfy gGIGZ, since u,(B) =
uk(B) = W. Hence, o&G2 is not (k - 1)-local, and therefore not k’-local for
all k’ <k, i.e., (2) holds.

From (i), (2), and (c) of Theorem 2A, the theorem holds. 1

COROLLARY. It is recursively unsolvable to determine for arbitrary k > 2
and k-local CSS T whether or not there exists some k’, 1 ,< k’ <k, such that
T is k’-local.

It is known (Ginsburg and Tanaka, 1986) that there exist CSS
T= (%, ,Z’, 9) and T’= (%?, X’, 9) such that T is not local, T’ is local, and
VSEQ(T) = VSEQ(T’). Such a situation is of interest for design considera-
tions because of the ease of maintaining validity of computation-tuple
sequences for local CSS. This leads to the following:

DEFINITION. A CSS T= (U, Z, Y) is said to be k-locally representable,
k > 1 (resp. locally representable) if there exists a k-local (resp. local) CSS
T’ = (U, C’, 9) such that VSEQ(T’) = VSEQ(T).

Given a CSS, it would be helpful for design purposes to know if the CSS
is (k-)locally representable. Unfortunately, as we now show, the problem is
recursively unsolvable.

THEOREM 3.3. It is recursively unsolvable to decide for an arbitrary
CSS T whether or not

(a) T is k-locally representable for given k 2 1;

(b) T is locally representable.

Proof Let To,,, = (U, { rrclc,), 9) be the same as in the proof of
Theorem 3.1. We claim that

DECISION PROBLEMS 257

(1) If L(G,)nL(G,)=a, then TGIG2 is l-locally representable (and
thus k-locally representable for all k 3 1); and

(2) If L(G,)n L(G,) # 0, then there is no k> 1 such that TGIG2 is
k-locally representable.

Consider (1). Suppose L(G,) n L(G,) = 0. Then, T,,., is l-local. Hence,
T G,GZ is l-locally representable. Consider (2). Suppose L(G,) n L(G,) # 0,
say w is in L(G,) n L(G,). Assume TGIG2 is k-locally representable for some
k > 1. Then there exists a CSS T&Gz= (%, Z&,>, 9) such that

(3) C&(;z is k-local, and

(4) VSEQ(T~,.,)=VSEQ(T,,.,).
Let U = 24, . . . uk + , , where u,=(l,~,d), uk+i=(k+l,c,W), and u,=
(i, c, d) for ail d, I < id k. Clearly,

(5) U is in VSEQ(%),

(6) U is in VSEQ(Y), and

(7) U is not in VSEQ(TGIG2).

For each interval U of U of length k, V is in VSEQ(T,,.,). By (4), each 0 is
in VSEQ(T& L;2) and therefore in VSEQ(&,,& By (3),

(8) U is in VSEQ(Z&&

BY (5), (61, and @I,

(9) U is in VSEQ(T&.,).

From (7) and (9) we have

VSEQ(T&,,) #VsEQ(T,,,,),
which contradicts (4). Hence, there is no k 2 1 such that T is k-locally
representable.

Now consider (a). By (1) and (2), TGlG2 is k-locally representable for
given k 2 1 iff L(Gi) n L(G,) = 0. By (c) of Theorem 2A, (a) is recursively
unsolvable. Consider (b). From (1) and (2), T,,,, is locally representable
iff L(Gl)n L(G,)= 0. Hence, by (c) of Theorem 2A, (b) is recursively
unsolvable. 1

In passing, we note that for each k2 2, it is recursively unsolvable to
decide for an arbitrary k-locally representable CSS T whether or not there
exists some k’, 1 < k’ <k, such that T is k’hcally representable, Indeed, let

T G,C2k = w3 bG,G2k }, Y) be the same as in the proof of Theorem 3.2. An
argument similar to that in Theorem 3.3 shows that for each k > 2, T,,,.,
is k’-locally representable for some k’, 1 < k’ < k, iff L(G,) n L(G,) = 0.
The standard reduction argument then yields the stated result.

258 CHOANDGINSBURG

4. BAD SUBSEQUENCE CSS

In this section, we consider decision problems related to the notion of
bad subsequence constraints, a class of constraints considered extensively
in Ginsburg and Gyssens (1987). We start with some relevant concepts.

DEFINITION. For each recursive set 6@~ SEQ((U)), let c(g) be the
constraint over (U) defined by U + c(g) if there is no V in B such that
V is a subsequence of U. A constraint (T is a bad subsequence constraint if
VSEQ(o) =VSEQ(c(g)) for some 9. A bad subsequence constraint 0 is
k-bounded, k2 1, if VSEQ(a) = VSEQ(c(&Y)) for some a such that the
length of V is at most k for all V in g. A bad subsequence constraint is bounded
if it is k-bounded for some k.

The class of bad subsequence constraints is quite extensive. It includes
oL and ~~ of Example 1.1, these being 2-bounded and l-bounded,
respectively.8 [In particular, 0, = c(%?i) and g3 = c(?&), where .65?, =
{~,u*Iu,(DATE) 7 u,(DATE)} and $+&= juIu(TENANT)=VACANT
and #(AMOUNT) #O}.] Other examples of (bounded) bad subsequence
constraints are all functional dependencies (Ginsburg and Gyssens, 1987).
More generally, each equality generating dependency (Beeri and Vardi,
1984), defined in any of several different ways to take into account the
order between the computation tuples in a computation-tuple sequence, is
a (bounded) bad subsequence constraint. Similarly, order dependencies
(Ginsburg and Hull, 1983) are (2-bounded) bad subsequence constraints.

Applying these concepts to a CSS, we get

DEFINITION. A CSS (%, L’, 9) is a (k-bounded, bounded resp.) bad sub-
sequence CSS, abbreviated k-bounded (resp. bounded) b-CSS, if C is a set
of (k-bounded, bounded, resp.) bad subsequence constraints.

Our first major result in this section concerns the unsolvability of deter-
mining each of the above types of CSS.

THEOREM 4.1. It is recursively unsolvable to decide for an arbitrary
(local) CSS T whether or not

(a) T is a b-CSS;

(b) T is a k-bounded b-CSS for given k 2 1;

(c) T is a bounded b-CSS.

Proof. Let d = (a, b), c and d be new symbols, and (U> = AB, where

slt is easily seen that g2, o,,, and o5 are not bad subsequence constraints

DECNON PROBLEMS 259

Dam(A)= {1,2} and Dow(B) = A * u {c, d}. For arbitrary CFG G, and
G, over A, let TGIGZ= (V, {cr G,G2), 9) be defined as follows:

(i) %= (A, B, fA), where ,fa(u)= 1 if u(A)=2 and fA(u)=2 if
u(A) = 1;

(ii) VSEQ(aG, cz)={u,...u,)l<‘< ,r,m and 1 <jdm- 1, u,(B) is in
L(G,)w {c} if u,(A)= 1, ui(B) is in L(G,)u {d) if u,(A)=2, and
u,(B)fu,+,(B) if u,(A)Zuj+,(A)); and

(iii) 9 = Dom((U)) n VSEQ(a,,Gz).

Then TGIGI is a (local) CSS. We first show that

(1) rrclGz is a l-bounded bad subsequence constraint if L(G,) n
L(GJ = 0; and

(2) gGIG2 is not a bad subsequence constraint if L(G,) n UC,) # 0.

Indeed, suppose that L(G,) n L(G,) = 0. Then VSEQ(a,,,,) =
VSEQ(4~G,G2)), where

9 .,.z={uinDom((U))(u(A)=landu(B)isnotinL(G,)u(cf)

u {U in Dom((U)) I u(A) = 2 and u(B) is not in L(G,) u id)}.

Thus, (1) holds. Now suppose L(GI) n L(G,) # 0. Let u’ be a word in
L(G,) n L(G,), ii = (1, w)(2, d)(l, c)(2, w), and V= (1, w)(2, w). Suppose
that cGIG2 is a bad subsequence constraint, i.e., there exists a subset
?a G,@ E SEQ((U)) such that VSEQ(a,,,,) = VSEQ(C(~~,~~)). Two cases
arise.

(a) 6 is in aGIGZ. Clearly, U is in VSEQ(CJ,,.~). Thus, U is in
VSEQ(C(~G,~~)). Since V is a subsequence of 17, 6 is not in 3JacIG2 (by defini-
tion of c(&&,G,)), a contradiction,

(p) V is not in WC,.,. Clearly, 17 is not in VSEQ(a,,.,). Hence, V is
not in VSEQ(C(~~,.~)). By definition of c(~~,~~), at least one subsequence
of 73 is in gGIGI. Since both (1, w) and (2, w) are in VSEQ(cr,,& =
VSEQ(c(3YG,.,)), neither (1, w) nor (2, w) is in gGIG2. Thus, (1, w)(2, w) = v
is in sG,Gz, a contradiction.

Since both cases yield contradictions, (~c,~~ is not a bad subsequence
constraint, and (2) holds.

From (1) and (2) it is obvious that

(3) TG,G2 is a b-CSS iff L(G,) n L(G,) = 0;

(4) TG,G~ is a k-bounded b-CSS for given k 3 1 iff L(G,) n
L(G,) = 0; and

(5) T,,,, is a bounded b-CSS iff L(G,)nL(GZ)= 0.

260 CHO AND GINSBURG

Standard reduction arguments involving (3), (4), (5), and (c) of
Theorem 2A yield (a), (b), and (c) of the theorem. 1

Analogous to Theorem 3.2, our next result shows the recursive
unsolvability for finding the smallest k for which a bounded b-CSS is
k-bounded.

THEOREM 4.2. For each k 3 2, it is recursively unsolvable to decide for an
arbitrary k-bounded b-CSS T whether or not there exists some k’, 1 ,(k’ < k,
such that T is a k’-bounded b-CSS.

ProoJ: Let A and fA be as in Theorem 2.1. Let A = {a, b} and
(U> = AB, where Dam(B) = A*. For each k 3 2 and each CFG G over A,
let T, = (%, { ack >, Yk) be defined as follows:

(i) %'= (A, B, fA);
(ii) VSEQ(a,,)={u,...u,Ifor eachi, l<idm, u,(B) is in

A* -L(G), and there is no jl, j,, 1 < j, < ... < j, 6 m, such that
u,,(B) = . . . = u,,(B)}; and

(iii) 9, = Dom((U)) n VSEQ(a,,).

Clearly, TGk is a CSS. And TGk is a k-bounded b-CSS, since
aGk = c(aGk), where

&&= {uinDom((~))(u(B)iSin~(G)}u(u,...uk~u,(B)= ... =2&(B)},

We shall see that

(*) TGk is a k’-bounded b-CSS for some k’, 1 <k’ < k, iff L(G) = A*.

By the standard reduction argument employing (b) of Theorem 2A, (*)
implies the theorem.

Suppose L(G) = A *. Then VSEQ(a,,) = @ and aGk = c(91kk), where
58kk = Dom((u)). Hence, TGk is a l-bounded b-CSS. Now suppose
L(G)#A*, say w is in A * - L(G). Assume that TGk is a k’-bounded b-CSS
for some k’, 1 <k’ <k. Then there exists a k’-bounded @gk -C SEQ((U>)
such that aGk = c(?&&). Let U = (1, w) ... (k, w). Since ii does not satisfy
aGk, at least one subsequence of U is in a&. However, each subsequence
U’ of U, Is # U, satisfies aGk, and thus is not in 99Lk. Therefore, U must be
in agk. This is a contradiction, since the length of ii is k and g&k is
k’-bounded for some k’ <k. Hence, there is no k’, 1 <k’ < k such that Top
is k’-bounded, and (*) is established. m

The same decision problem for an arbitrary local k-bounded b-CSS can
be shown to be recursively unsolvable by slightly modifying aGk given
above. We omit the details.

DECISION PROBLEMS 261

Analogous to applying the concept of a local CSS to define local
representability, we now use the notion of a b-CSS to obtain
b-representability.

DEFINITION. A CSS T= (‘%, Z;, X) is (k-bounded, bounded, resp.)
b-representable if there exists a CSS T’ = (%?, Z’, 4) such that T’ is a
(k-bounded, bounded, resp.) b-CSS and VSEQ(T’) = VSEQ(T).

The next theorem establishes the unsolvability of b-representability.

THEOREM 4.3. It is recursively unsolvable to decide for an arbitrary
(local) CSS T whether or not

(a) T is b-representable;

(b) T is k-bounded b-representable for given k b 1;

(c) T is bounded b-representable.

Proof. Let TGIGZ be as in the proof of Theorem 4.1. We will show that

(1) Tc,cz is b-representable iff t(G,) n L(G,) = @;

(2) Tc,c> is k-bounded b-representable for given k >, 1 iff L(G,) n
L(G,) = a; and

(3) Tc,cz is bounded b-representable iff L(G,) n L(G2) = 0.

Then by (c) of Theorem 2A and standard reduction arguments, (a), (b),
and (c) follow.

In view of the proof of Theorem 4.1, it suffices to show the “only if”
parts.

Suppose that L(G,)nL(G,)#@. Let w be a word in L(G,)nL(G,),
U= (1, w)(2, d)(l, c)(2, w) and V= (1, w)(2, w). Clearly,

(4) U is in VSEQ(TGIG2),

(5) V is in VSEQ(%) n VSEQ(S), and

(6) U is not in VSEQ(T,,.,).

SuPPose T, , G* is b-representable. Then there exists T&o2 = (%I?, {D&~~}, 9)
such that c&G2 = C(~;,G>) for SOme &&,G? s SEQ((u)) and

(7) VSEQ(T;;,.,) = VSEQ(T,,,,).

BY (6) and (7),

(8) 17 is not in VSEQ(T&.,).

BY (5) and (8),

(9) V is not in VSEQ(U&.~).

262 CHO AND GINSBURG

Thus, at least one subsequence of U is in ?#k,G2. Since each subsequence of
15 is also a subsequence of U, it follows that U does not satisfy ~(a;,~~) =
IT&~~. Thus, U is not in VSEQ(r&.,) = VSEQ(T,,.,), which con-
tradicts (4). Therefore, T,, c2 is not b-representable and (1) holds.

Consider (2). By (1) it follows that

(10) If L(G,) n L(G,) # 0, then there is no k > 1 such that T,,., is
k-bounded b-representable.

By (lo), (2) holds.
Finally, (3) obviously holds by (10). m

We note in passing that for each k B 2, it is recursively unsolvable to
decide for an arbitrary k-bounded b-representable CSS T whether or not
there exists some k’, 1 6 k’ <k, such that T is k’-bounded b-representable.
Indeed, given k let T,, be as in the proof of Theorem 4.2. It can readily be
shown that TGL is k’-bounded b-representable for some k’, 1 6 k’ <k,
iff L(G) = d *. The asserted result then follows by the usual reduction
argument employing (b) of Theorem 2A.

5. CONCLUSIONS

We have shown that a number of decision problems about object
histories are recursively unsolvable. Furthermore, the computational com-
plexity of each of the components in the established CSS is very simple,
namely, polynomial time bounded. (This follows from the fact that the
recognition problem for context-free languages is polynomial time bounded
(Harrison, 1978; Hopcroft and Ullman, 1979))

We conclude by stating two open decidability questions of a philosophic
nature:

(1) The CSS constructed in our proof tend toward the artificial. Can
one find “natural” examples (in the sense of arising in real-life situations)
of CSS for which the decidability questions are still unsolvable?

(2) Can one find a “natural” class of CSS for which (some of) the
decision problems are solvable?

RECEIVED May 19, 1987; ACCEPTED February 1, 1989

REFERENCES

BEERI, C., AND VARDI, M. Y. (1984). Formal systems for tuple and equality generating
dependencies, SIAM J. Cornput. 13, 76-98.

DECISION PROBLEMS 263

DONG, G., AND GINSBURG, S. (1986), “Localizable Constraints for Object Histories,” Techni-
cal Report TR-86-217, Computer Science Dept., University of Southern California.

GINSBURG, S. (1966) “Mathematical Theory of Context-Free Languages,” McGraw-Hill,
New York.

GINSBURG, S., AND GYSSENS, M. (1987), Object histories which avoid certain subsequences,
Inform. and Comput. 73, 174206.

GINSBURG. S., AND HULL, R. (1983). Order dependency in the relational model, Theoret.
Comput. Sci. 26, 149-195.

GINSBURG, S., AND TANAKA, K. (1986) Computation-tuple sequences and object histories,
ACM Trans. Database Systems 11, 186212.

GINSBURG. S.. AND TANAKA, K. (1984) Interval queries on object histories, in “Proceedings.
of the 10th International Conference on Very Large Data Bases,” pp. 2088217.

GINSBURG, S., AND TANG, C. (1986), Projection of object histories, Theoret. Comput. Sci. 48,
297-328.

GINSBURG, S., AND TANG, C. (1989) Cohesion of object histories, Theoret. Compuf. Sci. 63,
63-90.

HARRISON, M. (1978). “Introduction to Formal Language Theory,” AddisonWesley.
Reading, MA.

HOPCROFT, J., AND ULLMAN. J. D. (1979), “Introduction to Automata Theory, Languages,
and Computation,” Addison-Wesley, Reading, MA.

MACHTEY, M., AND YOUNG. P. (1978) “An Introduction to the General Theory of
Algorithms,” North-Holland, Amsterdam.

Primed WI Belgium

