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In an earlier paper, a record-based computation-oriented data model was 
introduced to describe historical data (here called “object history” and represented 
by a sequence of “computation tuples”). The major construct in the model is a 
computation-tuple sequence scheme (CSS), which specifies the set of all possible 
“valid” histories for the object of interest. In subsequent papers, a number of 
properties of the model were identified and studied in their own right. The present 
investigation considers decision problems related to two of these properties, namely 
“local” constraints and “bad-subsequence” constraints, as well as decision problems 
for several set-theoretic relations concerning the sets of object histories described 
by CSS. All of the decision problems considered are shown to be recursively 
unsolvable. The technique employed in each case is to exhibit a special class of CSS 
and use a reduction argument based on a known undecidable problem for context- 
free languages. ( 1989 Academic Press, Inc. 

INTRODUCTION 

In Ginsburg and Tanaka (1986) a record-based computation-oriented 
data model was introduced to describe historical data (here called “object 
history” and represented by a sequence of “computation tuples”). The 
major construct in the model is a computation-tuple sequence scheme 
(CSS), which specifies the set of all possible “valid” histories for the object 
of interest. In subsequent papers (Ginsburg and Tanaka, 1984; Ginsburg 
and Gyssens, 1987; Ginsburg and Tang, 1986, 1989; Dong and Ginsburg, 
1986), various properties of the model, in particular, projection, “local” 
constraints, and “bad-subsequence” constraints, were investigated. From 
time to time, various researchers, including a referee of Ginsburg and 
Gyssens (1987), asked one of the authors about decision problems for 
object histories. One such problem related to projection was discussed and 
shown to be recursively unsolvable in Ginsburg and Tang (1986). The pur- 
pose of the present paper is to consider decision problems related to local 
constraints and bad-subsequence constraints, as well as decision problems 

*This work was supported in part by the National Science Foundation under Grant 
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for several set-theoretic relations concerning the set of object histories 
described by CSS. 

To deal in a reasonable way with decision problems, we limit our 
attention to those CSS in which every component is recursive. All the 
decidability problems considered (except whether or not an arbitrary com- 
putation-tuple sequence is valid) turn out to be recursively unsolvable. 
Furthermore, our recursive unsolvability results are obtained for proper 
subfamilies of CSS. None of the proofs is particularly profound, each being 
based on reduction of a known unsolvable problem for context-free 
languages. 

The paper itself consists of live sections (besides this Introduction). The 
first section reviews the object history model (for a simplified version). 
Section 2 deals mainly with unsolvability results about equivalence and 
inclusion of the sets of valid computation-tuple sequences determined by 
CSS. Sections 3 and 4 establish unsolvability results related to CSS with 
local constraints and bad-subsequence constraints, respectively. The last 
section presents two open decision questions. 

1. PRELIMINARIES 

In this section, we review the model of “object histories” introduced in 
Ginsburg and Tanaka (1986), to which the reader is refered for additional 
details and examples. 

Informally, an object history is a historical record of an object (such as 
a person’s checking account, a company’s sales record of an item, etc.). An 
object history is a sequence of occurrences, each occurrence consisting of 
some input data and, possibly, some calculation. (For example, in a 
checking account history, one occurrence might be, in part, the amount 
to be deposited or withdrawn, together with the computation of the new 
balance.) In the model, each object history is represented as a sequence of 
tuples (over the same attributes), called a “computation-tuple sequence.” 
A computation-tuple sequence scheme (abbreviated CSS) is a construct 
which defines the set of all possible “valid” computation-tuple sequences. 
(For example, a CSS for objects of the type “checking accounts” specifies 
the set of all possible “valid” individual checking account histories.) A CSS 
consists of: 

(d 1) a set of attributes, partitioned into state, input, and evaluation 
attributes, according to their roles; 

(42) functions which calculate values for state and evaluation 
attributes; 
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(43) semantic constraints whose satisfaction is to hold uniformly 
throughout a computation-tuple sequence; and 

(44) a set of specific computation-tuple sequences of some bounded 
length with which to start a valid computation-tuple sequence, until all 
state and evaluation functions can be applied. 

As mentioned in the Introduction, our concern in this paper is with 
certain decision problems. All of those considered here will turn out to be 
recursively unsolvable. In establishing our results, we shall show that these 
problems are unsolvable for CSS which have exactly one state attribute 
and no evaluation attributes (and thus no evaluation functions). Further- 
more, these problems are only meaningful within an environment in which 
every component is recursive. Accordingly, the formal model we now 
present is a special case of the more general one given in Ginsburg and 
Tanaka (1986) in that there will be exactly one state attribute, no evalua- 
tion attributes, no evaluation functions, and all given components will be 
recursive.’ 

Turning to our simplified version of the model, Dom,m is an infinite set 
of elements (called domain values) and U,, is an infinite set of symbols 
(called attributes). For each A in U,, Dam(A) (called the domain of A) is 
a recursive subset of Dom, of at least two elements. All attributes occur- 
ring are assumed to be elements of U, . 

Let X be a finite nonempty subset of U, and A,, . . . . A, some fixed listing 
of the distinct elements of X. Then (X) denotes the sequence (written 
without commas) A, . . . A, and Dom( (X)) the Cartesian product 
Dom(A,) x . . . x Dom(A,). 

We now formalize the notions of occurrence and sequence of occurrences 
as used earlier. (Instead of “occurrence” and “sequence of occurrences,” we 
shall use the terms “computation tuple” and “computation-tuple 
sequence.“) 

DEFINITION. Let (U> be a sequence of attributes. A computation tuple 
over (U) is an ordered pair ((U), u), or u when (U) is understood, 
where u is an element of Dom( (U)). A computation-tuple sequence over 
(U) is a nonempty finite sequence of computation tuples over (U). The 
set of all computation-tuple sequences over ( U) is denoted by SEQ( ( U)). 

Unless otherwise stated, u and u (possibly subscripted or primed) denote 
computation tuples. Similarly, ii and V denote computation-tuple sequences. 

Using the previous notation, we now formalize (Al) and (42). 

’ We assume that the reader is familiar with the basic notions of recursive function theory, 
as found, for example, in Hopcroft and Ullman (1979) and Machtey and Young (1978). 
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DEFINITION. A computation scheme (abbreviated CS) over (U) is a 
triple %? = (A, (Z), fA), where 

(i) (U) =,4(Z), with A in U and la nonempty subset of U- (A}. 
A is called a state attribute and each element of I is called an input 
attribute. (Given A and (I) = B, . . . B,, A(Z) = AB, .,. B,.) 

(ii) fA is a partial recursive function (called a state function) from 
Dom( (U)) into Dam(A) such that { u[ fA(u) is defined) is recursive. 

We illustrate the above with the following: 

EXAMPLE 1.1 (Apartment rental). Consider the sequences of rental 
records for a particular apartment, each rental record consisting of the four 
attributes SEQ-NO, DATE, TENANT, and AMOUNT. Each apartment 
rental occurrence is represented as a 4-tuple u. Here, (a) u(SEQ-NO) is the 
sequential number of the record; (b) u(DATE) is the year, month, and day 
on which the record is being listed; (c) u(TENANT) is the name of the 
tenant; and (d) u(AMOUNT) is the amount of the (monthly) rent received. 
Also, Dom(SEQ-NO) is the set of positive integers, Dom(DATE) the 
set of all date values in which the day of the month is either 1 or 152, 
Dom(TENANT) the set of people names plus the value VACANT, and 
Dom(AMOUNT) the set of nonnegative numbers. SEQ-NO is the state 
attribute, and DATE, TENANT, and AMOUNT are input attributes. 
Thus, ( U) = A (I), where A = SEQ-NO and (I) = DATE TENANT 
AMOUNT. The state function fSEQeNO is defined by fsEQeNO(u) = 
u(SEQ-NO) + 1 for all u in Dom( (U)). 

The purpose of a computation scheme is to select those computation- 
tuple sequences whose values for the state attributes are determined by the 
corresponding state functions. More formally, we have: 

Notation. Let %” = (A, (I), f.,) be a CS over ( U). For each A in S, let 

VSEQ(g) = { ui . . . u,inSEQ((U))Iuj(A)=f,(uiP,)foreachi,26i6m). 

Thus, VSEQ(%?) is the set of computation-tuple sequences over (U) 
“consistent” with the computation scheme. Note that VSEQ($?) is a recur- 
sive set. 

Turning to (43) we have 

DEFINITION. A constraint c over (U) is a total recursive mapping from 
SEQ( (17)) into {true, false}. If a(c) = true, also denoted by il /= c, then ti 

2 This domain is selected because later we insist that rent always be paid on either the 1st 
or 15th of the month. 



DECISION PROBLEMS 249 

is said to satisfy (T. For each set C of constraints over (U), the set {ii in 
SEQ( ( U)) (U + IJ for each (T in C} is denoted by VSEQ(.Z). 

Note that each VSE,Q(a), as well as VSEQ(C), is a recursive set. 
Without further limitations, constraints can permit highly pathological 

situations. To avoid these undesirable cases and to retain the intuitive 
feeling that intervals of history are also history in some sense, we restrict 
ourselves to a class called uniform. 

DEFINITION. A constraint 0 over (U) is uniform if u1 . . . u, k (T implies 
ui . . . ui k fl for all u1 . . . u, in SEQ((U)) and all iand j, 1 <i,j<m. 

Clearly, VSEQ(C) is interval closed if each CJ in Z is uniform. 
Uniform constraints are natural, mathematically tractable, cover most 

situations arising in practice, and eliminate many pathological cases. 

EXAMPLE 1.1 (Continued). The conditions involved in the tenancy are 
as follows. Rent is due once a month, always on the day of the month 
(either the 1st or 15th) the current tenant took possesion of the apartment. 
Because of rent control, rent for a continuing tenant cannot be changed 
more than once every 12 months (by a variable percentage determined by 
law). When a tenant vacates the premises, then the next tenant’s rent 
becomes negotiable. 

The above conditions translate into the following five constraints: For 
each ii = II 1 . . . u, in SEQ( (U)), 

(a) ii k crl iff for each i, 1 <i-cm, ui+,(DATE) 2 ui(DATE), where 
1 denotes calendar-wise ordering; 

(b) ii /= ts2 iff for each i, 1 <i-cm, ui+ ,(TENANT) = ui(TENANT) 
implies ui+ ,(DATE) = ui(DATE) 0 1 month, 0 denoting calendar-wise 
addition; 

(c) ii + (TV iff for each i, 1 < i 6 m, ui(TENANT) = VACANT implies 
u,(AMOUNT) = 0; 

(d) U k o4 iff there exist i and j, 1 6 i < j < m, such that 
ui(AMOUNT) # ui+ ,(AMOUNT), uj(AMOUNT) # uj+ ,(AMOUNT), 
ui(TENANT) = ui+ ,(TENANT) = ... = u,(TENANT) = u,+ ,(TENANT), 
and j-i< 12; and 

(e) ii F c5 iff there exist i and j, 1 < i < j < m, such that 
ui(TENANT)#u;+l(TENANT), u;+,(TENANT)= ... =u,+,(TENANT), 
uj+ ,(AMOUNT) # ui+ ,(AMOUNT), and j- i< 12. 

Thus, u, requires the tuples to follow each other in calendar-wise order, 
oz says that the tenant payments occur exactly one month apart, g3 
declares that there is no rent money when the apartment is unoccupied, (TV 
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insists that no continuing tenant has the rent changed twice in any 12 
month period, and os asserts that the rent stay fixed at least 12 months 
after a tenant moves in. Clearly, each constraint is uniform. 

Finally, we formalize (44), the notion of how to get started or “initializa- 
tion,” 

DEFINITION. Given a finite set C of uniform constraints over (U), 
an initialization (with respect to C) is any recursive subset 9 of 
VSEQ(Z) n Dom( ( V)). For each initialization 9, let VSEQ(9) = 
9u {utilu in 9, U in SEQ((U))}. 

Note that VSEQ(Y) is recursive. 

EXAMPLE 1.1 (Continued). We shall assume that the apartment is 
initially vacant. Thus, the initialization is 

9= ((l,d, VACANT,O)jd in Dom(DATE)}. 

Using the concepts already defined, we are now able to formalize the 
fundamental notion of “computation-tuple sequence scheme.” 

DEFINITION. A computation-tuple sequence scheme (abbreviated CSS) 
over ( U) is a triple T = (69, C, Y), where 

(i) 5%’ is a computation scheme over (U); 

(ii) C is a finite set of uniform constraints over (U); and 

(iii) 3 is an initialization with respect to C. 

A CSS determines a set of “valid” computation-tuple sequences as 
follows: 

DEFINITION. For each CSS T= (%, Z, 3) over (U), 

VSEQ( 7’) = VSEQ(%) n VSEQ(L’) n VSEQ(S). 

A computation-tuple sequence is said to be valid (for 7’) if it is in 
VSEQ( T). 

Note that VSEQ(T) is recursive. 

EXAMPLE 1.1 (Continued). A CSS for the apartment rental situation 
is T= ((4 (0, .fA), { ol, 02, c3, 04, a,}, Y), where the individual com- 
ponents are as already defined. One valid computation-tuple sequence is 
given in Table I. 
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TABLE I 

SEQ-NO DATE TENANT AMOUNT 
- 

1 l-15-85 Vacant 0 
2 2-l-85 Jones 550 
3 3-l-85 Jones 550 
4 4-l-85 Jones 550 
5 5-l-85 Vacant 0 
6 5-15-85 Smith 575 
I 6-15-85 Smith 515 
8 7-15-85 Smith 575 
9 8-l 5-85 Smith 575 

10 9-15-85 Smith 515 

SEQ-NO DATE TENANT AMOUNT 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

10-15-85 Smith 515 
I l-15-85 Smith 515 
12-15-85 Smith 515 

l-15-86 Smith 575 
2-15-86 Smith 515 
3-15-86 Smith 515 
4-15-86 Smith 515 
5-15-86 Smith 603 
6-l 5-86 Smith 603 
l-15-86 Smith 603 

2. SET-THEORETIC PROPERTIES 

In this section, we consider the decision problems for the set-theoretic 
properties of emptiness (non-emptiness), infiniteness, equivalence, and 
inclusion. We shall establish the recursive unsolvability of these problems 
by using reductions of known unsolvability results in context-free language 
theory. 3 

We start with the problems for emptiness (non-emptiness), infiniteness, 
and non-empty finiteness. First though, we recall several well-known 
results (Ginsburg, 1966; Harrison, 1978; Hopcroft and Ullman, 1979) from 
formal language theory. 

THEOREM 2A. (a) Each context-free language is recursive. 

(b) It is recursively unsolvable to decide for an arbitrary context-free 
grammar (CFG) G over an alphabet A of at least two elements whether or 
not L(G) = A*. 

(c) It is recursively unsolvable to determine for arbitrary CFG G, and 
G2 over an alphabet A of at least two elements whether or not 
UC,) n L(G2) = $2. 

(d) It is recursively unsolvable to determine for arbitrary CFG G, and 
G, over an alphabet A of at least two elements whether or not 
L(G,) = L(G,), resp., L(G,) c L(G,). 

3 We assume that the reader is familiar with the terminology and basic notions of context- 
free language theory, as found, e.g., in Ginsburg (1966), Harrison (1978) and Hopcroft and 
Ullman (1979). 

643’83’2.9 
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THEOREM 2.1. It is recursively unsolvable to determine for an arbitrary 
CSS T whether or not 

(a) VSEQ( T) = $3; 
(b) VSEQ(T) is infinite; 

(c) VSEQ( T) is nonempty finite. 

ProoJ: Let Dam(A) = { 1,2, 3, . ..} and &(u) = u(A)+ 1 for all u in 
Dom( (U)), U defined below. 

Consider (a). Let A = {a, b } and (U) = AB, where Dam(B) = A*.4 For 
each CFG G over A, let To = (%‘, {(TV}, 9) be defined as follows: 

(i) g= (A, B, .A); 
(ii) (TV is the constraint over (U) defined by VSEQ(o,) = { u1 . . . u, 

in SEQ((U))jm>l and for alli, 16i6m, u,(B) is not in L(G)); and 

(iii) 9 = Dom( (U)) n VSEQ(a,). 

By (a) of Theorem 2A and the fact that VSEQ(a,) = SEQ(AB’), where 
Dom(B’) = A* - L(G), it follows that crG is recursive. Also, crc is obviously 
uniform. Thus To is a CSS over (U). From the construction of T,, it is 
readily seen that 

(1) VSEQ( TG I= $3 iff L(G) = A*. 

From (1) and (b) of Theorem 2A, (a) is recursively unsolvable.5 
Consider (b). Let A = (a, b) and c be a new symbol. Let (U) = AB, 

where Dom( B) = A* u (c}. For arbitrary CFG G, and G, over A, let 
TG,G> = (q, ~G,G? >, 4) be defined as follows: 

(iv) W = (A, B, A); 

(v) VSEQ(ao, ~2 )=Dom((U))u {ul . . . u,,inSEQ((U))/u,(B)isin 
L(G,)nL(G,) for alli, 2<i<m, m32); and 

(vi) Y= ((1, c)j. 

Obviously, cc, G2 is a uniform constraint. Hence, To,,, is a CSS over <U). 
Also, it is easy to see that 

(2) VSEQ( TGIG2) is infinite iff L(G,) n L(G,) # @. 

From (2) and (c) of Theorem 2A, (b) is recursively unsolvable. 

4Consistent with the definition of a domain value, we regard each word in d* as a 
distinguished symbol. This artifice is used throughout the paper. 

5 Throughout this paper, we omit from the proofs the ordinary reduction arguments 
standard in recursive function theory. 
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Finally, consider (c). Let TGIGZ be as in (b). Since (1, c) is in 

VSEQ(T,,.,), VSEQ(T,,.,) # 0. BY (21, we have 

(3) VSEQ( To, G2) is nonempty finite iff L( G, ) n L( G2) = 0. 

From (3) and (c) of Theorem 2A, (c) is recursively unsolvable. 1 

Letting T, = T, = T, we immediately get 

COROLLARY. It is recursively unsolvable to decide for arbitrary CSS 
T, = (‘G!?‘, C,, #,) and T, = (%?, C,, &) whether or not 

(a) VSEQ(T,) n VSEQ( T,) = 0; 
(b) VSEQ( T,) n VSEQ( T2) is infinite; 
(c) VSEQ( T,) n VSEQ( T,) is nonempty finite. 

We now turn to the equality and containment problems between 
VSEQ( T). 

THEOREM 2.2. It is recursively unsolvable to decide for arbitrary CSS 
T, = (%‘, C,, 9,) and T, = (%‘, C,, Yz) whether or not 

(a) VSEQ(T,) = VSEQ( T2); 

(b) VSEQ( T,) G VSEQ( T,). 

Proof Let A, B, and fA be as in (a) of Theorem 2.1, and let ( U) = A B. 
For each CFG G over A, let T, = (59, {a,}, 9) be defined as follows: 

(i) g=M B,f,); 
(ii) VSEQ(a,) = { u1 . . . u, in SEQ(( U))l ui(B) is in L(G) for all i, 

1 <i<m, m>, l}; and 

(iii) 4 = Dom( (U)) n VSEQ(a,). 

It is obvious that To is a CSS over (U) for each CFG G. It is also clear 
that, for arbitrary CFG G, and Gz over A, 

(1) VSEQ(T,,)=VSEQ(T,,) iff L(G,)=L(G,), and 

(2) VSEQ(T,,) c VSEQ( To,) iff L(G,) c L(G,). 

The recursive unsolvability of (a) and (b) then follows from ( 1 ), (2), and 
(d) of Theorem 2A. 1 

3. LOCAL Css 

In this section, we focus our attention on decision problems related to 
the special class of uniform constraints called “local.” We start by recalling 
some notions. 
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DEFINITION. A constraint e over (U) is k-local (k 2 1) if, for all U of 
length at least k, U k rr iff V k e for all intervals V of U of length k. That 
is, for all U= U, . . . u,, m>k, Uk c iff u~...u~+~-, b cr for eachi, 
1 < i 6 m -k + 1. A constraint is local if it is k-local for some k. 

k-local constraints are important for two reasons: 

(1) Many real-life constraints are of this type. In particular, for the 
constraints in Example 1.1, rri and o2 are 2-local, ran is l-local, and c4 and 
c5 are 13-local. See Ginsburg and Tanaka (1986); Ginsburg and Gyssens 
(1987); Ginsburg and Tang (1986); Dong and Ginsburg (1986) for more 
examples. One major exception is most functional dependencies. 

(2) They have the property that satisfaction by a computation-tuple 
sequence under addition of a computation tuple can be maintained by 
merely examining satisfaction of the last k tuples in the new sequence. That 
is, suppose (r is k-local and 11 = U, . . . u,, m > k, satisfies rs. Then, Uu satisfies 
0 iff zfmpkfZ .,. U,U satisfies 0. 

DEFINITION. A set Z of constraints over (U> is k-local (resp. local), if 
each constraint in .Z is k-local (resp. local). A CSS T= (%, .L’, 9) is k-local 
(resp. local), if Z is k-local (resp. local).6 

It is known (Ginsburg and Tanaka, 1986) that if e is k-local, then it is 
k’-local for all k’ 2 k. Thus, a finite set C of local constraints is k-local for 
some k. The set of constraints in Example 1.1 is 13-local. 

Prior to considering decision problems related to localness, note that the 
unsolvability results in Section 2 (i.e., Theorem 2.1 and its corollary and 
Theorem 2.2) still hold if the CSS are restricted to local CSS. Indeed, all 
the constraints arising in their proofs are 2-local. 

We now turn to the results of Section 3. Our first theorem considers the 
decision problems for T being local. 

THEOREM 3.1. It is recursively unsolvable to decide for an arbitrary CSS 
T whether or not 

(a) T is k-local for some given k >, l;? 

(b) T is local. 

Proof Let A and fA be as in Theorem 2.1. Let A = {a, b} and c and d 

6 In the more extended version of a CSS T= (U, .E, $a), that is, the one including evaluation 
attributes and evaluation functions, one has the extended notion of T being (k,, k,)-local if 
k, is greater than the “rank” of %? and Z is k2-local. 

‘The version for (a) in the extended model becomes “T is (k,. k,)-local for given k, and 
k,.” The proof for the simpler model also holds for the extended model. 
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be two new symbols. Let ( U) = AB, B,, where Dom( B,) = A* u {c) and 
Dom(B,) = A* u {d}. F or arbitrary CFG G, and Gz over A, let TG,02 = 

w5 bG,Gz }, 9) be defined as follows: 

(if %‘=(A, B,&,f,L 
(ii) VSEQ(a,,,2) = {u, . . . u, in SEQ( ( U) ) ( for all i and j, 

1 <i,.j<m, m> 1, u,(B,) is in L(G,)u {c}, uj(B2) is in L(G,)u (d}, and 
ui(B,) f u,(&)}; and 

(iii) .P=Dom((U))nVSEQ(a,,.2). 

Obviously, T,, o2 is a CSS over (CJ). 
We first note that 

(1) if L(G,) n L(G,) = /21, then Tc,oz is l-local (and thus k-local for 
all k > 1); 

(2) if L(G,) n L( G,) # (21, then TGIGZ is not local; and 

(3) TG,G~ is local iff L(G, ) n L(G,) = 0. 

Clearly ( 1) is true, and (3) follows from ( 1) and (2). Consider (2). Suppose 
L(G,)nL(G,)# 0, say w  is in L(G,)nL(G,). Assume CJ~,~? is local, say 
k-local for somek. Let U=U,...U~+~, where ~~=(l,w,A), uk+,= 
(k + 1, c, w), and u, = (i, c, d) for all i, 1 < i< k. Then, 6 + eCIG2 for each 
interval V of ti of length k. However, ii k oGIG2 (since u,(B,)= 
uk + ,( B,) = w), a contradiction. Thus, cG,G2 is not local, whence T,,,, is 
not local. 

From (l), (2), and (c) of Theorem 2A, it follows that (a) is recursively 
unsolvable. Similarly, the recursive unsolvability of (b) follows from (3) 
and (c) of Theorem 2A. 1 

Our next result shows the recursive unsolvability for finding the 
smallest k for which a local CSS is k-local. 

THEOREM 3.2. For each k > 2, it is recursively unsolvable to decide for an 
arbitrary k-local CSS T whether or not there exists some k’, 1 <k’ <k, such 
that T is k’-local. 

Proof: Let A and fA be as in Theorem 2.1. Let A = (a, b ), c and d be 
two new symbols, and k 2 2. Let (U) = AB, where &m(B) = A* u (c, d}. 
For arbitrary CFG G, and G, over A, let TG,G2L (abbreviated TGIGZ) = 

(%t b,G2k }, 9jj) (abbreviated (%, {c G,CZ}, .a)), be defined as follows: 

ii) V= (A, B, fA); 

(ii) VSEQ(oG,,2 )= {U] . . . u, in SEQ((U))lfor eachi, 16i<m, if 
ui(A)=Omod k, then ui(B) is in L(G,)u {c) and u,(B)#u,(B) for eachj, 
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i~j,<min{i+k-1,m};ifui(A)#Omodk,thenui(B)isinL(G,)u{d}}; 
and 

(iii) 9 = Dom( (V)) n VSEQ(a,,.,). 

It is readily seen that To,02 is a k-local CSS. It is also readily observed 
that 

(1) If UC,) n L(Gd = 0, then cGlG2 is l-local and thus k’-local for 
all k’ 3 1; and 

(2) If L(G,)nL(G,) # 0, then there is no k’, 1 < k’<k such that 
oGIG2 is a k’-local. 

Indeed, (1) is clearly true. Consider (2). Suppose L(G,) n L(G,) # 0. Then 
there exists a word MI in L(G,) n L(G,). Let II = u1 . . . uk, where u1 = (1, w), 
uk = (k, w) and uj = (i, d) for all i, 1 < i < k. Each interval of length k - 1 of 
U is in VSEQ(a,,&. H owever, U does not satisfy gGIGZ, since u,(B) = 
uk(B) = W. Hence, o&G2 is not (k - 1 )-local, and therefore not k’-local for 
all k’ <k, i.e., (2) holds. 

From (i), (2), and (c) of Theorem 2A, the theorem holds. 1 

COROLLARY. It is recursively unsolvable to determine for arbitrary k > 2 
and k-local CSS T whether or not there exists some k’, 1 ,< k’ <k, such that 
T is k’-local. 

It is known (Ginsburg and Tanaka, 1986) that there exist CSS 
T= (%, ,Z’, 9) and T’= (%?, X’, 9) such that T is not local, T’ is local, and 
VSEQ( T) = VSEQ( T’). Such a situation is of interest for design considera- 
tions because of the ease of maintaining validity of computation-tuple 
sequences for local CSS. This leads to the following: 

DEFINITION. A CSS T= (U, Z, Y) is said to be k-locally representable, 
k > 1 (resp. locally representable) if there exists a k-local (resp. local) CSS 
T’ = (U, C’, 9) such that VSEQ( T’) = VSEQ( T). 

Given a CSS, it would be helpful for design purposes to know if the CSS 
is (k-)locally representable. Unfortunately, as we now show, the problem is 
recursively unsolvable. 

THEOREM 3.3. It is recursively unsolvable to decide for an arbitrary 
CSS T whether or not 

(a) T is k-locally representable for given k 2 1; 

(b) T is locally representable. 

Proof Let To,,, = (U, { rrclc,), 9) be the same as in the proof of 
Theorem 3.1. We claim that 
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(1) If L(G,)nL(G,)=a, then TGIG2 is l-locally representable (and 
thus k-locally representable for all k 3 1); and 

(2) If L(G,)n L(G,) # 0, then there is no k> 1 such that TGIG2 is 
k-locally representable. 

Consider ( 1). Suppose L(G, ) n L(G,) = 0. Then, T,,., is l-local. Hence, 
T G,GZ is l-locally representable. Consider (2). Suppose L(G,) n L(G,) # 0, 
say w  is in L(G,) n L(G,). Assume TGIG2 is k-locally representable for some 
k > 1. Then there exists a CSS T&Gz= (%, Z&,>, 9) such that 

(3) C&(;z is k-local, and 

(4) VSEQ(T~,.,)=VSEQ(T,,.,). 
Let U = 24, . . . uk + , , where u,=(l,~,d), uk+i=(k+l,c,W), and u,= 
(i, c, d) for ail d, I < id k. Clearly, 

(5) U is in VSEQ(%), 

(6) U is in VSEQ(Y), and 

(7) U is not in VSEQ(TGIG2). 

For each interval U of U of length k, V is in VSEQ( T,,.,). By (4), each 0 is 
in VSEQ( T& L;2) and therefore in VSEQ(&,,& By (3), 

(8) U is in VSEQ(Z&& 

BY (5), (61, and @I, 

(9) U is in VSEQ(T&.,). 

From (7) and (9) we have 

VSEQ(T&,,) #VsEQ(T,,,,), 
which contradicts (4). Hence, there is no k 2 1 such that T is k-locally 
representable. 

Now consider (a). By (1) and (2), TGlG2 is k-locally representable for 
given k 2 1 iff L(Gi) n L(G,) = 0. By (c) of Theorem 2A, (a) is recursively 
unsolvable. Consider (b). From (1) and (2), T,,,, is locally representable 
iff L(Gl)n L(G,)= 0. Hence, by (c) of Theorem 2A, (b) is recursively 
unsolvable. 1 

In passing, we note that for each k2 2, it is recursively unsolvable to 
decide for an arbitrary k-locally representable CSS T whether or not there 
exists some k’, 1 < k’ <k, such that T is k’hcally representable, Indeed, let 

T G,C2k = w3 bG,G2k }, Y) be the same as in the proof of Theorem 3.2. An 
argument similar to that in Theorem 3.3 shows that for each k > 2, T,,,., 
is k’-locally representable for some k’, 1 < k’ < k, iff L(G, ) n L(G,) = 0. 
The standard reduction argument then yields the stated result. 
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4. BAD SUBSEQUENCE CSS 

In this section, we consider decision problems related to the notion of 
bad subsequence constraints, a class of constraints considered extensively 
in Ginsburg and Gyssens (1987). We start with some relevant concepts. 

DEFINITION. For each recursive set 6@~ SEQ( (U)), let c(g) be the 
constraint over (U) defined by U + c(g) if there is no V in B such that 
V is a subsequence of U. A constraint (T is a bad subsequence constraint if 
VSEQ(o) =VSEQ(c(g)) for some 9. A bad subsequence constraint 0 is 
k-bounded, k2 1, if VSEQ(a) = VSEQ(c(&Y)) for some a such that the 
length of V is at most k for all V in g. A bad subsequence constraint is bounded 
if it is k-bounded for some k. 

The class of bad subsequence constraints is quite extensive. It includes 
oL and ~~ of Example 1.1, these being 2-bounded and l-bounded, 
respectively.8 [In particular, 0, = c(%?i) and g3 = c(?&), where .65?, = 
{~,u*Iu,(DATE) 7 u,(DATE)} and $+&= juIu(TENANT)=VACANT 
and #(AMOUNT) #O}.] Other examples of (bounded) bad subsequence 
constraints are all functional dependencies (Ginsburg and Gyssens, 1987). 
More generally, each equality generating dependency (Beeri and Vardi, 
1984), defined in any of several different ways to take into account the 
order between the computation tuples in a computation-tuple sequence, is 
a (bounded) bad subsequence constraint. Similarly, order dependencies 
(Ginsburg and Hull, 1983) are (2-bounded) bad subsequence constraints. 

Applying these concepts to a CSS, we get 

DEFINITION. A CSS (%, L’, 9) is a (k-bounded, bounded resp.) bad sub- 
sequence CSS, abbreviated k-bounded (resp. bounded) b-CSS, if C is a set 
of (k-bounded, bounded, resp.) bad subsequence constraints. 

Our first major result in this section concerns the unsolvability of deter- 
mining each of the above types of CSS. 

THEOREM 4.1. It is recursively unsolvable to decide for an arbitrary 
(local) CSS T whether or not 

(a) T is a b-CSS; 

(b) T is a k-bounded b-CSS for given k 2 1; 

(c) T is a bounded b-CSS. 

Proof. Let d = (a, b), c and d be new symbols, and (U> = AB, where 

slt is easily seen that g2, o,,, and o5 are not bad subsequence constraints 
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Dam(A)= {1,2} and Dow(B) = A * u {c, d}. For arbitrary CFG G, and 
G, over A, let TGIGZ= (V, {cr G,G2), 9) be defined as follows: 

(i) %= (A, B, fA), where ,fa(u)= 1 if u(A)=2 and fA(u)=2 if 
u(A) = 1; 

(ii) VSEQ(aG, cz )={u,...u,)l<‘< ,r,m and 1 <jdm- 1, u,(B) is in 
L(G,)w {c} if u,(A)= 1, ui(B) is in L(G,)u {d) if u,(A)=2, and 
u,(B)fu,+,(B) if u,(A)Zuj+,(A)); and 

(iii) 9 = Dom( (U)) n VSEQ(a,,Gz). 

Then TGIGI is a (local) CSS. We first show that 

(1) rrclGz is a l-bounded bad subsequence constraint if L( G,) n 
L( GJ = 0; and 

(2) gGIG2 is not a bad subsequence constraint if L(G,) n UC,) # 0. 

Indeed, suppose that L(G,) n L(G,) = 0. Then VSEQ(a,,,,) = 
VSEQ(4~G,G2)), where 

9 .,.z={uinDom((U))(u(A)=landu(B)isnotinL(G,)u(cf) 

u {U in Dom( (U)) I u(A) = 2 and u(B) is not in L(G,) u id)}. 

Thus, (1) holds. Now suppose L(GI ) n L(G,) # 0. Let u’ be a word in 
L(G,) n L(G,), ii = (1, w)(2, d)(l, c)(2, w), and V= (1, w)(2, w). Suppose 
that cGIG2 is a bad subsequence constraint, i.e., there exists a subset 
?a G,@ E SEQ( (U)) such that VSEQ(a,,,,) = VSEQ(C(~~,~~)). Two cases 
arise. 

(a) 6 is in aGIGZ. Clearly, U is in VSEQ(CJ,,.~). Thus, U is in 
VSEQ(C(~G,~~)). Since V is a subsequence of 17, 6 is not in 3JacIG2 (by defini- 
tion of c(&&,G,)), a contradiction, 

(p) V is not in WC,.,. Clearly, 17 is not in VSEQ(a,,.,). Hence, V is 
not in VSEQ(C(~~,.~)). By definition of c(~~,~~), at least one subsequence 
of 73 is in gGIGI. Since both (1, w) and (2, w) are in VSEQ(cr,,& = 
VSEQ(c(3YG,.,)), neither (1, w) nor (2, w) is in gGIG2. Thus, (1, w)(2, w) = v 
is in sG,Gz, a contradiction. 

Since both cases yield contradictions, (~c,~~ is not a bad subsequence 
constraint, and (2) holds. 

From (1) and (2) it is obvious that 

(3) TG,G2 is a b-CSS iff L(G,) n L(G,) = 0; 

(4) TG,G~ is a k-bounded b-CSS for given k 3 1 iff L(G, ) n 
L(G,) = 0; and 

(5) T,,,, is a bounded b-CSS iff L(G,)nL(GZ)= 0. 
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Standard reduction arguments involving (3), (4), (5), and (c) of 
Theorem 2A yield (a), (b), and (c) of the theorem. 1 

Analogous to Theorem 3.2, our next result shows the recursive 
unsolvability for finding the smallest k for which a bounded b-CSS is 
k-bounded. 

THEOREM 4.2. For each k 3 2, it is recursively unsolvable to decide for an 
arbitrary k-bounded b-CSS T whether or not there exists some k’, 1 ,( k’ < k, 
such that T is a k’-bounded b-CSS. 

ProoJ: Let A and fA be as in Theorem 2.1. Let A = {a, b} and 
( U> = AB, where Dam(B) = A*. For each k 3 2 and each CFG G over A, 
let T, = (%, { ack >, Yk) be defined as follows: 

(i) %'= (A, B, fA); 
(ii) VSEQ(a,,)={u,...u,Ifor eachi, l<idm, u,(B) is in 

A* -L(G), and there is no jl, . . . . j,, 1 < j, < ... < j, 6 m, such that 
u,,(B) = . . . = u,,(B)}; and 

(iii) 9, = Dom( (U)) n VSEQ(a,,). 

Clearly, TGk is a CSS. And TGk is a k-bounded b-CSS, since 
aGk = c(aGk), where 

&&= {uinDom((~))(u(B)iSin~(G)}u(u,...uk~u,(B)= ... =2&(B)}, 

We shall see that 

(*) TGk is a k’-bounded b-CSS for some k’, 1 <k’ < k, iff L(G) = A*. 

By the standard reduction argument employing (b) of Theorem 2A, (*) 
implies the theorem. 

Suppose L(G) = A *. Then VSEQ(a,,) = @ and aGk = c(91kk), where 
58kk = Dom( ( u) ). Hence, TGk is a l-bounded b-CSS. Now suppose 
L(G)#A*, say w  is in A * - L(G). Assume that TGk is a k’-bounded b-CSS 
for some k’, 1 <k’ <k. Then there exists a k’-bounded @gk -C SEQ( (U>) 
such that aGk = c(?&&). Let U = (1, w) ... (k, w). Since ii does not satisfy 
aGk, at least one subsequence of U is in a&. However, each subsequence 
U’ of U, Is # U, satisfies aGk, and thus is not in 99Lk. Therefore, U must be 
in agk. This is a contradiction, since the length of ii is k and g&k is 
k’-bounded for some k’ <k. Hence, there is no k’, 1 <k’ < k such that Top 
is k’-bounded, and (*) is established. m 

The same decision problem for an arbitrary local k-bounded b-CSS can 
be shown to be recursively unsolvable by slightly modifying aGk given 
above. We omit the details. 
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Analogous to applying the concept of a local CSS to define local 
representability, we now use the notion of a b-CSS to obtain 
b-representability. 

DEFINITION. A CSS T= (‘%, Z;, X) is (k-bounded, bounded, resp.) 
b-representable if there exists a CSS T’ = (%?, Z’, 4) such that T’ is a 
(k-bounded, bounded, resp.) b-CSS and VSEQ( T’) = VSEQ( T). 

The next theorem establishes the unsolvability of b-representability. 

THEOREM 4.3. It is recursively unsolvable to decide for an arbitrary 
(local) CSS T whether or not 

(a) T is b-representable; 

(b) T is k-bounded b-representable for given k b 1; 

(c) T is bounded b-representable. 

Proof. Let TGIGZ be as in the proof of Theorem 4.1. We will show that 

(1) Tc,cz is b-representable iff t( G, ) n L( G,) = @; 

(2) Tc,c> is k-bounded b-representable for given k >, 1 iff L(G,) n 
L( G,) = a; and 

(3) Tc,cz is bounded b-representable iff L(G, ) n L( G2) = 0. 

Then by (c) of Theorem 2A and standard reduction arguments, (a), (b), 
and (c) follow. 

In view of the proof of Theorem 4.1, it suffices to show the “only if” 
parts. 

Suppose that L(G,)nL(G,)#@. Let w  be a word in L(G,)nL(G,), 
U= (1, w)(2, d)(l, c)(2, w) and V= (1, w)(2, w). Clearly, 

(4) U is in VSEQ(TGIG2), 

(5) V is in VSEQ(%) n VSEQ(S), and 

(6) U is not in VSEQ(T,,.,). 

SuPPose T, , G* is b-representable. Then there exists T&o2 = (%I?, {D&~~}, 9) 
such that c&G2 = C(~;,G>) for SOme &&,G? s SEQ( (u)) and 

(7) VSEQ(T;;,.,) = VSEQ(T,,,,). 

BY (6) and (7), 

(8) 17 is not in VSEQ( T&.,). 

BY (5) and (8), 

(9) V is not in VSEQ(U&.~). 



262 CHO AND GINSBURG 

Thus, at least one subsequence of U is in ?#k,G2. Since each subsequence of 
15 is also a subsequence of U, it follows that U does not satisfy ~(a;,~~) = 
IT&~~. Thus, U is not in VSEQ( r&.,) = VSEQ(T,,.,), which con- 
tradicts (4). Therefore, T,, c2 is not b-representable and (1) holds. 

Consider (2). By (1) it follows that 

(10) If L(G,) n L(G,) # 0, then there is no k > 1 such that T,,., is 
k-bounded b-representable. 

By (lo), (2) holds. 
Finally, (3) obviously holds by (10). m 

We note in passing that for each k B 2, it is recursively unsolvable to 
decide for an arbitrary k-bounded b-representable CSS T whether or not 
there exists some k’, 1 6 k’ <k, such that T is k’-bounded b-representable. 
Indeed, given k let T,, be as in the proof of Theorem 4.2. It can readily be 
shown that TGL is k’-bounded b-representable for some k’, 1 6 k’ <k, 
iff L(G) = d *. The asserted result then follows by the usual reduction 
argument employing (b) of Theorem 2A. 

5. CONCLUSIONS 

We have shown that a number of decision problems about object 
histories are recursively unsolvable. Furthermore, the computational com- 
plexity of each of the components in the established CSS is very simple, 
namely, polynomial time bounded. (This follows from the fact that the 
recognition problem for context-free languages is polynomial time bounded 
(Harrison, 1978; Hopcroft and Ullman, 1979)) 

We conclude by stating two open decidability questions of a philosophic 
nature: 

(1) The CSS constructed in our proof tend toward the artificial. Can 
one find “natural” examples (in the sense of arising in real-life situations) 
of CSS for which the decidability questions are still unsolvable? 

(2) Can one find a “natural” class of CSS for which (some of) the 
decision problems are solvable? 
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