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The object of this paper is to prove combinatorially several (13 of them) limit formulas 
relating different families of hypergeometric orthogonal polynomials in Askey’s chart classi- 
fying them. We first find a combinatorial model for Hahn polynomials which, as pointed out by 
Foata at the ICM (1983), “contains” models for Jacobi, Meixner, Krawtchouk, Laguerre and 
Charlier polynomials. Seven limit formulas are proved by “looking at surviving structures” 
when taking the limit. A simple model, T-structures, is then used to prove (using a different 
technique) four more limit formulas involving Meixner-Pollaczek, Krawtchouk, Laguerre, 
Charlier and Hermite polynomials. The theory of combinatorial octopuses (of F. Bergeron) is 
recalled and two more limits are demonstrated using new models of Meixner-Pollaczek, 
Laguerre, Gegenbauer and Hermite polynomials. 

0. Introduction 

In [l], Askey suggested a classification of orthogonal hypergeometric polyno- 
mials in a chart (see also [13]) in which the arrows are limit formulas relating two 
families of polynomials. The object of this paper is to show that many of these 
identities may be proved combinatorially using appropriate combinatorial models 
for the two polynomials involved. 

In Section 1, we find a model for Hahn polynomials and prove the seven arrows 
of Fig. 1 (see Theorem 1). A simple model for Meixner-Pollaczek, Krawtchouk 
and Meixner polynomials is introduced in Section 2 and four more limit formulas 
(Fig. 3 and Theorem 3) demonstrated. Finally we recall the theory of octopuses 
[2] and prove two last formulas (Fig 7 and Theorem 5). 

For any finite set A, S[A] denotes the set of permutations of A and (Al the 
cardinality of A. For an arbitrary permutation CJ, d,(o) is the number of its 
i-cycles. Let [n] = (1, 2, . . . , n} and (a), = a(a + 1) . . . (a + n - 1). Let IF, 
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denote the generalized hypergeometric series 

al, a2, . . . , 4 

1. Hahn configurations 

As pointed out by Foata [5], there is a combinatorial model for Hahn 
polynomials which contains the combinatorics of several families appearing below 
them in Askey’s chart [l, 131 of hypergeometric orthogonal polynomials. All of 
these models are consistent with the arrows (limit formulas) between them. We 
would like to make this more explicit. We will describe the models (first the 
configurations and then their weights) and then prove these limit formulas. 
Roughly speaking the models are given by the diagram in Fig. 1 (where A -t) B 
means an injective map from A to A + B and (j a permutation). 

Fig. 1. 

(See Theorem 1 for the exact limit formulas.) 
Given a pair (A, B) of disjoint finite sets, we define the following combinatorial 

configurations on (A, B): 

(Charlier configurations) C[A, Bl =S[Al x (1s) 

(Laguerre configurations) L[A, B] = {injective map from A to A + B) 

(Meixner configurations) M[A, B] = L[A, B] x S[B]; 

(Krawtchouk configurations) K[A, B] = S[A] X S[B]; 

(Jacobi configurations) P[A, B] = L[A, B] x L[B, A]; 

(Hahn conJigurations) Q[A, B] =L[A, B] x S[A] X L[B, A] X S[B] 

= M[A, B] x M[B, A] 

= P[A, B] x K[A, B]. 
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Note that if (f, a, g, r) is a Hahn configuration on (A, B) then (a, lB) (resp. f, 

(f, r), (6 r), (fi g)) is a Charlier (resp. Laguerre, Meixner, Krawtchouk, Jacobi) 

configuration on (A, B). 
If T is any of these (in the theory of species (see [9, 10, 12, 241) they are called 

2-species (or bi-species or species of two sorts of points)) and S is any finite set, 
we write 

Y[S]={(A,B,t)lAUB=S,AnB=0andtET[A,B]}. 

We say that 9 is the species corresponding to T. 

Let %‘, 2, A, .5Y, 9 and 2 be the species corresponding to C, L, M, K, P and 
z]reFt$ely . We make these into weighted species with weights in the ring 

a; ,a , p, c, x] (where a, p, a, p, c are the various parameters of the 
orthogonal families) by giving every configuration a weight (or valuation) in that 
ring. The nth-polynomial (or some renormalization of it) will be the total weight 
of the corresponding configurations on any finite set S with ISI = n. 

Charfier polynomials: CF)(x)(a > 0) are defined by either: 

2 C!-f)(x)P/n! = e’(1 - tlay. 
tZ=0 

Cc)(n) = ,F,[ -“I_-” ; a-l] = .z,o (:)(a-‘)‘(-r),. 
/- 

Given (a, lB) E C[A, B], we set 

wl(a, lB) = (-x)cyc(o)(a-l)‘A’, 

where cyc(a) is the number of cycles of o. 

(1.1) 

(1.2) 

(I-3) 

Notation: For a weighted set X, 1x1 denotes the total weight of its elements. 

Proposition 1. We have I %[n]l = C?)(x). 

Proof. The formula follows easily from either (1.1) or (1.2). 0 

Laguerre polynomials : L:@(x) are defined by either: 

nzo Li=)(x)t” = (1 - t)-‘-“exp(-xt(1 - t)-l) (1.4) 

n ’ L’“‘(x) = (a + 1)” . IF, * n [~~l;x]=i~~(:)(~+l+i)i(-x~. (1.5) 

Given f E L[A, B], we set 

W*(f) = (1 + a)CYC(f)( -x)IB’, (1.6) 

where cyc(f) is the number of cycles (in A) of f and IBI is also the number of 
“chains” of $ 
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Lemma 1. We have JL[A, B]I = (1 + (Y + IBI),A,(-~)IBk. 

Proof. This is a now classical combinatorial lemma (see [8, lemma (2.1)]; [5, 
lemma (3. l)]; [7, lemma 31) which we will use again and again. See also [14] for a 
short proof using 2-species. Cl 

Proposition 2. We have IL&‘[n]l = n! LLa)(x). 

Jacobi polynomials: P:@‘(x) are defined by either: 

n!PfiB)(x)=(a+l)n*,F, -n’ nzy:B+l ;(1-x)/2] 
[ 

(1.7) 

(Y + 1 +i)i(P + 1+ i)j((X + 1)/2)‘((X - 1)/2y’* (1.8) 

Given (f, g) E P[A, B], we set 

w3(f, g) = (a + l)cq/3 + l)cycq(x + 1)/2)‘4((x - 1)/2)‘? (1.9) 

Proposition 3. We have I.CFj[n]l = n! - Pia, B)(x). 

Proof. See [7,17]. 0 

Meixner polynomials: m,(x; /3, c) are defined by either: 

nzO m,(x; /3, c)t” = (1 - t/cy(l - t)-“-P 

m,(x; /3, c) = (p)n . & -nb_x ; 1 -c-I] 
[ 

= 
= 0 ” (p +i)i(-X)i(C-' - ly’. 

i+j=n 1 

Given (f, z) E M[A, B], we set 

wq(f, t) = P CYw)(_X)CYCw(C-l - 1)lBl 

Proposition 4. We have I &[n] I = m, (x ; p, c). 

Proof. See [6]. Cl 

Krawtchouk polynomials: K,,(x; p, N), for 0 6 n s N, are defined by: 

~.(n;p,~)=,~,[-~~~;p-l] where O<p<l. 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

In [23] one finds (1 + $)x(1 -pt)N--x, where p + q = 1, as a generating function 
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for Krawtchouk polynomials. More precisely we have: 

n-0 (-N)JYK,(x;p, N)t”/n! = (1+ qt)x(l -pt)“-“. 

This shows that for (a, t) E K[A, B] be setting: 

wg(u, z) = (-x)“Y”‘“‘(x - N)“y”‘“(-q/p)‘A’ 

we obtain a model, X, for Krawtchouk polynomials. More precisely: 

(1.14) 

(1.15) 

Proposition 5. We have IX[n]( = (-N),K,(x;p, N). 

Remark. Several other models for Krawtchouk polynomials are described in [15]. 

Hanh polynomials: Q,(x; a, /3, N), for 0 s IZ s N, are defined by: 

Q&G ct; P, N) = 2% 
-&12+(Y+p+l,--x 

CX+~, -N 
;l . 1 (1.16) 

We also have the following expression [5, page 15501 

(a + l)n(-NLQnk a, P, NJ 

= 
= 0 

‘1” (a + 1 +i)i(P + 1 + i)j(x - N)i(-x)j(-ly. 
i+j=n 1 

(1.17) 

Given (f, u, g, z) E Q[A, B], we set 

w6(f, u, g, t) = (a + l)cyc(f)(P + l)cyc(g)(x - N)cyc(o)( -x)~~=(‘)( - l)‘? (1.18) 

Proposition. 6. We have (??[n]l = (a + l)n(-N)nQn(~; CY, p, N). 

We are now ready to prove combinatorially the following limit formulas: 

Theorem 1. We have 

lim Pia,s)(l - 2+~$-~) = Limp’(x) 
B-- 

(1) 

linin m,(cx(l - c)-‘; /3, c) = n! L!?-l’(x) (2) 

lim K,(x; UN-l, N) = C?)(x) 
N-s= (3) 

lim m,(x; /3, up-l)/(P), = C?)(x) 
B+m 

(4) 

((u + l)n _lili_ QJNx; cu, p, N) = n! P;aSB’(l -2x) (5) 

lim Q,(x;pt, qt, N) = K,(x;p, N) 
f-m 

where p + q = 1 (6) 

(Pn)~~~Q,(x;/3-1,~N,N)=m,(x;/3,c) wherey=c-l-1. (7) 
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Remark. These are all proved using the following technique: we consider a 
model for the left hand side (before taking the limit); when we do take the limit, 
most configurations are killed (i.e. their weight tends to zero), the only surviving 
configurations (with their limiting weights) form precisely one of our models for 
the right hand side. This method, due to Foata, was first used in [6] to prove (2) 
combinatorially. In other words these limits correspond to the seven arrows in 
Fig. 1. These arrows are obvious forgetful epimorphisms for which in the inverse 
image of any given configuration everything is killed except precisely one 
(degenerate) configuration with the right limiting weight. 

Proof of (1). By Proposition 3, Jacobi configurations with weight 

w3(A, B, f, g) = (a + l)cyc(f) (p + l)c~ck)(l -x~-')l"l(-x~-')l"l 

form a model for PAqB)(l - tip-‘). We have lim,,, w3(A, B, f, g) = 0 unless 
cycg = 1B1, i.e. g = ls, in which case limp,, w3(A, B, f, lB) = (a: + l)cyc(f)(-~)‘E’ 
which is the weight w&) of this Laguerre configuration. 0 

Proof of (2). Using the same technique, (2) is proved in [6]. 0 

Proof of (3). We will prove lim,,, (-N)-“(-N)&(x; a/N, N) = C?)(x) which 
is equivalent to (3) since lim,,, (-N),(-N)-” = 1. By Proposition 5, Krawt- 
chouk configurations on [n] with weight w5(A, B, 0, z) = ( -x)~~~(~(x - N)cyc(z) x 

(1 - N/a)lA’ form a model for (-N),K,( x; a/N, N). If we put an extra multiplica- 

tive weight of (-N)-’ on each point and let N+ co, the weight of (A, B, a, z) 
tends to zero unless cyc r = lB1 (i.e. r = lB). In this case (A, B, u, lB) is 
really a Charlier configuration (A, a) of weight (-x)cyc’~(l/a)‘A’ = lim,, 
(-N)-“w,(A, B, CT, Is). 0 

Proof of (4). We will prove lim,,, P-“m,(x; p, u/P) = @)(x) which is equiv- 
alent to (4) since limo_, (p),p? = 1. If we put an additional multiplicative 
weight of l//3 on each point on the Meixner configurations on [n]; the weight of 
(A, B, f, z) becomes Pmnw4(A, B, f, t) = ~~“~cYc~f~(-x)cYc~“~(~/u - l)lB’. When 
p+ ~4 this tends to zero unless cyc(f) + IB( = n (i.e. f = lA and r ES[B]) and 
(A, B, lA, t) is really a Charlier configuation (B, z) of weight (-x)“Y”(“)(l/u)‘“’ = 

limp,, B-“w,(A, B, IA, t). 0 

Proof of (5). We will prove limhr,,(-N)-“(-N),(a + l)nQ,(Nx; (Y, p, N) = 
II ! PIpI.“‘(l - 2~) which is equivalent to (5) since lim,, (- N)-“( - N)n = 1. By 
Proposition 6, Hahn configuations form a model for (a + l)n( -N),Q,(Nx; 
(Y, B, N); we put an additional multiplicative weight of -l/N on each of the n 
points of the configuration, i.e. the weight of the Hahn configuration (f, a, g, Z) 
EQ[A, B] is now (a + 1) CYC(f)(p + l)cYC@)(& _ N)cYc~(_N~)cYcT(_~)IBIx 
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(-l/N)iAl(-l/N)‘B’. When N + m, this configuration dies unless cyc(a) = IAl and 
cyc(r) = ]B] (i.e., 0 = lA, r = lB) in which case (f, u, g, r) = (f, lA, g, ls) is 
really a Jacobi configuration. Moreover the value of the limit is ((u + l)cyc(f) X 
(p + l)c~cW(l _ X)l”l(_x)l”l which is precisely w3(f, g) (with x replaced by 
(1-b)). 0 

Proof of (6). By Proposition 6, setting a: =pt and j3 = (1 -p)t = qt, we have a 
combinatorial model for (pt + l)n( -N),Q,(x; pt, qt, N). Put an additional multi- 
plicative weight of (pt)-’ on each of the 12 points. The weight of the Hahn 
configuration (f, O, g, r) E Q[A, B] is (pt + l)“Yccf)(qt + l)cyc(g)(~ - N)cyc(o) x 
(-xy(‘)( l/pt)‘A’( - l/PC) ~3 When t+ w, the only surviving configurations are . 
those with cyc(f) = IAl and cyc(g) = ]B], i.e. of the form (lA, (J, 18, r) with limit- 
ing weight (-X) CY+)(_l\l +x)‘Y”‘“‘(-q/p) . 

IB’ These are Krawtchouk configura- 
tions. Since lim,, (pt + l),(pt)-” = 1, we have lim,, (-N),Q,(x;pt, qt, N) = 
(-N),K,(x;p, N) = m,(x; -N, -p/q) (the last equality is the classical relation- 
ship between Meixner and Krawtchouk polynomials). Cl 

Proof of (7). If we set 

w,_(f, o, g, r) = p”Y”cf’(yN + l)cYc(g)(x - N)cYc(o)(-~)cYc(r)(-l)IBI, 

by Proposition 6, Hahn configurations form a model for (/3)n(-N)nQ&; 
/3 - 1, yN, N). If we add a multiplicative weight of -l/N on each of the IZ 
points and let N+ ~0, the only surviving Hahn configurations are those 
with g = lB and (T= lA, i.e. Meixner configurations of weight w&, r) = 
~cyc(f)(-~)cyc(r)y’B’. These add up to m,(x; p, c) by Proposition 4. 0 

Remark. Formula (3) is proved similarly in [2] but using a different model for 
Krawtchouk polynomials. 

We can also give a combinatorial proof of the following: 

Proposition 7 [23, page 3811. We have 

lim n! cy-“L$@(crx) = (1 - x)” and lim n ! (u-“P~~~~)(x) = 2-“(1 + x)“. 
[I-m O(--+- 

2. Pairs of permutations 

Given two finite sets A and B, T[A, B] = S[A] x S[B]. For (a, r) E T[A, B], 
we set w(o, z) = Uc~c(a)v~~~(‘)ylAISl~l where U, v, r and s are formal variables. 
Moreover for any finite set U, let T[U] = {(A, B, a, r) I A U B = U, A rl B = 

0, (0, r) E T[A, BI). 
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T = exp(uC(rX)) exp(vC(sX)) 

point3: r 
cycles: u 

point3: 9 
cycles: v I 

Fig. 2. 

Note that T is a 2-species and T the associated species. In fact, these are weighted 
species with weights in the ring Z[u, V, r, s]. From now on our species will have 
weights in this ring. 

Definition. Let T,(r, s; U, v) = T, = IT[n]l. 

Theorem 2. We have T(t) = (1 - rt)-“(1 - st)-” for the exponential generating 

series of T and T, = Ci+j=n (y)(U)i(U)jr’S’. 

Proof. This follows from the fact that T is the species exp(uC(rX)) * 

exp(vC(sX)). Cl 

By specifying values for r, s, u and ZJ, we will obtain a combinatorial model for 
Krawtchouk, Meixner and Meixner-Pollaczek polynomials. A T-structure can be 
thought of as an assembly of blue (those of a) and red (those of r) cycles. More 
generally in Section 3, we will recall the definition of an assembly of blue and red 
“octupuses” (see [2]) which includes the “classical” models for Hermite, 
Charlier, Laguerre and Meixner polynomials and gives new one for Krawtchouk 
and Meixner-Pollaczek polynomials. 

Proposition 8. We have T,(-qp-‘, 1; -x, x -N) = (-N),K,(.x;p; IV). 

Proof. From Theorem 2 and (1.14). 0 

Meixner polynomials are also given by (see [3,6]): 

m,(X; p, C) = C (Y)(-x)i(P + x)jc-i 

i+j=n 1 

Proposition 9. We have T,(c-‘, 1; -x, /3 +x) = m,(x; P, c). 

(2.1) 

Proof. From Theorem 2 and (2.1). 0 
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(2.2) 

Proposition 10. We have T,(eiq, e-@“; A - ix, A + ix) = n! .CF’A(x; 91). 

Proof. From Theorem 2 and (2.2). 0 

Remark. We also have (see [3]): 

n! .SZ$(x; rp) = (2A),e’“P”,FI 
[ 

-n, A+ix 
2A ; I_ e-2i9, 1 

= *z=, (:)(A + ix)k(2A)[(2i sin Cp)kei’? 

Proposition 11. We have T,(2i sin rp, e@‘; A + ix, 2A) = n! 9$(x; v). 

Proof. From the above remark and Theorem 2. 0 

Remark. One can prove combinatorially (see [16]) the following recurrence: 
T n+l = (n(r + s) + ru + sv)Tn - rsn(u + v + n - l)T,_r, from which the 3-terms 
recurrence formulas for Meixner, Krawtchouk, Meixner-Pollaczek and Jacobi 
polynomilas are obtained. 

The next four limit formulas will be proved combinatorially using the following 
technique. First choose an epimorphism, 8 : R + S, between two species. In other 
words we need a surjective function eU : R[ U] ++ S[ U], for each finite set U, such 
that for all bijection f : U+ V. S[f] 0 tIu = 8” 0 R[f]. Give weight functions v and 
w, for R and S-structures respectively, so that R becomes a combinatorial model 
for the left hand of the identity (before taking the limit) and S a model for the 
right hand side. For any S-structure, say S, compute 1 IT’(s)l = C {v(r) 1 e(r) = s} 

and show that this tends to w(s). 

Meixner-Pollxkzek 

pgq 

Fig. 3. 
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Theorem 3. If H,,(x) is the nth Hermite polynomial, then we have 

(8) 

(9) 

where k, = pN + xq2pqN 

2”n! lim /3-“L$,@2)(/32/2 - /3x) = H,(x). 
B-= 

(10) 

Proof of (8). Setting a = fi, we write (8) as lim,,, a-% ! PPf(y ; q) = H,(X) 

where y = (ax - a2 cos q)(sin q~-‘. Let 0 : T -+S be defined by ,!?,(A, B, 0, t) = 

CJ + z E S[ U] where ((5 + T),~ = o, (a + z),~ = z. By Proposition 10, T is a model 
for a-%! Pf(y; cp). More precisely: T,(e”Pa-‘, e-‘qa-‘; a2 - iy, a2 + iy) = 
a-%! e’(y; q). Recall [14] that “involutions” form a combinatorial model for 

Hermite polynomials, H,(x). More precisely: H,(x) = IS[n]l = C {w(o) ( u E 
S[n]} where w(u) is (12x)~l’“)(-2) Go) if u is an involution and 0 otherwise. We 

now computer Ai = lf3-‘(Cj)l where ci is an arbitrary j-cycle. Since in rebuilding 

the T-structure above Cj we can either choose a blue (i.e. in A) cycle of weight 

a2 - iy where each point has weight e’Va’a-’ or a red (i.e. in B) cycle of weight 
a2 + iy where each point has weight ePiVaa-‘, we have: 

A1 = (a” - iy)e@a-’ + (a’+ iy)e-‘,-l = 2a-’ Re((a2 - iy)e’“) = 2x 

A2=(a2- iy)e2'~aa-2+(a2+iy)e-2'~a'a-2 

and 

= 2ae2 Re((a2 - iy)e”‘“) = -2 + 4a-‘x cos q -2 

Ak = (a’ - iy)ekiqamk + (a” + iy)e-““Pa-k a 0 for k 2 3. 

For u E S[n], an arbitrary permutation of type ld1(u)2d2(0) - - * ndncO), we obviously 

have lim,,, [0-‘(u)l= lim,,, flAj$‘“’ = w(u). Cl 

Proof of (9). First note that lim,, c,(f)j K,(k,;p, N) = lim,, CU”(-N)~ X 
K,(k,;p; N) where a= (2pq-‘N-‘)f. By Proposition 8, we get a combinatorial 

model for cu”(-N),K,(k,, p, N)(= T,(qp-‘a, cu; -k,, k, - N)). Choose 8 : T ++S 
as before and compute Bi = 8-‘(cj) for any i-cycle ci. We have: 

lim B1 = l& (-qp-lcx)(-k,) + a(-N + k,) =2x 
N-m 

lim B2 = ,lil& (-qp-1a)2(-kx) + a2(-N + k,) 
‘V--*_ 

= ;rnm -2 + 2.S+(2pq)-f = -2 
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and 

lim Bk = lim (-qp-‘cu)k(-kX) + dk(-N + k,) = 0 for k 2 3. 
N--t_ N-m 

AS before, for an arbitrary a, lim,, lo-‘(a)~ = w(o). q 

Proof of (10). Since a Laguerre configuration is a set of cycles (of weight (Y + 1) 
and chains (of weight -x), and chains and pointed cycles may be identified, we 
think of a Laguerre configuration as a permutation some of whose cycles are 
pointed. Giving to unpointed cycles a weight p2/2 + 1 and to pointed cycles a 
weight /3x - p2/2, Laguerre configurations are a model for n! LiPZ’2’(/32/2 - /3x). 
Let 8 : JZ[n]+S[n] be the map that sends a T-structure on its underlying 
permutation, i.e. 8 forgets the pointing. (In fact 8:9+S is a natural 
epimorphism of species). Set Di = IO-‘(Ci)I where Ci is an arbitrary i-cycle. We 
can easily see that D, = px + 1, D2 = -p2/2 + 20~ + 1 and, more generally, 
Di = (p2/2 + 1) + i(j3x - p2/2), because in rebuilding the Z-structure from ci we 
can either take an i-cycle of weight p2/2 + 1 or a pointed i-cycle (i ways to point 
it) of weight /3x - b2/2. So that we have degs D1 = 1, dega D2 = 2 and degs Dk = 

2, for k 2 3. Now we put in our model an additional multiplicative weight of 2//3 
on each point: 9 is then a model for 2”n! j3-“L~‘szn)(p2/2 - /3x). When we take 
the limit, /I + m, 1 K’(a)l = (2/p)” n D+(O) = n (2’Dt/p’)‘i’~ goes to zero unless 
Vi 2 3, d,(a) = 0. In this case u is an involution and the value of the limit is 
(2+‘“‘( -2)d@) which is the weight of this Hermite configuration o. q 

Remark. This last limit formula was first proved combinatorially by Strehl [20, 
Section 41 in a similar but more complicated way. He calls it the “Italian limit 
formula” because although it appears as an exercise in &ergo’s book [23] it was 
traced back, by Askey, to three Italian authors much earlier. He has also given a 
combinatorial proof [21] of the so-called Szego identities. 

Remark. Applying the well known formula, n! L?-“)(a) = (-u)“@)(x), to (10) 
we get: 

2” lim (X - ~/2)“C~~“2-BX’(~212 + n) = H,(x). 
B-- 

(II) 

3. Octopuses 

First recall a few results from [2]. A “cyclic permutation of non-empty chains” 
(Fig. 4) is called an “octopus” (Fig. 5). 
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Fig. 4. Fig. 5. 
0 0 

00 O 0 0 0 Ed Oo 0 4 0 0 

0 0 0 
0 0 

0 

Now we define the weighted species 0 of octopuses by the following: if an 
octopus t has k points on its cycle and has arms (or tentacles) with jr, j2, . . ’ * tlk 

points then we set w(t) = ckaj,ajz - * * Uj~ E Z[C,, c2, . . . ; aI, u2, . . .] where the U'S 
and the c’s are just formal variables. 

Lemma 2. we hove o(t) = Cnal n-‘c,(~kaI aktk)n. 

Proof. We have O(t) = C(t)oL*(t), C(t) = EnsI n-lc,tn and L*(t) = 

Definition. Let e0 be species of “assemblies of octopuses” where 

w{t1, f2, . . . , tr} = rI w(c). 

Lemma 3. we have (co)(t) = exp{&l n-lcn(&l aktk)“}. 

Definition. Let B = eob+Or be the species of “assemblies of blue (0,) or red 

(Or) octopuses; the weight of a blue octopus being defined using variables, 

Cl, c2, . * . ; al, a2. . . , and the weight of a red octopus, variables 

c;, c;, . . . ;a;,a;, . . . . 

Lemma 4. We 

(Ck*l a;t”)“}. 

have B(t) = exp {Enal fi-‘c,(C,&l aktk)n + Enal n-k:, x 

By choosing specific values for these variables, known models for Hermite, 
Charlier, Laguerre, Meixner polynomials, and new models for Krawtchouk, 
Meixner-Pollaczek, Gegenbauer and Tchebicheff (1st and 2nd kind) polynomials 
are constructed. 

Theorem 4. ([2]). The value of IB[n]l is: 
(a) H,(X) (Hermite polynomial) 

ifcI=2x; a,=l; cj=ai=O forj32; c;=O; c&=-2; a;=l; 
u~=c~+r=O forj32. 

(b) Cc)(x) (Charlier polynomial) 
ifcj=-x, Vj31; ~,=a-‘; aj=O forjZ2; c;=l; cj=O forjs2; 
a;=1; al=0 forjS2. 

(c) n! L!$)(x) (Luguerre polynomial) 
ifCj=CK+l, VjZ=l; Ur=l; Uj=O forjZ2; Cf=-X; 

ci=O forj32; u,C=l, Vjil. 
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(4 4~ P> c) W . ezxner polynomial of the first kind) 
ifci=p, Vial; ar=l; aj=O forja2; Ci=-X, VjZ=l; 
ai = c-l - 1, Vj’il. 

(e) M,(x; 6,2a) (M eixner polynomial of the second kind) 
ifCj=lZ, VjSl; a,=-26; a2=-(1+a2); aj=O forja3; 
Vj 2 1, Cii = 0, c&r = -IX, a; = i(-Sy’-’ (where i = fl). 

Proof. For (a) and (b) see [2,14]; for (c) see [2,8,14,16]; for (d) see [2,5,6,15]. 

In order to prove (e) recall [3, page 1791 that Meixner polynomials of the second 

kind are defined by: 

2 M&X; 6, 2a) -$ = (1 + 2 6t + (1 + b2)t2)-= exp{x tan-‘(&)] (2.3) 
?I*0 

and are related to Meixner-Pollaczed polynomials by [3, page 1801: 

n! p,(x, q) = (sin q)nA4,(~; 6, 2a) where 6 = cotg q 

Now (e) follows from (2.3) by a careful application of Lemma 4. 0 

(2.4) 

loops=zx 1 pairs=-2 

Meixrux 

Meixnex-Pollamk 

1- and 2-Chains only 1 odd cycles only 

Fig. 6. 
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Gegenbauer polynomials: P:‘)(x) are defined by (see [3,23]): 

nzO P:*‘(x)t” = (1 - 2xt + t*)-” 

and are related to Jacobi polynomials, Pi@)(x), by: 

P’“‘(x) = (A + $), n 
0, pc+ “-t’(x). 

n 

Meher-Polleckzek 

I I 

Fig. 7. 

Theorem 5. We have 

lim (-l)~.CP~+Uu)n 
( 

(1+ (u)(l - cos q) -x 

v-0 2 sin Q, 
; Q, =J!p(x) 

> 

(2.5) 

(12) 

n! lim A-“‘2P~A)(xA-t) = H,(x). 
A-+m (13) 

Before proving (12), we introduce a new model for Laguerre polynomials. 

Proposition 12. We have IB[n]l = n! L?‘(X) if Cj = (1 + (u)/2, Vj 3 1; U, = 2, 
a*=-1, aj=OforjS3;ci=-x, c~=OforjZ=2;a~=1forallj~1. 

Proof. This follows from Lemma 4 by writing: 

“z. LSP)(x)t” = (1 - t)-l-=exp(-xt(1 - t)-l) 

= (1 - (2t - t2))--(1+a)‘2 exp(-xt(1 - t)-‘) 0 (2.7) 

0 @&kP-~ o+o+02rl 0 
0 

0 0 0 0 

0 f”8 
o+o+o ;: + otw-0 

oy o-$o”q i”+$ 
1 -chains=2 cy~s&?? 
2-chains=-1 

chains=-x 

Fig. 8. 
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Proof of (12). In this case, B is a model for both (-l)“n! Pn(y, q), with 
a = (a + 1)/2, y = (2 sin q)-l((l + (~)(l - cos q) -x), and n! Limp’(x). More ex- 
plicitly, we know 1 B[n]l is: 

(9 

(ii) 

(-l)nn! e(y;q) if Vjal, ci=a; a,=2costp, Uz=-1; Uj=O for ja3; 
Vj 3 1, cij = 0, chj_i = -2iy and a,! = i sin ~(COS VP>‘-’ (by Theorem 4(e) 

and (2.4)). 

IZ ! L?)(x) if Vj 3 1, Cj = (a + 1)/2; ai = 2, U2 = 1; Uj = 0 for j 2 3; C; = -X; 

c] = 0 for j 2 2; ai = 1 for j 2 1 (by Lemma 4 and (2.7)). 

When 6 + 0, in the model for (-l)“n! P,(y ; rp) the only 
(with their limiting weights) are those forming the model for 

surviving structures 
n! Ljp’(x). 

Proof of (13). We have ]e”[n]] = n! PLA)(x) where in the 
semblies of octopuses” the weight is defined by setting: 

species e” of “as- 
Vj, cj=il; al=2x, 

a2 = -1, aj = 0 for j > 3. Which follows from Lemma 3 by writing: -A log(l- 

(2x - t2)) = CnXl n-‘J.((a)t + (-1)t’)“. The rest is similar to the proof of (12), 
taking e” with cr=l, bI=2u, b2=-1, and cj=bj,l=O for jS2 as a 
combinatorial model for Hermite polynomials. 0 

There is nice isomorphism @ (due to Foata [6]) between the species e” of 
“assemblies of octopuses” (i.e. p ermutations of non-empty chains) and “bi- 
colored permutations”. 

Let e” % S be the composition of @ with the forgetful map (which forgets the 

coloring). 

Fig. 9. 

Note that limit formulas (8), (lo), (11) and (13) can also be proved by computing 
lC’(a)l for any permutation a, using eob+Or as a model for Pn(x; (p) (see 
Theorem 4(e)), L’“‘(x) ( see 
model for P’“‘(X) is above. 

Theorem 4(c)), K,(x;p, N) (see [2]) and e” as a 

n 

4. Conclusion 

We now have several combinatorial models for classical orthogonal poly- 
nomials appearing in R. Askey’s chart (see [14,15,16]). Most formulas, including 
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limit formulas and three terms recurrences, can be proved combinatorially using 
these models which all have a natural combinatorial q-analogue (see [4]). 
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